11th lesson

 $https://www2.karlin.mff.cuni.cz/{\sim}kuncova/en/teachIM.php\\kunck6am@natur.cuni.cz$

Todays source:

http://nebula2.deanza.edu/~karl/Classes/Files/Math12/ch01.pdf

Exercises

1. Find the graph of 2^x

2. Find the graph of ab^x , b > 1:

3. Find the function for the graph:

(A)
$$\ln x + \frac{1}{2}$$

(C)
$$\ln(x + \frac{1}{2})$$

(B)
$$\ln x - \frac{1}{2}$$

(D)
$$\ln(x - \frac{1}{2})$$

4. Find t, if $100 = 50e^t$:

(A)
$$t = \ln 2$$

(B)
$$t = \frac{\ln 100}{\ln 50}$$

(C) $t = \frac{\ln 100}{50}$

(C)
$$t = \frac{\ln 100}{50}$$

(D)
$$t = 100e^{50}$$

5. Solve for x: $8y = 3e^x$

$$(A) \ln 8 + \ln 3 + \ln y$$

(B)
$$\ln 3 - \ln 8 + \ln y$$

(C)
$$\ln 8 + \ln y - \ln 3$$

(D)
$$\ln 3 - \ln 8 - \ln y$$

6. Find function(s) which is increasing and convex:

(A)
$$3^{-x}$$

(B)
$$2^x$$

(C)
$$\ln x$$

(D)
$$-\ln x$$

7. Find the doubling time for exponential growth:

8. Find the half-life for the exponential decay:

9. Find functions: $y = 3^x$, $y = 2^x$, $y = 2^{-x}$, $y = \left(\frac{1}{3}\right)^x$:

10. Find functions: $y = \ln x$ $y = |\ln x|$ $y = \ln(|x|)$ $y = \ln(-x)$ $y = -\ln x$

- 11. In 1988, the inflation rate in Nicaragua was average 1.3% a day. Which formula represents the rate of inflation? (t is in days and I_0 represents the initial inflation.)
 - (A) $I(t) = I_0 e^{0.013t}$
 - (B) $I(t) = I_0 e^{1.3t}$
 - (C) $I(t) = I_0(1.013)^t$
 - (D) $I(t) = I_0(1.013)t$
 - (E) $I(t) = I_0(1.3)^t$
- 12. A student drinks a cup of coffee with 100 mg of caffeine. The half-life of caffeine is 4 hours. We want to know, when the amount of caffeine in the body is down to 10mg. Which formulae helps us? (And how?)

- (A) $10 = 100e^{4k}$
- (B) $100 = 10e^{4k}$
- (C) $50 = 100e^{4k}$
- (D) $10 = 100/4e^k$
- (E) $P = 100/10e^4$
- 13. At midnight, a patient received 25 mg of a drug. The amount of the drug in the body decreases by 12% each hour. How we can describe the amount of the drug in the body? (As a function of time t.)
 - (A) A(t) = 25 12t
 - (B) A(t) = 25 0.12t
 - (C) $A(t) = 25(0.12)^t$
 - (D) $A(t) = 25(0.88)^t$
 - (E) $A(t) = 25(1.88)^t$
 - (F) $A(t) = 25(-0.12)^t$
 - (G) $A(t) = 12(0.25)^t$