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Theory

Definice 1. A statement (or proposition) is a sentence which can be declared to be
either true or false. (But not both simultaneously.)

Exercises

1. Which sentences are statements? Which statements are true?

YES It is raining (right now).

NO Let the sunshine in!

YES We have fish and chips.

YES For every natural number there exists a bigger prime number.

YES ∀n ∈ N ∃p : p > n and p is prime.

YES Today is Friday or October.

NO What’s your favourite animal?

YES Some mammals lay eggs.

YES There exists a mammal, which lays eggs.

NO This sentence is false.

YES π + e is irrational number.

Maybe - it depends on place and time;) It is raining (right now).

Maybe - it depends on place and time;) We have fish and chips.

True For every natural number there exists a bigger prime number.

True ∀n ∈ N ∃p : p > n and p is prime.

True, it was October Today is Friday or October.

True Some mammals lay eggs.

True There exists a mammal, which lays eggs.

Nobody knows. π + e is irrational number.

2. Negate the following statements:

(a) All classroms have at least one chair that is broken.

There exists a classroom in which no chair is broken.

(b) No classroom has only chairs that are not broken.

There exists a classroom that has only chairs that are not broken
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(c) Every student in this class loves dogs or cats.

There exists a student, who loves neither dogs nor cats. (For example, s/he
is really afraid of dogs and avoids cats, but loves rabbits.)

(d) Every student in this class loves dogs and cats.

There exists a student, who does not love both dogs and cats. (For example,
s/he loves dogs but not cats.)

(e) If a student loves cats, than s/he loves dogs.

There exists a student, who loves cats, but does not love dogs.

3. Let f : R → R be a function. Function f is strictly increasing if f(x) < f(y)
whenever x < y.

(a) Express the statement using quantifiers.

∀x, y ∈ R, x < y : f(x) < f(y)

(b) Negate the statement.

∃x, y ∈ R, x < y : f(x) ≥ f(y)

(c) Function f is nonincreasing if f(x) ≥ f(y) whenever x < y. Explain the
difference between function, which is not increasing and function, which is
nonincreasing. Give examples of such functions.

Nonincreasing: y = −x, y = −sgnx. (Function still nonstrictly decreases.)
Not increasing: y = sinx. (There are two points, function does not increase
between them.)
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4. Complete the truth table:

A B ¬A ¬B A ∨B A ∧B A =⇒ B A ⇐⇒ B

1 1 0 0 1 1 1 1

1 0 0 1 1 0 0 0

0 1 1 0 1 0 1 0

0 0 1 1 0 0 1 1

5. Let A, B, C be statements. Prove by truth table that following are tautologies:

(a) ¬(A =⇒ B)⇔ (A ∧ ¬B) (b) (A =⇒ B)⇔ (¬A ∨B)

(c) ((A =⇒ C) ∧ (C =⇒ B)) =⇒ (A =⇒ B)

6. Let A and B be sets. Use the Venn diagram to show that: A ∪ (B ∩ C) =
(A ∪B) ∩ (A ∪ C).

7. Let U be the set of all students of the Charles University. Further, let B be all
tudents visiting a Business course, E students visiting an English course and M
students visiting a Math course.

Express by formula and by Venn diagram a set of students taking

(a) at least one of these courses;

(b) both Math and English, but not a Business course;

(c) exactly one course.

8. Let A, B and X be sets. Prove de Morgan’s laws:

(a) (A ∪B)c = Ac ∩Bc,

(b) (A ∩B)c = Ac ∪Bc.
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2. PROPOSITIONAL EQUIVALENCES 36

Discussion

This example illustrates an alternative to using truth tables to establish the equiv-
alence of two propositions. An alternative proof is obtained by excluding all possible
ways in which the propositions may fail to be equivalent. Here is another example.

Example 2.3.2. Show ¬(p→ q) is equivalent to p ∧ ¬q.

Solution 1. Build a truth table containing each of the statements.

p q ¬q p→ q ¬(p→ q) p ∧ ¬q

T T F T F F

T F T F T T

F T F T F F

F F T T F F

Since the truth values for ¬(p→ q) and p∧¬q are exactly the same for all possible
combinations of truth values of p and q, the two propositions are equivalent.

Solution 2. We consider how the two propositions could fail to be equivalent. This
can happen only if the first is true and the second is false or vice versa.

Case 1. Suppose ¬(p→ q) is true and p ∧ ¬q is false.
¬(p → q) would be true if p → q is false. Now this only occurs if p is true
and q is false. However, if p is true and q is false, then p ∧ ¬q will be true.
Hence this case is not possible.

Case 2. Suppose ¬(p→ q) is false and p ∧ ¬q is true.
p ∧ ¬q is true only if p is true and q is false. But in this case, ¬(p→ q) will
be true. So this case is not possible either.

Since it is not possible for the two propositions to have different truth values, they
must be equivalent.

Exercise 2.3.1. Use a truth table to show that the propositions p↔ q and ¬(p⊕q)
are equivalent.

Exercise 2.3.2. Use the method of Solution 2 in Example 2.3.2 to show that the
propositions p↔ q and ¬(p⊕ q) are equivalent.
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Definition 1.2.2 Sentences B and C are logically equivalent if the standard truth tables for B and

C have the same final column. We write B ≡ C to denote that B and C are logically

equivalent.

The use of the word “if” in mathematical definitions (as in the preceding definition

of logical equivalence) is a common practice in mathematical discourse and is always

interpreted to mean “if and only if.” This broader interpretation of “if” is used only in the

context of definitions, while for theorems, lemmas, and other mathematical statements,

we adhere to the strict, formal interpretation of the if–then logical connective. Thus,

when we are reading a mathematical definition and encounter the word “if,” we read the

definition as an “if and only if” statement asserting the exact meaning of the identified

word, allowing us to move freely back and forth between the defined word and the

definition.

For example, if two sentences are logically equivalent, then the two sentences

have the same final column in their standard truth tables. In addition, if two sentences

have the same final column in their standard truth tables, then the two sentences are

logically equivalent. You will want to develop a facility in this process of transitioning

back and forth between defined mathematical words and the corresponding formal

definitions.

We develop a good understanding of logical equivalences by considering some

pairs of sentences that are logically equivalent, and some that are not.

Example 1.2.6 We prove that ( p → q) ≡ [(∼p) ∨ q].

The basic truth table for the implication p → q and the standard truth table

for (∼p) ∨ q given in example 1.2.1 have the same final columns, as demonstrated

below.

p q p → q

T T T

T F F

F T T

F F T

p q ∼p (∼p) ∨ q

T T F T

T F F F

F T T T

F F T T

■

Example 1.2.7 We prove that both [(∼p) ∨ p] �≡ [(∼p) ∨ q] and [(∼p) ∨ p] �≡ ( p → q).

Using the result of example 1.2.6, neither ( p → q) nor [(∼p) ∨ q] is logically

equivalent to a contradiction. A contradiction has truth value F in every row of

the final column of its standard truth table, while both of these sentences have

T in the first row (and also in the third and fourth rows) of their respective final

columns. In example 1.2.2, we found that (∼p)∧p is a contradiction.Alternatively,

observe that the first sentence in each pair has one sentence variable, while the

second sentence has two sentence variables, and so they cannot be logically

equivalent.

■

A particularly important pair of logical equivalences is referred to as De Morgan’s

laws in honor of the nineteenth century English mathematician Augustus De Morgan,

who first identified the significance of these relations for mathematical logic, set theory,
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Theorem 2.5.1 Let c and c� be contradictions and t and t� be tautologies. Then

c ⇔ c�, t ⇔ t�, c ⇔ ¬t. (2.7)

Proof: These follow directly from Definition 2.5.1 and Theorem 2.4.2. Because
c and c� are both false, they have the same truth value. So they are logically
equivalent. The same argument applies to t and t�, because both of them have
truth value “T.” Finally ¬t has truth value “F” so it is a contradiction. As a result,
we may identify ¬t with c� in the first relation in (2.7). This yields c ⇔ ¬t. �

This theorem indicates that up to logical equivalence there are a unique contradic-
tion and a unique tautology, and that the former is the negation of the latter.

Exercise 2.5.2 Let a, c, and t be respectively an arbitrary statement, a contradic-
tion, and a tautology. Show that a ⇒ t and c ⇒ a are tautologies.
Solution: Because t is true, according to Table 2.3, a ⇒ t is true irrespective of
whether a is true or false. Therefore, a ⇒ t is a tautology. Similarly, c ⇒ a is a
tautology, because c is false and according to Table 2.3 this suffices to hold that
c ⇒ a is true regardless of the truth value of a. �

A strange outcome of this exercise is that contradictions imply tautologies! The
reader must not view all tautologies as unimportant or useless. For example, con-
sider the statement (c) of Proposition 2.4.1, i.e.,

d := (((a ⇔ b) ∧ (b ⇔ c)) ⇒ (a ⇔ c)).

Since we have proven that d is true regardless of the nature of its constituent
statements, a, b and c, by Definition 2.5.1, d is a tautology! Indeed, a large number
of theorems in mathematics concern establishing that certain compound statements
are tautologies. The following theorem is an example. It provides the basis for one
of the most important methods of establishing the validity of an implication, namely
the method of proof by deduction (Section 3.4).

Theorem 2.5.2 (Two-step deduction) Let a, b and c be statements. Then the
statement d := ((a ⇒ c) ∧ (c ⇒ b)) implies a ⇒ b, i.e., e := (d ⇒ (a ⇒ b)) is a
tautology.
Proof: We determine the truth value of e by considering all possible truth values
of a, b and c. Constructing the relevant truth table (Table 2.9) we find that indeed
e is always true; it is a tautology. �

Exercise 2.5.3 Let e, f and g be statements. Show that

h := ( ((e ∧ f) ∧ (e ⇒ g)) ⇒ (f ∧ g) )
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a b c a ⇒ c c ⇒ b a ⇒ b d e

T T T T T T T T

T T F F T T F T

T F T T F F F T

T F F F T F F T

F T T T T T T T

F T F T T T T T

F F T T F T F T

F F F T T T T T

Table 2.9: Truth table establishing that d := ((a ⇒ c)∧ (c ⇒ b)) implies
a ⇒ b. Here e := (d ⇒ (a ⇒ b)).

is a tautology.
Solution: Again we can establish h by constructing its truth table (Problem 2.3).
Here we give an alternative proof that is based on our knowledge of implications
and conjunctions. Our aim is to show that h cannot be false. First, we recall that
an implication is false only if its hypothesis is true and its conclusion is false, and
a conjunction is true only if its constituent statements are both true. We start our
argument by expressing h as the implication: h = (a ⇒ b) where

a := ((e ∧ f) ∧ (e ⇒ g)),

b := (f ∧ g).

h can be false only if a is true and b is false. To ensure that a is true,

(1) e ∧ f must be true, which implies e and f are both true, and

(2) e ⇒ g must be true.

Combining (1) and (2), we see that because both e and e ⇒ g are true, g must
be true. But according to (1), f is also true. This shows that there is no way we
can ensure that b is false. Therefore, it is impossible for h to be false; it is true
regardless of the truth values of its constituents, i.e., it is a tautology. �

Our solution of Exercise 2.5.3 involves two parts. First we actually consider the
possibility that the statement we wish to prove is false. We then show that this
never happens. This approach is called the method of proof by contradiction that
we will examine more thoroughly in Section 3.5. We use a similar approach to solve
the following exercise problem.
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Disjoint Sets
Two sets A and B are disjoint if they have no elements in common, that is,
if A∩B = /0.

An examination of Figure 1.2 or referring to the definition of Ac indicates that
for any set A, A and Ac are disjoint. That is,

A∩Ac = /0

✧ Additional Laws for Sets
There are a number of laws for sets. They are referred to as commutative, asso-
ciative, distributive, and De Morgan laws. We will consider two of these laws in
the following examples.

EXAMPLE 5 Establishing a De Morgan Law Use a Venn diagram to show
that

(A∪B)c = Ac ∩Bc

Solution We first consider the right side of this equation. Figure 1.6 shows a
Venn diagram of Ac and Bc and Ac ∩Bc. We then notice from Figure 1.3 that this
is (A∪B)c.

HISTORICAL NOTE

Augustus De Morgan,
1806–1871

It was De Morgan who got George
Boole interested in set theory and
formal logic and then made
significant advances upon Boole’s
epochal work. He discovered the
De Morgan laws referred to in the
last section. Boole and De Morgan
are together considered the
founders of the algebra of sets and
of mathematical logic. De Morgan
was a champion of religious and
intellectual toleration and on
several occasions resigned his
professorships in protest of the
abridgments of academic freedom
of others.

Figure 1.6 ✦

EXAMPLE 6 Establishing the Distributive Law for Union Use a Venn dia-
gram to show that

A∪ (B∩C) = (A∪B)∩ (A∪C)

Solution Consider first the left side of this equation. In Figure 1.7a the sets
A, B∩C, and the union of these two are shown. Now for the right side of the
equation refer to Figure 1.7b, where the sets A∪B, A∪C, and the intersection of
these two sets are shown. We have the same set in both cases. ✦

Figure 1.7a

Exerpt from Applied Finite Mathematics by Tomastik and Epstein (c) 2008 Cengage Learning
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Figure 1.7b

We can summarize the laws we have found in the following list.

Laws for Set Operations
A∪B = B∪A Commutative law for union
A∩B = B∩A Commutative law for intersection
A∪ (B∪C) = (A∪B)∪C Associative law for union
A∩ (B∩C) = (A∩B)∩C Associative law for intersection
A∪ (B∩C) = (A∪B)∩ (A∪C) Distributive law for union
A∩ (B∪C) = (A∩B)∪ (A∩C) Distributive law for intersection
(A∪B)c = Ac ∩Bc De Morgan law
(A∩B)c = Ac ∪Bc De Morgan law

✧ Applications

EXAMPLE 7 Using Set Operations to Write Expressions Let U be the
universal set consisting of the set of all students taking classes at the University
of Hawaii and

B = {x|x is currently taking a business course}
E = {x|x is currently taking an English course}
M = {x|x is currently taking a math course}

Write an expression using set operations and show the region on a Venn diagram
for each of the following:
a. The set of students at the University of Hawaii taking a course in at least one

of the above three fields.

b. The set of all students at the University of Hawaii taking both an English
course and a math course but not a business course.

c. The set of all students at the University of Hawaii taking a course in exactly
one of the three fields above.

Solution

a. This is B∪E ∪M. See Figure 1.8a.

Figure 1.8a

b. This can be described as the set of students taking an English course (E) and
also (intersection) a math course (M) and also (intersection) not a business
course (Bc) or

E ∩M∩Bc

Exerpt from Applied Finite Mathematics by Tomastik and Epstein (c) 2008 Cengage Learning
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This is the set of points in the universal set that are in both E and M but not
in B and is shown in Figure 1.8b.

Figure 1.8b

Figure 1.8c

c. We describe this set as the set of students taking business but not taking En-
glish or math (B∩Ec ∩Mc) together with (union) the set of students taking
English but not business or math (E ∩Bc ∩Mc) together with (union) the set
of students taking math but not business or English (M∩Bc ∩Ec) or

(B∩Ec ∩Mc)∪ (Bc ∩E ∩Mc)∪ (Bc ∩Ec ∩M)

This is the union of the three sets shown in Figure 1.8c. The first, B∩Ec∩Mc,
consists of those points in B that are outside E and also outside M. The second
set E ∩Bc ∩Mc consists of those points in E that are outside B and M. The
third set M∩Bc ∩Ec is the set of points in M that are outside B and E. The
union of these three sets is then shown on the right in Figure 1.8c. ✦

REMARK: The word only means the same as exactly one. So a student taking
only a business course would be written as B∩Ec ∩Mc.

Self-Help Exercises 1.1

1. Let U = {1,2,3,4,5,6,7}, A = {l,2,3,4}, B =
{3,4,5}, C = {2,3,4,5,6}. Find the following:
a. A∪B b. A∩B
c. Ac d. (A∪B)∩C
e. (A∩B)∪C f. Ac ∪B∪C

2. Let U denote the set of all corporations in this coun-
try and P those that made profits during the last year,
D those that paid a dividend during the last year,
and L those that increased their labor force during
the last year. Describe the following using the three
sets P, D, L, and set operations. Show the regions in
a Venn diagram.

a. Corporations in this country that had profits and
also paid a dividend last year

b. Corporations in this country that either had prof-
its or paid a dividend last year

c. Corporations in this country that did not have
profits last year

d. Corporations in this country that had profits,
paid a dividend, and did not increase their labor
force last year

e. Corporations in this country that had profits or
paid a dividend, and did not increase their labor
force last year

1.1 Exercises

In Exercises 1 through 4, determine whether the state-
ments are true or false.

1. a. /0 ∈ A b. A ∈ A

2. a. 0 = /0 b. {x,y} ∈ {x,y,z}

3. a. {x|0 < x < −1} = /0
b. {x|0 < x < −1} = 0

4. a. {x|x(x−1) = 0} = {0,1}
b. {x|x2 +1 < 0} = /0

5. If A = {u,v,y,z}, determine whether the following
statements are true or false.

a. w ∈ A b. x /∈ A
c. {u,x}∪A d. {y,z,v,u} = A

Exerpt from Applied Finite Mathematics by Tomastik and Epstein (c) 2008 Cengage Learning
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• (Disjoint). Given An and Am with n �= m, we can assume, without loss of generality, that n < m. Suppose
that there existed some x ∈ An ∩ Am. Then by definition of these sets, there exists some odd numbers k
and � such that x = 2n−1k = 2m−1�. However since n < m, we have that n ≤ m − 1, and therefore we
can write 2m−1 = (2n)(2i) with i ≥ 0. Hence we have 2n−1k = 2n2i�. Dividing both sides by 2n−1 yields
k = (2)(2i)�, which contradicts the assumption that k is odd. Therefore An ∩Am = ∅.

• (Union is N). We want to show that
�∞

n=1An = N.
– (⊆). Since each An is a subset of N, the union of these sets is a subset of N as well.
– (⊇). Given any x ∈ N, we can write x = 2n−1k for some n ∈ N where k is odd. Then x ∈ An, as

desired.

�

Exercise 4: Finite De Morgan’s Laws (Abbott Exercise 1.2.5)

Let A and B be subsets of a set X. Show that the following set equalities hold.

(a) X � (A ∩B) = (X �A) ∪ (X �B).
(b) X � (A ∪B) = (X �A) ∩ (X �B).

These properties are sometimes called De Morgan’s Laws.

Proof. (a)
• (⊆). If x ∈ X � (A ∩ B) this means that x is not in A ∩ B. Therefore either x /∈ A or x /∈ B. Hence
either x ∈ X �A or x ∈ X �B. It follows that (X �A) ∪ (X �B).

• (⊇). If x ∈ (X � A) ∪ (X � B) then either x ∈ X � A or x ∈ X � B. Hence either x /∈ A or x /∈ B.
Therefore x /∈ A ∩B, so x ∈ X � (A ∩B).

(b)
• (⊆). If x ∈ X � (A ∪ B), then x /∈ A ∪ B. Hence x /∈ A and x /∈ B, so x ∈ X � A and x ∈ X � B.
Therefore x ∈ (X �A) ∩ (X �B).

• (⊇). If x ∈ (X �A)∩ (X �B), then x ∈ X �A and x ∈ X �B. Hence x /∈ A and x /∈ B, so we have
that x /∈ A ∪B, and therefore x ∈ X � (A ∪B).

�

Exercise 5: Infinite De Morgan’s Laws

Let An for each n ∈ N be subsets of a set X. Show that the following set equalities hold.

(a) X � (
�∞

n=1An) =
�∞

n=1(X �An).
(b) X � (

�∞
n=1An) =

�∞
n=1(X �An).

These properties are also referred to as De Morgan’s Laws.

Proof. (a)
• (⊆). If x ∈ X � (

�∞
n=1An) then x /∈ �∞

n=1An, therefore there exists some n such that x /∈ An. Hence
x ∈ X �An for some n, and therefore x ∈ �∞

n=1(X �An).
• (⊇). If x ∈ �∞

n=1(X � An), then x ∈ X � An for some n, and therefore x /∈ An for some n, so
x /∈ �∞

n=1An, and therefore x ∈ X � (
�∞

n=1An).
(b)

• (⊆). If x ∈ X � (
�∞

n=1An), then x /∈ �∞
n=1An, so x /∈ An for all n. Hence x ∈ X � An for all n, and

therefore x ∈ �∞
n=1(X �An).

• (⊇). If x ∈ �∞
n=1(X � An), then x ∈ X � An for all n, so x /∈ An for all n. Therefore x /∈ �∞

n=1An,
and therefore x ∈ X � (

�∞
n=1An).

�


