
NMST432 ADVANCED REGRESSION MODELS

MAXIMUM LIKELIHOOD ESTIMATION THEORY

SUMMARY OF NOTATION AND MAIN RESULTS

Definition

Consider a random sample X = (X1, . . . , Xn) of independent identically distributed random vari-
ables (or vectors), each with density f (x|θX) with respect to a σ-finite measure µ. We assume that
f (x|θX) ∈ F , where

F = {distributions with density f (x|θ), θ ∈ Θ ⊆ R
d}

represents a parametric model for the distribution of the data.

The model F must satisfy the model identifiability condition: For any θ1 6= θ2 it holds f (x|θ1) 6=
f (x|θ2). In other words, no distribution can be parametrized by several different parameter vectors.

Because of independence, the joint denstity of the random sample X1, . . . , Xn is ∏
n
i=1 f (xi|θX). The

maximum likelihood estimator θ̂ of the parameter θX is the point from Θ that maximizes the joint
density evaluated at the observed values of X1, . . . , Xn.

Definition 1 (likelihood, log-likelihood).

• The random function

Ln(θ)
df
=

n

∏
i=1

f (Xi|θ)

is called the likelihood function for the parameter θ in the model F .
• The random function

ℓn(θ)
df
= log Ln(θ) =

n

∑
i=1

log f (Xi|θ)

is called the log-likelihood function.

Definition 2 (maximum likelihood estimator). The maximum likelihood estimator (MLE) of the param-
eter θX in the model F is defined as

θ̂n = arg max
θ∈Θ

Ln(θ).

Note. Since the logarithm is strictly increasing, Ln(θ) and ℓn(θ) attain the maximum at the same
point.

Definition 3. Let P and Q be probability measures on the same probability space with densities p
and q with respect to the same σ-finite measure µ (for example, µ = P + Q). Define

K(P, Q) =

{
EP log

p(X)
q(X)

=
∫
{x:p(x)>0} log

p(x)
q(x)

p(x) dµ(x) if P [q(X) = 0] = 0

+∞ otherwise.

K(P, Q) is called the Kullback-Leibler distance (divergence).
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Note. In fact, K(P, Q) is a pseudo-distance: it holds K(P, Q) ≥ 0, and K(P, Q) = 0 if and only if
P = Q, but it is not symmetric: K(P, Q) 6= K(Q, P).

Theorem 1. Suppose the support set S = {x ∈ R : f (x|θ) > 0} does not depend on the parameter
θ. Denote PX the induced probability measure of the random variable Xi and Pθ the probability
measure associated with the density f (x|θ). Then for any θ 6= θX

1

n
log

Ln(θX)

Ln(θ)
=

1

n

n

∑
i=1

log
f (Xi|θX)

f (Xi|θ)
→ K(PX, Pθ) PX − almost surely,

and hence
P [ℓn(θX) > ℓn(θ)] → 1 as n → ∞.

Note. When the number of observations increases to infinity, the (log-)likelihood function at the
true parameter will be with a large probability larger than the (log-)likelihood function at any other
parameter. This observation justifies the idea of estimating the parameters by maximizing the log-
likelihood over all possible parameter vectors.

The calculation of the maximum likelihood estimator

The maximum likelihood estimator is usually determined by differentiation of the log-likelihood.
The first derivative is set to zero and it is verified that the second derivative is negative definite.

Definition 4 (score, information).

• The random vector

U(θ|Xi)
df
=

∂

∂θ
log f (Xi|θ)

is called the score function for the parameter θ in the model F .
• The random vector

Un(θ|X)
df
=

n

∑
i=1

U(θ|Xi) =
n

∑
i=1

∂

∂θ
log f (Xi|θ)

is called the score statistic.
• The random matrix

I(θ|Xi)
df
= − ∂

∂θT
U(θ|Xi) = − ∂2

∂θ ∂θT
log f (Xi|θ)

is called the contribution of the i-th observation to the information matrix.
• The random matrix

In(θ|X)
df
= − 1

n

∂

∂θT
Un(θ|X) =

1

n

n

∑
i=1

I(θ|Xi)

is called the observed information matrix.
• The matrix

I(θ)
df
= E I(θ|Xi) = −E

∂2

∂θ ∂θT
log f (Xi|θ)

is called the expected (Fisher) information matrix.
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If the set Θ is open, the MLE θ̂n solves the system of equations Un(θ̂n|X) = 0, that is

n

∑
i=1

∂

∂θ
log f (Xi|θ̂n) = 0.

This system is called the likelihood equations.

The solution to the likelihood equations need not exist. Sometimes there may be multiple solutions,
at most one of which is the MLE. If In(θ̂n|X) > 0 (the observed information is positive definite at
θ̂n), we know that θ̂n is at least a local maximum. If In(θ|X) > 0 for every θ ∈ Θ, the log-likelihood
function is concave and the solution to the likelihood equations must be the global maximum and
hence the MLE.

In most cases no explicit solution can be found and the MLE must be calculated by numerical meth-
ods. There are two commonly used numerical methods for solving the likelihood equations. Let
θ̂
(r) be the r-th iteration to the solution.

• The Newton-Raphson method: θ̂
(r+1) = θ̂

(r) + [nIn(θ̂(r)|X)]−1
Un(θ̂(r)|X)

• The Fisher Scoring method: θ̂
(r+1) = θ̂

(r) + [nI(θ̂(r))]−1
Un(θ̂(r)|X)

They are iterated until the change in θ̂ from one iteration to the next is sufficiently small or until
Un(θ̂) is sufficiently close to 0. The only difference between the two methods is in the information
matrix: N-R uses the observed information, FS uses the expected information.

Both require setting θ̂
(1), the starting value for numerical approximation, and are sensitive to its

choice.

Properties of the maximum likelihood estimator

Maximum likelihood estimators are consistent and asymptotically normal as long as so called regu-
larity conditions are satisfied.

Conditions (Regularity conditions for maximum likelihood estimators).

R1. The number of parameters d in the model F is constant.

R2. The support set S = {x ∈ R : f (x|θ) > 0} does not depend on the parameter θ.

R3. The parameter space Θ is an open set.

R4. The density f (x|θ) is sufficiently smooth function of θ (at least twice continuously differen-
tiable).

R5. The Fisher information matrix I(θ) is finite, regular, and positive definite in a neighborhood of
θX.

R6. The order of differentiation and integration can be interchanged in expressions such as

∂

∂θ

∫
h(x, θ) dµ(x) =

∫
∂

∂θ
h(x, θ) dµ(x),

where h(x, θ) is either f (x|θ) or ∂ f (x|θ)/∂θ.

3
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Note. Take the identity ∫ ∞

−∞
f (x|θ) dµ(x) = 1

and differentiate both sides of the equation twice with respect to θ. Regularity condition R6 implies
∫ ∞

−∞

∂

∂θ
f (x|θ) dµ(x) =

∫ ∞

−∞

∂2

∂θ∂θT
f (x|θ) dµ(x) = 0. (1)

Theorem 2 (consistency of the MLE). Let conditions R1–R6 hold. Then there exists n0 and a se-

quence θ̂n (n ≥ n0) of solutions to the likelihood equations Un(θ̂n|X) = 0 such that θ̂n
P−→ θX.

Note. If the log-likelihood is strictly concave, the likelihood equations have a unique solution,
which is the MLE. It converges in probability to the true parameter. If the log-likelihood is not
strictly concave, the likelihood equations may have multiple solutions representing local maxima
and minima of the log-likelihood. There is one solution among them (the closest to θX), which pro-
vides a consistence sequence of estimators. Other solutions may not be close to θX and may not
converge to it.

Note. If there exists a sequence θ̃n of other estimators that are guaranteed to be consistent (for
example, moment estimators of θX), a consistent MLE can be obtained by taking the root of the
likelihood equations, which is closest to θ̃n. Alternatively, one can perform one step of the Newton-
Raphson algorithm with θ̃n as the starting value.

Theorem 3 (Score function properties). Let conditions R1–R6 hold. Then

(i) EU(θX|Xi) = 0, varU(θX|Xi) = I(θX).

(ii) 1√
n

Un(θX|X)
D−→ Nd(0, I(θX)).

Note. The Fisher information matrix at θX can be calculated in two different ways: from Definition 4
(the expectation of minus the second derivative of the log density) or from Theorem 3 (the score
function variance).

Theorem 4 (asymptotic normality of the MLE). Suppose conditions R1–R6 hold. Let θ̂n be a consis-
tent sequence of solutions to the likelihood equations. Then

√
n(θ̂n − θX)

D−→ Nd(0, I−1(θX)).

Note.

• The asymptotic variance of the MLE is equal to the inverse of the Fisher information. More
information means better precision for estimation.

• The asymptotic variance of the MLE is in a certain sense optimal. Other estimators (e.g.,
moment estimators) cannot have a smaller asymptotic variance.

Theorem 5 (asymptotic distribution of the likelihood ratio). Suppose conditions R1–R6 hold. Let θ̂n

be a consistent sequence of solutions to the likelihood equations. Then

2 log
Ln(θ̂n)

Ln(θX)
= 2(ℓn(θ̂n)− ℓn(θX))

D−→ χ2
d.

Theorem 6 (the ∆ method for the MLE). Suppose conditions R1–R6 hold. Let θ̂n be a consistent
sequence of solutions to the likelihood equations. Take q : Θ → R

k a continuously differentiable
function. Denote νX = q(θX) a D(θ) = ∂q(θ)/∂θ. Then ν̂n = q(θ̂n) is the MLE of the parameter νX

and √
n(ν̂n − νX)

D−→ Nk(0, D(θX)I−1(θX)D(θX)
T).
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Tests based on maximum likelihood theory

The theory of the MLE can be used to derive tests of simple and composite hypotheses about the
parameter θX.

Testing of simple hypotheses

We want to test the null hypothesis H0 : θX = θ0 against the alternative H1 : θX 6= θ0, where θ0 ∈ Θ.
It is a simple hypothesis because there is just a single distribution in the model F with the density
f (x|θ0).

We will introduce three different test statistics for testing H0.

Definition 5.

(i) The statistic

λn =
Ln(θ̂n)

Ln(θ0)

is called the likelihood ratio.

(ii) The statistic
Wn = n(θ̂n − θ0)

T În(θ̂n)(θ̂n − θ0)

is called the Wald statistic.

(iii) The statistic

Rn =
1

n
Un(θ0|X)T Î−1

n (θ0)Un(θ0|X)

is called the Rao (score) statistic.

Note. The symbol În denotes any consistent estimator of the Fisher information matrix. Three dif-
ferent estimators can be used in Wald and Rao statistics:

1. În(θ) = In(θ|X) = − 1
n ∑

n
i=1

∂2

∂θ ∂θT
log f (θ|Xi) (the observed information matrix)

2. În(θ) =
1
n ∑

n
i=1 U(θ|Xi)

⊗2 (the empirical variance of the score function)

3. În(θ) = I(θ) (the Fisher information matrix)

The most common choice for the Wald statistic is În(θ̂n) = In(θ̂n|X). The most common choice for
the Rao statistic is În(θ0) =

1
n ∑

n
i=1 U(θ0|Xi)

⊗2.

Note.

• The likelihood ratio requires the calculation of θ̂n and Ln or ℓn. It does not require the calcula-
tion of Un and În.

• The Wald statistic requires the calculation of θ̂n and În. It does not require the calculation of
Ln and Un.

• Rao statistic requires the calculation of Un a În. It does not require the calculation of θ̂n and Ln.
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Note. If d = 1 (one parameter) and θ0 = 0, then the Wald statistic can be written as

Wn =

[
θ̂n√

n−1 Î−1
n (θ̂n)

]2

,

where n−1 Î−1
n (θ̂n) is the estimator of the asymptotic variance of θ̂n.

Theorem 7. Suppose conditions R1–R6 are satisfied. Let the hypothesis H0 : θX = θ0 hold. Then:

(i)

2 log λn = 2(ℓn(θ̂n)− ℓn(θ0))
D−→ χ2

d

(ii)

Wn
D−→ χ2

d

(iii)

Rn
D−→ χ2

d

Note. If H0 holds, θ̂n should be close to θ0, Ln(θ̂n) should be close to Ln(θ0), and Un(θ0|X) should
be close to 0. Under H0, all three test statistics have values close to 0. Their large values testify
against H0.

Corollary. Denote by χ2
d(1 − α) the (1 − α)-quantile of χ2

d distribution. Consider tests of H0 : θX =
θ0 against H1 : θX 6= θ0 defined by the rule: reject H0 in favor of H1, if

(i) 2 log λn ≥ χ2
d(1 − α) (likelihood ratio test)

(ii) Wn ≥ χ2
d(1 − α) (Wald test)

(iii) Rn ≥ χ2
d(1 − α) (score test)

Each of these tests has asymptotically (for n → ∞) the level α.

Note. It can be shown that these three tests are asymptotically equivalent. For large sample sizes,
their results are almost identical. With smaller sample sizes, their results can differ. Investigations
of small sample behavior of these test statistics revealed that the likelihood ratio test has the best
properties, the Wald test is the worst of the three.

Thus, in practical applications, the likelihood ratio test should be preferred.

Note. Under normality, the three test statistics are identical.

Estimation in the presence of nuisance parameters and testing of composite hypotheses

It is frequently desirable to estimate and test just a small number of parameters in a model that
contains a much larger number of parameters. We divide the parameter vector into two subsets: the
parameters of interest and the other paramaters – nuisance parameters.

Let θ be divided into θA containing the first m components of θ, and θB containing the remaining
d − m components of θ. We have

θ = (θA, θB)
T = (θ1, . . . , θm, θm+1, . . . , θd)

T

6



ADVANCED REGRESSION MODELS MLE SUMMARY

We want to test the hypothesis H∗
0 : θX ∈ Θ0 against H∗

1 : θX 6∈ Θ0, where Θ0 = {θ : θA = θA0} ⊂ Θ.
We want to know whether the first m components of θX are equal to the vector of constants θA0

regardless of the other d − m components of θX.

This is not a simple null hypothesis because there are many distributions in the model F that satisfy
H∗

0 .

All the vectors and matrices appearing in the notation of maximum likelihood estimation theory
are decomposed into the first m components (part A) and the remaining d − m components (part B).
For example,

θ̂n =

(
θ̂An

θ̂Bn

)
, Un(θ) =

(
UAn(θ)
UBn(θ)

)
, I(θ) =

(
IAA(θ) IAB(θ)
IBA(θ) IBB(θ)

)
, etc.

The following lemma is useful for inverting the decomposed information matrix.

Lemma 8 (Block matrix inversion). Let the matrix

I =

(
IAA IAB

IBA IBB

)

be of full rank. Then there exists an inverse matrix to I and it can be expressed as

I−1 =

(
IAA IAB

IBA IBB

)
,

where

IAA = I−1
AA.B,

IAB = −I−1
AA.B IAB I−1

BB ,

IBA = −I−1
BB.A IBA I−1

AA,

IBB = I−1
BB.A,

IAA.B = IAA − IAB I−1
BB IBA

IBB.A = IBB − IBA I−1
AA IAB.

If the null hypothesis H∗
0 : θX ∈ Θ0 holds we know that θAX = θA0, but we do not know the value

of θBX. We can estimate θBX by the maximum likelihood method applied to the nested submodel

F0 = {distributions with density f (x|(θA, θB)), θA = θA0, θB ∈ ΘB ⊆ R
d−m},

with d − m unknown parameters.

Denote the maximum likelihood estimator of θX in the submodel F0 by θ̃n =
(

θ̃An

θ̃Bn

)
, where θ̃An =

θA0 and θ̃Bn solves the system of likelihood equations

UBn(θA0, θ̃Bn) = 0.

The Fisher information matrix for θB in this model is IBB(θX).

By Theorems 3 and 4 applied to the submodel F0, we get

1√
n

UBn(θX)
D−→ Nd−m(0, IBB(θX))
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and √
n(θ̃Bn − θBX)

D−→ Nd−m(0, I−1
BB (θX)).

On the other hand, Theorems 3 and 4 and Lemma 8 applied to the larger model imply

1√
n

UBn(θX)
D−→ Nd−m(0, IBB(θX))

and √
n(θ̂Bn − θBX)

D−→ Nd−m(0, I−1
BB.A(θX)),

where (dropping the arguments θX)

I−1
BB.A = (IBB − IBA I−1

AA IAB)
−1 ≥ I−1

BB .

Thus, the asymptotic variance of the MLE of the parameter θBX depends on whether or not θAX

is known. If θAX is known (which is true if H∗
0 holds), the asymptotic variance of the MLE θ̃Bn is

generally larger than the asymptotic variance of the MLE θ̂Bn that does not assume a known θAX.

However, when IBA = 0 (the estimators of θAX and θBX are asymptotically independent), then the
asymptotic variances of θ̃Bn and θ̂Bn are the same. Then it does not matter whether or not θAX is
known.

Let us generalize the three test statistics introduced in Definition 5 of the previous section to testing
the composite hypothesis H∗

0 : θX ∈ Θ0 against H∗
1 : θX 6∈ Θ0, where Θ0 = {θ : θA = θA0} ⊂ Θ.

Definition 6.

(i) The statistic

λ∗
n =

Ln(θ̂n)

Ln(θ̃n)

is called the likelihood ratio.

(ii) The statistic
W∗

n = n(θ̂An − θA0)
T ÎAA.B(θ̂n)(θ̂An − θA0)

is called the Wald statistic.

(iii) The statistic

R∗
n =

1

n
Un(θ̃n)

T Î−1
n (θ̃n)Un(θ̃n)

is called the Rao (score) statistic.

Note.

• Obviously, λ∗
n ≥ 1.

• The expression ÎAA.B in the Wald statistic means the inverse of the upper left block of the the
matrix Î−1

n .
• Since UBn(θ̃n) = 0, the Rao statistic can be written as

R∗
n =

1

n
UAn(θ̃n)

T Î−1
AA.B(θ̃n)UAn(θ̃n).

• Theh Rao statistic does not require the calculation of the MLE θ̂n in the larger model, it only
needs the MLE θ̃n in the submodel. This is often much easier to get.
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Theorem 9. Let the null hypothesis H∗
0 : θX ∈ Θ0, where Θ0 = {θ : θA = θA0}, hold. Then

(i)

2 log λ∗
n = 2(ℓn(θ̂n)− ℓn(θ̃n))

D−→ χ2
m;

(ii)

W∗
n

D−→ χ2
m;

(iii)

R∗
n

D−→ χ2
m.

Note. Under H∗
0 , we expect θ̂n to be close to θ̃n, Ln(θ̂n) to be close to Ln(θ̃n), and Un(θ̃n) to be close

to 0. The large values of the three test statistics testify against the null hypothesis.

Corollary. Let χ2
m(1 − α) be (1 − α)-quantile of the χ2

m distribution. Consider tests of H∗
0 : θX ∈ Θ0,

where Θ0 = {θ : θA = θA0}, against H∗
1 : θX 6∈ Θ0 given by the rule: reject H∗

0 in favor of H∗
1 if

(i) 2 log λ∗
n ≥ χ2

m(1 − α) (the likelihood ratio test)
(ii) W∗

n ≥ χ2
m(1 − α) (the Wald test)

(iii) R∗
n ≥ χ2

m(1 − α) (the score test)

Then each of these three tests has asymptotically (for n → ∞) the level α.

Note. The number of degrees of freedom in the reference χ2
m distribution is equal to the number of

tested parameters.

Note. These three tests are asymptotically equivalent under the null hypothesis as well as under
local alternatives. With small or moderate sample sizes, the likelihood ratio test has the best prop-
erties and the Wald test is the worst of the three. In practical applications, the likelihood ratio test
should be preferred.

Note. Let m = 1, θAX = θXj, and θA0 = 0. Consider the test of the hypothesis H∗
0 : θXj = 0

against H∗
1 : θXj 6= 0 (zero value of the j-th parameter in the presence of other parameters that are

unspecified by the hypothesis). Then the Wald statistic can be written as

Wn =

[
θ̂jn√

n−1 Î−1
jj

]2

,

where n−1 Î−1
jj is the estimator of the asymptotic variance of θ̂jn. This is the square of the test statistic

that statistical software typicaly evaluates to test zero value of a single model parameter.
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