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Solution Attempt 3. Let us severely penalize the use of unnecessary
work by means of the cost

10 10
J = (u-v)2 dt = / iyt dt, (7.8)
)] 0

subject to the end conditions z(0) = v(0) = 0 and the integral con-
straint (7.4).
Apply the Euler-Lagrange equation to the augmented Lagrangian

N = %% + M (7.9)

to obtain that A = 0 [because v(0) = 0] and that when v # 0
(Exercise 7.6):

~0 /v = B/, (7.10)
200 = k?, (7.11)
v = kVt, (7.12)

x = 2kt¥/2/3, (7.13)

giving from z(10) = 100 that k = 15//10. Hence total work done
under this control strategy is

W = v(10)%/2 = (kv10)2/2 = 225/2 = 112.5, (7.14)
no improvement over our previous attempt. Moreover, our control

force u=1v=k/2V1, (7.15)

although positive, is unbounded at ¢ = 0. Note that transversality
requires (Exercise 7.14) that ©(10)v(10) = 0 and so (7.15) cannot be
optimal for the cost (7.8).
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EXERCISE

Variational problems
1. Test for extremum of the functionat
Hrol = 0% - yharso =5 (3} =1
Hint: Euler’s Equation (EE): " + vy = 0.y =
cjeosx + e siny wsing B.C, c; =0.on =1
Ans. y =sinx
Find the extremal of the following functionals
2 L7074 ¥? - 2ysinxidx
Hint: EE: 2y - 2sinx — 23" =0
Ars. y=cef +oe " + %
3L 12 @) =0, )1 = L.
Hint: BE: y" =6, y=x’ +e1x + G, C =
0,c2=0
Ans. vy =x*
4 fE =+ 20y, 5 = 0,5 (3) = 0
Hint: EE: ' +y=w_x,y=ccosx+
casinx +x
Ans, y=1x— 5sinx
- Y+ 2o y(r) = i) =
Hint: EE: 2y + 2xy' —2(xy 4+ ¥} =0 ie.,
0=0

Ans. Invalid problem
6. J7 S, (1) = 1, y(2) = 4

Lh

Ans. y=x!
7. Sdx, v = 1,53 = 16
Hint: EE: ....‘I_. = w, Y=, y=cxt + o
Ans. y = _uluk -3
8 0% 4y 4+ 2yetddx
Ans. vy = At + Be™' _m.nm.
9. fy@yeosx — ¥+ y¥dx, y(0) =0, yin) =
0

CALCULUS OF VARIANIONS st
Hint: EE: ¥+ y=2cosx, ¥y =c cosx +
casink + x sinx, ¢y =0, o = arbitrary

Ans. y ={C 4+ x)sinx,

4.5 |ISOPERIMETRIC PROBLEMS

In calculus, in problems of extrema with constraints
it is required to find the maximum or minimum of a
Tunction of several variably glx), x2, ..., x,) where
the variables x|, x3, ..., x, are connected by some
given relation or condition known as a constraint.

The variational problems considered so far find
the extremum of a functional in which the argament
Tunctions could be chosen arbitrarity except for pos-
sible end (boundary) conditions, However, the class
of variational problems with subsidiary conditions
or comstraints imposed on the argument functions,
apart from the end conditiens, are branded as isaperi-
melric problems. In the original isoperimetric (“iso”
for same, “perimetric* for perimeter) problem it is
required to find a closed curve of given length which
enclose maximum area. It is known even in ancient
Greece that the solution to this problem is circle. This
is an example of the extrema of integrals under con-
straint consists of maximumizing the area subject 1o
the constraint (condition) thar the length of the curve
is fixed.

The simplest isoperimetric problem consists
of finding a function f(x) which extremizes the
functional

Ny = \ " fley s n
x

subject ta the constraint (condition) that the second
integral

Iyt = \. ey, ¥ex @
£

assumes 4 given prescribed value and satistying the
prescribed end conditions ¥(x) = ¥ and y(x) =
»1. To solve this problem, use the method of
Lagrange’s multipliers and form 2 new function

HOy = flar oy +aeln s ¥ ()

where L is an arbitrary constant known as the
Lagrange multiplier. Now the problem is 10 find the
extremal of the new functienal,

|

fﬂru_u.th
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1[p0e)] = f7 Hix, ¥, ¥')}dx, subject o no con-
strainls (except the boundary conditions). Then the
modified Euler's equation is given by

aH d (38H —b “
9y dx\8y ) )

The complete solution of the second crder Equation
(4) contains, in general, two constants of integration
say ¢y, c3 and the unknown Lagrange multiplier ).
These 3 constants ¢y. ¢z, A will be determined using
the two end conditions ¥(xi) = ¥, ¥(x2) = »2 and
given constraint (2).

Corollary: Parametric form: To find the
extremal of the functiona)

13
1= " ftn v
]
subject to the constraint
]
4 H\. glx, y. &, ¥, Ddt = constang
n
solve the system of two Euler equations given by

H-hm@uu., and Y:hﬁmlmvnc
ax i \ ik dr \ 35

resuiting in the solution x = x(¢), ¥ = ¥({1), which
is the parametric representation of the required func-
tion ¥ = f(x}which is abtained by elimination of 1.
Here ¥ = ulwp-&\...h m_hmnn

Hix, pi 0.0 = flx. p, 5. 5.0+ A glx. . 5, 5.0

The two arhitrary constants c;, ¢z and A are deter-
mined using the end conditions and the constraint.

4.6 STANDARD ISOPERIMETRIC
PROBLEMS

Circle

Example 1:  [soperimetric problem is to determine
a closed curve C of given (fixed) length (perimeter)
which encloses maximum arza.

Solution: Let the parametric equation of the curve
Che

a=xlt), ¥y =yir) 3]

where 1 is the parameter. The area enclosed by curve
C is given by the intepral
1

fa
f == | (a¥F —ay)dt (2)
20y

= 25, We have x(ry) = x{t:} = %o
and ¥{#1) = y(rz} = yo, since the curve is clesed.
Now the total length of the curce C is given by

3)

Form H o WE — it A+ )
Here A is the unknown Lagrangian multiplier. Prob-
lem is to find a curve with given perimeter for which
area {2} is maxitmuam. Euler equations are

aH d [3H
ﬂ‘mhﬂuuc @
aHq d [aH
—_ == (i)
and ay &m&.u ¢ ©

Differentiating A in (4) w.it x, &, ¥, 3 and substi-
weting them in (5) and (6), we get

1 d 1 Ad
LESNCAY [N S (Y N
2 di 2 ‘mu+uu.
L 4 11
—3f - mu+||¢| =0 {8}
2 T LT

(&)

ca [§L4)]

where ¢| and ¢ are arbitrary constants. From (9) and
(1)) squaring (¥ — c,) and (x — <) and adding, we
gel

Ak

4+ ] ——=

-l +ir—al=
,\‘.ﬂmi...u

@i 22
RS

=al

ie, (r—e +(r—en)t =42
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which is the equation of circle. Thus we have
obtained the well-known result that the closed curve
of given perimeter for which the enclosed area is a
maximum is a circle.

Catenary

Example 2: Determine the shape an absolutely
flexible, inextensible homogeneous and heavy
rope of given length L suspended at the points A
and B

Fig. 4.6

Sefution: The ropein equilibrium take a shape such
that its centre of gravity occupies the lowest position.
Thus 1o find minimum of y-ceordinate of the centre
of gravity of the string given by

uu_u y i+ ydx )
Iy = —(——— a
h_u 1+ ydx
subject to the consiraint

X2
Iy(x)] H.\. Y14 y2dx = L =constant (2}
£

‘Thus to minimize the numerator in R.H.S. of (1) sub-
ject ta (2), Form

H=yfu+yD+af1 432 = /142
(3)
where A is Lagrangian multiplier. Here H is inde-
pendent of x. So the Euler equation is
LM
H — y'— =constant = &
ay

- CALCUUS OF VARIATIONS

i
e (r+ A1 4y — ¥y +2)- 3

2y
NiEssn
(y t;? +¥% - i =hi{f1+y?)

or yta=hyfl+y? 4)

Put y' = sinh¢, where r is a parameter, in (4)

Then ¥+ A= kyy/i+sin’hs =k coshr [¢1]

_dy _ kysinht di

¥ sinhr

Integrating x= kjr + k2 {6}

Now dx

=k d?

Eliminating ‘¢" between (5) and (6), we have

—
u.t.uk_sm_:urn&rmam “v @
]

Equation (7} is the desired curve which is a catenary.
Note:  The three unknowns X, ki, & will be

determined from the two boundary conditions (curve
passing through A and B) and the constraint (2).

I ——
WOoRKED OUT EXAMPLES

> Example 1:  Find the extremal of the function

THy(x) = J; (»% - ¥*}x with boundary condi-
tions y(I) =0, y(;r} =1 and subject ta the con-
straint i v dx =L

2

Solution: Here { = v — y?and g = ». Sochoose
He=f+ig=0%-y)+ay where L is the
unknown Lagrange’s multiplier. The Euler's equa-

tion for H is
B d (BN
EETAYT
Using derivatives of A w.r.L. y and ), we get
LI
(=2y +2) - —(23)=0
dx
o Y ay=ai
whase general solution is

Mx)=CF+ Pl =(vjcosx +casinx}+ Gy (D

Chap-04
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The three unknowns ¢, cz, A in {1} will he deter-
mined using the two boundary conditiens and the
given constraint. From {1)

O=vill=c1+c-04+2 or ¢ +a=0
l=y{x)=—c+2-0+% ar -c+a=1

Salving A = m. cp=—A=—

1
z 3
Now from the given constraint

T
.\. ydxr=1, wehave
0

=
~\. (c1c08x 4+ cxsinx + A)dxr =1
[

Cp Siny — cacasy 4+ Ax

1]
D+ +rm—D—c2+W=1

or unuu_lnrHTIWu

Thus the required extreral function y(x} is

PSS VAT A S A Y
)= .u.nc.k+ 573 m_n....+m.
Example 2: Show that the extremal of the isoperi-
metric problem /[v(x}] = ._ﬂn v.a dx subject 1o the
condition J[y(x)| = hw ¥ dx = constant = £ is a
parabola. Determine the equation of the parabola
passing through the points Py (1, 3)and P2(4, 24) and
k =36.
Solurien: Here f = y™ and g = y. So form
H=f+ig=32+2ay

The Euler equation for / is

mhmwr. \c
y  dx \0y' )T

4
- —y =0
a;:u

Integrating roice,

.:|f~+ +e 1
=g tarto {1y

which is o parabola. Here c; and ¢, are constants of
intepgration. To determine the particular parabola, use

B.C’s ¥(1) = 3 and ¥{(4) = 24 (i.e., passing through
points P, and ;) and the given constraint. From (1)
3=y =Z+ate @
Again From (1)
M=yd)=4+4c; + 2 )
Mow from the construint

xy=d4
\\. Yixidx = 36
x

1=1

4 s
or % ﬁmau +cix 4+ npv dxr= 36
1

1 A

Le.. m % +n_wa+€« =%
or 422 + 80cy + 2402 = 288 (€]
From (2) & (3):
A—p=12
and from {3} & (4)
a—ep=8%8

Solving & = —4, ca = 16, ¢; = 20. Thus the spe-
cific parabola satisfying the given B.Cs {passing
through P, and Ps)is

42

ym—git 42— 16

y=—xT 4 2k - 16,

EXERCISE

L. Find the curve of given length L which joins
the points (x, 0) and (xa, 0) and cuts off from
the first quadrant the maximum area,

Ans. (x =P +(r—dP =it c=3 .w?: .
a= Wmml.,_rw.»mﬂn_u+nu<{m~+nu
cot™ (5) = 4.

2. Determine the curve of given length £ which
joins the points {—a.5) and (e, B) and gen-
erates the minimum surface area when il is
revolved about the x-axis.

o n=

Ans. y= shi —), where ¢ = .
rs. y =ccosh z.:_u_A.m

VAT LT —b
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Calculus of Variations I1

Calculus of Variations with Constraints
We begin with some examples.

Example 1
What curve through the points (x;,)) and (x2.y2) of given length L has the maximum area between
the curve and the x —axis?

If v(x) is a single-valued function of x, then
AR = |yt ()
whereas
i 2
L=["Jrepa (2)

Therefore the problem is to maximize (1) subject to the constraint (2} and the conditions
Yo} = yp00a) =y

Example 2

If in the previous example we do not assume that y(x} is a single-valued function of x, then it is
convenient to suppose that x and p are given parametrically, i.e.,

x=x{(), p=yt) h<i=n

where x(f1) = x1,x{t2) = x2,¥(1) ) = ¥, aod y{z2) = y>. Then we have the constraint
IRCIR

Ay Ve
dd = wﬁ.ﬂ&.l ydx)

H
%u =1 3

Also

since by Green’s Theorem

§ Patc+ Ody = [[(0. - P14
C X

so that

%%a&u‘ﬂ% = w.:.: ~(-U)1dA = [ a4 = areaof &
C R K
Thus

A0] = 4 [+ % -y

The problem is to minimize (4) subject o the constraint (3) and the conditions x{t,) = x;,x(iz) = xz,
Wi} = . and y(£2) = yo.

The above two examples illustrate problems in which one desires to minimize (or maximize) a given
integral subject to a constraint. Several examples of such problems are

m_..s Fx,y,y" )dx = 0 subject to _..a Glx,y,»" )dx = constant
x Xy
m.—” hn.mnnku?.«.vbv& =0 subject to _.H_ QT,M.FH.L.Q& = constaat

s Flx,u,v,u',v')dx = 0 subject to ¢{u,v) =0
n

where 1t = u{x),v = v(x}.

We deal with {5) first. Thus our problem js to make

fMy(x)] = ‘— " F(x,3,3" )dx = minimum or maximum
x

where y is prescribed as y(x,) = y( and p{x:) = y; subject to the condition
J0) = [7 Gy = & -

where & is a given constant.

This problem cannot be attacked by the earlier method of forming y + e where n vanishes on the
boundary only, for in general such functions do not satisfy the subsidiary condition in a neighborhood
of e=0 except al € = 0. Since we have two requirements, we therefore consider the function

Y+ eimi(x) + €an2(x)
where i and n; have continuous derivatives and

mii{x1) = mile2} = m2e) = g2(r2) = 0.
Then we have

Dler.€2) = Ix) + eamlx) + eanpalx)] = .qw Flry+ e + €n) + €1py + €20z e
subject to
Wlerner) = J0x) F e () +ens()] ~& = [ Gley + e+ eamy s+ eaniddv—k = 0
Thus we desire that the function ®(¢,,¢;) take on a relative minimum or maximum atalle;, = e; = 0

with respect to all sufficienily smail values of ¢, and €, for which (e, €2) = 0.

This problem is of the form we treated earlier by means of Lagrange multipliers, In particular, if 4 is
the Lagrange multipkier, then we require

43
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(6)
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B + AY)

_mm» €1=e1=i =0 A_v
T+ AY)
azrer) =0 2
der fr=c2=f A v
arud
Yene) =0
Now (1} =
[ tFm + Fynla 4 2§16 + Gyl ldx = 0
x Xy
and (2) =
[T + Fonplc+ 4 [ (G + Gy Jae = 0
I a
Let
—H. -,
_”S‘-. ¥ dr
Then as before an integration by parts yields
J {tF)+ 216 I mdx = 0 )
and
[7{0R, + G, pmedr = 0 ()

If{G], * 0, then we can, say, choose 1. such that _.“HQH,._._;& + 0, and thus 4 may be chosen so that

(4) holds. However, since n, is arbitrary, A will not be such that (3) holds. Therefore it foliows from
(3) that

[, + A[G], = 0
or

%_.‘19 :Fﬁ%ntﬁu u |o
& dx & )

is the necessary condition, The general solution of this equation will involve two constants of
integration and the constant parameter A . Thus we have 3 constants to satisfy the 3 conditions
#on) = yry(e) = ya, and [ Glep,y' Ve = k.

The above results may be summarized as follows:

Theorem. In order te minimize {or maximize) b.” Fdx subject to a constraint ...“ﬂ Gdx = k we first
write H = F+ 4G, where A is a constant, and minimize (or maximize) h_ Hux m_zs.nnﬁ 10 no

constraints. Carry the Lagrange multiplier A through the calculations, and determine it, together with
. . . . . . . Sk
the constants of integration arising in the Euler equation, so that the constraint _. ' Gdx = k holds, and
x|
the end conditions are satisfied.

Example Maximize
—

A = | plede S

subject to

hu_: Ji+o)tar
and p{x1) = y1.¥(x2) = y2-

Salution: Without loss of generality we may move the axis and change the scale so that the curve 3s to
pass through (0,0) and (1 ,0). Thus we must maximize

1
[ Hxrds
subject to y(0) = y(1) = 0 and the constraint

i a2 .
._.H_,\_Jeo; dx =1L wherel > 1

We form
H=y+2{1+6))*
The Euler equation
—H.+ %m.,.. =0
implies
-1 +p% e|k =0
(o)
Then integrating we have
u.} =x—c1
{1+ 077
or
{7 —(x- Suuvcﬁm ={x—c1)?
Therefore
PP 1))
S0
y=1{a?—(x- n._vwvhu. +er
or finally

-+ —e) = A2

The required curves are arcs of circles. We have three constants to determine. They are determined so
that the arc passes through {0, (3, (9, 1} and bas length L.

Remark: When L = £, we have a semicircle since the circumference of the circle is 24, For L > #/2

v is no longer a single-vatued function of x. Fer such a case it is convenient to employ a parametric
representation expressing x and y as functions of 1, i.e., x = x(z) and y = p{1). We are led to the
problem

(2)



Maximize
1= L {0 (xy v x)a
where x(¢,) = O,x(¢t23 = L,y(t)) = ¥{f2) = B and
CTGY ) e
I= [+ GY Jra-2

Remark: It is easily seen that the problem

BN .. - ..

m._. h?a_?a%vuﬂn =) subject to .— Q?H,H_HLQ& = constant
T Xt

leads to the Euler equations

AT T
_&:w H, =0
dy _ g -
a:.mw. H.=0

where H = F+ 16,
For our problem

B Y VR Z o
H= m?& &.ﬂv+pﬁk +y v
These again leads to arcs of circles.
Remark: For the problem
i. Fx,u,v,1', v )dx = 0 subject to $lu,v) = 0
xn

the Buler equations are

£(2) & -0
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prevents division by zero in the proof. An analogous proviso pertains here for
a sirnilar reason. Thus, a necessary condition for solution 1o (1) and (2) may be
stated as follows: If the function x* is an optimum solution to (1) and (2)
and if x* is not an extremal for the constraining integral (2), then there is
a number \ such that x*(¢), \ satisfy (1) and (2).

Example 1.

min .\o__KS_N dt

1
subject to \ x(¢)dt =B, x(0)=0, x(1)=2.
LH]
The augmented integrand is {x9)? — Ax, Its Euler equation A+ 2x" = 0 has
the solution
x(£) = =M¥4 + o1 + ¢

Three constants are to be determined— A, ¢, c,—using the integral constraint
and boundary conditions:

1
‘\k&
0

x(0)=c,; =0, x(1)=-Aad+c,+c=2.

1
.\c (-M*/4+c it + ) dt =B,

Hence

e, =6B~4, c,=0, A=24(B-1).

T
max \,x&
0
T M—.\N
subject to .\T+Ak\: dt=B, x(0)=0, x(T)=0.
0

The augmented integrand x — A{1 + (x")%]'/? has Euler equation
1/2
U= —d( a1+ (x)] ")/t

Separate the variables and integrate:

t=—xx'f[1+ C&JS + k.

Solve for x’ algebraically:

x = (1= k)[R~ (- k"

50 Part I. Calcutus of Variations

Let u =N — (¢t — k¥, s0 du = —2{t — k) dt. Then

x(1) = \&S dt = |\ duf2ul? = —u e,
80
(x—c+(t-k)y =%

The solution traces out part of a circle. The constraints &, ¢, A are found to
satisfy the two endpoint conditions and the integral constraint.

The Lagrange multiplier associated with (1) and (2) has a useful interpreta-
tion as the marginal value of the parameter B; that is, the rate at which the
optimum changes with an increase in B. For instance, in the resource
extraction problem (3) and (4), A represents the profit contributed by a
marginal unit of the resource. In Example 2, A represents the rate at which
area increases with string length,

To verify the claim, note that the optimal path x* = x*(¢; B) depends on
the parameter B. Assume x™ is continuously differentiable in B. Define V(B)
as the optimal value in (1) and (2). Then

V(B) = .\__m? x*, x*) dt

fo

t .
= \ TE(, 2%, x*) - MG(t, x*, )] dt + \B (12)
fo

since (2) is satisfied, where
x*=x*¢;B), x¥ =ax*far. (13)
Differentiating (12) totally with respect to B and taking (13) into account gives
i
v{(B) = \ ((Fr = 2G2)A+ (Ft - GH)R) de+ X, (14)
fo
where
h=2ax*/aB, W ="3x*/3B = 3*x*/313B. (15)

But since the anugmented integrand in (12) satisfies the Euvler equation (11), the
integral in (14), after integrating the last term by parts, is zero for any
continuously differentiable function A satisfying the endpoint conditions. It
follows that

v/(B) = A (16)

as claimed. (To see that the function A defined in (15) is admissible, one need

only observe that the optimal path corresponding to any modified B must be
feasible.)
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Solutions

« L. Conseruation of ‘enempy’.
e ———————— .

The Euler-Lagrange equation corresponding to a functional F(y,y', z) is

oF 4 OF_,
8y dzdy
Show that
d (F _.mm.u _OF
dx ¥ ay’  Bzr

Hence, in the case that ¥ is independent of x, show that

F OF _ constant
Y &y -
Solution Evaluate the expression f{F — e\wlu.,.v explicitly. We get:
2y 2y Bip pOFLdOF_OF
o Yoy Vay Yoy Vaidy T o
as required; the other terms on the left concel in pairs, provided y satisfies
the Evler-Logrange equation. If ﬁ is identicolly zero, then
E = (F - v2E) is constant. If F' is the Lagrangior of a mechanical

e
system, the quentity — F is celled the energy.

2. The hanging rope.

A tope bangs between the two points (z,y) = (+a,0) in a curve y = y(z),
50 as to minimise its potential encrgy

“
\ mgy+/ 1+ y3dx

—-a

while kecping its length constant:
a
\ VityAde=L
—a

O course L > 2a. Find and solve the Euler-Lagrange equation.

Solution We seek to extremise the integrul
a a
Fdz = \ (y — )1 +y2de,
—a -

where A is a Lagrange mulliplier. The Euler-Lagmnge equation is
HF d aF

e

dy dxdy

which is

_4d ¥
V1+y?= =W |5|I.|@+|.qﬁ.

a second order ode for y. But F' is independent of &, so by the result of

guestion 1, E = (£ - c.wmv is constant. That is,

v

2 - A

y—-2/1+y7 —(y—- X ¥ - ¥ _K' a copstant.

b v.:.ﬁ.w.a V1+y?
That is

=Ky -N -1

Thus y = A + K=l cosh(K(z — zy)). Here the constunts zq, and A are
found from the two boundary conditions y(+a) = 0, giving xo = 0, and
A=K tcosh{Ka), while K is found from the length of the rope:

.3
cosh®{K'x)dr = mmmuﬁwxsv 4+a=L.

—a

The relativistic particle A particle moving with speed near ¢, the speed of
light, has Lagrangian

Show that the equation of motion can be interpreted as Newton's 2nd law,
lut with a mass depending on the speed of the particle-

Tl
m = ——
7%
The constant my is called the *rest mass’ of the particle. Use the result

of question 1 to find a conserved quantity - the relativistic energy of the
particle. Find the leading approximation to this Lagrangian in the casc

= << 1
c2 '

Solution The ‘momentum’ is

oL

o

{In components,
o
I%;




