Ellipticity of complexes of symplectic twistor operators

Svatopluk Krýsl

Charles University, Prague, Czech republic
ICCAA Holon, June 5th, 2023

Aim

Use of commutant algebra of a group action on a vector space for analysis of complexes of invariant operators defined on functions with values in that vector space. Inv. ops. are defined by projections.

The setting: 1) A associative algebra over the field \mathbb{C} of complex numbers
2) $\rho: A \rightarrow \operatorname{End}(W)$ representation of A on vector space W
3) Commutant algebra (centralizer)
$B=\operatorname{Comm}_{A}(W)=\{T: W \rightarrow W \mid T \circ \rho(a)=\rho(a) \circ T$ for all $a \in$ $A\}$ space of all A-equivariant maps/ A-homomorphisms/intertwiners
4) If A is semi-simple, then W is multiplicity-free as $A \otimes B$-module. I.e., if $W^{\prime} \neq W^{\prime \prime}$ are $A \otimes B$-submodules of W, then W^{\prime} and $W^{\prime \prime}$ are not isomorphic as $A \otimes B$-modules.

Basic example: Schur duality (Commutant algebra for GL on k-tensors)
$G=G L(V)$ and $W=\otimes^{k} V, \rho(g)\left(v_{1} \otimes \ldots \otimes v_{k}\right)=g v_{1} \otimes \ldots \otimes g v_{k}$
$\Longrightarrow\left(c_{1} g_{1}+c_{2} g_{2}\right) \cdot w=c_{1} \rho\left(g_{1}\right)(w)+c_{2} \rho\left(g_{2}\right)(w), g_{1}, g_{2} \in G$,
$c_{1}, c_{2} \in \mathbb{C}$ and $w \in W$ be the extension of the action to the group algebra $\mathbb{C}[\rho(G)] ; \tau(\pi)\left(v_{1} \otimes \ldots \otimes v_{k}\right)=v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(k)}$, $\pi \in S_{k}$.

Result: $\operatorname{Comm}_{A}(W)=\mathbb{C}\left[\tau\left(S_{k}\right)\right]$.
Example concerning harmonic polynomials: $O(n)$ on $P=P\left[x^{1}, \ldots, x^{n}\right]$ by regular representation. Commutant algebra of the action of $\mathbb{C}[O(n)]$ on P is generated by $\Delta=-\frac{1}{2} \sum_{i=1}^{n} \partial_{x^{i}}^{2}$, $E=-\sum_{i=1}^{n} x^{i} \partial_{x^{i}}-\frac{n}{2}$ and multiplication by $r^{2}=\frac{1}{2} \sum_{i=1}^{n}\left(x^{i}\right)^{2}$. Forms a representation of $\mathfrak{s l}(2, \mathbb{C})$ by $X \mapsto \Delta, H \mapsto E, Y \mapsto r^{2}$.

Literature on - examples - of commutant algebras

Excerpt of further examples: Slupinski [Slup] - Spin(n) acting on spinor valued anti-symmetric forms; Howe [Ho]; Goodman, Wallach [GN] (text-book); Leites, Shchepochkina [L]; Krýsl [KrLie]; Bracx, De Schepper, Ellbode, Lávička, Souček [Br]; De Bie, Souček, Somberg [Bie].

Symplectic spinors

(V, ω) real symplectic vector space of dimension $2 n$
$\lambda: \widetilde{G}=M p(V, \omega) \rightarrow \operatorname{Sp}(V, \omega)$, connected double cover of $G=$ $\operatorname{Sp}(V, \omega), \widetilde{G}$ - metaplectic group, non-compact Lie group - parallel to the covering $\operatorname{Spin}(n) \rightarrow S O(n)$
$\mathbb{L} \subseteq V$ maximal isotropic vector subspace: $\omega(v, w)=0$ for all $v, w \in \mathbb{L}, \mathbb{L} \simeq \mathbb{R}^{n}$
$L: M p(V, \omega) \rightarrow U\left(L^{2}(\mathbb{L})\right)$ distinguished Segal-Shale-Weil/ /symplectic spinor/metaplectic/oscillator representation [Sh], [Weil], [Kos]
$S=L^{2}(\mathbb{L})$ - symplectic spinors, $E=\bigoplus_{i=0}^{2 n} \bigwedge^{i} V \otimes S$ symplectic spinor valued anti-symmetric forms

$$
\rho(g)(\alpha \otimes s)=\lambda(g)^{*} \alpha \otimes L(g) s
$$

Decomposition of $E=\bigoplus_{i=0}^{2 n} \Lambda^{i} V \otimes S$

The module E decomposes [KrLie] as \widetilde{G}-module into direct sum

$$
\bigoplus_{(i, j) \in \equiv} E^{i j}
$$

where \equiv is a finite set $((n+1)(2 n+1)$ elements), $E^{i j}=E_{i j}^{+} \oplus E_{i j}^{-} \subseteq \bigwedge^{i} V \otimes S$ and $E_{i j}^{ \pm}$are irreducible \widetilde{G}-modules.
$p^{i j}$ projection of $\bigwedge^{i} V \otimes S$ onto $E^{i j}$

Lie super algebras

$\mathfrak{f}=\mathfrak{f}_{0} \oplus \mathfrak{f}_{1}$ is a \mathbb{Z}_{2}-graded/aka super vector space
$|z|=i$ if $0 \neq z \in \mathfrak{f}_{i}, i \in \mathbb{Z}_{2}=\{0,1\}$
【, 】 $: \mathfrak{f} \times \mathfrak{f} \rightarrow \mathfrak{f}$ is bilinear

$$
\llbracket, \rrbracket: \mathfrak{f}_{i} \times \mathfrak{f}_{j} \rightarrow \mathfrak{f}_{i+j}
$$

super anti-symmetric: $\llbracket x, y \rrbracket=-(-)^{|x||y|} \llbracket y, x \rrbracket$
super Jacobi rule

$$
(-)^{|x||z|} \llbracket x, \llbracket y, z \rrbracket \rrbracket+(-)^{|z||y|} \llbracket z, \llbracket x, y \rrbracket \rrbracket+(-)^{|y||x|} \llbracket y, \llbracket z, x \rrbracket \rrbracket=0
$$

where $x, y, z \in \mathfrak{f}_{0} \cup \mathfrak{f}_{1}, i, j \in \mathbb{Z}_{2}$ and $i+j$ means $i+j \bmod 2$

Lie super algebra $\mathfrak{f}=\mathbf{o s p}(1 \mid 2)$

$$
\begin{aligned}
& \mathfrak{f}=\mathfrak{f}_{0} \oplus \mathfrak{f}_{1} \text { (bosonic and fermionic part) } \\
& \mathfrak{f}_{0}=\operatorname{Lin}_{\mathbb{C}}\left(e^{+}, h, e^{-}\right) \cong \mathfrak{s l}(2, \mathbb{C}) \\
& \mathfrak{f}_{1}=\operatorname{Lin}_{\mathbb{C}}\left(f^{+}, f^{-}\right) \\
& \llbracket h, e^{ \pm} \rrbracket= \pm e^{ \pm} \quad \llbracket e^{+}, e^{-} \rrbracket=2 h \\
& \llbracket h, f^{ \pm} \rrbracket= \pm \frac{1}{2} f^{ \pm} \quad \llbracket f^{+}, f^{-} \rrbracket=\frac{1}{2} h \\
& \llbracket e^{ \pm}, f^{\mp} \rrbracket=-f^{ \pm} \quad \llbracket f^{ \pm}, f^{ \pm} \rrbracket= \pm \frac{1}{2} e^{ \pm}
\end{aligned}
$$

Commutant for sympl. spinor valued anti-symmetric forms

Consider $E=E_{0} \oplus E_{1}$ as super vector space (\mathbb{Z}_{2}-grading), where $E_{0}=\bigoplus_{i=0}^{n} \Lambda^{2 i} V \otimes S, E_{1}=\bigoplus_{i=1}^{n} \Lambda^{2 i-1} V \otimes S$.
$p_{+}(\alpha \otimes s)=\alpha \otimes s_{+}, p_{-}(\alpha \otimes s)=\alpha \otimes s_{-}$, where
$s=\left(s_{+}, s_{-}\right) \in S_{+} \oplus S_{-}=S=L^{2}(\mathbb{L})$ is the decomposition into even and odd part.

Definition:
$F^{+}(\alpha \otimes s)=\frac{\imath}{2} \sum_{i=1}^{2 n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot s$ (degree rising),
$F^{-}(\alpha \otimes s)=\frac{1}{2} \sum_{i, j=1}^{2 n} \omega^{i j} \iota_{e_{i}} \alpha \otimes e_{j} \cdot s$ (degree lowering).
Theorem ([KrLie] 2012; ArXiv 2008): Setting $\tau\left(f^{ \pm}\right)=F^{ \pm}$and extending it to a homomorphism of Lie super algebras $\mathfrak{o s p}(1 \mid 2)$ and $\operatorname{End}(E)$, we get $\operatorname{Comm}_{\mathbb{C}[\widetilde{G}]}(E)=\left\langle\tau(\mathfrak{o s p}(1 \mid 2)), p_{ \pm}\right\rangle$.

Symplectic twistor operators

$\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ symplectic vector space
$\left(e_{i}\right)_{i=1}^{2 n}$ symplectic basis, $\left(\epsilon^{i}\right)_{i=1}^{2 n} \subseteq\left(\mathbb{R}^{2 n}\right)^{*}$ dual basis
$f: \mathbb{R}^{2 n} \rightarrow E^{i j} \subseteq \bigwedge^{i} V \otimes S$, smooth $\left(C^{\infty}\right)$
$(\nabla f)(y)=\sum_{k=1}^{2 n} \epsilon^{k} \wedge\left(\frac{\partial f}{\partial x^{k}}\right)(y) \in \bigwedge^{i+1} V \otimes S, y \in \mathbb{R}^{2 n}$,
$\left(T_{ \pm}^{i j} f\right)(y)=p^{i+1, j \pm 1}(\nabla f)(y)$ symplectic twistor operators
Parallel to Dolbeault operators in (almost)complex analysis.
Symplectic Dirac operators defined by K. Habermann $[\mathrm{KH}]$ in the nineties. ([Habs] monograph on sympl. Dirac.)

Complexes of symplectic twistor operators

Theorem [KrMon], [KrArch]: If (M, ω) is a smooth symplectic manifold ($d \omega=0$), with vanishing second Stiefel-Whitney class, ∇ is a symplectic torsion-free connection ($\nabla \omega=0$, torsion of $\nabla=0$) and the symplectic Weyl curvature ([Vais]) of ∇ vanishes, then $\left(C^{\infty}\left(M, E^{i+k, j \pm k}\right), T_{ \pm}^{i+k, j \pm k}\right)_{k}$ is an elliptic complex, i.e.,

Complexes of symplectic twistor operators

Theorem [KrMon], [KrArch]: If (M, ω) is a smooth symplectic manifold ($d \omega=0$), with vanishing second Stiefel-Whitney class, ∇ is a symplectic torsion-free connection $(\nabla \omega=0$, torsion of $\nabla=0$) and the symplectic Weyl curvature ([Vais]) of ∇ vanishes, then $\left(C^{\infty}\left(M, E^{i+k, j \pm k}\right), T_{ \pm}^{i+k, j \pm k}\right)_{k}$ is an elliptic complex, i.e., $T_{ \pm}^{i+k+1, j \pm k \pm 1} T_{ \pm}^{i+k, j \pm k}=0$ and

Complexes of symplectic twistor operators

Theorem [KrMon], [KrArch]: If (M, ω) is a smooth symplectic manifold ($d \omega=0$), with vanishing second Stiefel-Whitney class, ∇ is a symplectic torsion-free connection ($\nabla \omega=0$, torsion of $\nabla=0$) and the symplectic Weyl curvature ([Vais]) of ∇ vanishes, then $\left(C^{\infty}\left(M, E^{i+k, j \pm k}\right), T_{ \pm}^{i+k, j \pm k}\right)_{k}$ is an elliptic complex, i.e., $T_{ \pm}^{i+k+1, j \pm k \pm 1} T_{ \pm}^{i+k, j \pm k}=0$ and
$\operatorname{Im} \sigma\left(T_{ \pm}^{i+k, j \pm k}, \xi\right)=\operatorname{Ker} \sigma\left(T_{ \pm}^{i+k+1, j \pm k \pm 1}, \xi\right), 0 \neq \xi \in T^{*} M$.
Use of commutant: Twistor ops. are given by $p^{i+1, j \pm 1}$ and the covariant derivative. $p^{i+1, j \pm 1}$ are projections onto \widetilde{G}-submodule, thus \widetilde{G}-homomorphisms. Thus they belong to the commutant algebra $\operatorname{Comm}_{\mathbb{C}[\widetilde{G}]}(E)$, which is generated by $F^{ \pm}$and the two projections $p_{ \pm}$onto the even and odd part.

Symbols of symplectic twistor complex

$$
\begin{aligned}
& \sigma_{i}(\alpha \otimes f)=\sigma\left(T_{+}^{i i}, \xi\right)(\alpha \otimes f)=p^{i i}(\xi \wedge \alpha \otimes s)= \\
& \quad=\xi \wedge \alpha \otimes f+\frac{2}{i-n} F^{+}(\alpha \otimes \xi \cdot f)+\frac{\imath}{i-n} E^{+}\left(\iota_{\xi} \alpha \otimes f\right)
\end{aligned}
$$

Ellipticity: $\operatorname{Im} \sigma_{i-1}=\operatorname{Ker} \sigma_{i}$ for $\xi \neq 0$
Assume $\alpha \otimes f \in \operatorname{Ker} \sigma_{i}$
Folded applying of operators F^{-}, E^{-}and using the relations defining $\mathfrak{o s p}(1 \mid 2) \Longrightarrow \xi \wedge \alpha \otimes f=0$
\Longrightarrow trivial case of a version of Cartan lemma $\alpha=\xi \wedge \beta \Longrightarrow$
$\alpha \otimes f=\xi \wedge \beta \otimes f$

Symbols of symplectic twistor complex

$$
\begin{aligned}
& \sigma_{i}(\alpha \otimes f)=\sigma\left(T_{+}^{i i}, \xi\right)(\alpha \otimes f)=p^{i i}(\xi \wedge \alpha \otimes s)= \\
& \quad=\xi \wedge \alpha \otimes f+\frac{2}{i-n} F^{+}(\alpha \otimes \xi \cdot f)+\frac{\imath}{i-n} E^{+}\left(\iota_{\xi} \alpha \otimes f\right)
\end{aligned}
$$

Ellipticity: $\operatorname{Im} \sigma_{i-1}=\operatorname{Ker} \sigma_{i}$ for $\xi \neq 0$
Assume $\alpha \otimes f \in \operatorname{Ker} \sigma_{i}$
Folded applying of operators F^{-}, E^{-}and using the relations defining $\mathfrak{o s p}(1 \mid 2) \Longrightarrow \xi \wedge \alpha \otimes f=0$
\Longrightarrow trivial case of a version of Cartan lemma $\alpha=\xi \wedge \beta \Longrightarrow$
$\alpha \otimes f=\xi \wedge \beta \otimes f=p^{i i}(\xi \wedge \beta \otimes f)=\sigma_{i-1}(\beta \otimes f)$
[Baur] Baur, K., Cartan components and decomposable tensors. Transform. Groups 8 (2003), no. 4, 309-319.
[Bie] De Bie, H., Somberg, P., Souček, V., The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator. J. Geom. Phys. 75 (2014), 120-128.
[Br] Brackx, F., De Schepper, H., Eelbode, D., Lávička, R., Souček, V., Fischer decomposition for $\mathfrak{o s p}(4 \mid 2)$-monogenics in quaternionic Clifford analysis. Math. Methods Appl. Sci. 39 (2016), no. 16, 4874-4891
[GN] Goodman, R., Wallach, N., Representations and invariants of the classical groups. Encyclopedia of Mathematics and its Applications, 68. Cambridge University Press, Cambridge, 1998.
[Hab] Habermann, K., The Dirac operator on symplectic spinors, Ann. Global Anal. Geom. 13 (1995), no. 2, 155-168.
[Habs] Habermann, K., Habermann, L., Introduction to symplectic Dirac operators, Lecture Notes in Mathematics 1887. Springer-Verlag, 2006.
[Ho] Howe, R., Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (1989), no. 2, 539-570.
[Kos] Kostant, B., Symplectic spinors. Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), 139-152, Academic Press, London, 1974.
[KrMon] Krýsl, S., Complex of twistor operators in spin symplectic geometry, Monatshefte für Mathematik, Vol. 161 (2010), no.4, 381-398.
[KrArch] Krýsl, S., Ellipticity of symplectic twistor complexes, Archivum Math., Vol. 44 (4) (2011), 309-327.
[KrLie] Krýsl, S., Howe duality for the metaplectic group acting on symplectic spinor valued forms, Journal of Lie theory, Vol. 22 (2012), no. 4, 1049-1063; arxiv 2008.
[KrCMP] Krýsl, S., Induced C*-complexes in metaplectic geometry, Comm. Math. Phys., in print, https://doi.org/10.1007/s00220-018-3275-9
[L] Leites, D., Shchepochkina, I., The Howe duality and Lie superalgebras. Noncommutative structures in mathematics and physics (Kiev, 2000), 93-111, Kluwer Acad. Publ., Dordrecht, 2001.
[Sh] Shale, D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149-167.
[Slup] Slupinski, M., A Hodge type decomposition for spinor valued forms, Ann. Sci.École Norm. Sup. (4) 29 (1996), no. 1, 23-48.
[Vais] Vaisman, I., Symplectic curvature tensors, Monatshefte für Mathematik 100 (1985), 299-327.
[Weil] Weil, A., Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.

