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1. Introduction

1.1. Time-to-event data

Consider a non-negative random variable T ≥ 0, which can be interpreted as the
moment when a certain event occurs, or a waiting time for the event. There are nu-
merous examples of such random variables in various applications in different fields:

• The event is the death of a person; T is the time of death or the survival time.

• The event is an occurrence of a disease in a previously healthy person; T is the
time of diagnosis.

• The event is the failure of a machine or device; T is time to failure.

• The event is the repair of a broken machine; T is duration of maintenance.

• The event is the default of a debtor; T is time to default.

• The event is an occurrence of an insurance claim; T is the time when the

claim is made.

• The event terminates the payment of a pension (e.g. the death of the pen-
sioner); T is the total amount paid on the pension. (In this example, time is

money.)

In all examples, there is some time scale involved, and time 0must be appropri-
ately defined.

The theory of time-to-event analysis bears various names depending on the
field of application: it is called survival analysis* in biomedical applications, life ta-
bles† in demographics and life insurance, reliability theory‡ in technical applications,
credit risk§ and insurance risk¶ in financial applications and non-life insurance. We
usually use the term “censored data analysis”|| because it is application-neutral. The
term “censoring” is introduced in the next section.

* Česky analýza přežití † Česky úmrtnostní tabulky ‡ Česky teorie spolehlivosti § Česky kreditní

riziko ¶ Česky pojistné riziko || Česky analýza censorovaných dat
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1. Introduction

1.2. Censoring

Standard statistical methods for estimation and testing could be used for the analysis
of time-to-event data if event times could be observed on all participating subjects.
However, this is usually not the case. Events such as default on a debt or diagnosis
of a specific disease may not occur at all for some subjects. Even if the event does
eventually occur, it may take so long to develop that it would not be observed. Thus,
time-to-event data are usually incompletely observed and require specialized analy-
sis methods.

In practice, event times are recorded through an observation process. Time 0 is
the time when the observation starts. We wait for the event to occur starting at time
0. If the observation ends before the event occurs, the event is never observed. This
feature can be formally handled by the probabilistic model by considering two latent
random variables for each subject: T ≥ 0 is the time to event* (failure time, survival
time) andC ≥ 0 is the censoring time†, which expresses the duration of observation of
the subject. If the duration of observation is shorter than the failure time, the failure
time is not available. Thus, the pair (T ,C ) generates the following two cases:

• If T ≤ C , T is observed and C is not observed.

• If C < T , C is observed and T is not observed.

The possibility that the event may not occur at all can be expressed by setting T

to a very large value or even taking T = ∞.

Notation. Let A be a random event, define 1(A) = 1 if A occurs and 1(A) = 0 if A does
not occur. The random variable 1(A) is called the indicator of A.

Notation. Let s , t be real numbers. Denote s ∧ t = min(s , t ).

Let X = T ∧ C be called the censored failure time‡ and let δ = 1(T ≤ C ) be called
the failure indicator§. These two random variables capture what can be actually ob-
served in censored data problems. The analysis methods must be modified to work
with the partial information contained in (X , δ).

Consider latent failure and censoring times (T1,C1), . . . , (Tn ,Cn) generated for n in-
dependent subjects. If we could observe T1, . . . ,Tn , we could perform standard statis-
tical procedures on this random sample. However, we only observe censored failure
times and failure indicators (X1, δ1), . . . , (Xn , δn ). Such censored data requires special-
ized methods of statistical analysis.

In general, the censoring variables C1, . . . ,Cn are considered random variables
with certain distributions (in principle, eachCi may have a different distribution func-
tion). This is called the random censorship model. There are two special case of this

* Česky doba do události † Česky čas censorování ‡ Česky censorovaná doba do události § Česky
indikátor události
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1. Introduction

general model that acquired their own names:

Type I censoring All censoring variables are equal to a pre-specified constant τ that
expresses the common maximal duration of observation, i.e., Ci = τ for all i

almost surely*.

Type II censoring All remaining observations are censored when the k -th failure occurs
(where k ∈ {1, . . . ,n} is pre-specified), i.e., Ci = T(k ) for all i , T(k ) is the k -th order
statistic of the random sample T1, . . . ,Tn

†.

These two censoring schemes are used primarily in technical applications. They are
unrealistic for most biomedical and financial applications.

We will only deal with Type I and Type II censoring in the first part of the course.
The rest of the course will consider the general random censorship model.

Think:

A standard task in classical statistics is the estimation of the expectation from

the random sample. If we observe i.i.d. random variables T1, . . . ,Tn , we can

estimate the expectation ETi by the arithmetic mean T n =
1
n

∑n
i=1Ti . By the

weak law of large numbers, this estimator is consistent as long as the expec-

tation exists and is finite.

With censored data, we could only use the observations (Xi , δi ) for the estima-

tion. Is there any obvious and easy way to modify the arithmetic mean to this

data so that we end up with a consistent estimator of the expectation?

1.3. Survival function, hazard function

The distribution of a non-negative random variable T is usually described by its dis-
tribution function F (t ) = P [T ≤ t ] or a density f (t ) with respect to a σ-finite measure
µ, a function such that F (t ) =

∫ t

0
f (s )dµ(s ).

When working with censored failure time data, it is of advantage to work with
survival functions instead of distribution functions.

Definition 1.1. The function S(t ) = 1 − F (t ) = P [T > t ] is called the survival function of
a random variable T with distribution function F (t ). ∇

Notation. Let f be a right-continuous function. Define f (t−) = limhց0 f (t − h) (if the
limit exists). This is a left-continuous function.

Note. Let S(t ) be the survival function of a non-negative random variable T with dis-
tribution function F (t ). Then it is known that:
* Česky censorování typu I., censorování časem † Česky censorování typu II., censorování poruchou
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1. Introduction

• S(t ) is non-increasing right-continuous function.
• S(0) = 1 − P [T = 0], limt→∞ S(t ) = 0.
• If T is continuous with density f (t ) w.r.t. the Lebesgue measure then f (t ) =
−S ′(t ) and S(t ) =

∫ ∞
t

f (s )ds .

• If T is discrete with values t1, t2, . . . and pi = P [T = ti ] then pi = S(t−) − S(t ) and
S(t ) = ∑

{i :ti>t } pi .

Frequently, we assume that P [T = 0] = 0 (the failure cannot occur at the time 0).
Then S(0) = 1.

Relationship between survival function and expectation

The expectation of a non-negative random variable is defined as ET =
∫ ∞
0

t dF (t ).
The following lemma shows that the expectation can be obtained by integrating the
survival function.

Lemma 1.1. Let T ≥ 0 a.s. and ET < ∞. Then

ET =

∫ ∞

0
S(t )dt . ♦

Proof. The proof will use integration by parts for Lebesgue-Stieltjes integral, see The-
orem A.1 in the Appendix. We take G (s ) = s , F (s ) = P [T ≤ s ]. The Theorem gives us
the equality

F (s )s − 0 =
∫ s

0
F (t−)dt +

∫ s

0
t dF (t ).

Hence ∫ s

0
t dF (t ) = F (s )s −

∫ s

0
F (t−)dt .

We subtract s from the right-hand side and add it back realizing that s can be written
as

∫ s

0
1dt . We get

∫ s

0
t dF (t ) = [F (s ) − 1]s +

∫ s

0
[1 − F (t−)]dt

= [F (s ) − 1]s +
∫ s

0
S(t )dt .

Now take the limit as s → ∞ on both sides. The left-hand side converges to ET and
the right hand side to

∫ ∞
0

S(t )dt , as long as lims→∞ s [1 − F (s )] = 0.
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1. Introduction

It remains to be shown that the limit of the superfluous term is really zero. We
assume that ET is finite. Thus, for any 0 ≤ s < ∞,

ET =

∫ ∞

0
t dF (t ) =

∫ s

0
t dF (t ) +

∫ ∞

s

t dF (t )

≥
∫ s

0
t dF (t ) + s

∫ ∞

s

dF (t ) =
∫ s

0
t dF (t ) + s [1 − F (s )].

Hence

0 ≤ s [1 − F (s )] ≤ ET −
∫ s

0
t dF (t ) → 0 as s → ∞,

because ET = lims→∞
∫ s

0
t dF (t ). The proof is finished. �

This result can be easily generalized to random variables that can attain negative
values and to higher moments.

Corollary. Let X be a random variable such that E |X |α < ∞. Then

E |X |α = α
∫ ∞

0
t α−1P [|X | > t ] dt .

Lemma 1.1 is useful for estimation of the expectation from censored data. It is
unclear how to generalize the arithmetic mean to censored data. However, if there is
an estimator Ŝ(t ) of the survival function, which is consistent over the whole interval
〈0,∞), the expectation could be consistently estimated by

∫ ∞
0

Ŝ(t )dt .

Hazard function

It is known that the distribution of a random variable can be described by density,
distribution function, survival function, quantile function or characteristic function.
However, there is another way to describe the distribution, called the hazard func-

tion*; it is especially useful for time-to-event data.

Definition 1.2. Let T be a continuous non-negative random variable. Then the hazard
function λ(t ) of T is defined as

λ(t ) = lim
hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t
]
.

Let T be discrete with values 0 ≤ t1 < t2 < · · · . Then the hazard function λ(t ) of T is
defined at t1, t2, . . . by

λ(ti ) ≡ λi = P
[
T = ti

��T ≥ ti

]
. ∇

* Česky riziková funkce
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1. Introduction

Loosely speaking, the hazard function measures the probability of having the
event at the time t (or shortly thereafter) given that the event had not occurred ear-
lier. Thus, it expresses the risk of having the event at t . The hazard function may have
different names in different application areas: in reliability theory, where the event
of interest is a failure of a machine, it is called failure rate* (or failure intensity); in
epidemiology, where the event of interest is occurrence of disease, it is called inci-

dence rate† (or incidence function); in demography or insurance, where the event of
interest is death, it is called mortality rate‡.

Note. Realize that the density f (t ) of a continuous random variable can be written as

f (t ) = lim
hց0

1

h
P [t ≤ T < t + h] .

So, the hazard function differs by adding the condition that T ≥ t . The same is true
for discrete random variables.

Notation. The function Λ(t ) defined as

Λ(t ) =
∫ t

0
λ(s )ds

for continuous t , and
Λ(t ) =

∑

{i :ti ≤t }
λ(ti )

for discrete T , is called the cumulative hazard function§.

The next theorem shows that the hazard function indeed characterizes the whole
distribution. It also reveals the relationship between the hazard function and the
density/the survival function.

Theorem 1.2. LetT be a non-negative random variable with hazard function λ, density

f , distribution function F and survival function S = 1 − F . Then

(i)

λ(t ) = f (t )
S(t−) .

(ii)

Λ(t ) =
∫ t

0

dF (s )
S(s−) . (1.1)

* Česky intenzita poruch † Česky incidence choroby ‡ Česky úmrtnost § Česky kumulativní riziko
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1. Introduction

(iii) For continuous T ,

S(t ) = e−Λ(t ). (1.2)

For discrete T with values 0 ≤ t1 < t2 < · · · ,

S(t ) =
∏

{i :ti ≤t }
(1 − λi ). (1.3)

♦

Part (i) of the theorem shows how to calculate the hazard function from the den-
sity and the survival function. Part (iii) reverts the relationship and proves that the
survival function can be calculated from the hazard function. Hence, the hazard
function fully specifies the distribution of T .

Corollary. For continuous T ,
f (t ) = λ(t )e−Λ(t ),

for discrete T with values 0 ≤ t1 < t2 < · · · ,

P [T = ti ] = λi

∏

{j :tj<ti }
(1 − λ j ).

Notice that P [T = ti ] = (1−λ1)(1−λ2) · · · (1−λi−1)λi . The probability of death at ti is
the product of conditional probabilities of surviving all the previous death opportu-
nities times the conditional probability of dying at ti (given that the subject survived
till then).

Proof (of Theorem 1.2).

(i) Suppose that T is continuous. Then

λ(t ) = lim
hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t
]
=

limhց0 h−1P [t ≤ T < t + h]
P [T ≥ t ] =

f (t )
S(t−) .

Now take a discrete T with values 0 ≤ t1 < t2 < · · · . Obviously,

λ(ti ) = P
[
T = ti

��T ≥ ti

]
=

P [T = ti ]
S(ti−1)

=

f (ti )
S(ti−)

. (*)

(ii) Denote µ the measure with respect to which f is a density. Then

Λ(t ) =
∫ t

0

f (s )
S(s−) dµ(s ) =

∫ t

0

dF (s )
1 − F (s−) .

(iii) Consider a continuous T first. We have

λ(t ) = f (t )
S(t−) = − d

dt
log S(t ).
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1. Introduction

Hence
Λ(t ) = − log S(t ) +C .

Because Λ(0) = 0, C must be 0. Therefore

S(t ) = e−Λ(t ).

Now take a discrete T . Denote pi ≡ P [T = ti ] for ordered values 0 ≤ t1 < t2 < · · · ,
and, according to (*),

λi ≡ λ(ti ) =
pi∑

j ≥i p j

i = 1, 2, , . . . (**)

Note that λ1 = p1. From this,

S(ti ) = P [T > ti ] =
∑

j>i

p j
(∗∗)
=

pi+1

λi+1
. (†)

Also from (**), we get:

λi+1

(∑

j ≥i

p j − pi

)
= pi+1,

λi+1

(∑
j ≥i p j

pi

− 1
)
=

pi+1

pi

,

λi+1

(
1

λi

− 1
)
=

pi+1

pi

,

pi

λi

(1 − λi ) =
pi+1

λi+1
.

From this, from (†), and from the fact that p1/λ1 = 1, we get the desired result

S(ti ) =
pi+1

λi+1
=

∏

j ≤i

(1 − λ j ),

which is equivalent to (1.3). This completes the proof. �

There is yet another way to characterize a failure time distribution, which is use-
ful especially in engineering, demographics and life insurance: mean residual life-
time.

Definition 1.3. Let T ≥ 0 a.s. The function r (t ) = E
[
T − t

��T ≥ t
]
is called the mean

residual lifetime*. ∇

Clearly, r (0) = ET .

* Česky střední zbytková doba života
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1. Introduction

Theorem 1.3. Let T be a non-negative random variable with survival function S and

mean residual lifetime r . Then

(i) The conditional survival function of T given T ≥ t is P
[
T > s

��T ≥ t
]
= S(s )/S(t−)

for s ≥ t .

(ii) The mean residual lifetime of T can be expressed as

r (t ) =
∫ ∞

t
S(s )ds

S(t−) .

(iii) For continuous T and any t ≥ 0,

S(t ) = ET

r (t ) exp
{
−

∫ t

0

ds

r (s )

}
. ♦

The last point of this theorem proves that themean residual lifetime as a function
defined on 〈0,∞) completely specifies the failure time distributioon.

Independent study task:

Go through Appendix A.1. Notice the following facts:
• Properties of exponential distribution

• Relationship of exponential distribution to Weibull distribution

• Relationship of exponential and Weibull distribution to Gumbel distri-

bution

• Appreciate the memoryless property of exponential and geometric dis-

tributions and the relationship between those two distributions

1.4. Independent censoring

Suppose the failure timeT is censored – instead ofT , we observe the pair (X , δ), where
X = min(T ,C ) = T ∧C , δ = 1(T ≤ C ) and C is the censoring variable. We are interested
in the distribution of T , which can be described, e.g., by the survival function S(t ) =
P [T > t ] or by the hazard function λ(t ) = f (t )/S(t−). It is clear that the task requires
imposing certain conditions on the censoring variable C .

Suppose now that the random variables T and C are independent. We can only
observe X = T ∧C . Consider the survival function of X :

SX (t ) = P [X > t ] = P [T > t ,C > t ] = S(t )P [C > t ] ≤ S(t ).

Clearly, it is hard to relate the survival function of X to the survival function of T ,
unless we know the distribution of C .

13



1. Introduction

Next, consider the survival function of X when X is uncensored:

S∗
X (t ) = P

[
T > t

��T ≤ C
]
=

P [t < T ≤ C ]
P [T ≤ C ] , S(t ).

This is even less useful then SX (t ).
Now suppose that T has a continuous distribution and consider its hazard func-

tion λ(t )

λ(t ) = lim
hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t
] (∗)
= lim

hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t ,C ≥ t
]

= lim
hց0

1

h
P
[
t ≤ T < t + h

��X ≥ t
]
,

(1.4)

where the equation (∗) holds because of independence. Thus, the hazard function of
T can be recovered from censored data under certain conditions if we look at the oc-
currence of death among subjects who are alive and still uncensored at the particular
time of interest. This is the reason why the hazard function is so convenient tool for
the analysis of censored data.

Stochastic independence betweenT andC is a sufficient but not a necessary con-
dition for equation (1.4). Therefore we take that equation and make it a definition of
independent censoring.

Definition 1.4. Let T be continuous and let

λ(t ) = lim
hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t
]

be its true hazard function (called the net hazard in this context). Let

λ#(t ) = lim
hց0

1

h
P
[
t ≤ T < t + h

��X ≥ t
]

be the hazard function of T in the presence of censoring (called the crude hazard).

The censoring variable C satisfies the independent censoring condition* if and
only if λ(t ) = λ#(t ) a.e., that is, when the net and crude hazards are equal. ∇

A generalization of the independent censoring condition to arbitrary failure time
distributions (which need not be continuous) will be considered in Chapter 3.

We will always assume that independent censoring condition holds. Below is a
rather trivial example where T and C are clearly not independent but the indepen-
dent censoring condition is still satisfied.

Example (Type II censoring). Consider independent latent failure timesT1, . . . ,Tn and de-
fine Ci = T(k ) for all i , 1 ≤ k ≤ n. ThenCi is not independent of Ti but the independent
censoring condition (1.4) holds for each i . △

* Česky nezávislé censorování
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2. Parametric Models

In this chapter, we briefly discuss basic parametric models for censored data. The
most important result is the formation of the likelihood function for parametric mod-
els when T and C are independent in Section 2.1. Next, we develop some exact infer-
ence methods for the exponential model with Type II censoring. In the final section,
we present an easy method for analyzing regression models with censored exponen-
tially distributed response.

2.1. Parametric likelihood for arbitrary random censoring

Let (T1,C1), . . . , (Tn ,Cn) be independent, let Xi = min(Ti ,Ci ) = Ti ∧ Ci be the censored
failure times and δi = 1(Ti ≤ Ci ) the failure indicators. The data consist of indepen-
dent pairs (X1, δ1), . . . , (Xn , δn).

LetT1, . . . ,Tn be identically distributed with survival function S(x ; θ), density f (x ; θ),
and hazard function λ(x ; θ), where θ ∈ Θ is a p-dimensional parameter vector. Sup-
pose the family of densities f (x ; θ) satisfies the regularity assumptions of the maxi-
mum likelihood theory.

Denote by Gi (x) the survival function of the censoring variable Ci and by gi (x) its
density. We are not assuming that the censoring times are equally distributed; arbi-
trary distributions are allowed for each of them. However, we will assume throughout
this section that Ti and Ci are stochastically independent.

The likelihood function is based on the product (over i ) of joint densities of the
observations (Xi , δi ).

Lemma 2.1. Let Ti and Ci be stochastically independent. Then the joint density of

(Xi , δi ) is
qi (x , δ) =

[
f (x ; θ)Gi (x−)

] δ [
gi (x)S(x ; θ)

]1−δ
. ♦

We include two proofs of Lemma 2.1. The first version assumes that the distribu-
tion of Xi is continuous and it is relatively easy and straightforward. However, conti-
nuity of Xi requires all Ci ’s to have continuous distributions. This is not true in many
real applications because censoring times often follow mixtures of discrete and con-
tinuous distributions. Therefore we also present a proof of the most general case,
when both Ti and Ci have discrete and continuous components.

15



2. Parametric Models

It is enough to understand the simpler proof with continuous Xi (the first ver-

sion).

Proof (Version 1 – continuous case). Assume thatTi andCi have continuous distributions
(in the proof, we ignore the parameter θ). Hence, Xi also has a continuous distribu-
tion. The joint density of (Xi , δi ) at the point (x , δ0) can be calculated as

− ∂

∂x
P [X > x , δ = δ0] .

First, let δ0 = 1. Then

P [X > x , δ = 1] = P [x < T < C ] =
∫ ∞

x

[∫ ∞

t

h(t , s )ds

︸           ︷︷           ︸
ψ(t )

]
dt ,

where h(t , s ) is the joint density of (T ,C ). Due to independence, h(t , s ) = f (t )gi (s ).
Next,

− ∂

∂x
P [X > x , δ = 1] = − ∂

∂x

∫ ∞

x

ψ(t )dt = ψ(x) =
∫ ∞

x

f (x)gi (s )ds = f (x)Gi (x).

For δ0 = 0, the proceeds in the same way and we obtain
∫ ∞

x

f (s )gi (x)ds = gi (x)S(x).

Note: The fact thatGi needs to bemade left-continuous and S right-continuous follows
from the second version of the proof. Here, both are continuous. �

Proof (Version 2 – general case). Let S1 = {x ∈ R : P [Ti = x] > 0} and S2 = {x ∈ R :

P [Ci = x] > 0 for some i } be countable sets that include the possible discrete val-
ues of failure times and censoring times, respectively. Suppose the sets have at most
finitely many points within any bounded subset of R. Suppose the distributions of Ti

and Ci are all absolutely continuous with respect to the measure λ + µS1∪S2 , where λ
is the Lebesgue measure and µS1∪S2 is the counting measure on the set S1 ∪ S2. Then
there exists a density f (t ) of Ti such that S(t ) =

∫
(t ,∞) f (s )dµ(s ), which can be written

down as f (t ) = f ∗(t ) + ∆S(t ), where

f ∗(t ) = lim
hց0

S(t ) − S(t + h)
h

and ∆S(t ) = S(t−) − S(t ) = P [Ti = t ] .

Similarly, there exist densities gi (t ) of Ci such that Gi (t ) =
∫
(t ,∞) gi (s )dµ(s ), which can

be written down as gi (t ) = g ∗
i (t ) + ∆Gi (t ), where

g ∗
i (t ) = lim

hց0

Gi (t ) −Gi (t + h)
h

and ∆Gi (t ) = Gi (t−) −Gi (t ) = P [Ci = t ] .

16
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Because Ti and Ci are independent, they have a joint density hi (t , s ) with respect to
the product measure µ ⊗ µ and hi (t , s ) = f (t )gi (s ).

Since Xi = Ti ∧Ci , the observation (Xi , δi ) has a joint density qi (x , δ)with respect to
the product measure µ ⊗ µ {0,1}. First, evaluate it at δ = 1. It is a sum of a continuous
and a discrete component that can be obtained as

lim
hց0

P [Xi > x , δi = 1] − P [Xi > x + h, δi = 1]
h

+ P [Xi = x , δi = 1]

The continuous component can be also written as −d+

dx
P [Xi > x , δi = 1], where the

derivative is taken from the right. Calculate

P [Xi > x , δi = 1] = P [x < Ti ≤ Ci ] =
∫

(x ,∞)

[∫

〈t ,∞)
hi (t , s )dµ(s )

]
dµ(t )

=

∫

(x ,∞)
f (t )

∫

〈t ,∞)
gi (s )dµ(s )dµ(t ) =

∫

(x ,∞)
f (t )Gi (t−)dµ(t ).

The right derivative of this expression with respect to x is f ∗(x)Gi (x−), because ∆S(t ) =
0 on 〈x , x + h) for h sufficiently small.

Next, calculate

P [Xi = x , δi = 1] = P [Ti = x ,Ci ≥ x] = P [Ti = x]P [Ci ≥ x] = ∆S(x)Gi (x−).

Summing the two results, we get

qi (x , 1) = [f ∗(x) + ∆S(x)]Gi (x−) = f (x)Gi (x−).

For δ = 0, we show by the same technique that

P [Xi > x , δi = 0] = P [x < Ci < Ti ] =
∫

(x ,∞)
gi (t )S(t )dµ(t )

and P [Xi = x , δi = 0] = ∆Gi (x)S(x). This leads to the desired result. �

How to remember Lemma 2.1:

• Let δ = 0. We observe a censoring time x . We know that C = x and T > x .

Therefore the density is g (x)S(x).
• Let δ = 1. We observe a failure time x . We know that T = x and C ≥ x .

Therefore the density is f (x)G (x−).

Now we can use Lemma 2.1 to construct the likelihood for parametric models
with censored data. We recall that the distribution of T depends on a finite-dimensi-
onal parameter θ to be estimated.

17



2. Parametric Models

Theorem 2.2. LetT1, . . . ,Tn be identically distributed with survival function S(x ; θ), den-
sity f (x ; θ), and hazard function λ(x ; θ), θ ∈ Θ ⊆ R

p . Let Ci be independent of each

other and independent of Ti , with an arbitrary survival function Gi (x) and density

gi (x).
Then the likelihood function for θ has the form

L(θ) = C

n∏

i=1

[
λ(Xi ; θ)

S(Xi−; θ)
S(Xi ; θ)

] δi

S(Xi ; θ).

When the distribution of Ti is continuous,

L(θ) = C

n∏

i=1

[
λ(Xi ; θ)

] δi
S(Xi ; θ), (2.1)

and the log-likelihood can be written as

ℓ(θ) =
n∑

i=1

[
δi log λ(Xi ; θ) −

∫ Xi

0
λ(t ; θ)dt

]
+ c .

♦

Thus, the likelihood does not depend on the censoring distributions — as long
as the censoring distributions do not involve the parameter θ. This requirement is
called uninformative censoring.

Proof. Using Lemma 2.1, we get:

L(θ) =
n∏

i=1

[
f (Xi ; θ)Gi (Xi−)

] δi
[
gi (Xi )S(Xi ; θ)

]1−δi

=

n∏

i=1

f (Xi ; θ)δi S(Xi ; θ)1−δi

[ n∏

i=1

Gi (Xi−)δi gi (Xi )1−δi

︸                        ︷︷                        ︸
= C

]

= C

n∏

i=1

[
f (Xi ; θ)
S(Xi ; θ)

] δi

S(Xi ; θ) = C

n∏

i=1

[
λ(Xi ; θ)

S(Xi−; θ)
S(Xi ; θ)

] δi

S(Xi ; θ).

For continuous Ti , we get S(Xi−; θ) = S(Xi ; θ) and

S(Xi ; θ) = exp{−Λ(Xi ; θ)} = exp
{
−

∫ Xi

0
λ(t ; θ)dt

}
.

�

Standard results of the maximum likelihood theory can be applied to obtain the
maximum likelihood estimator of θ and its asymptotic distribution. For most failure
time distributions, however, the score function and the information matrix are not
easy to calculate. In the next two sections, we consider two special cases involving
the exponential failure time distribution, which is the easiest to handle.
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2.2. Exponential distribution with Type II censoring

LetT1, . . . ,Tn be identically distributed with exponential distribution Exp(λ). The den-
sity and survival function of Ti is

f (t ; λ) = λe−λt and S(t ; λ) = e−λt
,

respectively. The hazard function is λ(t ) = λ.
In this section, we derive some useful results about the estimation and testing

of the parameter λ under Type II censoring. We have a fixed k ∈ {1, . . . ,n} and set
Ci = T(k ) for all i , where T(k ) is the k -th order statistic of the random sample T1, . . . ,Tn .
The independent censoring condition introduced in Definition 1.4 is fulfilled but the
conditions of Theorem 2.2 are not – Ci is not independent of Ti .

The statement of Theorem 2.2 is still true but we have to prove it separately, tak-
ing into account Type II censoring. This is done in the following Lemma 2.3 and The-
orem 2.4.

The observed data (X1, δ1), . . . , (Xn , δn) are determined by the values of the first k

order statistics, so the likelihood can be obtained from the joint density of (T(1), . . . ,T(k )).

Lemma 2.3. The joint density of (T(1), . . . ,T(k )) is

h(t1, . . . , tk ) =
n!

(n − k )!λ
ke−λ

[∑k
i=1 ti+(n−k )tk

]
when 0 < t1 < t2 < · · · < tk ,

and h(t1, . . . , tk ) = 0 otherwise. ♦

Proof. The joint density of the first k order statistics can be obtained by discretizing
the continuous distribution of the vector and taking a limit. It proceeds as follows:
take 0 = t0 < t1 < t2 < · · · < tk fixed and a small h > 0 (smaller than the smallest
difference between tj and tj−1). Divide the positive half-line into 2k + 1 intervals

〈t0, t1), 〈t1, t1 + h), 〈t1 + h, t2), 〈t2, t2 + h), . . . , 〈tk , tk + h), 〈tk + h,∞). (*)

The probability

P
[
T(1) ∈ 〈t1, t1 + h),T(2) ∈ 〈t2, t2 + h), . . . ,T(k ) ∈ 〈tk , tk + h)

]

is equal to the probability

P [N = (0, 1, 0, 1, . . . , 0, 1,n − k )]

where N is a random vector containing the numbers of observations T1, . . . ,Tn that
fell into the 2k + 1 successive intervals (*). The distribution of N is multinomial, in
particular, Mult2k+1(n, p), where p are the probabilities of the 2k + 1 intervals for a
single exponential observation.
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2. Parametric Models

The survival function of the exponential distribution is S(t ) = P [Ti > t ] = e−λt .
From this, the vector of probabilities p is equal to

p = (1−e−λt1 , e−λt1−e−λ(t1+h)
, e−λ(t1+h)−e−λt2 , e−λt2−e−λ(t2+h)

, . . . , e−λtk −e−λ(tk+h)
, e−λ(tk+h)).

From the form of the multinomial density, we get

P
[
T(1) ∈ 〈t1, t1 + h),T(2) ∈ 〈t2, t2 + h),T(k ) ∈ 〈tk , tk + h)

]
=

=

n!

(n − k )!

[ k∏

j=1

e−λtj
(
1 − e−λh

) ]
·
[
e−λ(tk+h)]n−k

.

To find the desired joint density h(t1, . . . , tk ), divide this by hk and take a limit as h → 0

from above. This gives us

h(t1, . . . , tk ) =

=

n!

(n − k )! exp
{
−λ

[ k∑

j=1

tj + (n − k )tk

] } [ k∏

j=1

lim
hց0

1 − e−λh

h

]
lim
hց0

e−λh(n−k )
.

Because limhց0
1−e−λh

h
= λ and limhց0 e

−λh(n−k )
= 1, we finally get

h(t1, . . . , tk ) =
n!

(n − k )!λ
k exp

{
−λ

[ k∑

j=1

tj + (n − k )tk

]}
,

which was to be proven. �

The joint density is transformed into the likelihood by evaluating it at the ob-
served data and considering it a function of the unknown parameter.

Theorem 2.4. The likelihood function for exponential data with Type II censoring is

L(λ | T(1), . . . ,T(k )) =
n!

(n − k )!λ
ke−λSk ,n ,

where

Sk ,n =

k∑

i=1

T(i ) + (n − k )T(k )

is the sufficient statistic. ♦

Theorem 2.4 follows directly from Lemma 2.3.

Comparing the result of Theorem 2.4 to the likelihood (2.1) from Theorem 2.2, we
can see that they are the same, except the irrelevant multiplicative constant.

20



2. Parametric Models

Maximizing the likelihood, we get the likelihood equation k/λ̂ − Sk ,n = 0, leading
to the MLE λ̂ = k/Sk ,n. Notice that with our general notation, the MLE of the constant
hazard rate λ can be written as

λ̂ =

∑n
i=1 δi∑n
i=1 Xi

,

that is, the number of observed failures divided by the total observation time.

The MLE of the expected failure time is

µ̂ =
1

λ̂
=

1

k

k∑

i=1

T(i ) +
n − k

n
T(k ).

The sufficient statistic Sk ,n is not a sumof independent and identically distributed
random variables. However, it can be written as such after a simple transformation.
This idea is the key to the proof of the following Theorem.

Theorem 2.5. Let T1, . . . ,Tn be independent and identically distributed with distribu-

tion Exp(λ), let Sk ,n =
∑k

i=1T(i ) + (n − k )T(k ). Then

2λSk ,n ∼ χ22k . ♦

Proof. Consider the linear transformation Ui = (n − i + 1)(T(i ) − T(i−1)) for i = 1, . . . ,k

withT(0) ≡ 0. Notice that
∑k

i=1 Ui = Sk ,n. Let us calculate the joint density of (U1, . . . ,Uk )
using the transformation theorem. The inverse transformation is also linear:

T(i ) =
i∑

j=1

Uj

n − j + 1
.

The derivative matrix of the inverse transformation is a triangular matrix and the Ja-
cobian can be written as (n − k )!/n!.

From Lemma 2.3 and the transformation theorem, we get the density of (U1, . . . ,Uk )
as follows:

λke−λ
∑k

i=1 ui .

But this is the joint density of k iid random variables with the distribution Exp(λ),
which is also a gamma distribution Γ(λ, 1).

Next, 2λUi are iid random variables with Γ(1/2, 1) distribution and hence

2λSk ,n = 2λ
k∑

i=1

Ui ∼ Γ(1/2,k ) ≡ χ22k .

This completes the proof. �

21
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This theorem provides the basis for conducting exact parametric inference for
exponential distribution with Type II censoring. Consider testing

H0 : λ = λ0 and H1 : λ , λ0.

Take 2λ0Sk ,n as the test statistic, which has χ22k
distribution under the null hypothesis.

The test that rejects H0 when the test statistic is either too small or too large:

2λ0Sk ,n < χ22k (α/2) or 2λ0Sk ,n > χ22k (1 − α/2),

where χ2
f
(α) is the α-quantile of the χ2

f
distribution. The level of this test is exactly α

and it is the most powerful test of H0 in the current model. Similarly, an exact confi-
dence interval for λ with coverage 1 − α is

(
χ22k

(α/2)
2Sk ,n

,
χ22k

(1 − α/2)
2Sk ,n

)
.

This is the only case when exact inference is possible with censored data.

2.3. Exponential regression with arbitrary random censoring

In this section, we use the results of Section 2.1 to investigate a regression model
for censored exponentially distributed response. Let T1, . . . ,Tn be distributed accord-
ing to Exp(λi ) and let C1, . . . ,Cn be independent of each other and independent of
T1, . . . ,Tn , with arbitrary distributions. We observe independent triplets

(X1, δ1,Z1), . . . , (Xn , δn ,Zn),

where Xi = Ti ∧Ci , δi = 1(Ti ≤ Ci ), and Zi are random covariate vectors of dimension
p, typically with the first component equal to one.

Suppose there exists a p-vector β of regression parameters such that

λi = e
βTZi .

We would like to estimate the vector of regression coefficients β by maximum likeli-
hood methods. According to Theorem 2.2, the likelihood function for β has the form

L(β) = C

n∏

i=1

λ
δi

i
e−λi Xi ,

and the log-likelihood is

ℓ(β) =
n∑

i=1

(
δi β

TZi − eβ
TZi Xi

)
+ c .
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Differentiating this with respect to the vector β, we obtain the score statistic

U (β) =
n∑

i=1

(
δi − elogXi+β

TZi

)
Zi .

This is equivalent to the score statistic of a Poisson loglinear model with δi as the
response and logXi as the offset (see the notes for Advanced Regression Models).

Algorithms for finding the maximum likelihood estimator of β, calculating the
observed information matrix, approximating the distribution of the estimated β, per-
forming tests about β and building confidence intervals are all the same as in the
Poisson loglinear model.

In particular, the expected information matrix is

I (β) = E Zi Z T

i e
Z T

i
βXi .

It can be consistently estimated by

În =
1

n

n∑

i=1

Zi Z T

i e
Z T

i
β̂Xi

and √
n( β̂ − β) D−→ Np(0, I −1(β)).

Any software that can fit loglinear models can be used to perform exponential
regression with arbitrary independent censoring.

An important special case arises when Zi = 1 for all i . Then Z T

i
β = β and the

failure times are i.i.d. with the distribution Exp(λ) where λ = eβ . The score statistic is

U (β) =
n∑

i=1

(
δi − elogXi+β

)
=

n∑

i=1

(δi − λXi ).

and the MLE of the parameter λ has an explicit form

λ̂ =

∑n
i=1 δi∑n
i=1 Xi

,

that is, the number of observed failures divided by the total follow-up time. This is
the same estimator as for the case of Type II censoring.
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Starting with this chapter, we turn our attention to nonparametric methods for cen-
sored data. It turns out that it helps to view censored data as stochastic processes
evolving over time and to use theoretical results that are available for stochastic pro-
cesses to develop nonparametric estimators and tests and to establish their proper-
ties. We will see that the theory of martingales and martingale integrals will become
particularly useful to our purposes. In this chapter, we introduce notation and sum-
marize the most important results from martingale theory that will be used in sub-
sequent chapters.

We start by introducing a new notation that translates the censored observation
(X , δ), where X = T ∧ C and δ = 1(T ≤ C ), into a pair of stochastic processes. At the
origin, time t = 0, we start following the subject and wait for the failure. Once we
observe one, we mark the subject as having failed at that moment. If the subject is
censored before a failure occurs, the follow-up is terminated and the subject is no
longer at risk for failure.

This consideration motivates the following formulation of the problem. Let N (t )
be a stochastic process defined as

N (t ) = 1(T ≤ t , δ = 1).

It is a process that counts the number of failures that were observed prior to (and
including) t . It is an example of a counting process* specified by Definition A.5 in
the Appendix; its initial value N (0) is zero, it is finite, it has piecewise constant right-
continuous paths and jumps of size 1. This particular counting process jumps to 1 at
the failure time, and stays at 1 thereafter. If the subject is censored, N (t ) never jumps
and stays at 0 indefinitely.

In this chapter, we summarize some useful results about general counting pro-
cesses and apply them to the censored data problem. When we need to distinguish
the specific counting process N (t ) = 1(T ≤ t , δ = 1) from the general counting pro-
cess N (t ), we will call it the censored data counting process. Ideally, we would prefer
to work with the “uncensored” counting process 1(T ≤ t ) but we cannot because its
paths are not fully observed.

Let Y (t ) be another process such that

Y (t ) = 1(X ≥ t ).
* Česky čítací proces
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This is the at-risk process*. It indicates whether or not the subject is under observa-
tion at the time t . It starts at 1 at t = 0 and drops to 0 as soon as the failure occurs or
the subject is censored. The at-risk process Y (t ) is left-continuous.

Obviously, the original censored data setup (X , δ) is equivalent to providing the
observed paths of N (t ) and Y (t ), t > 0.

The counting process notation is useful in several ways. First, by emphasizing
the development of the censored observation over time, it facilitates the utilization
of the martingale theory based on conditioning upon the past. This simplifies the
problem in many important ways. Second, it can be easily generalized to allow for
late entry into the observation period, repeated change of the at-risk status, presence
of repeated failures for the same subject, and direct modeling of various time-varying
features (such as covariates that change over time). However, most of these topics will
not be adressed in the present course.

Before we start exploring the properties of censored data via counting processes,
we generalize the independent censoring condition first formulated for continuous
data in Definition 1.4 to arbitrary failure time distributions.

Definition 3.1. The censoring variable C satisfies the independent censoring condition
for the failure time T with cumulative hazard Λ if and only if

Λ(t ) = −
∫ t

0

dP [T ≥ s ,C ≥ T ]
P [T ≥ s ,C ≥ s ] ∀t such that P [T ≥ t ,C ≥ t ] > 0. (3.1)

∇

Note. When the distribution of T is continuous, condition (3.1) is equivalent to equal-
ity

λ(t ) =
− ∂
∂s
P [T ≥ s ,C ≥ t ]

��
s=t

P [T ≥ t ,C ≥ t ]

= lim
hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t ,C ≥ t
]

∀t ≥ 0.

The net hazard on the left should be equal to the crude hazard on the right, as re-
quired by Definition 1.4. Definition 3.1 is written in a less intuitive way but applies to
distributions with discrete components as well.

We will always assume that the independent censoring condition holds.

Note:Many theorems and other statements in this chapter are left without proof;
however, many of the proofs have been covered in the course NMTP436 Continuous
martingales and counting processes.

* Česky pozorovací proces
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3.1. Doob-Meyer decomposition

Our most important tool will be the Doob-Meyer decomposition of a submartingale.

Theorem 3.1 (Doob-Meyer). Let X (t ) be a right-continuous non-negative Ft -submartin-

gale. Then there exists a unique (up to sets of measure zero) right-continuous mar-

tingale M (t ) and a non-decreasing right-continuous Ft -predictable process A(t ) such
that A(0) = 0, E A(t ) < ∞, and

X (t ) = M (t ) + A(t ) almost surely

for any t ≥ 0. In addition, if X (t ) is bounded then M (t ) is uniformly integrable and

A(t ) is integrable. ♦

Note.

• The process A(t ) is called the compensator* for the submartingale X (t ). In gen-
eral, it depends on the filtration Ft .

• Suppose X (0) = 0. Then M (0) = 0, E M (t ) = 0, and the martingale M (t ) rep-
resents the “random noise” part of X (t ) while the compensator A(t ) can be re-
garded as the “systematic” part of X .

• Left-continuous adapted processes are always predictable. The compensator
A(t ) from the Doob-Meyer theorem is right-continuous and still predictable.

• Any counting process satisfies the conditions of the Doob-Meyer theorem.

Recall that a single censored observation can be described as the pair of stochas-
tic processes N (t ) = 1(T ≤ t , δ = 1) and Y (t ) = 1(X ≥ t ) or, equivalently, as the pair of
counting processes N (t ) = 1(T ≤ t , δ = 1) and N U (t ) = 1(C ≤ t , δ = 0). Introduce the
natural filtration summarizing the history of observed failure and censoring times up
to time t :

Ft = σ{N (s ),N U (s ), 0 ≤ s ≤ t } = σ{N (s ),Y (s+), 0 ≤ s ≤ t }. (3.2)

Then N (t ) is a counting process with respect to this filtration in the sense of Defini-
tion A.5. It is also a right-continuous non-negative Ft -submartingale. Thus, accord-
ing to the Doob-Meyer Theorem, there exists a non-decreasing right-continuous Ft -
predictable compensator A(t ) such that M (t ) = N (t ) − A(t ) is an Ft -martingale. The
next theorem shows that under independent censoring condition we know the form
of this compensator.

Theorem 3.2. Let

A(t ) =
∫ t

0
Y (s )dΛ(s ) = Λ(t ∧ X ). (3.3)

* Česky kompenzátor
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This is a right-continuous Ft -predictable process. The process

M (t ) = N (t ) − A(t )

is an Ft -martingale if and only if the independent censoring condition (3.1) holds. ♦

Note. Because M (0) = 0 a.s., we have E M (t ) = 0 and hence E N (t ) = EΛ(t ∧ X ) for all
t > 0.

Note. The claim of Theorem 3.2 can be extended to the case of multiple indepen-
dent censored observations. Let (T1,C1), . . . , (Tn ,Cn) be independent, Xi = Ti ∧ Ci and
δi = 1(Ti ≤ Ci ). We observe independent pairs (X1, δ1), . . . , (Xn , δn). Let Λi (t ) be the
cumulative hazard of Ti . Let the independent censoring condition (3.1) hold for each
pair (Ti ,Ci ). Define Ni (t ) = 1(Ti ≤ t , δi = 1), Yi (t ) = 1(Xi ≥ t ), and N U

i
(t ) = 1(Ci ≤

t , δi = 0). Define the extended filtration summarizing the history of observed failure
and censoring times for all subjects up to time t :

Ft = σ{Ni (s ),N U
i (s ), 0 ≤ s ≤ t , i = 1, . . . ,n} = σ{Ni (s ),Yi (s+), 0 ≤ s ≤ t , i = 1, . . . ,n}.

(3.4)
Let

Ai (t ) =
∫ t

0
Yi (s )dΛi (s ) = Λi (t ∧ Xi ). (3.5)

Then Mi (t ) = Ni (t ) − Ai (t ) is a martingale with respect to the extended filtration (3.4).

It is easy to see that for a right-continuous martingale M (t ) such that E M 2(t ) < ∞,
the process M 2(t ) is a right-continuous submartingale. The Doob-Meyer decompo-
sition can be applied to M 2, justifying the following corollary.

Corollary. For each right-continuous Ft -martingale M (t )with E M 2(t ) < ∞ for all t > 0,
there exists a non-decreasing right-continuous Ft -predictable process 〈M ,M 〉(t ) with
〈M ,M 〉(0) = 0 and finite expectation such that

M 2(t ) − 〈M ,M 〉(t ) is an Ft -martingale.

The process 〈M ,M 〉(t ) is uniquely determined (up to sets of measure zero).

The process 〈M ,M 〉 introduced in the corollary is called the predictable variation
process* of the martingale M (t ).

Note. If M (0) = 0 a.s. and E M 2(t ) < ∞ then var M (t ) = E M 2(t ) = E 〈M ,M 〉(t ).

The product of two martingales is not in general a submartingale, however, the
Doob-Meyer theorem can be extended to guarantee the existence of a “pseudo-com-
pensator” for martingale products.

* Česky prediktabilní varianční proces
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Theorem 3.3. Let M1(t ), M2(t ) be right-continuous Ft -martingales with E M 2
j (t ) < ∞ for

all t > 0, j = 1, 2. Then there exists a process 〈M1,M2〉(t )with the following properties:
(i) 〈M1,M2〉(t ) is right-continuous, Ft -predictable, 〈M1,M2〉(0) = 0 a.s., and its ex-

pectation is finite ∀t ≥ 0;

(ii) 〈M1,M2〉(t ) is a difference of two non-decreasing right-continuous Ft -predictable

processes;

(iii)

M1(t )M2(t ) − 〈M1,M2〉(t ) is an Ft -martingale. ♦

The process 〈M1,M2〉 of the preceding theorem is called the predictable covaria-
tion process* of the martingales M1(t ) and M2(t ).

Note.

• If M1(0) and M2(0) are uncorrelated then cov (M1(t ),M2(t )) = E 〈M1,M2〉(t ).
• M1M2 is a martingale if and only if 〈M1,M2〉(t ) = 0 at all t ≥ 0. If this is the case,
the martingales M1 and M2 are called orthogonal.

In the next section we will show that it is possible to derive explicit forms of pre-
dictable variation and covariation processes for counting process martingales.

3.2. Martingale integrals

In this section, we consider processes of the type

L(t ) =
∫ t

0
H (s )dM (s ),

whereH is a bounded Ft -predictable process and M is an Ft -martingale having paths
with total variation bounded by a constant almost surely. For any right-continuous
function F with left-hand limits, the notation ∆F (x) = F (x) − F (x−) means the jump
of F at x .

The results of this section are not formulated in their most general versions. They
can be extended in several ways. First, to processes H that are only locally bounded:
the details can be found in Fleming and Harrington (1991) and Andersen et al. (1993).
Second, to martingales M that do not have paths of bounded variation such as the
Brownian motion. This extension leads to Itô-type integrals.

Theorem 3.4. Let N be a general counting process and let A be its compensator ac-

cording to Theorem 3.1 such that M = N − A is an Ft -martingale. Let ∆M (0) = 0 a.s.
* Česky prediktabilní kovarianční proces
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Let H be a bounded Ft -predictable process. Then

L(t ) =
∫ t

0
H (s )dM (s )

is an Ft -martingale. ♦

Note.

• Since L(0) = 0 a.s., it follows that E
∫ t

0
H (s )dM (s ) = 0 for all t ≥ 0.

• Consider processes Ni ,Ai ,Hi for i = 1, . . . ,n. Let Mi = Ni − Ai . Suppose that the
conditions of Theorem 3.4 are satisfied for each i with a common filtration Ft .
Then

L(t ) =
n∑

i=1

∫ t

0
Hi (s )dMi (s ) (3.6)

is an Ft -martingale.

Predictable covariation processes for martingale integrals

Now we consider predictable covariation processes for martingale integrals. When
we write expressions such as

∫
Z dX without limits and dummy arguments, they are

to be interpreted as
∫ t

0
Z (s )dX (s ).

Theorem 3.5. Let the conditions of Theorem 3.4 hold for Nj ,Aj ,Hj , j = 1, 2, take Mj =

Nj − Aj and assume E M 2
j
(t ) < ∞. Denote L j (t ) =

∫
Hj dMj . Then there exists a pre-

dictable covariation process 〈L1,L2〉 and

〈L1,L2〉 =
∫

H1H2 d 〈M1,M2〉.

In particular, ∫
H1 dM1

∫
H2 dM2 −

∫
H1H2 d 〈M1,M2〉

is an Ft -martingale. ♦

Corollary.

• cov
(∫

H1 dM1,
∫

H2 dM2

)
= E

∫
H1H2 d 〈M1,M2〉.

• If M1 and M2 are orthogonal then cov
(∫

H1 dM1,
∫

H2 dM2

)
= 0 for any bounded

predictable H1 and H2.

• var
∫

H dM = E
∫

H 2 d 〈M ,M 〉.
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Note. Let U1 =
∑n

i=1

∫
Hi dMi and U2 =

∑n
i=1

∫
H ∗

i dMi with all Hi and H ∗
i bounded and

Ft -predictable. Then EU1 = EU2 = 0,

var U1 = E

n∑

i=1

n∑

j=1

∫
Hi Hj d 〈Mi ,Mj 〉,

var U2 = E

n∑

i=1

n∑

j=1

∫
H ∗

i H ∗
j d 〈Mi ,Mj 〉, and

cov (U1,U2) = E

n∑

i=1

n∑

j=1

∫
Hi H ∗

j d 〈Mi ,Mj 〉.

When Mi and Mj are orthogonal martingales for all i , j , then

var U1 = E

n∑

i=1

∫
H 2

i d 〈Mi ,Mi 〉,

var U2 = E

n∑

i=1

∫
(H ∗

i )2 d 〈Mi ,Mi 〉, and

cov (U1,U2) = E

n∑

i=1

∫
Hi H ∗

i d 〈Mi ,Mi 〉.

These results will become useful when the we learn how to calculate predictable vari-
ation and covariation processes.

Theorem 3.6. Let A(t ) be the compensator for a general counting process N (t ) and de-
note M (t ) = N (t ) − A(t ) the associated martingale. Then

〈M ,M 〉(t ) =
∫ t

0
[1 − ∆A(s )]dA(s ).

If the compensator A(t ) is continuous then 〈M ,M 〉(t ) = A(t ). ♦

Corollary. The martingale M (t ) is square integrable:

var M (t ) = E M 2(t ) = E

∫ t

0
(1 − ∆A)dA ≤ E A(t ) < ∞.

Proof (of Theorem 3.6). We apply integration by parts for Lebesgue-Stieltjes integral (The-
orem A.1 in the Appendix). Take F (t ) = G (t ) = M (t ) and write

M 2(t ) = 2
∫ t

0
M (s−)dM (s ) +

∫ t

0
∆M (s )dM (s ). (*)

In the first integral, the integrand M (s−) is bounded on (0, t ), left continuous and
therefore predictable. The first integral is a martingale. In the second integral, the
integrand ∆M (s ) is not predictable.
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3. Counting Processes and Martingales

In the sequel, we drop the time arguments and integral bounds whenever possi-
ble. Take

∫
∆M dM and write M = N − A. Then

∫
∆M dM =

∫
(∆N − ∆A)d(N − A)

=

∑

s ≤t

∆N (∆N − ∆A) −
∫
∆A dM

=

∑

s ≤t

∆N −
∫
∆A dN −

∫
∆A d(N − A)

= N − A +

∫
1dA −

∫
∆A dA − 2

∫
∆A d(N − A)

= M +

∫
(1 − ∆A)dA − 2

∫
∆A dM .

Now, the compensator A is bounded and predictable, hence
∫
∆A dM is a martingale.

We can write ∫
∆M dM −

∫
(1 − ∆A)dA = M − 2

∫
∆A dM .

The right-hand side is amartingale. Hence,
∫
(1−∆A)dA is a compensator to

∫
∆M dM ,

and, because of (*), also to M 2. This completes the proof. �

Let us return to the special case of censored data counting process N (t ) = 1(T ≤
t , δ = 1) accompanied by the at-risk process Y (t ) = 1(X ≥ t ). Let the filtration be de-
fined by (3.2). According to Theorem 3.2, when the independent censoring condition
holds the compensator for N (t ) is A(t ) =

∫ t

0
Y (s )dΛ(s ) and M (t ) = N (t ) − A(t ) is an

Ft -martingale.

Theorem 3.6 tells us that the predictable variation process for M (t ) is 〈M ,M 〉(t ) =∫ t

0
[1 − ∆Λ(s )]Y (s )dΛ(s ). For continuous failure times, we have ∆Λ(s ) = 0 and thus the

same process A(t ) =
∫ t

0
Y (s )dΛ(s ) compensates both N (t ) and M 2(t ).

Multivariate counting process

Definition 3.2. Let Ni (t ), i = 1, . . . ,n, be general counting processes adapted to a com-
mon filtration Ft . The collection {N1(t ), . . . ,Nn (t )} is called a multivariate counting

process* if and only if P
[
∆Ni (t ) = 1,∆Nj (t ) = 1

]
= 0 for all i , j and all t ≥ 0. ∇

Note. Individual counting processes included in amultivariate counting process can-
not jump at the same time. In our censored data special case, if failure timesT1, . . . ,Tn

are independent with continuous distributions, their counting processesNi (t ) = 1(Ti ≤
t , δi = 1) form a multivariate counting process.

* Českymnohorozměrný čítací proces
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In the next part we calculate predictable covariation processes for martingales
associated with a multivariate counting process. The following theorem was proven
in the course “Continuous Martingales and Counting Processes”.

Theorem 3.7. Let {N1(t ), . . . ,Nn(t )} be a multivariate counting process. Let Ai , a com-

pensator for Ni , be continuous for each i = 1, . . . ,n, let Mi = Ni −Ai . Then 〈Mi ,Mj 〉 = 0
a.s. for all i , j .

Note. In the censored data setting, it follows that if the underlying failure time vari-
ables are continuous, their martingales are orthogonal and the processes Mi Mj are
martingales for any i , j .

The previous theorem can be extended to any multivariate counting process.

Theorem 3.8. Let {N1(t ), . . . ,Nn(t )} be amultivariate counting process. Let Ai be a com-

pensator for Ni with respect to the common filtration Ft . Let Mi = Ni −Ai , i = 1, . . . ,n.

Then

〈Mi ,Mj 〉 = −
∫
∆Ai dAj a.s. for all i , j.

♦

Note. In the censored data setting, if the underlying failure time variables have dis-
crete components so that their compensators have jumps, their martingales are neg-
atively correlated. This agrees with the definition of the multivariate counting pro-
cess, where jumps are prohibited for all other processes at the time when one of them
jumps.

Proof. Consider the process Ni + Nj for i , j . Because {N1(t ), . . . ,Nn (t )} is a multi-
variate counting process, the process Ni + Nj has jumps of size at most one (almost
surely) and hence it is a counting process.

The compensator for Ni + Nj is Ai + Aj . Mi +Mj is a martingale that satisfies the
conditions of Theorem 3.6. According to that theorem,

〈Mi +Mj ,Mi +Mj 〉 =
∫

(1 − ∆Ai − ∆Aj )d(Ai + Aj )

= Ai + Aj −
∫

(∆Ai + ∆Aj )d(Ai + Aj ).

Use the equality

〈Mi ,Mj 〉 =
1

2

[
〈Mi +Mj ,Mi +Mj 〉 − 〈Mi ,Mi 〉 − 〈Mj ,Mj 〉

]
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and the known forms of the predictable covariance processes on the right-hand side
to get

〈Mi ,Mj 〉 =
1

2

[
Ai + Aj −

∫
(∆Ai + ∆Aj )d(Ai + Aj )

−
∫

(1 − ∆Ai )dAi −
∫

(1 − ∆Aj )dAj

]

=

1

2

(
−

∫
∆Ai dAj −

∫
∆Aj dAi

)

= −
∫
∆Ai dAj .

This completes the proof. �

The final theorem does not require a multivariate counting process but makes a
conditional independence assumption.

Theorem 3.9. Let ∆N1(t ), . . . ,∆Nn (t ) be independent given Ft−. Then 〈Mi ,Mj 〉(t ) = 0

almost surely for all i , j and all t ≥ 0.

Proof. Use integration by parts on Mi Mj :

Mi (t )Mj (t ) − Mi (0)Mj (0)︸        ︷︷        ︸
=0

=

∫ t

0
Mi (s−)dMj (s ) +

∫ t

0
Mj (s−)dMi (s )

+

∑

s ≤t

∆Mi (s )∆Mj (s ).

The first two terms are martingales. We need to show that
∑

s ≤t ∆Mi (s )∆Mj (s ) is an
Ft -martingale, too. It will suffice to show that the following conditional expectation
is zero for any u < s .

E
[ ∑

u<s ≤t

∆Mi (s )∆Mj (s )
��Fu

]
=

∑

u<s ≤t

E
[
E
[
∆Mi (s )∆Mj (s )

��Fs−
] ��Fu

]
.

Now decompose

E
[
∆Mi (s )∆Mj (s )

��Fs−
]
= E

[
Mi (s )Mj (s ) − Mi (s−)Mj (s ) − Mi (s )Mj (s−) +Mi (s−)Mj (s−)

��Fs−
]
.

Because Mi and Mj are martingales,

E
[
Mi (s )

��Fs−
]
= Mi (s−) and E

[
Mj (s )

��Fs−
]
= Mj (s−).

It remains to show that E
[
Mi (s )Mj (s )

��Fs−
]
= Mi (s−)Mj (s−) as well. Decompose both

martingales as the counting process minus the compensator.

E
[
Mi (s )Mj (s )

��Fs−
]
= E

[
Ni (s )Nj (s ) − Ai (s )Nj (s ) − Ni (s )Aj (s ) + Ai (s )Aj (s )

��Fs−
]
.
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The compensators Ai , Aj are predictable and hence Fs−-measurable. Now use the
assumption of independence of the jumps in Ni (s ) and Nj (s ) given Fs− to get

E
[
Mi (s )Mj (s )

��Fs−
]
= E

[
Ni (s ) − Ai (s )

��Fs−
]
E
[
Nj (s ) − Aj (s )

��Fs−
]

= E
[
Mi (s )

��Fs−
]
E
[
Mj (s )

��Fs−
]
= Mi (s−)Mj (s−).

This completes the proof. �

Summary of main results

Let us summarize the important properties of martingale integral sums of the form
(3.6) that we explained in this section. Consider censored data counting processes
Ni (t ) and at-risk processesYi (t ), i = 1, . . . ,n, that describe n independent observations
of censored failure times with cumulative hazard functions Λi . LetMi (t ) = Ni (t )−Ai (t ),
where Ai (t ) =

∫ t

0
Yi (t )dΛi (t ) is the compensator forNi (t ) under independent censoring

and a common filtration Ft . By Theorem 3.6,

〈Mi ,Mi 〉(t ) =
∫ t

0
[1 − ∆Ai (s )]dAi (s ) =

∫ t

0
[1 − ∆Λi (s )]Yi (s )dΛi (s ).

For continuous failure times with hazard functions λi , we get 〈Mi ,Mi 〉(t ) =
∫ t

0
Yi (s )λi (s )ds .

Also, 〈Mi ,Mj 〉(t ) = 0 for all i , j by Theorem 3.9 (because of independence).

Take Hk i (t ) bounded, Ft -predictable processes k = 1, 2, i = 1, . . . ,n. Consider the
sums

Uk (t ) =
n∑

i=1

∫ t

0
Hk i (s )dMi (s ), k = 1, 2.

We have established the following facts about these processes:

• Uk (t ) are Ft -martingales by Theorem 3.4.

• EUk (t ) = 0.
• var Uk (t ) =

∑n
i=1

∫ t

0
E

[
H 2

k i
(s )Yi (s )

]
[1−∆Λi (s )]dΛi (s ) by Theorems 3.5, 3.6, and 3.9.

• cov (U1(t ),U2(t )) =
∑n

i=1

∫ t

0
E

[
H1i (s )H2i (s )Yi (s )

]
[1−∆Λi (s )]dΛi (s ) by Theorems 3.5,

3.6, and 3.9.

In the next section, we provide central limit theorems for such sums as n → ∞.

3.3. Central limit theorems for sums of martingale integrals

We consider two central limit theorems for two somewhat different cases. Both as-
sume continuous compensators, though they could be extended to other cases as
well.
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Central limit theorem, case 1

We will be working under the following conditions:

• Let {N
(n)
k i

: k = 1, . . . , r , i = 1, . . . ,n} be a multivariate counting process with
respect to the stochastic basis (Ω,A, {Ft }t ≥0,P ).

• Let the compensator A
(n)
k i

for N
(n)
k i

be continuous.

• Let H
(n)
k i
, k = 1, . . . , r , i = 1, . . . ,n, be bounded* Ft -predictable processes on the

interval 〈0, τ〉.
Let M

(n)
k i
= N

(n)
k i

− A
(n)
k i

be the Ft -martingale for N
(n)
k i
. Denote

U
(n)

k i
(t ) =

∫ t

0
H

(n)
k i

(s )dM
(n)
k i

(s ) and U
(n)

k
(t ) =

n∑

i=1

U
(n)

k i
(t ).

Take any ε > 0 and denote

U
(n)

k i ,ε
(t ) =

∫ t

0
H

(n)
k i

(s )1(|H (n)
k i

(s )| > ε)dM
(n)
k i

(s ) and U
(n)

k ,ε
(t ) =

n∑

i=1

U
(n)

k i ,ε
(t ).

All of these processes are square integrable martingales and, by Theorems 3.5, 3.6,
and 3.7,

〈U (n)
k

,U
(n)

k
〉(t ) =

n∑

i=1

∫ t

0

[
H

(n)
k i

(s )
]2

dA
(n)
k i

(s )

and

〈U (n)
k ,ε
,U

(n)
k ,ε

〉(t ) =
n∑

i=1

∫ t

0

[
H

(n)
k i

(s )
]2
1(|H (n)

k i
(s )| > ε)dA

(n)
k i

(s ).

Theorem 3.10 (Central limit theorem I.). Let for all t ∈ 〈0, τ〉 and all k = 1, . . . , r

〈U (n)
k

,U
(n)

k
〉(t ) P−→

∫ t

0
f 2k (s )ds < ∞

as n → ∞, where fk are non-negative measurable functions, and, for all ε > 0,

〈U (n)
k ,ε

,U
(n)

k ,ε
〉(t ) P−→ 0 (3.7)

as n → ∞. Then
(
U

(n)
1
,U

(n)
2
, . . . ,U

(n)
r

)
=⇒

(∫
f1 dW1,

∫
f2 dW2, . . . ,

∫
fr dWr

)
on Dr 〈0, τ〉,

whereW1,W2, . . . ,Wr are independent Brownian motions. ♦
* Boundedness is not a necessary condition, it can be relaxed to local boundedness.
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Note.

• The processes
∫

fk dWk , k = 1, . . . , r , are independent time-transformed Brown-
ian motions. See Appendix A.3.

• The symbol “=⇒” means weak convergence of a multivariate stochastic process
in the spaceDr 〈0, τ〉 of left-continuous functions with right-hand limits defined
on the r -dimensional Carthesian product of 〈0, τ〉. See Appendix A.4.

• The condition (3.7) is analogous to the Feller-Lindeberg condition for sums of
random variables. It can be shown that it is automatically satisfied when both
sequences N

(n)
k1

, . . . ,N
(n)
k n

and A
(n)
k1
, . . . ,A

(n)
k n

are identically distributed for each k .

The most important consequence of Theorem 3.10 is that the random vector of
values

(
U

(n)
1
,U

(n)
2

, . . . ,U
(n)

r

)
evaluated at a single fixed time t ∈ 〈0, τ〉 converges in dis-

tribution to an r -dimensional normal random vector with zero mean, independent
components and variances

∫ t

0
f 2

k
(s )ds .

Central limit theorem, case 2

Now take a single set of counting processes with multiple integrands.

• Let {N
(n)
i

: i = 1, . . . ,n} be a multivariate counting process with respect to the
stochastic basis (Ω,A, {Ft }t ≥0,P ).

• Let the compensator A
(n)
i

for N
(n)
i

be continuous.

• Let H
(n)
k i
, k = 1, . . . , r , i = 1, . . . ,n, be bounded* Ft -predictable processes on the

interval 〈0, τ〉.

Let M
(n)
i
= N

(n)
i

− A
(n)
i

be the Ft -martingale for N
(n)
i
. Denote

U
(n)

k i
(t ) =

∫ t

0
H

(n)
k i

(s )dM
(n)
i

(s ) and U
(n)

k
(t ) =

n∑

i=1

U
(n)

k i
(t ).

Take any ε > 0 and denote

U
(n)

k i ,ε
(t ) =

∫ t

0
H

(n)
k i

(s )1(|H (n)
k i

(s )| > ε)dM
(n)
i

(s ) and U
(n)

k ,ε
(t ) =

n∑

i=1

U
(n)

k i ,ε
(t ).

All of these processes are square integrable martingales and, by Theorems 3.5, 3.6,
and 3.7,

〈U (n)
k

,U
(n)

l
〉(t ) =

n∑

i=1

∫ t

0
H

(n)
k i

(s )H (n)
l i

(s )dA
(n)
i

(s )

* Again, boundedness can be relaxed.
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and

〈U (n)
k ,ε
,U

(n)
l ,ε

〉(t ) =
n∑

i=1

∫ t

0
H

(n)
k i

(s )H (n)
l i

(s )1(|H (n)
k i

(s )| > ε)1(|H (n)
l i

(s )| > ε)dA
(n)
i

(s ).

Theorem 3.11 (Central limit theorem II.). Let for all t ∈ 〈0, τ〉 and all k , l = 1, . . . , r

〈U (n)
k

,U
(n)

l
〉(t ) P−→ ckl (t ) < ∞

as n → ∞, where ckl are continuous functions, and, for all ε > 0 and all k = 1, . . . , r ,

〈U (n)
k ,ε

,U
(n)

k ,ε
〉(t ) P−→ 0

as n → ∞. Then
(
U

(n)
1
,U

(n)
2
, . . . ,U

(n)
r

)
=⇒

(
W ∗
1 , . . . ,W

∗
r

)
on Dr 〈0, τ〉,

where W ∗
1 , . . . ,W

∗
r are dependent zero-mean Gaussian processes with independent

increments, a.s. continuous sample paths, and covariance functions cov (W ∗
k
(s ),W ∗

l
(t )) =

ckl (s ) for all k , l and all 0 ≤ s ≤ t ≤ τ. ♦

By this theorem, the random vector
(
U

(n)
1
,U

(n)
2
, . . . ,U

(n)
r

)
evaluated at a single fixed

time t ∈ 〈0, τ〉 converges in distribution to an r -dimensional normal random vector
with zero mean and covariance matrix ckl (t ), k , l ∈ 1, . . . , r .
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Distribution

4.1. Estimating cumulative hazard function and survival function

Let (T1,C1), . . . , (Tn ,Cn) be independent, let T1, . . . ,Tn be identically distributed with
survival function S and cumulative hazard function Λ.

Let Xi = Ti ∧Ci be censored failure times and δi = 1(Ti ≤ Ci ) failure indicators. We
would like to estimate the survival function S and the cumulative hazard function Λ
from the independent observations (X1, δ1), . . . , (Xn , δn) without making any assump-
tions on the distribution of Ti .

If the data were not censored, the survival function S could be estimated by Ŝ =

1−F̂ , where F̂ (t ) = n−1 ∑n
i=1 1(Ti ≤ t ) is the empirical distribution function. So our task

can be viewed as extending the empirical distribution function to censored data.

Consider the counting processes Ni (t ) = 1(Ti ≤ t , δi = 1) and at-risk processes
Yi (t ) = 1(Xi ≥ t ), i = 1, . . . ,n. Take the filtration

Ft = σ{Ni (u),Yi (u+), 0 ≤ u ≤ t , i = 1, . . . ,n}

and the compensator Ai (t ) =
∫ t

0
Yi (u)dΛ(u). If the independent censoring condi-

tion (3.1) holds (we always assume this) for each pair (Ti ,Ci ) the process Mi (t ) = Ni (t )−
Ai (t ) is an Ft -martingale (see Section 3.1 on p. 27).

Let N (t ) = ∑n
i=1 Ni (t ) and Y (t ) = ∑n

i=1Yi (t ). It follows that M (t ) = ∑n
i=1 Mi (t ) =

N (t ) −
∫ t

0
Y (u)dΛ(u) is an Ft -martingale.

Denote by T∗ the time when the data run out, i.e., T∗ = inf{s : Y (s ) = 0}. Take the
bounded Ft -predictable process

H (u) = 1(Y (u) > 0)
Y (u)

.

For u ≥ T∗, the numerator is 0 and the whole process is defined as 0. By Theorem 3.4,∫
H dM is a martingale and its expectation is zero. Write

∫ t

0
H (u)dM (u) =

∫ t

0

1(Y (u) > 0)
Y (u)

dN (u) −
∫ t

0
1(Y (u) > 0)dΛ(u) =

∫ t

0

dN (u)
Y (u)

− Λ(t ∧T∗).
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The left-hand side has zero expectation. The random part of the right-hand side ap-
pears to be a good candidate for an unbiased estimator of Λ(t ) at times t when data
are still observed.

Definition 4.1. The function

Λ̂(t ) =
∫ t

0

dN (u)
Y (u)

is called the Nelson-Aalen estimator of the cumulative hazard function. ∇

Note.

• This estimator was proposed by Nelson (1969). Its consistency and weak conver-
gence were first proven by Breslow and Crowley (1974) using standard methods
and then by Aalen (1978) using martingale theory.

• The Nelson-Aalen estimator is constant for t ≥ T∗. There is no information in
the data about the hazard after the last observation fails or is censored.

• Denote by t1 < · · · < td the ordered distinct failure times observed in the data.
Then

Λ̂(t ) =
∑

{j :tj ≤t }

∆N (tj )
Y (tj )

=

∑

{j :tj ≤t }
λ̂ j .

This is how the estimator is calculated. The contribution λ̂ j is an empirical esti-
mate of the discrete hazard at tj : the ratio of the number of subjects who failed
at tj divided by the number of subjects who could have failed at tj .

Having an estimator Λ̂ for Λ, we can use it to obtain an estimator for the sur-
vival function S . By equation (1.2), we have S(t ) = e−Λ(t ) for continuous failure time
distributions. So we could take

Ŝ(t ) = e−Λ̂(t ).
This is called the Fleming-Harrington estimator of survival function. However, (1.2)
only holds for continuous failure time distributions, which allow no ties among fail-
ure times. So let us use equality (1.1) instead, which is more universal.

We have

Λ(t ) =
∫ t

0

dF (u)
S(u−) .

Hence, for any measurable function g (t ),
∫ t

0
g (u)dΛ(u) =

∫ t

0

g (u)
S(u−) dF (u).

Take g (u) = 1 − F (u−) to get
∫ t

0
[1 − F (u−)]dΛ(u) = F (t ) = 1 − S(t )
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4. Nonparametric Estimation of Failure Time Distribution

and finally,

S(t ) = 1 −
∫ t

0
S(u−)dΛ(u).

Plug in the Nelson-Aalen estimator of Λ and obtain an estimator of the survival func-
tion Ŝ that satisfies the equation

Ŝ(t ) = 1 −
∫ t

0
Ŝ(u−)dΛ̂(u). (4.1)

We can solve this equation recursively as follows:

Ŝ(t ) = 1 −
∫ t

0
Ŝ(u−)dN (u)

Y (u)
,

Ŝ(t ) = 1 −
∑

u ≤t

Ŝ(u−)∆N (u)
Y (u)

.

We can see that Ŝ(t ) is a step function because it can only change at the observed
failure times. Let us calculate the size of the jump of Ŝ(t ) at any t .

Ŝ(t−) − Ŝ(t ) = −∆Ŝ(t ) = Ŝ(t−)∆N (t )
Y (t )

.

Hence,

Ŝ(t ) = Ŝ(t−)
[
1 − ∆N (t )

Y (t )

]
.

This is the recursive equation that allows us to subsequently calculate all values of
Ŝ(t ). It is easy to see that it can be solved to get the following definition.

Definition 4.2. The function

Ŝ(t ) =
∏

u ≤t

[
1 − ∆N (u)

Y (u)

]

is called the Kaplan-Meier estimator of survival function. ∇

Note.

• This estimator was first proposed by Kaplan and Meier (1958).
• With t1 < · · · < td the ordered distinct failure times,

Ŝ(t ) =
∏

{j :tj ≤t }

[
1 −
∆N (tj )
Y (tj )

]
=

∏

{j :tj ≤t }
(1 − λ̂ j ).

The last expression agrees with equation (1.3) for discrete hazard functions.
• The Kaplan-Meier estimator is a right-continuous piecewise constant function.
When the data are not censored, 1−Ŝ equals the empirical distribution function.

• The Kaplan-Meier estimator is constant for t ≥ T∗. It does not drop to zero at the
last observed failure time td unless all the remaining subjects fail at that time.

40



4. Nonparametric Estimation of Failure Time Distribution

4.2. Properties of the Nelson-Aalen estimator

Select τ > 0 a fixed time such that P [Yi (τ) = 1] > δ > 0 for all i = 1, . . . ,n and Λ(τ) < ∞.
The properties of nonparametric estimators will be investigated on the fixed interval
〈0, τ〉 because our theoretical tools (in particular the central limit theorem) require
that.

In practice, we perform the analysis on the random interval 〈0,T∗〉, where T∗ =
inf{s : Y (s ) = 0} is the time when the last observation fails or is censored.

The proofs could be extended to this more general case but they would become

much more complicated.

Assumptions. There exists a deterministic function π : 〈0, τ〉 → (0, 1〉 such that

sup
t ∈〈0,τ〉

����
1

n
Y (t ) − π(t )

����
P−→ 0. (4.2)

If the censoring times C1, . . . ,Cn are identically distributed (hence Ni (t ),Yi (t ) are),
then condition (4.2) is satisfied with π(t ) = P [Yi (t ) = 1], which is positive on 〈0, τ〉.

Lemma 4.1. If the data are independent and identically distributed, then condition

(4.2) is satisfied. ♦

Proof. By the weak law of large numbers for iid random variables, Y (t )/n
P−→ π(t ) ≡

P [Yi (t ) = 1] at every t ∈ 〈0, τ〉. Uniformity follows from the Glivenko-Cantelli Theorem
on uniform convergence of the empirical distribution function. �

As shown previously, the Nelson-Aalen estimator Λ̂(t ) =
∫ t

0

dN (u)
Y (u) can be written

as

Λ̂(t ) = Λ∗(t ) +
∫ t

0
H (u)dM (u),

where H (u) = 1(Y (u) > 0)/Y (u) is predictable and Λ∗(t ) = Λ(t ∧ T∗). This martingale
representation together with the results of Chapter 3 allows us to prove the following
theorem that summarizes the important properties of the Nelson-Aalen estimator.

Theorem 4.2.

(i) For any t ∈ 〈0, τ〉, E
[
Λ̂(t ) − Λ∗(t )

]
= 0.

(ii) For any t ∈ 〈0, τ〉, 0 ≥ E
[
Λ̂(t ) − Λ(t )

]
= −

∫ t

0
P

[
Y (u) = 0

]
dΛ(u). For identically

distributed data,
���E [Λ̂(t ) − Λ(t )]

��� ≤ [1 − π(t )]n
Λ(t ) → 0 as n → ∞.
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4. Nonparametric Estimation of Failure Time Distribution

(iii) If Λ is continuous with hazard function λ,

√
n

[
Λ̂(t ) − Λ(t )

]
=⇒

∫ t

0

√
λ(u)
π(u) dW (u) on D 〈0, τ〉.

♦

Proof. (i)

Λ̂(t ) − Λ∗(t ) =
∫ t

0
H (u)dM (u),

where H (u) = 1(Y (u) > 0)/Y (u) is bounded and predictable. By Theorem 3.4,
Λ̂(t ) − Λ∗(t ) is a martingale a thus it has zero expectation at all t ∈ 〈0, τ〉.

(ii)

E [Λ̂(t ) − Λ(t )] = E [Λ∗(t ) − Λ(t )] = −E

∫ t

0
1(Y (u) = 0)dΛ(u)

= −
∫ t

0
P

[
Y (u) = 0

]
dΛ(u).

Thus, there is a negative bias in Λ̂(t ) that starts to appear after the data have
run out. When the data are iid, P

[
Y (u) = 0

]
= P [Y1(u) = Y2(u) = · · · = Yn(u) = 0] =

[1 − π(u)]n . Hence,
���E [Λ̂(t ) − Λ(t )]

��� =
∫ t

0
[1 − π(u)]n dΛ(u) ≤ [1 − π(t )]n

Λ(t )

and the right-hand side converges to 0 as n → ∞.
(iii) Now we assume that T has a continuous failure time distribution with hazard

function λ(t ). The proof of weak convergence uses Theorem 3.10, the first cen-
tral limit theorem for martingale integrals, with r = 1 group (the subscript k is
dropped). We take

U
(n)

i
(t ) =

∫ t

0

√
nH (u)dMi (u)

with H (u) = 1(Y (u) > 0)/Y (u) bounded and predictable and

U (n)(t ) =
n∑

i=1

U
(n)

i
(t ) =

∫ t

0

√
nH (u)dM (u) =

√
n
[
Λ̂(t ) − Λ∗(t )

]
.

Let us verify the conditions of Theorem 3.10. First, by Theorems 3.5, 3.6, and 3.7
or 3.9,

〈U (n)
,U (n)〉(t ) =

∫ t

0
nH 2(u)Y (u)dΛ(u) =

∫ t

0

1(Y (u) > 0)
Y (u)/n

dΛ(u)

=

∫ t

0

1

π(u) dΛ(u) +
∫ t

0

[
1(Y (u) > 0)

Y (u)/n
− 1

π(u)

]
dΛ(u).
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Denote the second summand An . If we show that An
P−→ 0 we will have proven

the first confition,

〈U (n)
,U (n)〉(t ) P−→

∫ t

0
f 2(u)du

with f (u) =
√
λ(u)/π(u). By the Cauchy-Schwartz inequality,

|An | ≤
∫ t

0

����
n

Y (u)
− 1

π(u)

���� 1(Y (u) > 0)dΛ(u) +
∫ t

0
1(Y (u) = 0) 1

π(u) dΛ(u).

The first term can be bounded above by

sup
0<u<t

����
n

Y (u)
− 1

π(u)

����Λ(t )

and the supremum converges to zero by uniform convergence ofY (u)/n to π(u)
and the fact that π(u) is bounded away from zero. The second term is bounded
above by

1(Y (τ) = 0)
∫ t

0

1

π(u) dΛ(u).

Let us show that 1(Y (τ) = 0) P−→ 0. Take any ε > 0.

P
[
1(Y (τ) = 0) > ε

]
= P

[
Y (τ) = 0

]
→ 0

because P [Yi (τ) = 1] > δ > 0 for all i . This shows that the first condition of
Theorem 3.10 is satisfied.

Turn our attention to the second condition (Feller-Lindebergh-type). Choose
any ε > 0 and consider the process

U
(n)
ε (t ) =

∫ t

0

√
nH (u)1(

√
nH (u) > ε)dM (u).

Its predictable variation process is

〈U (n)
ε ,U

(n)
ε 〉(t ) =

∫ t

0
nH 2(u)Y (u)1(

√
nH (u) > ε)dΛ(u).

The integrand is zero wheneverY (u) = 0. Otherwise, the process is
∫ t

0

n

Y (u)
1(Y (u) <

√
n/ε)dΛ(u) =

∫ t

0

1

π(u)1
(
Y (u)

n
<

1
√

nε

)
dΛ(u) + oP (1),

where the replacement of n/Y by 1/π is justified by the same argument as earlier
and oP (1) is a term converging in probability to zero as n → ∞. The integral is
bounded above by

1

π(τ)Λ(τ)1
(

Y (τ)
n

<
1

√
nε

)
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and this converges to 0 in probability because Y (τ)
n

P−→ π(τ) > 0 as n → ∞.
The conditions of Theorem 3.10 have been verified. Hence

√
n
[
Λ̂(t ) − Λ∗(t )

]
=⇒

∫
f (u)dW (u)

with f (u) =
√
λ(u)/π(u).

Last, we show that supt ∈〈0,τ〉
√

n
[
Λ
∗(t ) − Λ(t )

] P−→ 0. This is true because

√
n
[
Λ
∗(t ) − Λ(t )

]
=

√
n
[
Λ(T∗) − Λ(t )

]
1(T∗ ≤ t )

and

sup
t ∈〈0,τ〉

P
[√

n1(T∗ ≤ t ) > ε
]
= sup

t ∈〈0,τ〉
P

[√
n1(Y (t ) = 0) > ε

]
= sup

t ∈〈0,τ〉
P

[
Y (t ) = 0

]
→ 0

for any ε > 0. This completes the proof. �

Note.

• Part (iii) of Theorem 4.2 implies that for any fixed t ∈ 〈0, τ〉,
√

n

[
Λ̂(t ) −Λ(t )

]
has

asymptotically normal distribution with zero mean and variance
∫ t

0

λ(u)
π(u) du .

• Part (iii) of Theorem 4.2 implies uniform consistency, i.e.

sup
t ∈〈0,τ〉

���Λ̂(t ) − Λ(t )
��� P−→ 0 as n → ∞.

• Asymptotic normality and consistency of Λ̂ also hold for discrete failure time
distributions. We presented a proof for continuous distributions, which is ac-
tually the more difficult case than with discrete distributions.

The next theorem introduces a variance estimator for Λ̂(t ) and establishes its
consistency and unbiasedness.

Theorem 4.3.

(i) For any finite n,

σ2
Λ
(t ) ≡ var

[
Λ̂(t ) − Λ∗(t )

]
=

∫ t

0
E H (u) [1 − ∆Λ(u)]dΛ(u).

As n → ∞, nσ2
Λ
(t ) →

∫ t

0
1−∆Λ(u)
π(u) dΛ(u).
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(ii) Define

S2
Λ
(t ) =

∫ t

0

1

Y
2(u)

[
1 − ∆N (u) − 1

Y (u) − 1

]
dN (u).

Then

nS2
Λ
(t ) P−→

∫ t

0

1

π(u) [1 − ∆Λ(u)]dΛ(u).

(iii)

E
[
S2
Λ
(t ) − σ2

Λ
(t )

]
=

∫ t

0
P

[
Y (u) = 1

]
∆Λ(u)dΛ(u),

which is zero if the failure time distribution is continuous. ♦

Note. For continuous distributions, N cannot jump by more than one and the esti-
mator can be simplified to:

S2
Λ
(t ) =

∫ t

0

1

Y
2(u)

dN (u).

Proof.

(i) By Theorems 3.5, 3.6, and 3.9,

var

∫ t

0
H (u)dM (u) =

n∑

i=1

E
[
H 2(u)Yi (u)

]
[1 − ∆Λ(u)]dΛ(u)

=

∫ t

0
E

[
H 2(u)Y (u)

]
[1 − ∆Λ(u)]dΛ(u) =

∫ t

0
E H (u)[1 − ∆Λ(u)]dΛ(u).

(ii) We only present the proof for continuous failure time distributions.

nS2
Λ
(t ) =

∫ t

0

n

Y
2(u)

dN (u) =
∫ t

0

n

Y (u)
dΛ̂(u) P−→

∫ t

0

1

π(u) dΛ(u)

because n/Y (u) P−→ 1/π(u) and Λ̂(u) P−→ Λ(u), both uniformly in time.

(iii) This part is also done only for continuous failure time distributions.

E
[
S2
Λ
(t ) − σ2

Λ
(t )

]
= E

∫ t

0

H (u)
Y (u)

dN (u) − E

∫ t

0

H (u)
Y (u)

Y (u)dΛ(u)

= E

∫ t

0

H (u)
Y (u)

dM (u) = 0. �
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4.3. Properties of the Kaplan-Meier estimator

Let us return to the Kaplan-Meier estimator of survival function

Ŝ(t ) =
∏

u ≤t

[
1 − ∆N (u)

Y (u)

]
.

Because the Kaplan-Meier estimator has the form of a product rather than a sum,
its properties need to be investigated as ratios rather than differences. The key state-
ments are formulated by the following two lemmas.

Lemma 4.4. At all t ≥ 0 such that S(t ) > 0, it holds

Ŝ(t )
S(t ) = 1 −

∫ t

0

Ŝ(u−)
S(u) d

(
Λ̂ − Λ)(u). ♦

Proof. We start with integration by parts on the product Ŝ and 1/S .

Ŝ(t )
S(t ) −

Ŝ(0)
S(0) =

∫ t

0
Ŝ(u−)d

(1
S

)
(u) +

∫ t

0

1

S(u) dŜ(u). (*)

We know that Ŝ(0) = S(0) = 1. This step does not seem to help because we do not
know how to calculate

∫
·d(1/S) but this is solved in the next step by another appli-

cation of integration by parts. This time we apply it on the product S · 1/S over the
interval (v , t 〉 for 0 ≤ v < t . We get

0 =
S(t )
S(t ) −

S(v )
S(v ) =

∫ t

v

S(u−)d
(1

S

)
(u) +

∫ t

v

1

S(u) dS(u). (**)

We use this equality to argue that, for any measurable function h,
∫ t

0
h(u)S(u−)d

(1
S

)
(u) = −

∫ t

0

h(u)
S(u) dS(u). (†)

This can be shown by a technique known frommeasure theory. First, show the valid-
ity of (†) for h(u) = 1(u ∈ (v , t 〉). But this is already done by (**). Next, show that it still
holds for h being a simple function of the form h(u) = ∑L

l=1 1(u ∈ (vl , tl 〉) for disjoint
intervals (vl , tl 〉 ⊂ (0, t 〉. This is trivial. Last, we take a sequence of simple functions hL

such that hL ր h for L → ∞ and use the monotone convergence theorem to justify
the equality (†) in the limit.

Now we use (†) with h(u) = Ŝ(u−)/S(u−), which is measurable for almost any
trajectory of Ŝ . We get

∫ t

0

Ŝ(u−)
S(u−)S(u−)d

(1
S

)
(u) = −

∫ t

0

Ŝ(u−)
S(u−)

1

S(u) dS(u)

=

∫ t

0

Ŝ(u−)
S(u)

d(1 − S(u))
S(u−) =

∫ t

0

Ŝ(u−)
S(u) dΛ(u).

(4.3)
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Now we are done with the first term on the right-hand side of (*). The second term
is easier. We use equation (4.1)

Ŝ(t ) = 1 −
∫ t

0
Ŝ(u−)dΛ̂(u)

to get ∫ t

0

1

S(u) dŜ(u) = −
∫ t

0

Ŝ(u−)
S(u) dΛ̂(u).

Putting the last two results together and plugging them into (*), we get

Ŝ(t )
S(t ) = 1 +

∫ t

0

Ŝ(u−)
S(u) dΛ(u) −

∫ t

0

Ŝ(u−)
S(u) dΛ̂(u) = 1 −

∫ t

0

Ŝ(u−)
S(u) d

[
Λ̂(u) − Λ(u)

]
.

�

Lemma 4.5. At all t ≥ 0 such that S(t ) > 0, it holds

Ŝ(t ) − S(t )
S(t ) = −

∫ t

0
H (u)dM (u) + B(t ),

where

H (u) = Ŝ(u−)
S(u)

1(Y (u) > 0)
Y (u)

is a predictable process and

B(t ) = Ŝ(T∗)
S(T∗)

S(T∗) − S(t )
S(t ) 1(T∗ < t ). ♦

Proof. By Lemma 4.4,

Ŝ(t ) − S(t )
S(t ) = −

∫ t

0

Ŝ(u−)
S(u)

{
dN (u)
Y (u)

− 1(Y (u) > 0)Y (u)
Y (u)

dΛ(u) − 1(Y (u) = 0)dΛ(u)
}

= −
∫ t

0

Ŝ(u−)
S(u)

1(Y (u) > 0)
Y (u)

dM (u) +
∫ t

0

Ŝ(u−)
S(u) 1(Y (u) = 0)dΛ(u)

= −
∫ t

0
H (u)dM (u) + B(t ).

It remains to rewrite the bias term B(t ). Notice that B(t ) = 0 as long as Y (t ) > 0 or
t ≤ T∗. We use equation (4.3) derived during the proof of Lemma 4.4

∫ t

0
Ŝ(u−)d

(1
S

)
(u) =

∫ t

0

Ŝ(u−)
S(u) dΛ(u)
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together with the fact that Ŝ(u−) = Ŝ(T∗) for u > T∗ to get

B(t ) =
∫ t

T∗

Ŝ(u−)
S(u) dΛ(u) =

∫ t

T∗
Ŝ(u−)d

(1
S

)
(u)

= 1(T∗ < t )Ŝ(T∗)
∫ t

T∗
d

(1
S

)
(u)

= 1(T∗ < t )Ŝ(T∗)
[
1

S(t ) −
1

S(T∗)

]
=

Ŝ(T∗)
S(T∗)

S(T∗) − S(t )
S(t ) 1(T∗ < t ). �

Lemma 4.5 states that the relative error in the Kaplan-Meier estimator can be
expressed as a martingale integral plus a bias term. The bias term B(t ) converges to
zero in probability for t ≤ τ because P [T∗ < t ] → 0.

The next theorem specifies the first two moments of the Kaplan-Meier estimator.

Theorem 4.6. At all t ≥ 0 such that S(t ) > 0, it holds

(i)

E Ŝ(t ) = S(t ) + E 1(T∗ < t ) Ŝ(T∗)
S(T∗)

[
S(T∗) − S(t )

]
≥ S(t )

(ii)

E Ŝ(t ) − S(t ) ≤ [1 − S(t )]P [T∗ < t ] → 0 as n → ∞ for t ≤ τ.

(iii)

var
[
Ŝ(t ) − S(t )B(t )] = S2(t )

∫ t

0
E

Ŝ2(u−)
S2(u)

1(Y (u) > 0)
Y (u)

[
1 − ∆Λ(u)

]
dΛ(u)

= var Ŝ(t ) + o(1). ♦

Proof.

(i) By Lemma 4.5,

E Ŝ(t )
S(t ) − 1 = −E

∫ t

0
H (u)dM (u) + E B(t ) = E B(t ).

Hence
E Ŝ(t ) = S(t ) + S(t )E B(t ) ≥ S(t ).

(ii)

E Ŝ(t ) − S(t ) = S(t )E B(t ) = E Ŝ(T∗)
[
1 − S(t )

S(T∗)

]
1(T∗ < t ).

Because Ŝ(T∗) ≤ 1 and S(T∗) ≤ 1,

E Ŝ(t ) − S(t ) ≤ [1 − S(t )]E 1(T∗ < t ) = [1 − S(t )]P [T∗ < t ] .
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(iii) By Lemma 4.5,

var [Ŝ(t ) − B(t )S(t )] = S2(t ) var
∫ t

0
H (u)dM (u)

= S2(t )E
∫ t

0
H 2(u)Y (u)[1 − ∆Λ(u)]dΛ(u)

= S2(t )
∫ t

0
E

Ŝ2(u−)
S2(u)

1(Y (u) > 0)
Y (u)

[
1 − ∆Λ(u)

]
dΛ(u).

For t ≤ τ, the term B(t ) P−→ 0 as n → ∞, hence its variance is asymptotically
negligible and var Ŝ(t ) ≈ var [Ŝ(t ) − B(t )S(t )]. �

Note. An estimator V̂ (t ) for var
√

n[Ŝ(t ) − S(t )] can be obtained from item (iii) of the
previous theorem by replacing S with Ŝ and Λ with Λ̂.

Definition 4.3. The estimator

V̂ (t ) = nŜ2(t )
∫ t

0

dN (u)
[Y (u) − ∆N (u)]Y (u)

≡ Ŝ2(t )σ̂(t ). (4.4)

for var
√

n[Ŝ(t ) − S(t )] is called the Greenwood formula. ∇

The following proposition states the uniform consistency of the Kaplan-Meier
estimator for continuous failure time distributions. Its proof is relatively complicated
and so is omitted.

Proposition 4.7. Let the observations be independent and identically distributed and

Λ be continuous. Then

sup
0≤t ≤τ

���Ŝ(t ) − S(t )
��� P−→ 0.

♦

We proceed to claim weak convergence of the normalized Kaplan-Meier estima-
tor to a zero-mean Gaussian process. Again, we only state and proof this result for
continuous failure time distributions.

Theorem 4.8. Let the observations be independent and identically distributed and Λ

be continuous and differentiable almost everywhere with hazard function Λ′
= λ.

Denote σ(t ) =
∫ t

0
π−1(u)λ(u)du . Then

(i)

√
n
[
Ŝ(t ) − S(t )

]
=⇒ S(t )W (σ(t )) on D 〈0, τ〉,

whereW (σ(t )) =
∫ t

0

√
λ(u)
π(u) dW (u).
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(ii)

√
n

Ŝ(t ) − S(t )
Ŝ(t )

=⇒W (σ(t )) on D 〈0, τ〉.
♦

This theorem was first proven by Breslow and Crowley (1974) under somewhat
stronger conditions.

Corollary. For a fixed time t in 〈0, τ〉,
√

n[Ŝ(t ) − S(t )] D−→ N(0,V (t )), where

V (t ) = S2(t )σ(t ) = S2(t )
∫ t

0
π−1(u)λ(u)du .

Note. The limiting variance σ(t ) in part (ii) is the same as that for the Nelson-Aalen
estimator.

Note. The Greenwood formula V̂ (t ) introduced in (4.4) is a uniformly consistent esti-
mator for V (t ) = S2(t )σ(t ) on 〈0, τ〉.

Proof (of Theorem 4.8).

(i) By Lemma 4.5,

√
n[Ŝ(t ) − S(t )] = −S(t )

∫ t

0

√
nH (u)dM (u) +

√
nS(t )B(t ),

where supt ∈〈0,τ〉
√

nS(t )B(t ) P−→ 0 because, by Theorem 4.6, part (ii), 0 <
√

nB(t ) ≤
√

n[1 − S(t )]1(T∗ < t ) and sup0<t ≤τ
√

n1(T∗ < t ) P−→ 0.

It suffices to investigate the weak convergence ofU (n)(t ) =
∫ t

0

√
nH (u)dM (u)with

H (u) = Ŝ(u−)
S(u)

1(Y (u) > 0)
Y (u)

bounded and predictable on 〈0, τ〉.
As in the proof of weak convergence of the Nelson-Aalen estimator, we will use
Theorem 3.10 with r = 1 group. Let us verify the conditions of the theorem. First,
by Theorems 3.5, 3.6, and 3.7 or 3.9,

〈U (n)
,U (n)〉(t ) =

∫ t

0
nH 2(u)Y (u)dΛ(u)

=

∫ t

0

Ŝ2(u−)
S2(u)

1(Y (u) > 0)
Y (u)/n

dΛ(u)

P−→
∫ t

0

λ(u)
π(u) du ≡ σ(t ).
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because S is continuous, Ŝ
P−→ S uniformly in 〈0, τ〉 according to Proposition 4.7,

and Y (u)/n
P−→ π(u) also uniformly, by assumption (4.2).

Next,

〈U (n)
ε ,U

(n)
ε 〉(t ) =

∫ t

0
nH 2(u)Y (u)1(

√
nH (u) > ε)dΛ(u) P−→ 0,

because supt ∈〈0,τ〉
√

nH (t ) P−→ 0 (details are omitted). By Theorem 3.10,
√

n
[
Ŝ(t ) − S(t )

]
=⇒ S(t )W (σ(t )) on D 〈0, τ〉,

whereW (σ(t )) =
∫ t

0

√
λ(u)
π(u) dW (u).

The negative sign that we encountered at the beginning of this proof does not
matter because the limiting process has the same distribution as its negative.

(ii) Since S(t )/Ŝ(t ) P−→ 1 uniformly on 〈0, τ〉 (Proposition 4.7),

√
n

Ŝ(t ) − S(t )
Ŝ(t )

=⇒ W (σ(t )) on D 〈0, τ〉.
�

4.4. Confidence bounds for the survival function

It is easy to contruct pointwise confidence intervals for S(t ) at a fixed t ∈ 〈0, τ〉. Based
on corollary to Theorem 4.8 and using the Greenwood formula, we get

P


Ŝ(t ) − u1−α/2

√
V̂ (t )

n
< S(t ) < Ŝ(t ) + u1−α/2

√
V̂ (t )

n


→ 1 − α.

The lower and upper bounds of a confidence interval for S(t ) with asymptotic cover-
age probability 1 − α are

Ŝ(t )
(
1 − u1−α/2

√
σ̂(t )

n

)
and Ŝ(t )

(
1 + u1−α/2

√
σ̂(t )

n

)
,

respectively.

Let us turn our attention to confidence bounds that cover the whole curve with
the desired probability, not just at one point. We are looking for random functions
CL (t ) and CU (t ) calculated from the data such that

P [CL (t ) < S(t ) < CU (t ) for all t ∈ 〈0, τ〉] → 1 − α.

The following lemma is based on Theorem 4.8, point (ii), and the continuous
mapping theorem for weak convergence.
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Lemma 4.9. Under the conditions of Theorem 4.8,

√
n

σ̂(τ) sup
t ∈〈0,τ〉

1

Ŝ(t )

���Ŝ(t ) − S(t )
��� D−→ sup

0≤u ≤1
|W (u)| .

♦

Proof. According to Theorem 4.8, part (ii),

√
n

Ŝ(t ) − S(t )
Ŝ(t )

=⇒W (σ(t )) on D 〈0, τ〉.

Hence, the process √
n

σ(τ)
Ŝ(t ) − S(t )

Ŝ(t )
converges weakly to the process Q (t ) = 1√

σ(τ)
W (σ(t )). Because the mapping Q →

sup0≤t ≤τ |Q (t )| is continuous with respect to the Skorokhod metric (see the note on
p. 95 in the Appendix), we have

sup
0≤t ≤τ

�����

√
n

σ(τ)
Ŝ(t ) − S(t )

Ŝ(t )

�����
D−→ sup

0≤t ≤τ
|Q (t )| . (*)

The process Q (t ) is zero-mean Gaussian process with independent increments and
continuous sample paths and its variance function is

var Q (t ) = 1

σ(τ)varW (σ(t )) = σ(t )
σ(τ) .

Now define u =
σ(t )
σ(τ) ∈ 〈0, 1〉 and define a process Q ∗(u) by making a change of vari-

ables:

Q ∗(u) = 1√
σ(τ)

W (uσ(τ)), u ∈ 〈0, 1〉.

Clearly,
sup
0≤t ≤τ

|Q (t )| = sup
0≤u ≤1

|Q ∗(u)| .

But Q ∗(u) is the standard Brownian motion because

var Q ∗(u) = 1

σ(τ)varW (uσ(τ)) = uσ(τ)
σ(τ) = u .

Hence, the limiting distribution on the right-hand side of (*) is the same as the dis-
tribution of sup0≤u ≤1 |W (u)|.

Replacing σ(τ) by σ̂(τ) does not change the limiting distribution because σ̂(τ) is
a consistent estimator of σ(τ). �
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The distribution function of the limiting random variable can be expressed as

P

[
sup
0≤u ≤1

|W (u)| ≤ y

]
=

4

π

∞∑

k=0

(−1)k

2k + 1
exp

{
−π

2(2k + 1)2
8y 2

}

for any y > 0 (Billingsley 1999). Denote by cα the α-quantile of this distribution.

Based on this result, Gill (1980) proposed asymptotic confidence bounds for the
whole survival curve on the interval 〈0, τ〉 with lower and upper boundaries

Ŝ(t )
(
1 − c1−α

√
σ̂(τ)

n

)
and Ŝ(t )

(
1 + c1−α

√
σ̂(τ)

n

)
.

Notice that the Gill bounds differ from the pointwise confidence intervals not only
by the quantile but also by using σ̂(τ) in place of σ̂(t ).

The Gill bounds have the largest width at t close to zero when Ŝ(t ) ≈ 1. To over-
come this weakness, alternative bounds were proposed by Hall and Wellner (1980).
They are based on the following extension of Theorem 4.8.

Theorem 4.10. Let K (t ) = σ(t )
1+σ(t ) and K̂ (t ) = σ̂(t )

1+σ̂(t ) . Under the conditions of Theorem 4.8,

√
n
1 − K̂ (t )

Ŝ(t )
[Ŝ(t ) − S(t )] =⇒ B(K (t )) on D 〈0, τ〉.

♦

Here, the process B(t ) is Brownian bridge discussed in Appendix A.3.3 on p. 93. It
is a Gaussian process defined on the interval 〈0, 1〉, with zero mean, variance func-
tion var B(t ) = t (1−t ), and covariance function at s ≤ t given by cov (B(s ),B(t )) = s (1−t ).
Notice that K (t ) ∈ 〈0, 1) and K̂ (t ) ∈ 〈0, 1). The limiting process is a time-transformed
Brownian bridge, with K (t ) playing the role of a non-decreasing time transformation
from 〈0, τ〉 to 〈0, 1).

Proof (of Theorem 4.10). By Theorem 4.8, part (ii),
√

n(Ŝ − S) =⇒ SW (σ).

Since K (s ) = σ(s )/(1 + σ(s )), we have σ(s ) = K (s )/(1 − K (s )). Let us calculate the
covariance function of the limiting process SW (σ) at s < t .

cov [S(s )W (σ(s )),S(t )W (σ(t ))] = S(s )S(t )σ(s ) = S(s )S(t ) K (s )
1 − K (s )

=

S(s )
1 − K (s )

S(t )
1 − K (t )K (s )[1 − K (t )].

So, the limiting process of
1 − K (t )

S(t )
√

n[Ŝ(t ) − S(t )]
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has the covariance function K (s )[1 − K (t )] at s < t and this is exactly the covariance
function of the Brownian bridge B evaluated at K (t ).

Finally, one can replace S by Ŝ and K by K̂ because they are uniformly consistent
estimators. �

It follows from Theorem 4.10 and the continuous mapping theorem A.2 that

P

[
sup
0≤t ≤τ

√
n
1 − K̂ (t )

Ŝ(t )

���Ŝ(t ) − S(t )
��� ≥ y

]
→ P

[
sup
0≤t ≤τ

|B(K (t ))| ≥ y

]

We have

P

[
sup
0≤t ≤τ

|B(K (t ))| ≥ y

]
= P

[
sup

0≤u ≤K (τ)
|B(u)| ≥ y

]

Denote the α-quantile of the distribution of sup0≤u ≤K (τ) |B(u)| by kα(τ). This can be
calculated numerically.

The Hall-Wellner confidence bounds for survival function have lower and upper
boundaries

Ŝ(t )
(
1 − k1−α(τ)

1
√

n[1 − K̂ (t )]

)
and Ŝ(t )

(
1 + k1−α(τ)

1
√

n[1 − K̂ (t )]

)
.

Using the relationship 1
1−K̂ (t ) = 1 + σ̂(t ), we can rewrite the Hall-Wellner bounds as

Ŝ(t )
(
1 − k1−α(τ)

1 + σ̂(t )
√

n

)
and Ŝ(t )

(
1 + k1−α(τ)

1 + σ̂(t )
√

n

)
.

We can get conservative Hall-Wellner bounds that do not require the calculation
of k1−α(τ) for a specific τ as follows: Since

P

[
sup

0≤u ≤K (τ)
|B(u)| ≥ y

]
≤ P

[
sup
0≤u ≤1

|B(u)| ≥ y

]
= 2

∞∑

j=1

(−1)j+1e−2j2y 2
,

where the distribution on the right-hand side can be calculated (Billingsley 1999) and
is the same as the asymptotic distribution of the Kolmogorov-Smirnov test statistic,
we can replace k1−α(τ) by the critical value of the Kolmogorov-Smirnov test k1−α to
obtain confidence bounds with asymptotic coverage ≥ 1 − α.
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5.1. Notation

Consider two independent samples of censored data obtained from two groups of
subjects. We assume that (Tk i ,Ck i ), i = 1, . . . ,nk , k = 1, 2, are independent random
vectors. Let Tk1, . . . ,Tk nk

be identically distributed with survival function Sk and cu-
mulative hazard function Λk , k = 1, 2.

The goal is to test whether the failure time distributions in the two groups are the
same. In particular,

H0 : S1(t ) = S2(t ) for all t ≥ 0 against H1 : There exists t ≥ 0 s.t. S1(t ) , S2(t ).

Of course, the hypothesis can be equivalently formulated as equality of cumulative
hazard functions.

Notice that we do not assume that the censoring mechanisms in the two
groups are the same. The censoring variables Ck i may have arbitrary distinct

distributions.

Denote Xk i = Tk i ∧Ck i censored failure times and δk i = 1(Tk i ≤ Ck i ) failure indica-
tors. The observed data are (Xk i , δk i ), i = 1, . . . ,nk , k = 1, 2. The observed data can be
also expressed in terms of counting processes Nk i (t ) = 1(Tk i ≤ t , δk i = 1) and at-risk
processes Yk i (t ) = 1(Xk i ≥ t ), i = 1, . . . ,nk , k = 1, 2.

We will work with the filtration

Ft = σ{Nk i (u),Yk i (u+), 0 ≤ u ≤ t , i = 1, . . . ,nk ,k = 1, 2}.

Take the compensator Ak i (t ) =
∫ t

0
Yk i (u)dΛk (u). Under the independent censor-

ing condition, Mk i (t ) = Nk i (t ) − Ak i (t ) are all Ft -martingales. Define

N k (t ) =
nk∑

i=1

Nk i (t ) and Y k (t ) =
nk∑

i=1

Yk i (t ).

Then

M k (t ) =
nk∑

i=1

Mk i (t ) = N k (t ) −
∫ t

0
Y k (u)dΛk (u)

are Ft -martingales, k = 1, 2. Also define N (t ) = N 1(t ) + N 2(t ) and Y (t ) = Y 1(t ) +Y 2(t ).
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Table 5.1.: Contingency table of failing and non-failing subjects in the two groups at
the j -th ordered failure time tj .

Failure Group 1 Group 2 Total

Yes D1j D2j D j

No R1j − D1j R2j − D2j R j − D j

Total R1j R2j R j

5.2. A heuristic derivation of the logrank test

Take all distinct failure times observed in both groups and order them. Denote the
ordered failure times t1 < t2 < · · · < td . Denote the number of observed failures in
the k -th group at the time tj by Dk j = ∆N k (tj ) and the number of subjects at risk in
the k -th group at the time tj by Rk j = Y k (tj ). Let D j = D1j + D2j and R j = R1j + R2j

be the number of failures and the risk set size in the combined sample. With this
notation, the data observed at the time tj can be summarized in the form of a two-
way contingency table, see Table 5.1.

IfH0 is true then the two discrete variables (failure status and groupmembership)
that formed the classification given in Table 5.1 are independent. It can be shown
that* conditionally on the marginals D j , R1j , and R2j , the number D1j of failures in
the first group has a hypergeometric distribution under H0. Thus, conditionally on
D j , R1j , and R2j ,

E D1j = D j

R1j

R j

≡ E j

and var D1j = D j

R1j R2j

R2
j

R j − D j

R j − 1
≡ Vj ,

if H0 holds. The test statistic we are going to consider compares the number of fail-
ures observed in the first group with the conditional expectation under H0 at each
failure time, and accumulates these contributions. Thus,

W =

d∑

j=1

(D1j − E j ) =
d∑

j=1

(
D1j − D j

R1j

R j

)
. (5.1)

To standardize the statistic, we divideW by
√

v̂arW , the estimated standard devi-
ation of W . IfW were the sum of independent terms, we could take v̂arW =

∑d
j=1Vj .

However, D1j − E j are clearly not independent. Nevertheless, it can be shown that

* See the development of the Fisher exact test of independence for 2 × 2 contingency tables with small
cell counts.
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the naive variance estimator that ignores the lack of independence is asymptotically
correct and so ∑d

j=1(D1j − E j )
√∑d

j=1Vj

D−→ N(0, 1) (5.2)

under H0. Thus, we reject H0 when
���∑d

j=1(D1j − E j )
���

√∑d
j=1Vj

≥ u1−α/2 or

[∑d
j=1(D1j − E j )

]2
∑d

j=1Vj

≥ χ21(1 − α).

This test is called the two-sample logrank test. It was proposed (without any proof of
its properties) by Mantel (1966).

We will prove (5.2) using martingale theory. In order to do that, we need to write
the numerator of the logrank test statistic as a difference of stochastic integrals. Re-
call that Dk j = ∆N k (tj ) and Rk j = Y k (tj ) and express (5.1) as follows:

W =

∫ ∞

0
1dN 1(s ) −

∫ ∞

0

Y 1(s )
Y (s )

d(N 1 + N 2)(s )

=

∫ ∞

0

(
1 − Y 1(s )

Y (s )

)
Y 1(s )

dN 1(s )
Y 1(s )

−
∫ ∞

0

Y 1(s )
Y (s )

Y 2(s )
dN 2(s )
Y 2(s )

=

∫ ∞

0

Y 1(s )Y 2(s )
Y (s )

d(Λ̂1 − Λ̂2)(s ),

where Λ̂k (t ) =
∫ t

0

dN k (s )
Y k (s )

is the Nelson-Aalen estimator of the cumulative hazard for

the k -th group.

This also shows thatW is the integrated weighted difference between the Nelson-
Aalen estimators of cumulative hazards in the two groups. The weightY 1(s )Y 2(s )/Y (s )
takes into account the number of subjects that are observed at both groups at the
time s . When either of the groups runs out of observations (Y k = 0), the weight is
zero.

5.3. Linear rank statistics for censored data, weighted logrank tests

Definition, connections to rank tests

We will consider a class of test statistics of the form

WK (t ) =
∫ t

0
K (s )d(Λ̂1 − Λ̂2)(s ),
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with WK ≡ WK (∞). The process K (s ) is a bounded non-negative predictable process
such that K (s ) = 0 whenever Y 1(s ) = 0 or Y 2(s ) = 0. Every process K (s ) with these
properties can be written in the form

K (s ) =
√

n1 + n2

n1n2
W (s ) Y 1(s )Y 2(s )

Y (s )
,

where W (s ) is a bounded non-negative predictable process. The logrank test is ob-
tained by settingW (s ) ≡ 1. The statisticsWK are called weighted logrank statistics. In
the notation of equation (5.1), a weighted logrank statistic can be expressed as

WK =

d∑

j=1

Wj

(
D1j − D j

R1j

R j

)
,

whereWj =W (tj ) is a weight for the j -th observed failure time.

We require the process W to be predictable, which implies that W (s ) must not
depend on the data observed after s . If we choose W (s ) so that it depends only on
the observed numbers of failures before s and numbers of subjects who were at risk
when those failures occurred (but not on failure and censoring times directly), the
statistic WK becomes invariant with respect to strictly increasing transformations of
time (they do not change the order of the observed failure or censoring times). Be-
cause of this,WK represents a class of linear rank statistics for censored data.

With non-censored data, nonparametric two-sample linear rank statistics are de-

fined as
∑n1

i=1
ϕ
(

Ri

n+1

)
, where the nondecreasing function ϕ defined on (0, 1) is called

the score, Ri are ranks of the first sample among all observations from both samples,
and n = n1 + n2 is the total sample size (Lehmann 1975). These test statistics are also
invariant with respect to any strictly increasing transformations of data because such
transformations do not change the ranks. We are going to note that some of these
non-censored linear rank statistics are special cases of weighted logrank statistics.

It is difficult to generalize the term “rank” to censored data because censoring

makes ordering of failure times unclear. The class WK provides a generaliza-
tion of linear rank statistics to censored data through its invariance property

even though it avoids any direct reference to the ranks.

Examples of weighted logrank tests

1. ForW (s ) = 1, we get the logrank test (Mantel 1966).

In non-censored data, the logrank test is equivalent to the Savage exponential

58



5. Two-Sample Tests for Censored Data

scores test (Savage 1956) with scores

ϕ
( Ri

n + 1

)
=

Ri∑

j=1

1

n − j + 1
.

These scores are expressions for E X(Ri ), expected values of order statistics for
a random sample of size n from the exponential distribution with parameter 1.
Savage test is themost powerful test against changes in scale between two expo-
nentially distributed samples or against shifts in location between two samples
with Gumbel distributions.

2. ForW (s ) = Y (s )
n+1 , we get the Gehan-Wilcoxon test (Gehan 1965).

In uncensored data, the Gehan-Wilcoxon test is equivalent to theWilcoxon rank-

sum test with scores
ϕ
( Ri

n + 1

)
=

Ri

n + 1
.

Wilcoxon test is the most powerful test against shifts in location between two
samples with logistic distributions.

This test puts more weight on early differences in hazard functions than on dif-
ferences that occur later.

3. ForW (s ) = Ŝ(s−), we get the Prentice-Wilcoxon test (Prentice 1978). This is an-
other generalization of theWilcoxon rank-sum test to censored data. It uses the
Kaplan-Meier estimator as the weight (left-continuous version is used to assure
predictability).

The Prentice test differs from the Gehan test by using the Kaplan-Meier estima-

tor Ŝ in place of the empirical distribution of the censored failure time. If the

data are uncensored, Y
n+1 and Ŝ are both estimators of the survival function.

However, in censored data
Y (s )
n+1 estimates the probability of being at risk, which

is affected by the censoring distribution, unlike the Kaplan-Meier estimator,

which estimates the survival function. This is why the Prentice-Wilcoxon test

is the preferred variant.

4. ForW (s ) = Ŝ(s−)ρ[1 − Ŝ(s−)]γ, where ρ, γ ≥ 0 are selected constants, we get the
Fleming-HarringtonG (ρ, γ) class of test statistics (Fleming and Harrington 1981;
Harrington and Fleming 1982). This class includes increasing, decreasing, and
non-monotone weights depending on the choice of ρ and γ. The logrank test
is a special case for ρ = γ = 0, the Prentice-Wilcoxon test is a special case for
ρ = 1, γ = 0.
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Moments of weighted logrank statistics

Lemma 5.1. The weighted logrank statistic

WK (t ) =
∫ t

0
K (s )d(Λ̂1 − Λ̂2)(s ),

can be written as

WK (t ) =
∫ t

0

K (s )
Y 1(s )

dM 1(s ) −
∫ t

0

K (s )
Y 2(s )

dM 2(s ) +
∫ t

0
K (s )[dΛ1(s ) − dΛ2(s )]. (5.3)

♦

The first two terms are martingale integrals because they have bounded and pre-
dictable integrands; the third term vanishes when the null hypothesis holds. This
representation is the key to the theoretical investigation of weighted logrank statis-
tics.

Proof. Consider the decomposition N k = M k +

∫
Y k dΛk for k = 1, 2. We have

∫ t

0
K (s )dΛ̂k (s ) =

∫ t

0

K (s )
Y k (s )

dN k (s ) =
∫ t

0

K (s )
Y k (s )

dM k (s ) +
∫ t

0

K (s )
Y k (s )

Y k (s )dΛk (s ).

Since K (s ) = 0 wheneverY k (s ) = 0, this directly leads to 5.3. �

Theorem 5.2.

(i) EWK =

∫ ∞
0

E K (s )d[Λ1(s ) − Λ2(s )]. Under H0 : Λ1 = Λ2, EWK = 0.

(ii) Under H0 : Λ1 = Λ2 ≡ Λ,

σ2
K ≡ varWK =

∫ ∞

0
E

{
Y (s )

Y 1(s )Y 2(s )
K 2(s )

}
[1 − ∆Λ(s )]dΛ(s ).

♦

Proof. By Lemma 5.1,

WK (t ) = M̃1(t ) − M̃2(t ) +
∫ t

0
K (s )d(Λ1 − Λ2)(s ),

where M̃k =

∫
K /Y k dM k are martingales. Hence,

(i)

EWK = E M̃1(∞) − E M̃2(∞) +
∫ ∞

0
E K (s )d(Λ1 − Λ2)(s )

and the expectations of the two martingales are zero. Under H0, Λ1(s ) = Λ2(s ) at
all s ≥ 0 and hence EWK = 0.
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5. Two-Sample Tests for Censored Data

(ii) Under H0,WK (t ) = M̃1(t ) − M̃2(t ). By Theorems 3.6 and 3.9, we have

var M̃k (t ) = E

∫ t

0

K 2(s )
Y
2
k (s )

Y k (s )[1 − ∆Λ(s )]dΛ(s )

and (the two samples are independent),

cov (M̃1(t ), M̃2(t )) = E

∫ t

0

K 2(s )
Y 1(s )Y 2(s )

d 〈M̃1, M̃2〉(s ) = 0.

Thus,

varWK (t ) = var M̃1(t ) + var M̃2(t ) =
∫ t

0
E K 2(s )

(
1

Y 1(s )
+

1

Y 2(s )

)
[1 − ∆Λ(s )]dΛ(s )

and this leads to the desired result. �

The next theorem introduces an unbiased estimator of σ2
K .

Theorem 5.3. Let the null hypothesis be true. Define

σ̂2
K (t ) =

∫ t

0
K 2(s )

(
1

Y 1(s )
+

1

Y 2(s )

) (
1 − ∆N (s ) − 1

Y (s ) − 1

)
dΛ̂(s )

=

∫ t

0

K 2(s )
Y 1(s )Y 2(s )

(
1 − ∆N (s ) − 1

Y (s ) − 1

)
dN (s ),

where Λ̂(t ) =
∫ t

0
dN (s )/Y (s ) is the Nelson-Aalen estimator of the common cumulative

hazard calculated from both samples. Then E σ̂2
K (∞) = σ2

K . ♦

It is not difficult to verify that for the logrank test, σ̂2
K is equal to the variance

estimator
∑

Vj proposed in the previous section by considering hypergeometric dis-
tribution and ignoring non-independence of the terms included in the statistic.

Proof. Calculate

E (σ̂2
K (∞) − σ2

K ) = E

{∫
K 2

Y 1Y 2

(
1 − ∆N − 1

Y − 1

)
dN −

∫
K 2Y

Y 1Y 2

(1 − ∆Λ)dΛ

}

= E

∫
K 2

Y 1Y 2

dM − E

∫
K 2

Y 1Y 2(Y − 1)
[
(∆N − 1)dN −Y (Y − 1)∆ΛdΛ

]
.

The first term is a martingale integral with zero expectation. In the second term, the
square bracket is zero for continuous failure times and is a martingale for discrete
failure times (the proof of this is omitted). �
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5.4. Asymptotic results for weighted logrank statistics

Take τ > 0 such that P [Yk i (τ) = 1] > δ > 0 for k = 1, 2 and all i = 1, . . . ,nk . Assume
that Λk (τ) < ∞ for k = 1, 2. If (Tk i ,Ck i ), i = 1, . . . ,nk are identically distributed within
group k then by Lemma 4.1 there exist deterministic non-increasing functions πk (t ) =
P [Yk i (t ) = 1] such that

sup
t ∈〈0,τ〉

����
1

nk

Y k (t ) − πk (t )
����

P−→ 0 and πk (t ) > δ > 0 for t ∈ 〈0, τ〉. (5.4)

If the data (i.e., censoring times) are not identically distributed, the existence of func-
tions π1, π2 satisfying (5.4) is taken as an assumption. Denote n = n1+n2 and assume
that nk/n → ak > 0 as n → ∞, k = 1, 2. It follows that n−1Y (s ) converges in probability
to the function π(s ) = a1π1(s ) + a2π2(s ), uniformly in time.

Note. Under the null hypothesis, the distribution of Tk i is the same in both groups
but the censoring distributions may not be the same, so in general π1(t ) , π2(t ) even
when H0 holds.

Wewill formulate a result on theweak convergence of the weighted logrank statis-
tic under the null hypothesis. The statistic is viewed as a process developing over
time, i.e.,

WK (t ) =
∫ t

0
K (s )d(Λ̂1 − Λ̂2)(s ),

with

K (s ) =
√

n

n1n2
W (s ) Y 1(s )Y 2(s )

Y (s )
=

√
n1n2

n
W (s ) Y 1(s )

n1

Y 2(s )
n2

n

Y (s )
.

Theorem 5.4. LetWK (t ) be a weighted logrank statistic with the weightW (s ) of the form
W (s ) = g (Ŝ(s−)), where g is a bounded nonnegative continuous function with bounded

variation on 〈0, 1〉 and Ŝ(s ) is the pooled Kaplan-Meier estimator at s . Suppose that

the failure times in the two groups have the same distribution with cumulative haz-

ard Λ. Let

σ2(t ) =
∫ t

0
(h1(s ) + h2(s )) (1 − ∆Λ(s ))dΛ(s ) < ∞

for all t ≤ τ, where hk (s ) is the limit in probability of K 2(s )/Y k (s ). Denote

σ̂2(t ) =
∫ t

0

K 2(s )
Y 1(s )Y 2(s )

[
1 − ∆N (s ) − 1

Y (s ) − 1

]
dN (s ).

ThenWK (t ) (taken as a process over time) converges weakly to a time-transformed

Brownian motion W (σ2(t )) on D 〈0, τ〉 and σ̂2(t ) P−→ σ2(t ) as n → ∞ uniformly over

t ∈ 〈0, τ〉. In particular,
WK (τ)√
σ̂2(τ)

D−→ N(0, 1).
♦
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Note.

• We present the proof with the additional condition that the distribution of Tk i

is continuous, however, the theorem also holds for distributions that are not
continuous.

• The theorem also holds forW (s ) = g (π̂(s )), where π̂(s ) = Y (s )/n (Gehan-Wilcoxon
test statistic).

• Asymptotic normality ofWK also holds when the statistic is calculated over the
whole range of the data, i.e., when τ is replaced by inf{t : Y 1(t ) = 0 or Y 2(t ) = 0}.
However, the conditions must be formulated a little bit more carefully and the
proof needs additional work at some places.

• Weighted logrank statistics can be extended to test the equality of failure time
distributions in several groups.

The hypothesis H0 : S1(t ) = S2(t ) is rejected when

|WK (τ)|√
σ̂2(τ)

≥ u1−α/2 or, equivalently,
W 2

K (τ)
σ̂2(τ) ≥ χ21(1 − α).

Theorem 5.4 assures that the level of this test converges to α as n → ∞.

Proof. Assume that the failure time distribution is continuous with a common hazard
function λ and cumulative hazard Λ. According to Lemma 5.1,

WK (t ) =
∫ t

0

K (s )
Y 1(s )

dM 1(s ) −
∫ t

0

K (s )
Y 2(s )

dM 2(s ) +
∫ t

0
K (s )[dΛ1(s ) − dΛ2(s )].

Since K (s ) is a bounded predictable process,WK (t ) is a difference between two mar-
tingale integrals under the null hypothesis (Λ1 = Λ2 ≡ Λ). We will prove the joint
weak convergence of the two martingale integrals.

Take U1 =
∫

K

Y 1
dM 1 and U2 =

∫
K

Y 2
dM 2 and apply Theorem 3.10. To verify the

conditions, we need to show that 〈Uk ,Uk 〉 converges in probability to a deterministic
function. We have

〈Uk ,Uk 〉(t ) =
∫ t

0

K 2(s )
Y
2
k (s )

Y k (s )dΛ(s ) =
∫ t

0

K 2(s )
Y k (s )

dΛ(s ).

Now,
K 2(s )
Y k (s )

= g 2(Ŝ(s−)) n3−k

n1 + n2

nk

Y k (s )

(
Y 1(s )

n1

)2 (
Y 2(s )

n2

)2 (
n

Y (s )

)2

and we know thatY k (s )/nk converges in probability to πk (s ) uniformly in time,Y (s )/n

converges in probability to π(s ) uniformly in time, and, because g is continuous,
g 2(Ŝ(s−)) converges in probability to g 2(S(s )) uniformly in time. Thus,

〈Uk ,Uk 〉(t ) =
∫ t

0

K 2(s )
Y k (s )

dΛ(s ) P−→
∫ t

0
hk (s )dΛ(s ) =

∫ t

0
hk (s )λ(s )ds ,
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where

hk (s ) = g 2(S(s )) a3−k

πk (s )
π21(s )π22(s )
π2(s )

.

The condition 〈Uk ,ε,Uk ,ε〉
P−→ 0 can be shown to hold by similar technique as in the

proof of Theorem 4.2, part (iii).

So, by Theorem 3.10,
(
U1

U2

)
=⇒

(∫ √
h1λ dW1∫ √
h2λ dW2

)
on D2〈0, τ〉,

whereW1 andW2 are two independent Brownian motions.

When evaluated at t = τ, we get convergence in distribution of (U1(τ),U2(τ)) to
a bivariate normal distribution with zero mean and diagonal covariance matrix with
elements

∫ τ

0
hk (s )dΛ(s ). Thus, by the Cramér-Wold theorem,

WK (τ) = U1(τ) −U2(τ)
D−→ N

(
0,

∫ τ

0
[h1(s ) + h2(s )]dΛ(s )

)
.

The integrand in the asymptotic variance is

h1(s ) + h2(s ) = g 2(S(s ))
π2
1
(s )π2

2
(s )

π2(s )

[
a2

π1(s )
+

a1

π2(s )

]
= g 2(S(s ))π1(s )π2(s )

π(s ) .

It remains to show that σ̂2(τ) is a consistent estimator of this asymptotic variance.
Indeed, with continuous failure times,

σ̂2(τ) =
∫ τ

0

K 2(s )
Y 1(s )Y 2(s )

dN (s ) =
∫ τ

0

K 2(s )
Y 1(s )Y 2(s )

[Y 1(s ) +Y 2(s )]
dN (s )
Y (s )

=

∫ τ

0

[
K 2(s )
Y 1(s )

+

K 2(s )
Y 2(s )

]
dΛ̂(s ) P−→

∫ τ

0
[h1(s ) + h2(s )]dΛ(s )

because of uniform convergences of the functions in the integrand as well as of the
Nelson-Aalen estimator. �

5.5. Behavior of weighted logrank tests under the alternative

Consistency

First, let us investigate consistency of weighted logrank tests.

Definition 5.1. LetWn be a sequence of test statistics with α-level rejection regions Rn ,
n = 1, 2, . . .. The sequenceWn is consistent against the alternative HA if

lim
n→∞

P
[
Wn ∈ Rn

��HA

]
= 1. ∇
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Let Sk (t ) be the survival function of T in group k and let λk (t ) be the associated
hazard function. We will be interested in two special alternatives. The alternative
H1 : λ1(t ) ≥ λ2(t ) (with strict inequality at some t ) is called the ordered hazards alter-
native. The alternative H2 : S2(t ) ≥ S1(t ) (with strict inequality at some t ) is called the
alternative of stochastic ordering. Clearly, H1 implies H2.

Let λ1(t ) ≥ λ2(t ) on 〈0, τ〉 and Λ1(τ) > Λ2(τ). Consider weighted logrank statistics
withW (t ) = g (Ŝ(t−)) orW (t ) = g (π̂(t )). We have

K (s ) =
√

n1n2

n
W (s ) π̂1(s )π̂2(s )

π̂(s ) .

Since π̂k (s )
P−→ πk (s ) andW (s ) P−→ w (s ), a left continuous function such that w (s ) > 0

on 〈0, τ〉, K (s ) converges to ∞ on a non-null set. Under the ordered hazards alterna-
tive, according to Theorem 5.2(i), the mean of WK (τ) converges to infinity; since its
variance estimator is bounded in probability, it follows thatWK is consistent against
ordered hazards.

Consistency against stochastic ordering does not hold in general. It can be shown
thatWK is consistent against H2 if

∫ τ

0
w (s )π1(s )π2(s )

π(s ) [dΛ1(s ) − dΛ2(s )] > 0.

After performing integration by parts, this condition can be expressed as
∫ τ

0
[Λ1(s ) − Λ2(s )]d

[
w (s )π1(s )π2(s )

π(s )

]
< 0.

The integrand Λ1(s ) −Λ2(s ) is positive under H2. The whole integral on the left-hand
side is negative if and only ifw (s ) π1(s )π2(s )

π(s ) is a decreasing function of s . Since π1(s )π2(s )/π(s )
is decreasing, a sufficient condition is that w (s ) is non-increasing in s , in other words
that the function g that defines the weight is non-decreasing. ThenWK is consistent
against stochastic ordering. However, when g decreases consistency need not hold.
Thus, G (ρ, 0) statistics, including the logrank and Prentice-Wilcoxon, are always con-
sistent against stochastic ordering. On the other hand, G (ρ, γ) statistics with γ > 0

may not be.

Power

The power of weighted logrank tests is investigated in the local asymptotic sense.
For a given n = n1 + n2, let the survival functions in the two groups be specified as
S
(n)
k

(t ) = S(h(t ) + θ(n)
k

) where S is a known continuous survival function defined on
R with a differentiable density, h(t ) is some differentiable increasing function from
〈0,∞) to R, θ(n)

1
= θ0 + c/

√
n, and θ(n)

2
= θ0 − c/

√
n, where c is a positive constant. This
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setup specifies so called time-transformed shift alternatives. Because the size of the
shift is of the order 1/

√
n, the distributions in the two groups converge to a single

common distribution as n → ∞.
It can be shown that, under these conditions, the test statistic is asymptotically

normal with a finite non-zero mean so that the asymptotic power (probability of
rejection) lies within the interval (0, 1). The weight that maximizes this asymptotic
power is

W (t ) = g (Ŝ(t−))) = ψ′(S−1(Ŝ(t−))),
where ψ = log(−S ′/S) is the logarithm of the hazard for the distribution S and Ŝ is the
pooled Kaplan-Meier estimator. The test that maximizes power in this sense is called
locally asymptotically efficient.

For example, if the data arise from a time-transformed shift in an extreme-value
distribution with survival function S(t ) = exp(−et ), we get ψ(t ) = log(e t ) = t and ψ′

= 1.
Hence, the statistic with W (t ) = 1, i.e., the logrank, is locally efficient against shift
alternatives in the extreme value distribution.

Next, take the logistic distribution with S(t ) = 1 − (1 + exp(−t ))−1. Then ψ(t ) =
− log(1+exp(−t )), ψ′(t ) = exp(−t )(1+exp(−t ))−1 = S(t ) and ψ′(S−1(Ŝ(t−))) = S(S−1(Ŝ(t−))) =
Ŝ(t−). Hence, the Prentice-Wilcoxon statistic is locally efficient against shift alterna-
tives in the logistic distribution.

These results can be extended by taking advantage of the generality of the time
transformation h. The logrank can be shown to be efficient not only against shifts
in the extreme value distribution, but against any proportional hazards alternatives,
that is, alternatives λ2(t ) = θλ1(t ) for 0 < θ , 1 independent of time and any hazard
function λ1.

The Gehan-Wilcoxon statistic uses a weight that is not a function of Ŝ(t−); there-
fore it cannot be efficient against any location-shift alternative.

See Section 7.4 of Fleming and Harrington (1991) for more detailed discussion of
local asymptotic efficiency of weighted logrank tests.

• The (unweighted) logrank test has the best power against alternatives

with constant hazard ratios.

• The Prentice-Wilcoxon test is a good choice for alternatives with decreas-

ing hazard ratios (an early effect on the hazard that dissipates over time).

• Tests with increasing weights, such as G (0, 1), are suitable for detecting
increasing hazard ratios (a delayed effect on the hazard).

• For crossing-hazard alternatives, the weighted logrank tests may be in-

consistent.
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6. Cox Proportional Hazards Model

6.1. Definition and interpretation

Consider n independent observations of the triplet (Xi , δi ,Zi ), i = 1, . . . ,n, where Xi =

min(Ti ,Ci ) is a censored failure time, δi is the failure indicator, and Zi = (Zi1, . . . ,Zi p)T
is a p-vector of covariates. We would like to express the potential influence of the
covariate vector Zi on the distribution of Ti (which we assume to be continuous)
through some regression model. Our ultimate goal will be to estimate the effect of
Zi on Ti and to test whether the components of Zi affect Ti or not.

As usual, we view censored failure time data for each subject as a pair of pro-
cesses: the counting process Ni (t ) = 1(Ti ≤ t , δi = 1) and the at-risk process Yi (t ) =
1(Xi ≥ t ). In this context, we can allow the covariate vector to vary with time as well.
So, let the covariates Zi (t ) be vectors of p right-continuous stochastic processes. Of
course, this concept allows some (or all) components of Zi (t ) to be constant in time.

Note. In practice, fixed (time-independent) covariates represent characteristics of the
subjects that cannot change (or are not allowed to change by the design of the study),
such as gender or genotype. Time-varying covariates describe factors that change
values during the follow-up of the subject, such as blood pressure, cholesterol con-
centration in blood, or cumulative amount of alcohol consumption during lifetime.

The independent censoring condition needs to take into account that hazard can
be affected by the covariates. It will be expressed in terms of conditional hazard given
the covariates, as follows:

λ(t | Z ) ≡ lim
hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t ,Z (t )
]
=

lim
hց0

1

h
P
[
t ≤ T < t + h

��T ≥ t ,C ≥ t ,Z (t )
] (6.1)

This condition is weaker than the original independent censoring condition (1.4). A
sufficient condition for independent censoring is thatT andC are conditionally inde-
pendent given the covariates. It allows censoring times to depend on the covariates
(e.g., men can have a different censoring distribution than women as long as gender
is included in the model as a covariate).

Becausewework with censored data, it is awkward to specify the regressionmodel
by expressing the influence of the covariates on the expected failure time. Instead,
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6. Cox Proportional Hazards Model

we will specify a model for the conditional hazard function defined in the top row
of (6.1). The proportional hazards model proposed by Cox (1972) assumes a specific
form for the effect of the covariate on the hazard function.

Definition 6.1. The observations (Xi , δi ,Zi (t )), i = 1, . . . ,n, satisfy the Cox proportional
hazards model if the following two conditions hold:

(i) they are independent across different subjects;
(ii) the conditional hazard function given the covariate process has the form

λ(t | Z ) = λ0(t ) exp{βT

0 Z (t )}, (6.2)

where λ0(t ) is some unknown unspecified hazard function and β0 ∈ R
p is an un-

known vector of regression coefficients. ∇

Note.

• The function λ0(t ) is called the baseline hazard. It is the hazard of a subject with
all covariate components equal to zero.

• The model does not include any intercept term (the role of the intercept is
played by the baseline hazard).

• If λ0(t ) were specified up to a finite-dimensional parameter vector the model
would be fully parametric and the maximum likelihood theory could be used
to estimate the parameters β0. E.g., if λ0 were assumed to be constant over
time, we would obtain the parametric exponential regression model discussed
in Section 2.3.

• The Cox model makes assumptions on the form of the association between the
covariate and the hazard but does not put any conditions on the shape of the
hazard function. This type of statistical model is called a semiparametric model.

• If the covariates are time-varying, the hazard at t is only allowed to depend
on the covariate value at the same time. However, the covariate may be trans-
formed before inclusion into the model so that the value at t summarizes the
past covariate history in some sense. The covariate cannot depend on anything
measured after t (that would violate predictability).

Definition 6.2. The function

Λ0(t ) =
∫ t

0
λ0(u)du ∇

is called the cumulative baseline hazard.

Suppose the covariates are constant over time, i.e., Z (t ) ≡ Z . Then it follows from
(6.2) that for any covariate values Z and Z ∗,

λ(t | Z ∗)
λ(t | Z ) = exp{β

T

0 (Z ∗ − Z )},
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6. Cox Proportional Hazards Model

that is, the hazard ratio (relative risk) for any two subjects does not change over time.
This is called the proportional hazards assumption.

Taking Z ∗
= Z +e j , where e j is a p-vector with the j -th component equal to 1 and

all other components zero, we get

exp{βj } =
λ(t | Z + e j )
λ(t | Z )

for any Z and t . This equation gives a meaning to the regression parameters: when
exponentiated, they express relative risk for the event due to a unit increase in the
associated covariate, while keeping all other covariates unchanged.

If the covariates are constant, the Cox model can be also expressed in terms of
survival functions. Denote S0(t ) = exp{−Λ0(t )}, the baseline survival function. Then
the conditional survival function for a subject with covariates Z is

S(t | Z ) = exp
{
−

∫ t

0
λ(s | Z )ds

}
= [S0(t )]exp{β

T

0
Z }
.

With time-varying covariates, the conditional hazard function cannot be integrated
easily and the survival function cannot be expressed in this way.

Note. In practice, time-varying covariates arise in two different ways.

1. They represent observations of some random process developing along with
the follow-up of the subject. The observations are usually taken at discrete oc-
cassions. Such a covariate usually has a left-continuous piecewise-constant tra-
jectory determined by the last observation of the random process.

2. They are created during the analysis as interactions of a time-invariant covari-
ate Z with some transformation of time g (t ). Such interactions allow to circum-
vent the proportional hazards assumption by explicit modeling of the change
in the covariate effect over time.

6.2. Parameter estimation via partial likelihood

Parameter estimation in the Cox proportional hazards model cannot be done bymax-
imum likelihood methods because the model is not parametric. The problem is that
the baseline hazard λ0 is an unknown and arbitrary function. Sir David Cox (1972)
proposed a modification of the likelihood function so that it does not depend on
λ0(t ). He called the modified likelihood the partial likelihood.

Let us describe here one of the possible approaches to derive the partial likeli-
hood. Denote t1 < t2 < · · · < td the ordered distinct failure times. Because the failure
time distribution is continuous there is exactly one failure at each ti . Overall, d sub-
jects failed and n − d subjects were censored. Denote t0 = 0 and td+1 = ∞.
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Denote by Di the index of the subject that failed at ti , and let Bi store all the other
information that was accrued in the data during the interval 〈ti , ti+1), in particular:

• the time ti+1 of the next failure;
• indices of subjects who were censored in 〈ti , ti+1);
• censoring times in 〈ti , ti+1);
• covariate values of all subjects in 〈ti , ti+1).

All the information contained in the original data (Xi , δi ,Zi (·)), i = 1, . . . ,n is also con-
tained in the sequence (B0,D1,B1,D2, . . . ,Dd ,Bd). The likelihood, that is the joint den-
sity of all the data, can be written as

f (B0,D1,B1,D2, . . . ,Dd ,Bd) =
= f (B0)f (D1 | B0)f (B1 | B0,D1) × · · · × f (Dd | B0, . . . ,Bd−1,D1, . . . ,Dd−1)
× f (Bd | B0, . . . ,Bd−1,D1, . . . ,Dd )

=

d∏

i=1

f (Di | B0, . . . ,Bi−1,D1, . . . ,Di−1)

︸                                           ︷︷                                           ︸
≡ L(β)

d∏

i=1

f (Bi | B0, . . . ,Bi−1,D1, . . . ,Di ).

The first part contains most of the information about the effect of covariates on the
hazard of failure. It is denoted by L(β) and called the partial likelihood. The second
part is ignored. To evaluate the partial likelihood, we need to find an expression for
f (Di | B0, . . . ,Bi−1,D1, . . . ,Di−1). Because Di contains one of the values 1, . . . ,n, this is
interpreted as the conditional probability P

[
Di = l

��B0, . . . ,Bi−1,D1, . . . ,Di−1
]
that the

subject l ∈ {1, . . . ,n} fails at the time ti , knowing that exactly one subject failed at
ti , and knowing which subjects failed or were censored before ti and what were the
covariates of the subjects who were at risk for failure at ti . For subjects that are not
at risk at ti the conditional probability is zero. For subjects that are still at risk, the
failure probability at ti is proportional to their hazard at this time, which is expressed
via the Cox model specification (6.2). Since the failure probabilities must sum into
one across all subjects who are at risk at ti , we get

P
[
Di = l

��B0, . . . ,Bi−1,D1, . . . ,Di−1
]
=

=

λ0(ti ) exp{βTZl (ti )}∑n
j=1Yj (ti )λ0(ti ) exp{βTZ j (ti )}

=

exp{βTZl (ti )}∑n
j=1Yj (ti ) exp{βTZ j (ti )}

.

Note that this does not depend on the baseline hazard. Taking these terms for all
failure times as likelihood contributions to bemultiplied, we get the partial likelihood
in an explicit form

L(β) =
d∏

i=1

exp{βTZl (i )(ti )}∑n
j=1Yj (ti ) exp{βTZ j (ti )}

,

where l (i ) denotes the index of the subject that failed at ti . After a simple manipula-
tion, we get the definition below.
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Definition 6.3. The function

L(β) =
n∏

i=1

∏

s>0

[
Yi (s ) exp{βTZi (s )}∑n

j=1Yj (s ) exp{βTZ j (s )}

]∆Ni (s )

is called the partial likelihood [PL] function for parameters β in the Cox proportional
hazards model. The value

β̂ = argmax
β∈Rp

L(β)

is called the maximum partial likelihood estimator [MPLE] of Cox model parameters
(Cox 1972). ∇

Notation. Let

S
(k )
n (β, t ) = 1

n

n∑

i=1

Yi (t )Z ⊗k
i (t )eβTZi (t ),

where z ⊗0
= 1, z ⊗1

= z , and z ⊗2
= z z T, for any vector z . Let

Z n(β, t ) =
S
(1)
n (β, t )

S
(0)
n (β, t )

.

Notice that S
(0)
n is a random variable, S

(1)
n is a random p-vector, and S

(2)
n is a ran-

dom p × p matrix. The denominator of each term in the partial likelihood is equal to
nS

(0)
n . Differentiating S

(0)
n once and twice with respect to β, we get

∂S
(0)
n (β, t )
∂β

= S
(1)
n (β, t ) and

∂S
(1)
n (β, t )
∂βT

= S
(2)
n (β, t ). (6.3)

Also,
∂ log S

(0)
n (β, t )
∂β

=

S
(1)
n (β, t )

S
(0)
n (β, t )

= Z n(β, t ). (6.4)

Because

Z n(β, t ) =
n∑

i=1

wi (β, t )Zi (t ), where wi (β, t ) =
Yi (t ) exp{βTZi (t )}∑n

j=1Yj (t ) exp{βTZ j (t )}
(6.5)

are weights summing up into one, Z n(β, t ) can be viewed as a weighted average of
the covariates of subjects who are at risk at the time t . The weights are equal to the
conditional probabilities that the i-th subject fails at t given that a failure occurred
at t (these weights are equal to the partial likelihood contributions).

Themaximum partial likelihood estimator (MPLE) is obtained bymaximizing log
partial likelihood

ℓ(β) = log L(β) =
n∑

i=1

∫ ∞

0

[
βTZi (s ) − log nS

(0)
n (β, s )

]
dNi (s ).
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Differentiating this expression with respect to β and using (6.3) and (6.4), we obtain
the score statistic

Un(β) =
n∑

i=1

∫ ∞

0

[
Zi (t ) − Z n(β, t )

]
dNi (t ).

The maximum partial likelihood estimator β̂ solves the system of equations

Un( β̂) = 0.

Take the filtration

Ft = σ{Ni (u),Yi (u+),Zi (u+), 0 ≤ u ≤ t , i = 1, . . . ,n}.

Let Zi (t ) be right-continuous and Ft -predictable. Denote

Ai (t ) =
∫ t

0
Yi (u) exp{βT

0 Zi (u)} dΛ0(u).

If the independent censoring conditon holds thenMi (t ) = Ni (t )−Ai (t ) is an Ft -martingale
according to Theorem 3.2.

In the sequel, we will follow the development of the score statistic as a process
evolving over time. We denote

Un(β, t ) ≡
n∑

i=1

∫ t

0

[
Zi (s ) − Z n(β, s )

]
dNi (s )

so that Un(β) = Un(β,∞).
The following lemma is the key for investigating the properties of the MPLE.

Lemma 6.1. At the true parameter β0 and at any t ∈ 〈0,∞) we have

Un(β0, t ) =
n∑

i=1

∫ t

0

[
Zi (s ) − Z n(β0, s )

]
dMi (s )

where the integrand is a predictable process. Thus, Un(β0, t ) is an Ft -martingale. ♦

Proof. In the proof, we leave out most of the arguments to make the expressions eas-
ier to read.

The difference between
∑∫

(Zi − Z n)dNi and
∑∫

(Zi − Z n)dMi is
∑∫

(Zi − Z n)dAi =

∑∫
(Zi − Z n)Yie

βT

0
Zi dΛ0 =

∫ (∑
ZiYie

βT

0
Zi − Z n

∑
Yie
βT

0
Zi

)
dΛ0

and the parenthesis is

∑
ZiYie

βT

0 Zi − Z n

∑
Yie

βT

0 Zi
= nS

(1)
n − S

(1)
n

S
(0)
n

nS
(0)
n = n(S (1)

n − S
(1)
n ) = 0.

Hence the two expressions for the score at β0 are the same. �
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6. Cox Proportional Hazards Model

Lemma 6.1 would not be true if the covariates were not Ft -predictable processes
or if the score was evaluated at a parameter value other than β0.

Note. (about the Cox model score statistic)

• The score statistic can be written in a form suitable for calculation as follows:

Un(β) =
n∑

i=1

δi

[
Zi (Ti ) − Z n(β,Ti )

]
.

• The score statistic includes a term for each of the failures. A subject who was
censored does not contribute a term to the score but appears in Z n(β,Ti ) (as
long as the censoring occurred after Ti ). Thus, the score statistic is not a sum of
independent terms.

• The likelihood equations can be written as

n∑

i=1

δi Zi (Ti ) =
n∑

i=1

δi Z n( β̂,Ti ).

Notation. Let

In(β, t ) ≡ −1
n

∂Un(β, t )
∂βT

=

1

n

n∑

i=1

∫ t

0

[
S
(2)
n (β, s )

S
(0)
n (β, s )

− Z
⊗2
n (β, s )

]
dNi (s ). (6.6)

This matrix is a counterpart of the observed information matrix in ordinary likelihood
theory.

First, let us show that the observed information can be expressed as shown on
the right-hand side of (6.6). We have

−∂Un(β, t )
∂βT

=

n∑

i=1

∫ t

0

∂Z n(β, s )
∂βT

dNi (s )

and
∂Z n

∂βT
=

∂
(
S
(1)
n /S

(0)
n

)

∂βT
=

∂S
(1)
n

∂βT

1

S
(0)
n

− S
(1)
n

S
(1)
n

T

(
S
(0)
n

)2 =
S
(2)
n

S
(0)
n

− Z n Z
T

n .

Now let us investigate the existence and uniqueness of the solution to the system
of equations Un( β̂) = 0. By (6.5), we have

S
(2)
n

S
(0)
n

− Z
⊗2
n =

n∑

i=1

wi Z ⊗2
i −

( n∑

i=1

wi Zi

)⊗2
=

n∑

i=1

wi

[
Zi −

( n∑

j=1

w j Z j

)] ⊗2
≥ 0.

This matrix is in fact a weighted covariance matrix of the covariates. It is positive
definite as long as it is non-singular. Singularity can only occur if there exists a linear
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combination of the covariates with zero variance, i.e., if the covariates of the subjects
who are at risk are linearly dependent (at all times!). Thus, if we assume that In(β, t ) is
non-sigular, it must be positive definite at all t and for all β. This proves the following
lemma.

Lemma 6.2. Let In(β,∞) be non-singular. Then ℓ(β) is strictly concave at all β ∈ R
p ,

has a unique maximum β̂, and the maximum is the unique solution to the system of

equations Un( β̂) = 0. ♦

The likelihood equations are solved numerically by the Newton-Raphson algo-
rithm. Choose an initial value β̂(0) = 0 and iterate

β̂(r+1) = β̂(r ) +
[
nIn

(
β̂(r ),∞

) ]−1
Un

(
β̂(r )

)

until convergence.

6.3. Properties of the maximum PL estimator

We work with the filtration

Ft = σ{Ni (u),Yi (u+),Zi (u), 0 ≤ u ≤ t , i = 1, . . . ,n},

we assume that Zi (t ) are Ft predictable and that the independent censoring condi-
tion (6.1) is fulfilled.

According to Lemma 6.1, Un(β0, t ) =
∑n

i=1

∫ t

0
Hi (s )dMi (s ), where Hi (s ) = Zi (s ) −

Z n(β0, s ) is predictable. In the subsequent proofs, we will also assume that all the
components of Zi (t ) are bounded, which implies that the process Hi (s ) is bounded.
The boundedness condition could be relaxed, however – only the proofs would be-
come a bit more complicated. The distribution of the failure time Ti is assumed to be
continuous throughout the whole chapter.

The following theorem shows that, under the given conditions, the partial likeli-
hood score statistic has the samemoment properties as the ordinary likelihood score
statistic.

Theorem 6.3. At any t ≥ 0,

(i) EUn(β0, t ) = 0

(ii) var Un(β0, t ) = E

∫ t

0

[
S
(2)
n (β0, s )

S
(0)
n (β0, s )

− Z
⊗2
n (β0, s )

]
nS

(0)
n (β0, s )dΛ0(s ) = −E

∂Un(β0, t )
∂βT

. ♦

Proof.
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(i) By Theorem 3.4, Un(β0, t ) is a martingale integral, hence it has zero expectation
at all t .

(ii) By Theorems 3.5, 3.6, and 3.9 (see the bottom of page 34)

var Un(β0, t ) = E

n∑

i=1

∫ t

0
H ⊗2

i (s )Yi (s )dΛi (s )

= E

n∑

i=1

∫ t

0

[
Zi (s ) − Z n(β0, s )

] ⊗2
Yi (s )eβ

T

0
Zi (s ) dΛ0(s )

= E

∫ t

0

n∑

i=1

[
Z ⊗2

i − Zi Z
T

n − Z n Z T

i + Z
⊗2
n

]
Yi (s )eβ

T

0
Zi (s ) dΛ0(s )

= E n

∫ t

0

[
S
(2)
n − S

(1)
n Z

T

n − Z nS
(1)
n

T

+ Z
⊗2
n S

(0)
n

]
dΛ0(s )

= E n

∫ t

0

[
S
(2)
n − Z

⊗2
n S

(0)
n

]
dΛ0(s )

= E

∫ t

0

[
S
(2)
n (β0, s )

S
(0)
n (β0, s )

− Z
⊗2
n (β0, s )

]
nS

(0)
n (β0, s )dΛ0(s )

Next, from (6.6),

−E
∂Un(β0, t )
∂βT

= E

n∑

i=1

∫ t

0

[
S
(2)
n (β0, s )

S
(0)
n (β0, s )

− Z
⊗2
n (β0, s )

]
dNi (s )

= E

n∑

i=1

∫ t

0

[
S
(2)
n (β0, s )

S
(0)
n (β0, s )

− Z
⊗2
n (β0, s )

]
Yi (s )eβ

T

0
Zi (s ) dΛ0(s )

= var Un(β0, t ) �

To prove asymptotic properties of the partial likelihood estimator, a set of addi-
tional regularity conditions is needed.

Assumptions.

A.1 The data are observed on an interval 〈0, τ〉, such that τ > 0 is fixed and the proba-
bility of being observed is P [Yi (τ) = 1] > δ for all i and some δ > 0. Let Λ0(τ) < ∞.

A.2 There exists a neighborhood B of β0 and functions s (0), s (1), and s (2) defined on
B × 〈0, τ〉 such that

sup
β∈B,t ∈〈0,τ〉

S
(j )
n (β, t ) − s (j )(β, t )

 P−→ 0,

for each j = 0, 1, 2, where ‖a ‖ ≡ max |ak |.
A.3 The functions s (j ) are bounded on B × 〈0, τ〉, s (0) is bounded away from 0 on B ×

〈0, τ〉. The family {s (j )(β, t ) : t ∈ 〈0, τ〉} is equicontinuous at β0, i.e.
∀ε > 0 ∃δ > 0 ∀β ∈ B : ‖ β − β0‖ < δ ⇒ ‖s (j )(β, t ) − s (j )(β0, t )‖ < ε ∀t ∈ 〈0, τ〉.
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A.4 ∀β ∈ B, ∀t ∈ 〈0, τ〉

∂s (0)(β, t )
∂β

= s (1)(β, t ) and
∂s (1)(β, t )
∂βT

= s (2)(β, t ).

A.5 Let e (β, t ) ≡ s (1)(β,t )
s (0)(β,t ) . The matrix

I (β0, t ) ≡
∫ t

0

[
s (2)(β0, s )
s (0)(β0, s )

− e ⊗2(β0, s )
]

s (0)(β0, s )dΛ0(s )

is positive definite at t = τ.

The last assumption defines the information matrix and assures its regularity. If
the data are independent and identically distributed, assumptions A.2 – A.4 can be
replaced by the single condition

E sup
β∈B

t ∈〈0,τ〉

Yi (t )‖Zi (t )‖2eβ
TZi (t ) < ∞.

If all covariate components have bounded support, this condition is automatically
fulfilled.

Now we can state and prove weak convergence of the partial likelihood score
statistic.

Theorem 6.4. Let assumptions A.1 – A.5 hold. Then

1
√

n
Un(β0, t ) =⇒ W (t ) on D p 〈0, τ〉,

whereW (t ) is a p-variate zero-mean Gaussian process with continuous sample paths,

independent increments and variance function varW (t ) = I (β0, t ). ♦

Corollary. Under conditions A.1 – A.5,

1
√

n
Un(β0, τ)

D−→ Np (0, I (β0, τ)).

Proof. We will use Theorem 3.11 to show joint weak convergence of the components
of the score statistic. Denote

U (n)(t ) ≡ 1
√

n
Un(β0, t ) =

n∑

i=1

∫ t

0
H

(n)
i

(s )dMi (s )

where

H
(n)
i

(s ) = 1
√

n

[
Zi (s ) − Z n(β0, s )

]
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is a bounded predictable process. The predictable covariance process for the k -th
and l-th component of U (n)(t ) is

〈U (n)
k

,U
(n)

l
〉(t ) =

n∑

i=1

1

n

∫ t

0
[Zik (s ) − Z k (β0, s )][Zil (s ) − Z l (β0, s )]Yi (s )eβ

T

0
Zi (s ) dΛ0(s )

Writing this in a matrix form and following the same steps as the proof of Theo-
rem 6.3, we can express the whole matrix of predictable covariance processes as

∫ t

0

[
S
(2)
n (β0, s ) − Z

⊗2
n (β0, s )S (0)

n (β0, s )
]

dΛ0(s ).

By Condition A.3, the integrand converges in probability to

s (2)(β0, s ) − e ⊗2(β0, s )s (0)(β0, s ),

uniformly in s ∈ 〈0, τ〉. The matrix ckl (t )of deterministic limiting functions in Theo-
rem 3.11 has the form

∫ t

0

[
s (2)(β0, s ) − e ⊗2(β0, s )s (0)(β0, s )

]
dΛ0(s ) = I (β0, t ).

This is also the variance matrix of the limiting Gaussian process.

The proof of the remaining condition

〈U (n)
k ,ε

,U
(n)

k ,ε
〉(t ) P−→ 0

is omitted. �

The next theorem shows that the observed information matrix is a uniformly
consistent estimator of the theoretical information matrix.

Theorem 6.5. Let assumptions A.1 – A.5 hold. Let β̂ be any consistent estimator of β0.

Then

sup
t ∈〈0,τ〉

‖In( β̂, t ) − I (β0, t )‖
P−→ 0.

♦

Proof. We only present a partial proof, with observed information evaluated at the
true parameter.
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We have

In(β0, t ) − I (β0, t ) =
1

n

∫ t

0

[
S
(2)
n (β, s )

S
(0)
n (β, s )

− Z
⊗2
n (β, s )

]
dN (s )

− 1

n

∫ t

0

[
S
(2)
n (β, s )

S
(0)
n (β, s )

− Z
⊗2
n (β, s )

]
dA(s )

+

∫ t

0

[
S
(2)
n (β, s )

S
(0)
n (β, s )

− Z
⊗2
n (β, s )

]
S
(0)
n (β, s )dΛ0(s )

−
∫ t

0

[
s (2)(β0, s )
s (0)(β0, s )

− e ⊗2(β0, s )
]

s (0)(β0, s )dΛ0(s )

The difference in the first two terms gives

∫ t

0

1

n

[
S
(2)
n (β, s )

S
(0)
n (β, s )

− Z
⊗2
n (β, s )

]
dM (s ) ≡

∫ t

0
H (n)(s )dM (s ),

which is a martingale integral with zero mean and variance converging to zero. Also,∫ t

0

√
nH (n)(s )dM (s ) converges weakly to a zero-mean Gaussian process. It follows that∫ t

0
H (n)(s )dM (s ) converges to zero in probability uniformly in time.

The difference in the second two terms converges to zero uniformly because the
integrand of the first term converges to the integrand of the second term uniformly
in time. �

The next theorem states the weak consistency of β̂.

Theorem 6.6. Under conditions A.1 – A.5,

β̂
P−→ β0. ♦

Proof. Consider the log partial likelihood as a random process

ℓ(β, t ) =
n∑

i=1

∫ t

0

[
βTZi (s ) − log nS

(0)
n (β, s )

]
dNi (s )

and define

Xn(β, t ) =
1

n

[
ℓ(β, t ) − ℓ(β0, t )

]

=

1

n

[ n∑

i=1

∫ t

0
(β − β0)TZi (s )dNi (s ) −

∫ t

0
log

S
(0)
n (β, s )

S
(0)
n (β0, s )

dN (s )
]
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and

An(β, t ) =
∫ t

0
(β − β0)TS

(1)
n (β0, s )dΛ0(s ) −

∫ t

0
log

S
(0)
n (β, s )

S
(0)
n (β0, s )

S
(0)
n (β0, s )dΛ0(s ).

Then

Xn(β, t ) − An(β, t ) =
∫ t

0
H (s )dM (s ),

where

H (s ) = 1

n

n∑

i=1

(β − β0)TZi (s ) −
1

n
log

S
(0)
n (β, s )

S
(0)
n (β0, s )

is a bounded and predictable process. We have

E
[
Xn(β, t ) − An(β, t )

]
= 0

var
[
Xn(β, t ) − An(β, t )

]
= E

∫ t

0
H 2(s )dA(s )

Since E
∫ τ

0
H 2(s )dA(s ) → 0, we get

Xn(β, τ) − An(β, τ)
P−→ 0.

Also,

An(β, τ)
P−→ A(β, τ) ≡

∫ τ

0
(β − β0)Ts (1)(β0, s )dΛ0(s ) −

∫ τ

0
log

s (0)(β, s )
s (0)(β0, s )

s (0)(β0, s )dΛ0(s ).

It follows that Xn(β, τ)
P−→ A(β, τ). Since Xn is a concave function with a unique

maximum at β̂ and A is a concave function with a unique maximum at β0, we get

β̂
P−→ β0. �

Now we are ready to state and prove the asymptotic normality of β̂.

Theorem 6.7. Under conditions A.1 – A.5,

√
n( β̂ − β0)

D−→ Np (0, I −1(β0, τ)). ♦

Proof. By the Taylor expansion of Un( β̂, τ) around β0,

0 = Un( β̂, τ) = Un(β0, τ) +
∂Un(β∗, τ)

∂ βT
( β̂ − β0).

Now,
∂Un(β∗, τ)

∂ βT
= −nIn(β∗, τ),
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where β∗ lies on the line segment between β̂ and β0, and hence β∗
P−→ β0. We get

1
√

n
Un(β0, τ) = In(β∗, τ)

√
n( β̂ − β0)

and √
n( β̂ − β0) = I−1

n (β∗, τ) 1√
n

Un(β0, τ).

Because β∗
P−→ β0, we get from Theorem 6.5 and from the continuity of matrix in-

verse that I−1
n (β∗, τ) P−→ I −1(β0, τ). From Theorem 6.4 and from Slutski’s Theorem,

we get the desired result. �

The following result is an easy corollary to theorems 6.5 and 6.7.

Theorem 6.8. Let c be any non-zero p-vector of constants. Under conditions A.1 – A.5,

√
n(c T β̂ − c T β0)√

c TI−1
n ( β̂, τ)c

D−→ N(0, 1).
♦

Consider the hypothesis H0 : c T β0 = γ0 tested against the two-sided alternative
H1 : c T β0 , γ0. We reject the hypothesis if

√
n

���c T β̂ − γ0
���

√
c TI−1

n ( β̂, τ)c
≥ u1−α/2.

According to Theorem 6.8, this test has a level converging to α as n → ∞. In particu-
lar, with c having a single component equal to one and all other components equal
to zero, and taking γ0 = 0, we get Wald-type tests of the individual regression coeffi-
cients.

Similarly, we can use Theorem 6.8 to calculate Wald-type confidence intervals for
c Tβ0 with asymptotic coverage 1 − α. These intervals have boundary points

c T β̂ ∓

√
c TI−1

n ( β̂, τ)c
n

u1−α/2.

Theorem 6.9. Under conditions A.1 – A.5,

1

n
Un(β0, τ)TI−1

n (β0, τ)Un (β0, τ)
D−→ χ2p . ♦
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This theorem is an immediate consequence of Theorem 6.4 and Theorem 6.5. It
can be used to construct score tests of simple and composite hypotheses about the
components of β0. For example, to test the hypothesis H0 : β0 = b against H1 : β0 , b

we take the test statistic

U =
1

n
Un(b , τ)TI−1

n (b , τ)Un (b , τ)

and reject H0 if U ≥ χ2p(1 − α).
An important special case arises when the Cox model is set up to compare haz-

ards in two groups of subjects. Take Zi = 1 when the i-th subject belongs to the sec-
ond group and Zi = 0 when the subject belongs to the first group. The conditional
hazard in the Cox model has the form

λ(t | group) = λ0(t )eβ0Zi ,

where λ0 is the hazard function of the first group and eβ0 is the time-invariant hazard
ratio between the second and the first group. The hypothesis of interest, H0 : β0 = 0,
can be tested by the score test statistic U with critical value χ21(1 − α). The score
test statistic can be shown to be the square of the unweighted logrank test statistic
discussed in Section 5.2. Thus, the Cox model provides another derivation of the
logrank test, as a score test in a proportional hazards model. Within the regression
framework, the logrank test can be easily generalized to comparing survival distri-
butions in K > 2 groups by performing the score test in a model with K − 1 dummy
regressors factorizing the groups.

The next theorem shows that even likelihood ratio tests work with partial likeli-
hood.

Theorem 6.10. Suppose conditions A.1 – A.5 are fulfilled. Let ℓM ( β̂) be the maximized

partial log-likelihood in a larger model M and let ℓS ( β̃) be the maximized partial log-

likelihood in a submodel S . If the submodel holds then

2[ℓM ( β̂) − ℓS ( β̃)]
D−→ χ2m ,

where m is the difference in the number of parameters in the larger model and the

submodel. ♦

This theorem (which will be left without proof) is used to perform submodel test-
ing when building the regression model. The submodel S is rejected in favor of the
larger model M when 2[ℓM ( β̂)−ℓS ( β̃)] ≥ χ2m(1−α). This is a couterpart of the deviance
test in generalized linear models.
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6.4. Estimation of the baseline hazard and conditional survival

The partial likelihood eliminates the baseline hazard λ0 and thus carries no infor-
mation about it. An estimator for the baseline hazard must be developed by other
means. It is needed for two reasons. First, to estimate the survival function for a par-
ticular subject; second, it appears at several other important quantities that need to
be estimated.

An estimator for the cumulative baseline hazard Λ0(t ) can be derived from mo-
ment considerations. Take the martingale M =

∑
Mi = N −

∫
nS

(0)
n dΛ0, where N =∑

Ni . For any bounded predictable function H ,
∑∫

H dM is a martingale and hence

0 = E

∫
H (dN − nS

(0)
n dΛ0) = E

∫
nS

(0)
n H

(
dN

nS
(0)
n

− dΛ0

)
.

If we take H =
(
nS

(0)
n

)−1, we get

Λ0(t ) = E

∫ t

0

dN (s )
nS

(0)
n (β0, s )

.

So define

Λ̂0(t ) =
∫ t

0

dN (s )
∑n

i=1Yi (s ) exp{ β̂TZi (s )}
.

This is called the Breslow estimator of the cumulative baseline hazard (Breslow 1972).

Note. Compare the Breslow estimator to the Nelson-Aalen estimator and note the
similarities and differences.

Theorem 6.11. Let assumptions A.1 – A.5 hold. Then

√
n[Λ̂0(t ) − Λ0(t )] =⇒ W (σ(t )) on D p 〈0, τ〉.

The variance of the limiting process is

σ2(t ) =
∫ t

0

dΛ0(s )
s (0)(β0, s )

+Q (β0, t )TI (β0, t )Q (β0 , t ),

where Q (β0, t ) =
∫ t

0
e (β0, s )dΛ0(s ). ♦

This theorem implies the uniform consistency of the Breslow estimator on 〈0, τ〉
and it allows the construction of confidence intervals for Λ0(t ) at fixed t as well as
confidence bounds covering the baseline hazard on the whole interval 〈0, τ〉. The
limiting variance σ2(t ) can be consistently estimated by replacing all the unknown
quantities by their consistent estimators.
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Suppose that all covariates are time-invariant and consider a subject with an ob-
served covariate vector z . The conditional cumulative hazard function for this spe-
cific subject is

Λ(t | z ) = Λ0(t ) exp{βT

0 z },
which can be estimated by

Λ̂(t | z ) = Λ̂0(t ) exp{ β̂Tz },

The conditional survival function for this subject is

S(t | z ) = exp{−Λ(t | z )} = exp
{
−Λ0(t ) exp{βT

0 z }
}
,

which can be estimated by

Ŝ(t | z ) = exp
{
−Λ̂0(t ) exp{ β̂Tz }

}
.

Confidence intervals and confidence bounds for the conditional survival can be ob-
tained from Theorem 6.11 by the same approach we used for the Kaplan-Meier esti-
mator.

6.5. Cox model with non-proportional hazards

There are two ways how to incorporate covariates that do not satisfy the proportional
hazards assumption: stratification and time-dependent effects. The latter approach
also allows to test the validity of the proportional hazards assumption against certain
alternatives.

Stratified Cox model

Stratified Cox model consists in fitting different hazard functions within strata de-
fined by the levels of a categorical variable.

Consider a categorical variableV with values 1, . . . ,q that affects the hazard func-
tion in a non-proportional way. Instead of including such variable in the linear pre-
dictor of the standard Cox model, we modify the model formula as follows:

λ(t | Z ,V = j ) = λ0j (t ) exp{βTZ (t )}.

Thus, the influence ofV on the hazard is expressed by introducing separate baseline
hazard functions λ0j (t ), j = 1, . . . ,q , depending on the value of V (“strata”) . This
is called a stratified Cox model. Here, different levels of V have totally unrestricted
hazards. The effect of the other covariates is still modeled under the proportional
hazards assumption.
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Denote the observed data be (Nj i (t ),Yj i (t ),Z j i (t )), j = 1, . . . ,q , i = 1, . . . ,nj . The
index j indicates the stratum (level of V ), i indicates subjects within strata. The par-
tial likelihood is taken as a product of standard partial likelihood functions for the
individual strata, that is

L(β) =
q∏

j=1

L j (β) =
q∏

j=1

nj∏

i=1

∏

s>0

[
Yj i (s ) exp{βTZ j i (s )}∑nj

k=1
Yjk (s ) exp{βTZ jk (s )}

]∆N j i (s )
.

The score statistic has the form

Un(β) =
q∑

j=1

nj∑

i=1

∫ ∞

0

[
Z j i (t ) − Z j (β, t )

]
dNj i (t ),

where

Z j (β, t ) =
∑nj

i=1
Yj i (t )Z j i (t )eβ

TZ j i (t )

∑nj

i=1
Yj i (t )eβTZ j i (t )

.

In the score statistic, the covariates of each failing subject are compared only to the
covariates of the subjects from the same stratum. The stratified estimator β̂ is asymp-
totically normal as in Theorem 6.7, but the information matrix becomes a linear com-
bination of stratum-specific information matrices (with weights equal to the proba-
bilities of the individual strata).

The stratum-specific cumulative baseline hazard may estimated by an obvious
extension of Breslow estimator:

Λ̂0j (t ) =
∫ t

0

dN j (s )
∑nj

i=1
Yj i (s ) exp{ β̂TZ j i (s )}

.

Stratification represents a reasonable strategy to incorporate non-proportionality
when the non-proportional variable is discrete with just a few levels and sufficient
representation of each level in the data set. Also, we must keep in mind that the
effect of the stratification variable cannot be tested or expressed by a finite number
of parameters. Sometimes, stratification is used with continuous covariates, which
must be dicretized into a relatively small number of levels. Clearly, this approach
entails a serious loss of precision.

Modeling non-proportionality by interactions with time

Consider a covariate V that has a non-proportional effect on the hazard. Such an
effect can be directly modelled by the Cox model by including interactions ofV with
time and treating them as time-varying covariates.
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Select a set of linearly independent basis functions g1(t ), . . . , gr (t ) and specify the
model as

λ(t | Z ,V ) = λ0(t ) exp
{
βTZ (t ) + βV V +

r∑

l=1

γl gl (t )V
}
.

Here, Z are the other covariates in the model and βV is the main effect ofV . The
rest of the linear predictor specifies interactions of V with time transformed by the
basis functions gl . Then, the relative risk (hazard ratio) associated with a unit increase
in V is

RRV (t ) ≡
λ(t | Z ,V = v + 1)
λ(t | Z ,V = v ) = exp

{
βV +

r∑

l=1

γl gl (t )
}
.

We can test the hypothesis of the proportional hazards assumption against alterna-
tives of non-proportionality expressed as linear combinations of the basis functions
gl (t ) by testing H0 : γ1 = · · · = γr = 0, for example by a likelihood ratio test. If the hy-
pothesis is rejected, we can keep these interactions terms in the model and describe
the time-varying effect of V by the parameters γ1, . . . , γr .

The following special cases might be interesting in practical applications:

• g (t ) = t

This adds an interaction of V with linear time. The time-varying relative risk is

RRV (t ) = eβV +γt
.

The relative risk at the time t = 0 is eβV . From that point, the RR increases
(for γ > 0) or decreases (for γ < 0) exponentially. The test of the hypothesis
H0 : γ = 0 tests the proportional hazards assumption against the alternative of
exponential change in the relative risk.

• g (t ) = log(t + 1)
This adds an interaction of V with logarithmic time. The time-varying relative
risk is

RRV (t ) = eβV +γ log(t+1)
= eβV (t + 1)γ.

Again, the relative risk at the time t = 0 is eβV but the RR then changes as a
power function, which is slower than an exponential change. The test of the
hypothesis H0 : γ = 0 tests the proportional hazards assumption against the
alternative of power function change in the relative risk.

• g1(t ) = 1(s1 ≤ t < s2), g2(t ) = 1(s2 ≤ t )
Now we factorize time into three intervals: 〈0, s1), 〈s1, s2), 〈s2, τ) and let that in-
teract with V . The relative risk is

RRV (t ) = eβV for t ∈ 〈0, s1),
RRV (t ) = eβV +γ1 for t ∈ 〈s1, s2),
RRV (t ) = eβV +γ2 for t ∈ 〈s2, τ).
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The test of the hypothesis H0 : γ1 = γ2 = 0 tests the proportional hazards
assumption against the alternative of piecewise constant relative risk function
with breaks at s1 and s2.

Of course, we can extend this idea to an arbitrary number of time intervals but
we need to have enough failures in each of them to estimate the relative risks
separately.

6.6. Generalizations of the Cox model

In this section, we give brief suggestions about other possible generalizations of the
Cox model.

Proportional intensity model

Suppose we observe data in the form of independent processes (Ni (t ),Yi (t ),Zi (t )), i =

1, . . . ,n. Hower, we do not assume that the processes Ni (t ) andYi (t ) arised from a ran-
dom censorship model. Instead, we allow Ni (t ) to be any counting process, giving the
number of observed events for subject i until time t . The events can be recurrent and
the process Ni (t ) may have multiple jumps. The process Yi (t ) is binary and indicates
whether an event occurring at t can be observed or not. It can jump repeatedly be-
tween 1 and 0 and it does not have to stay at zero after the first observed event. The
times between successive jumps in Ni (t ) are assumed to have continuous distribu-
tions.

Take the right-continuous filtration

Ft = σ{Ni (u),Yi (u+),Zi (u+), 0 ≤ u ≤ t , i = 1, . . . ,n}

and assume that Zi (t ) and Yi (t ) are Ft predictable. Define the process

Ai (t ) =
∫ t

0
Yi (s )eβ

T

0 Zi (s )λ0(s )ds ,

the same process that plays the role of a compensator in the Cox model. We say that
the data satisfy the proportional intensity model (Aalen 1978) if Mi = Ni − Ai is an
Ft -martingale, that is, Ai is the right compensator for Ni even under our extended
conditions.

It can be shown that, under the proportional intensity model,

lim
hց0

1

h
P
[
Ni (t + h) − Ni (t ) = 1

��Ft

]
= Yi (s )eβ

T

0
Zi (s )λ0(s ),
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that is, the parameters β0 still express the influence of the covariates on the rate of
occurrence of events (even though we can no longer call it the hazard rate in the
context of recurring events).

Most of the results of Section 6.3 still hold under this more general model and
most of their proofs come through without great changes.

The proportional intensity model can be also used to model left truncation – a
case when an event cannot be observed if it occurs before a random entry time of
the subject into the study. This is achieved by setting the process Yi to zero prior to
the entry time.

Generalized proportional hazards models

Another possible generalization of the Cox model is achieved by considering a gen-
eral link function g for the relationship between the linear predictor βT

0 Z and the
hazard λ(t | Z ). The model can be written as

λ(t | Z (t )) = λ0(t )g (βTZ (t )),

where g (·) is increasing, twice differentiable, and satisfies g (0) = 1. This is still a
proportional hazards model because the hazard ratio is independent of time. The
link function g (y ) = 1 + y generates so called additive relative risk model λ(t | Z (t )) =
λ0(t )(1 + βTZ (t )). This model is used, e.g., in radiation epidemiology to model the
effect of a radiation exposure on cancer occurrence.
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A.1. Useful failure time distributions

Unless stated otherwise, the argument t of densities, distribution functions, survival
functions and hazard functions always takes values in the interval 〈0,∞).

A.1.1. Exponential distribution

T ∼ Exp(λ), λ > 0

Density: f (t ) = λe−λt

Distribution function: F (t ) = 1 − e−λt

Survival function: S(t ) = e−λt

Hazard function: λ(t ) = λ

Expectation: ET = 1/λ

Mean residual lifetime: r (t ) = 1/λ

Exponential distribution is the only continuous distribution that possesses so called
memoryless property:

∀s > 0,∀t > 0 : P
[
T > t + s

��T > s
]
= P [T > t ] = e−λt

.

Relationship to Gumbel distribution

TakeU ∼ Exp(1) and consider the random variableW = logU , which can take on any
real value. The distribution function ofW is

P [W ≤ t ] = P
[
U ≤ e t

]
= 1 − e−e t

, t ∈ R.

The density ofW is
fW (t ) = e t−e t

, t ∈ R.

This distribution is called the extreme value (Gumbel) distribution.
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Take T ∼ Exp(λ). Then λT ∼ Exp(1), log λT = W and logT = − log λ +W , where W

is a Gumbel random variable. Consider the loglinear model λ = eβ
TZ . Then logT

satisfies the linear model
logT = −βTZ +W,

whereW is a random error term distributed according to Gumbel distribution.

A.1.2. Weibull distribution

T ∼ W(λ, α), λ > 0, α > 0

Density: f (t ) = αλαt α−1e−(λt )α

Survival function: S(t ) = e−(λt )α

Hazard function: λ(t ) = αλαt α−1

Expectation: ET = Γ(1 + α−1)/λ

Relationship to exponential distribution

• Let T ∼ W(λ, 1). Then T ∼ Exp(λ).
• Let U ∼ Exp(1). Define T = 1

λ
U 1/α. Then T ∼ W(λ, α).

• Let T ∼ W(λ, α). Then U = (λT )α ∼ Exp(1).

Relationship to Gumbel distribution

Take T ∼ W(λ, α). Then (λT )α ∼ Exp(1), log(λT )α = W , and logT = − log λ + α−1W ,
where W is a Gumbel random variable. Thus, logT satisfies a location-scale model
where − log λ represents the location parameter and 1/α represents the scale param-
eter.

Consider the loglinear model λ = eβ
TZ . Then logT satisfies the linear model

logT = −βTZ + α−1W,

where W is a random error term distributed according to Gumbel distribution and
α−1 controls the variability of the error term.

A.1.3. Gamma distribution

T ∼ Γ(a , p), a > 0, p > 0

Density: f (t ) = a p

Γ(p)t p−1e−at
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Expectation: ET =
p

a

Survival function: S(t ) = 1 − IG(p , at ), where IG(p , t ) = 1

Γ(p)
∫ t

0
x p−1e−x dx is the in-

complete Gamma function.

Hazard function: Does not have a tractable form. When p > 1 then λ(0) = 0, λ(t ) is
increasing, and limt→∞ λ(t ) = a . When p < 1 then λ(0) = ∞, λ(t ) is
decreasing, and limt→∞ λ(t ) = a .

Relationship to exponential distribution

• Let T ∼ Γ(a , 1). Then T ∼ Exp(a).

A.1.4. Raleigh distribution

Density: f (t ) = (λ0 + λ1t ) e−
(
λ0t+ 12 λ1t 2

)
, λ0 > 0, λ1 > 0

Survival function: S(t ) = e−
(
λ0t+ 12 λ1t 2

)

Hazard function: λ(t ) = λ0 + λ1t

A.1.5. Gompertz distribution

Density: f (t ) = λ1 exp
{
− λ1
λ2

(
eλ2t − 1

)
+ λ2t

}
, λ1 > 0, λ2 > 0

Survival function: S(t ) = exp
{
− λ1
λ2

(
eλ2t − 1

)}

Hazard function: λ(t ) = λ1eλ2t

A.1.6. Log-logistic distribution

Density: f (t ) = κ̺ ( t̺ )κ−1
[
1 + ( t̺ )κ

]2 , ̺ > 0, κ > 0

Survival function: S(t ) = 1

1 + ( t̺ )κ

Hazard function: λ(t ) = κ̺κ t κ−1

1 + ( t̺ )κ
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A.1.7. Geometric distribution

T ∼ Geo(p), p ∈ (0, 1)
This is a discrete distribution with values 0, 1, 2, . . .

Density: P [T = t ] = p(1 − p)t , t = 0, 1, 2, . . .

Expectation: ET =
1 − p

p

Survival function: S(t ) = (1 − p)[t ]+1, t > 0, where [t ] = max{j ∈ Z : j ≤ t } is the
lower whole part of the real argument t

Hazard function: λ(t ) = p, t = 0, 1, 2, . . .

Relationship to exponential distribution

• Let U ∼ Exp(λ). Then T = [U ] ∼ Geo(p), where p = 1 − e−λ .
Geometric distribution is the only discrete distribution that possesses thememoryless
property:

∀s > 0,∀t > 0 : P
[
T > t + s

��T > s
]
= P [T > t ] = (1 − p)[t ]+1.

A.2. Results frommathematical analysis and martingale theory

A.2.1. Integration by parts for Lebesgue-Stieltjes integral

Theorem A.1. (Fleming &Harrington, TheoremA.1.2) Let F : 〈0,∞) → R andG : 〈0,∞) →
R be right-continuous functions of bounded variation on any finite interval. Let∆F (x) =
F (x) − F (x−), ∆G (x) = G (x) −G (x−). Then

F (t )G (t ) − F (0)G (0) =
∫ t

0
F (x−)dG (x) +

∫ t

0
G (x)dF (x)

=

∫ t

0
F (x−)dG (x) +

∫ t

0
G (x−)dF (x) +

∑

0<x ≤t

∆F (x)∆G (x). ♦

Note.

∫ t

0
F (x)dG (x) =

∫ t

0
F (x−)dG (x) +

∑

0<x ≤t

∆F (x)∆G (x).
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A.2.2. Random processes and martingales

Consider a probability space (Ω,F ,P ).

Definition A.1. A family {Ft : t ≥ 0} of sub-σ-algebras of a σ-algebra F is called a
filtration if, for all s ≤ t , Fs ⊂ Ft . ∇

Definition A.2. Let {Ft : t ≥ 0} be a filtration. A random process X (t ), t ≥ 0, is called
adapted to the filtration Ft if X (t ) is Ft -measurable for any t ≥ 0. ∇

Notation.

• X (t−) = limhց0 X (t − h)
• Ft− = σ

{⋃
h>0 Ft−h

}

Definition A.3. Let X (t ), t ≥ 0, be a right-continuous process with left-hand limits and
let {Ft : t ≥ 0} be a filtration. Let X (t ) be adapted to Ft and E |X (t )| < ∞ for all t < ∞.
(i) X is called a martingale with respect to the filtration Ft if E

[
X (t + s )

��Ft

]
= X (t )

almost surely for all s ≥ 0, t ≥ 0.
(ii) X is called a submartingale with respect to the filtration Ft if E

[
X (t +s )

��Ft

]
≥ X (t )

almost surely for all s ≥ 0, t ≥ 0. ∇

Note.

• Let X (t ) be an Ft -martingale with X (0) = 0 a.s. Then E X (t ) = 0 for all t ≥ 0.

• Let X (t ) be an Ft -martingale. Then E
[
X (t )

��Ft−
]
= X (t−) a.s.

Definition A.4. A process X (t ) is called predictable with respect to the filtration Ft if
it is measurable with respect to the smallest σ-algebra on R

+

0 × Ω generated by left
continuous Ft -measurable processes. ∇

Note. An equivalent definition of predictability is this: X (t ,ω) is Ft -predictable if and
only if it is a mapping 〈0,∞) × Ω → R, which is measurable with respect to the pre-
dictable σ-algebra

σ
{
{0} × A : A ∈ F0, (t , s 〉 × A : t < s ∈ R

+

0 ,A ∈ Ft

}
.

Note. A left continuous Ft -measurable process A(t ) is predictable with respect to Ft .

Definition A.5. An Ft -measurable process {N (t ) : t ≥ 0} is a counting process if N (0) =
0, N (t ) < ∞ a.s., and almost all its paths are right-continuous and piecewise constant
with jumps of size 1. ∇

Note. A counting process is a submartingale.
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A.3. Brownian motion

A.3.1. Standard Brownian motion

The Brownian motion (also called the Wiener process) is a random processW (t ), t ∈
〈0,∞), that satisfies the following requirements:

(i) W (0) = 0 almost surely;
(ii) almost all paths ofW (t ) are continuous;
(iii) for any n > 1 and 0 ≤ t1 < t2 < · · · < tn ,W (t1),W (t2) −W (t1),. . . ,W (tn) −W (tn−1) are

independent (independent increments);
(iv) for any 0 ≤ t < s ,W (s ) −W (t ) ∼ N(0, s − t ).

The Brownian motion has a number of additional interesting properties:

• At all t ≥ 0, EW (t ) = 0, varW (t ) = t .
• At all s , t ≥ 0, cov (W (t ),W (s )) = s ∧ t .
• IfW (t ) is a Brownian motion then σ−1/2W (σt ) is also a Brownian motion.
• W (t ) is a martingale with respect to its history; its predictable variation process
is 〈W,W 〉(t ) = t .

• The sample paths ofW (t ) are not differentiable at any t a.s.
• The sample paths ofW (t ) do not have bounded variation on any interval.

A.3.2. Time-transformed Brownian motion

The process V =
∫

f dW is called time-transformed Brownian motion. It has all the
properties of a Brownian motion except variance function. Its variance function is
varV (t ) ≡ h(t ) =

∫ t

0
f 2(s )ds . When f (s ) ≡ 1, the time-transformed Brownian motion is

a standard Brownian motion.

The variance function h(t ) can be viewed as a non-decreasing time transforma-
tion. We can obtain the time-transformed Brownian motion asV (t ) =W (h(t )), where
W is a standard Brownian motion.

A.3.3. Brownian bridge

Brownian bridge B(t ) is a stochastic process defined on the interval 〈0, 1〉, with val-
ues B(0) = B(1) = 0. It can be obtained from the standard Brownian motion by the
transformation

B(t ) =W (t ) − tW (1), t ∈ 〈0, 1〉.

Brownian bridge is a Gaussian process with zeromean and variance function var B(t ) =
t (1 − t ). The covariance function for s < t is cov (B(s ),B(t )) = s (1 − t ).

93



A. Appendix

A.4. Weak convergence of stochastic processes

In this part we review main features of weak convergence of stochastic processes, in
particular convergence of processes with right-continuous sample paths with left-
hand limits defined on the interval 〈0, τ〉. The space of such functions is denoted
D 〈0, τ〉.

Take a metric space X and the smallest σ-algebra B that includes all the open
sets contained in X. A stochastic process with sample paths belonging to X is a mea-
surable mapping (Ω,A) → (X,B).

The metric that defines open sets on D 〈0, τ〉 is called Skorokhod metric. Let Φ be
the set of all strictly increasing continuous functions f mapping 〈0, τ〉 onto 〈0, τ〉, so
that f (0) = 0 and f (τ) = τ.

Definition A.6. For any g ,h ∈ D 〈0, τ〉 define

d(g ,h) = inf
{
ε > 0 : ∃f ∈ Φ s.t. sup

t ∈〈0,τ〉
|f (t ) − t | ≤ ε and sup

t ∈〈0,τ〉
|g (t ) − h(f (t ))| ≤ ε

}
.

The distance d is called Skorokhod distance. ∇

This is almost the supremal distance except that the two functions are evaluated
at slightly different arguments. Skorokhod distance defines a topology of open sets on
D 〈0, τ〉; let B∗ be the smallest σ-algebra containing all such open sets. The Skorokhod
topology can be metrized by another metric, which makes the space (D 〈0, τ〉,B∗)
complete and separable. A stochastic process with sample paths contained in D 〈0, τ〉
is a measurable mapping (Ω,A) → (D 〈0, τ〉,B∗).

Definition A.7. Let Pn and P be probability measures on (X,B). We say that Pn con-

verges weakly to P as n → ∞, (denoted Pn =⇒ P ), if and only if Pn (A) → P (A) for any
A ∈ B such that P (∂A) = 0, where ∂A is the boundary of the set A. ∇

If the sample space X is R
d , weak convergence coincides with convergence in

distribution of a random vector Xn to a multivariate distribution P .

Theorem A.2 (Continuous mapping theorem). Let h be a continuous mapping from a met-

ric space (X,B) to another metric space (X ′,B ′), let Pn =⇒ P on (X,B). Then

Pnh−1
=⇒ Ph−1

on (X ′,B ′). ♦

Let X1,X2, . . . be a sequence of stochastic processes on (D 〈0, τ〉,B∗), let X be a
stochastic process on (D 〈0, τ〉,B∗) such that Xn =⇒ X . Take any k ≥ 1 and select
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time points t1, . . . , tk ∈ 〈0, τ〉. The mapping that assigns to any function f ∈ D 〈0, τ〉
the k -vector of values (f (t1), . . . , f (tk )) is continuous with respect to the Skorokhod
metric. It follows from the continuous mapping theorem that the random vector
(Xn(t1), . . . ,Xn(tk ))T converges in distribution to (X (t1), . . . ,X (tk ))T. This is called the
convergence of finite-dimensional distributions. It is a necessary but not sufficient
condition for weak convergence of stochastic processes.

Note. It can be shown that, for X ∈ D 〈0, τ〉, the mapping X → supt ∈〈0,τ〉 |X (t )| is con-
tinuous with respect to the Skorokhod metric. It follows from the continuous map-
ping theorem that if Xn =⇒ X then

sup
t ∈〈0,τ〉

|Xn(t )|
D−→ sup

t ∈〈0,τ〉
|X (t )| .

Definition A.8. A collection Pn of probability measures on ametric space (X,B) is called
tight if for any ε > 0 there exists a compact set K ⊂ X such that Pn(K ) > 1 − ε for all
n. ∇

Theorem A.3. Let (X,B) be a complete and separable metric space. Let Pn and P be

probability measures on (X,B). Then

Pn =⇒ P

if and only if both of the following conditions hold:

1. All finite-dimensional distributions of Pn converge to the respective finite-di-

mensional distributions of P .

2. The collection Pn is tight. ♦

For stochastic processes in D 〈0, τ〉, there is a sufficient condition for tightness,
which goes as follows.

Theorem A.4. The sequence of stochastic processes Xn with sample paths in D 〈0, τ〉
satisfies the tightness condition if for any ε > 0

lim
δ→0

lim sup
n→∞

P

[
sup
|s−t |<δ

|Xn(s ) − Xn(t )| > ε

]
= 0.

♦
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time, 6
type I, 7
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central limit theorem formartingale in-
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counting process, 24, 92

multivariate, 31
Cox model, 68
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crude hazard, 14, 25
cumulative baseline hazard, 68

Breslow estimator, 82
cumulative hazard

Nelson-Aalen estimator, 39
cumulative hazard function, 10

distribution
exponential, 19–23, 59, 88–91
extreme value, see Gumbel distri-

bution
gamma, 90
geometric, 91
Gompertz, 90
Gumbel, 66, 88, 89
log-logistic, 90
logistic, 66
Raleigh, 90

Weibull, 89
Doob-Meyer decomposition, 26

exponential distribution, 19–23, 59, 88–
91

extreme value distribution, see Gumbel
distribution

failure indicator, 6
failure rate, 10
failure time, 6

censored, 6
Fleming-Harrington class of statistics,

59
Fleming-Harrington estimator, 39

gamma distribution, 90
Gehan-Wilcoxon test, 59, 66
geometric distribution, 91
Gill confidence bounds, 53
Gompertz distribution, 90
Greenwood formula, 49
Gumbel distribution, 66, 88, 89

Hall-Wellner confidence bounds, 54
hazard

crude, 14, 25
net, 14, 25

hazard function, 10
cumulative, 10

incidence rate, 10
independent censoring, 14, 25, 27, 67

Kaplan-Meier estimator, 40, 59, 62, 66

linear rank statistics, 58
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log-logistic distribution, 90
logistic distribution, 66
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maximum partial likelihood estimator,
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mean residual lifetime, 12
mortality rate, 10
multivariate counting process, 31

Nelson-Aalen estimator, 39, 57, 61
net hazard, 14, 25

orthogonal martingales, 28, 32

partial likelihood, 69, 71
predictable σ-algebra, 92
predictable covariation process, 28, 29,

32, 33, 37
predictable process, 26, 92
predictable variation process, 27, 29–31,

35
Prentice-Wilcoxon test, 59, 66
proportional hazards assumption, 69
proportional hazardsmodel, see Coxmodel
proportional intensity model, 86

Raleigh distribution, 90
random censorship model, 7

Savage test, 59
stratified Cox model, 83
survival function, 7

Fleming-Harrington estimator, 39
Gill confidence bounds, 53
Hall-Wellner confidence bounds, 54
Kaplan-Meier estimator, 40

survival time, see failure time

test
Gehan-Wilcoxon, 59, 66
logrank, 57, 59, 66, 81
Prentice-Wilcoxon, 59, 66
Savage, 59

Wilcoxon, 59
type I censoring, 7
type II censoring, 7, 14, 19–22

uninformative censoring, 18

Weibull distribution, 89
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