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Abstract
In this paper we present the first information needed in the study of first
order invariant differential operators acting between sections of harmonic
vector bundles associated to projective contact geometries. We prove a nec-
essary and sufficient condition for certain gyp-homomorphism acting between
a first jet prolongation of a harmonic module and another harmonic module
to be a p-homomorphism.

1 Introduction

The theory of invariant differential operators acting between sections of asso-
ciated vector bundles over parabolic geometries has been studied by many au-
thors, see, e.g., Cap, Slovék, Soucek [6], [7], [8], Slovak, Soucek [18], Calder-
bank, Diemer [4] and Calderbank, Diemer, Soucek [5]. In all of these cited
articles the fibres under consideration are finite dimensional. In this text, we
present a generalization of this theory into the infinite dimensional case. This
case is important in some applications, like in the theory of Dirac operators
on symplectic manifolds.

1.1 First order invariant differential operators

Let g be a |k|-graded simple Lie algebra and let us denote by p the parabolic,
by g_ the negative and by p, the positive part of g. Consider a Lie group G
the Lie algebra of which equals g and let P be the the parabolic subgroup of
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G associated to the |k|-grading of g. Further let us consider two manifolds G
and M, together with a parabolic geometry (p : G — M, w) of type (G, P) on
the manifold M, w being a Cartan connection, i.e., a P-equivariant absolute
parallelism reproducing fundamental vector fields on G.

Let (p,V) be a representation of the parabolic group P. For s : G —
V being a P-equivariant map, let us consider the value of the absolutely
invariant derivative V¥ on it

VY% :G =g ®V.

This absolute invariant derivative is associated to the parabolic geometry
(p: G — M,w) and the representation (p, V). For the definition, see Slovak,
Soucek [18]. Let us suppose a representation (o, W) of the group P is given
and consider two associated vector bundles VM = G x,V and WM :=
G X, W. The vector space

J'V=Va& (g eV

is called the first jet prolongation of V. This vector space comes up with a
natural action of P, making it into a P-module, see again Slovak, Soucek
[18]. In the realm of parabolic geometries, one defines a first order invariant
differential operator D : I'(M, VM) — I'(M,W M) to be a homomorphism
of vector spaces for which there is a (nontrivial) P-module homomorphism
®: J'V — W such that

Ds(u) = ®(s(u), V¥s(u))

foru € G and s € I'(M, VM) considered as a P-equivariant V-valued function
on G, ie., s €C®(G,V)I' ~T(M,VM) (a vector space isomorphism).

1.2 Projective contact geometry

There is a common property appearing in some well known parabolic ge-
ometries of certain type, say (G, P), which leads to a definition of a special
grading of the Lie algebra g of the group G.

Definition 1. Let g be a real or complex |k|-graded semisimple Lie algebra.
We call this grading contact if it is a depth two grading, i.e.,

g=92Dg_1Dg D g1 D g2,

satisfying the following two properties



(1) [,]:8-1 X g1 — g_» is nondegenerate and

A classification of contact gradings of complex and real simple Lie algebras
can be found in Yamaguchi [19]. Let us remark, that up to an isomorphism
each complex simple Lie algebra possesses a unique contact grading. This fact
is no more true for real simple Lie algebras, see again Yamaguchi [19], where
the list of all real forms of complex simple Lie algebras, which possesses no
contact grading, together with an information on contact gradings of simple
real Lie algebras, which are not real forms of complex simple Lie algebras are
presented.

Let us consider a real simple Lie algebra g = sp(2k,R) equipped by the
contact grading given in the matrix form as displayed bellow

Yo g1 92

A= g-1 o g1 )

g2 g-1 go

where

(1) go = sp(2k — 2,C) & CE, where F is the grading element uniquely
associated to the grading,

(2) g1 =C*2,

3) g2=C.

Let G = Sp(2k,R) be a symplectic group. Consider the tautological
action of G on the (unique) linear symplectic form R?*. This action factors to
an action on the open rays of R?*. Let us denote by P the isotropy subgroup
of an open ray in R?*. Obviously, P is a parabolic subgroup of the group
G. It can be proved (see Krysl [15]) that P is the parabolic subgroup of G
associated to the contact grading of g given above.

Definition 2. Let G and M?*~! be smooth manifolds. We call a parabolic
geometry (p : G — M,w) of type (G, P) on the manifold M projective
contact geometry if G = Sp(2k,R) is a symplectic group and P its parabolic
subgroup defined above.

For a comprehensive treatment on contact geometries, see Blair [1]; for

some connections of projective contact geometries to Cartan geometries see
Fox [10] and Krysl [15].



1.3 Spinor representations of sp(2k, C)

Symplectic spinor representations were introduced by Bertram Kostant when
he was seeking for an analogy of the Dirac operator on Riemannian or
Lorentzian manifolds for the case of symplectic manifolds, i.e., an arena for
Hamiltonian mechanics, see Kostant [14]. This Dirac operator was then stud-
ied by many authors, see, e.g., Habermann [11], Klein [13].

Consider the symplectic algebra g = sp(2k, C) together with the set of
its fundamental weights denoted by {w;}¥ ,. Let L(v) be the irreducible
highest weight module with the highest weight v. The irreducible highest
weight modules Sy := L(—3wy) and S_ := L(wy_y — Sw) are called spinor
modules.

Let g be an arbitrary semisimple complex Lie algebra and b its Cartan
subalgebra. An h-diagonalizable g-module V is called module with bounded
multiplicities, if there is some k € Ny such that the dimension of each weight
space V(v) is smaller or equal to k. The minimal k with this property is
called degree of V. A module with bounded multiplicities is called completely
pointed provided its degree is 1.

It can be proved (see Britten, Lemire [3]) that an infinite dimensional
sp(2k, C)-module V is completely pointed iff either V.= S, or V. = S .
Moreover, Britten, Hooper and Lemire [2] proved that the tensor product
L(v)®S4 for v an integral dominant weight for g is completely reducible and
decomposes into a finite direct sum of irreducible highest weight g-modules.

Definition 3. We call a sp(2k, C)-module V harmonic module if there is
an integral dominant weight v s.t. V is a direct irreducible summand in
L(v) ® S.. Further let us define a set

. 1
A=) Nws\i >0\ €L i=1...n-1 )\ € Lt Mno1+20n+3 > 0}.
i=1
The following fact is well known.
Theorem 1. The following are equivalent
(1) V a is harmonic module,
(2) the highest weight of V is in A,
(3) Vis a sp(2k, C)-module with bounded multiplicities.

Proof. See Britten, Lemire [3].00



In Krysl [15], it was proved that the tensor product of the defining rep-
resentation L(zw;) and a harmonic module decomposes as folows.

Theorem 2. Let A € A. Then

L(m) ® L(\) = @ Lix),

HEA/\

where Ay C {k = A+ p,u € l(wy)}, II(wy) being the set of all weights of
L(wl)
Proof. See Krysl [15], [16]. O

2 Invariant differential operators for fields with
values in some standard cyclic modules

The aim of this section is to rewrite the theory of first order invariant differ-
ential operators in parabolic geometries for the case of certain infinite dimen-
sional standard cyclic modules. At first we will consider arbitrary modules
and then we restrict our attention to the case of irreducible highest weight
modules.

Let g be a complex |k|-graded semisimple Lie algebra, p, p, and g_ as in
the first section of this article. Let V, W be p-modules. Denote the action of
ponVby A A:p —End(V). Further, let J'V be the first jet prolongation
of the p-module V associated to the |k|-graded Lie algebra g. Let us fix some
dual bases {&.}, {n®} of g_ and p,. The induced action of p on J'V is given
by

Z(s8\Y®s)=MN2)s, Y QANZ)s+[Z,Y]|® s+ Zno‘ R [Z,&)ps") (1)

for Z € p, Y € g*, and s,s'" € V, see Slovdk [17], where this formula is
derived.

Let p2 denote the space go & . .. P gi. We call the space JEV = V& (g* ®
V)/({0} & (p2 ® V) ~ V& (g1 ® V) space of restricted jets. This space
carries a structure of a p-module inherited by factorization. Let us denote by
{n™Y, {€x} some mutually dual bases of g.,. Finally, let ® : g,V — g, ®V
denote the following endomorphism

Q(Z@s) = 1" @7, Ewls

for Z € g1,s € V.



Theorem 3. Let V, W be irreducible p-modules with the action of p, being
trivial. Let ¥ : J'V — W be a go-module homomorphism. Then ¥ is a
p-module homomorphism if and only if ¥ factors through the restricted jets
J}%V and \If‘[m(q)) =0.

Proof. Let ¥ be a gp-homomorphism. If we suppose that ¥ is a p,-
homomorphism, it follows immediately that ¥ vanishes on the image of the
action of p .

Now, we prove that W factors through the restricted jets. Inserting s’ =0
into the equation 1, we obtain Z.(0,Y ® s) = [Z,Y|® s, for Y € g*, Z € p,
and s € V. Let Z;, € g;, s; € V, i = 1,...,k, Because g; generates p,
there are X; € g1, Y; € g;_1 for i = 2,... k such that Z; = [X;,Y;]. Thus
we can write U(YF Z; ® 5;) = W(Z, ®@ 51+ YL [Xi, Vil @ 51) = U(Z, ®
s1) + U(X2.(0,Y2® s9)) + ... + V(X (0, Y, ® s)) = ¥(Z, @ s1). The terms
U(X.(0,Y, ®sg)) = 0 for k = 2,...,k because ¥ vanishes on the image
of the p, action on J'V. Thus we have proved that ¥ factors through the
restricted jets.

Looking at the induced action of p, on J'V we derive the condition

V) 0 ®[Z,Ex]s) =0,

which means that ¥|;,,) = 0 due to the definition of the mapping ®.

The opposite direction of the implication in the statement of this theorem
is obvious. [

In what comes, we would like to compute the mapping ® with help of
the universal Casimir element of g. First, let us recall a well known theorem
on the action of the universal Casimir element on a highest weight module
over a simple complex Lie algebra. It is well known (see Humphrey [12], pp.
143) that if g is a complex simple Lie algebra and b its Cartan subalgebra
and A € b*, then the action of the universal Casimir element ¢ on a standard
cyclic module of the highest weight A is by a scalar

ex = (A4 26, )), (2)

where ¢ is the sum of all fundamental weights of h on g.

Second, let us make some assumptions on the Lie algebra g. Suppose that
the subalgebra gy of g has a one dimensional center. This center is necessarily
generated by the grading element E of the |k|-graded Lie algebra g. Thus we
can decompose gy = g5° @CE where g§° = [go, go] denotes the semisimple part
of g. It is a well known fact that the Killing form B of the Lie algebra g, when
restricted to gy is nondegenerate, too. Let us normalize the Killing form B by
the condition B(E, E') = 1 and denote this resulting nondegenerate invariant
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form on gy by (,) : go X go — C. It is easy to compute that the decomposition
go = g;° ® CE is an orthogonal decomposition. Indeed, take an arbitrary
X € g = [go,80) in the form X = [U,V] for a U,V € gy and compute
(E,X)=(E,[UV]) =(E,U],V) =0 because E is the grading element and
U € go.

Let us denote by {Y,}*_,, {Y/}*_, some mutually dual bases of g5* with
respect to (,). Sometimes we will denote the element E by Yj.1. Now, we
derive the following generalization of a result in Slovék, Soucek [18].

Lemma 1. Let V be a representation of a semisimple |k|-graded Lie algebra
g, then

k
Q(Z@s)=> Y. Z@Y,s
a=1
for each Z € g; and s € V.
Proof. We use the invariance of the Killing form [Z, /] = > (Y,, [Z, & ])Ye =
YooYy, Z],£4)Y, in order to compute the value ®(Z ® s).

(Z®s) = Zn“’@[z,ga,].s
- Zn LB
- Zn%Z([ Y, 2], €w)Yors
- EQ;Z([YZZL@)W'MWS

= Y Y Z®Y,s.

O

Now, we make some assumptions on the representations we shall be deal-
ing with. We will consider that V) is an irreducible p-module which is ir-
reducible with the highest weight A when considered as a gj*-module. Fur-
ther, we assume that g; ® V) decomposes into a finite direct sum of irre-
ducible g§*-modules without multiplicities and denote by 7, the projection
Tt g1 @ Vy — V, where V, is the representation with highest weight p
which occurs in the decomposition of the completely reducible tensor prod-
uct g; ® V). Let us suppose that the representation of the center CE of
go is given by E.v := wv for each v € V) and a w € C. So we are given a
representation of the whole gy which is characterized by the tuple (A, w). The
complex number w is often called conformal weight. Finally, we assume that
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g1 is an irreducible g§’-module with the highest weight «. In order to compute
the mapping @ let us evaluate the following expression Y51 (Y/Y,)(Z ® s)
for s €V, and Z € g;.

k+1 k+1 k+1
N WY)(Z@s) = Y (V). Z@s+Z0Y (YiYa)s+
a=1 a=1 a=1
20(Z ® s), (3)

where we have used the lemma 1 above. Now, we would like to compute
the first two terms of the last written equation using the universal Casimir
element of gj°, see the equation 2.

k+1
S).Zos = (0a+20)Z0s+2Z®s (4)
a=1
k+1
Z@» (YY)s = (MA+20)Z@s+uw'Z®s (5)
a=1

After a straightforwars computation we derive that the L.H.S. of 3 equals

k1
Y YD)(Z@s) = D (np+20)mu(Z©s)
a=1 o
+Z7ru[Z®s+2wZ®s+w2Z®s] (6)
1

Substituting the equations 4, 5 and 6 into the equation 3 we obtain

B(Z@s) =Y (w—)mu(Z®s),

I

where

1
o = 5[(A A +26) + (@, @ +26) — (1, 4+ 20)].

We state our result as a theorem formulating explicitly the assumptions
we have made.



Theorem 4. Let g be a |k|-graded simple Lie algebra such that the subalge-
bra gy has a one dimensional center CE. Let V) be an irreducible p-module
with the highest weight A if considered as a gj*-module. Let the grading ele-
ment F acts by the complex number w (conformal weight). Further, let g; be
an irreducible gj’-module with the highest weight o and consider the action
of p, being trivial. Assume that the tensor product g; ® V) decomposes into
a finite direct sum of irreducible gj*-modules and has no multiplicities then

B(Z®s) =Y (w—d,)m(Z®s),

I

where )
o = 5[ A +26) + (@, 0 +26) = (1, 1+ 20)].

Proof. See the analyzes above this theorem. [
Due to the theorem 3 we can state a corollary of the above written theo-
rem.

Corollary 1. In the setting of the preceding theorem, let 7, be the trivial
extension of m, to J'Vy =V, @ (g ® Vy). Then 7, is a p-homomorphism if
and only if

L
Chg = W-.

Proof. Due to the theorem 3 it is sufficient to show that 7, factors through
the restricted jets and vanishes on the image of ®. The first is from the
definition and the second is a consequence of the theorem 4. The opposite
implication is easy, too: look at the formula for ® and use the fact that =,
is onto V,,. [J

A special case of the corollary is the following statement.

Corollary 2. Let g = sp(2k, C) be equipped by the contact grading, and let
V, be a harmonic module over g§* = sp(2k — 2, C) with the highest weight
A. Then 7, is a p-module homomorphism iff ¢y = w.

Proof. We have already shown (see theorem 2) that gy ® V= L(w;) ®V de-
composes into a finite multiplicity free direct sum of irreducible submodules.
Thus we can apply the Corollary 1.

In the future, we would like to use the last written theorem in the case of
first order invariant differential operators in the setting of projective contact
geometries and harmonic modules. This can be done if one knows a relation-
ship between infinite dimensional representations of the Lie group G§* (the
semisimple part of the reductive group G the Lie algebra of which equals
go) and those of the Lie algebra gg°.
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