3rd lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teachIM.php, kunck6am@natur.cuni.cz

Algorithm

1. Find conditions (dividing by zero).

- 2. Consider two cases. What happen if the interior of the absolute value is positive (or zero) OR if the interior is negative.
 - (a) At first, consider the interior is ≥ 0 (you obtain an inequality) and then cancel the absolute value (you obtain the second inequality).
 - (b) Solve both inequalities. Sketch a picture, where the first AND the second inequality is valid.
 - (c) Second, consider the interior is < 0 (you obtain the third inequality) and then change the signs inside the absolute value and then cancel it (you obtain the fourth inequality).
 - (d) Solve both inequalities. Sketch a picture, where the third AND the fourth inequality is valid.
- 3. Take both the pictures and make their UNION.
- 4. Be careful about the ending points of all intervals and dividing by zero.

Exercises

Solve

1. (a)
$$|3x + 1| - 4 < 7$$

(b) $3 \le 1 + \left|\frac{1}{2}x - 5\right|$
(c) $|4x + 2| \ge 0$
(d) $|4x + 2| > 0$
2. (a) $3|1 - x| - 4 \ge |1 - x|$
(b) $||x| + x| \le 2$
(c) $||x + 3| - 12| < 13$
(d) $2x - x^2 \ge |x - 1| - 1$
(e) $\frac{|3x + 2|}{4} \le 1$
(f) $|2x - 7| < -5$
(g) $-\frac{1}{3}\left|3 + \frac{x}{2}\right| < -2$
(e) $|x + 1| \ge \frac{x + 4}{2}$
(f) $|x^2 - 3x + 1| < 1$
(g) $\left|\frac{x^2 - 5x + 4}{x^2 - 4}\right| \le 1$

Bonus

3. (a)
$$||||x-1|-1|-1| = 0$$

(b) $(1-p)(|x+2|+|x|) = 4 - 3p, p \in \mathbb{R}$

Introductory Mathematics, 2020/21, Kristýna Kuncová

- 4. Express using the absolute value:
 - (a) All real numbers x, whose distance from zero is greater than 5 unit
 - (b) All real numbers x, whose distance from 7 is less than 3 units
- 5. The pictures represents solutions of inequations with absolute value. Find the inequation. (You are looking for expressions similar to |x + 5| < 4, just change the numbers and the inequality sign.)

