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Chapter 1

Introduction

The main topic of the dissertation belongs to the crossroad of several disci-

plines - global analysis (first order differential operators on manifolds), geometry

(manifolds with a special geometrical structure) and representation theory (fi-

nite and infinite dimensional representations of semi-simple and reductive Lie

groups and Lie algebras). The principal role of the Lie group theory follows

from the fact that we are studying differential operators on manifolds, which

are invariant with respect to a suitable action of a semi-simple Lie group on

considered functions (or fields).

During last decades, a lot of attention was paid to a special class of geo-

metrical structures on manifolds based on parabolic subgroups of semi-simple

Lie groups. Standard name used at present for such structures is a parabolic

geometry. Main examples of parabolic geometries include projective, confor-

mal, quaternionic and CR manifolds, further interesting cases are being studied

just now in more details. Every parabolic geometry has its homogeneous model

M = G/P, where P is a parabolic subgroup of a semi-simple Lie group G. Its

curved version is, following ideas of Élie Cartan going back to the beginning of

the last century, a principal fibre bundle G over a manifold M the dimension

of which equals the dimension of G/P together with the so called Cartan con-

nection ω giving a complete H-equivariant parallelism of the tangent space of

G and reproducing the fundamental vector fields.

One of those geometries is also the so called projective contact geometry. It

is a special case of a contact geometry (i.e., a subbundle of the tangent space of
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codimension 1 is given with suitable properties). The projective and projective

contact geometries are the two exceptional parabolic geometries. They form a

distinguished set of examples due to the fact that usual geometric data are not

sufficient to reconstruct the principal bundle G and the Cartan connection ω,

additional data are needed in these two cases.

The projective contact geometry is described in details in chapter 4, following

ideas contained in the forthcoming book Čap, Slovák [7]. We describe in detail

the additional structure needed to make the odd dimensional sphere into a

homogeneous model of the projective contact geometry. Main data of the curved

version are described. Invariant differential operators on manifolds with a given

contact projective structure contain a class of standard operators coming in the

so called BGG sequences. The form of the sequence and the highest weights of

induced bundles are described.

The representations inducing the bundles in the standard BGG sequences

are finite dimensional irreducible representations of a reductive group (the Levi

factor) with a trivial action of P+. The projective contact geometry is modelled

on a homogeneous space M = G/P, where g = sp(2k + 2,R) and g0 = R ⊕

sp(2k,R).

There is a very nice and unusual analogy between irreducible modules over

sp(2k,R) and so(2k,R). The standard point of view is to consider the set of

finite dimensional representations of sp(2k,R) as the most appropriate analogue

of the set of finite dimensional representation of so(2k,R). There is, however,

a substantial difference between the both cases as far as spinor representations

concerns. In the symplectic case, there are no finite dimensional representations

similar to spinor representations of the orthogonal group. A remarkable and

unusual analogue of spinor representations was proposed by Bertram Kostant,

see [23]. His spinor representations of the metaplectic group (which is a double

cover, as in the orthogonal case, of the symplectic group) are, however, infinite

dimensional ones.

Finite dimensional representations are usually classified (and denoted) by

their highest weight. Infinite dimensional representations do not have neces-

sarily a highest weight. The Kostant spinor representations are highest weight
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modules and their highest weight has (as it is the case for spinor representations

of the orthogonal group) half-integer entries. The Kostant infinite dimensional

representations were used as values for spinor fields on R2k and the (symplectic)

Dirac operator was defined for such spinor fields by Katharina Habermann, see

[15].

In the orthogonal case, any finite dimensional representation of so(R, 2k)

can be constructed as a spin-tensor, i.e., as an irreducible subrepresentation in

the tensor product of a spinor representation with a finite dimensional repre-

sentation with integral highest weight (a tensor representation). By a Kostant

proposal, we know what an analogue of a spinor representation should be. One

possible suggestion for an analogue of spin-tensors in the symplectic case hence

could be any irreducible subrepresentation of a tensor product of a finite di-

mensional representation with the Kostant spinor representation. It is not easy,

however, to show that such a tensor product is completely reducible and to

characterize the corresponding infinite-dimensional representations.

Recently, these facts were proved by Britten, Hooper and Lemire, see [3].

They proved the complete reducibility of such tensor products and character-

ized the corresponding irreducible components by their (half-integral) highest

weights. They also showed their another nice characterization. They are ex-

actly those infinite-dimensional representations, which have uniformly bounded

dimension of their weight spaces. The Kostant spinor representations are char-

acterized among them as the unique representations, for which dimensions of

all their weight spaces are equal to one! In the thesis, these representations are

called harmonic representations.

It hence seems to be clear that finite-dimensional spin-tensor representations

of the orthogonal group have as an appropriate analogue the union of set of all

finite dimensional representations (which is an analogue of tensor representa-

tions) and the set of all harmonic representations (an analogue of spin-tensor

representations). All the suggests that for the symplectic group, we should

study invariant differential operators acting on fields with values in harmonic

representations, resp. in the corresponding induced bundles.

For this purpose, the key fact is to prove that the tensor product of a har-
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monic representation with the defining representation is completely reducible

and its components are again harmonic modules. These facts are proved in the

third chapter and it is one of the main results in the thesis. For every pro-

jection from the tensor product of a harmonic representation with the defining

representation, the analogue of a conformal weight can be uniquely computed in

such a way that the chosen projection is a p-module homomorphism. This is a

basic fact, see the chapter 6, needed for an investigation of first order invariant

differential operators on functions with values in a harmonic representation, its

proof can be found in chapter 6.

A part of the thesis is devoted to another special case of a parabolic geometry.

It is a contact orthogonal geometry in odd dimension. In chapter 4, the BGG

diagram is computed for this parabolic geometry in a general case. This is

another new result in the thesis. It means that we give a full description of

all weights for inducing bundles for Lie algebra cohomology for any irreducible

G-modules. As an application of this result, it is possible to determine a form of

singular orbits for the affine action of the Weyl group. In particular, potential

applications include a quite interesting case of the complex, which starts with an

overdetermined first order system, which reduces in the flat case to the system

of two Dirac operators on Rn. The resulting complex is then an analogue of the

Dolbeault complex in two Clifford variables. For the mentioned applications, it

is also important to understand real versions of the Hasse and BGG diagrams.

Now, let us come to a more detailed description of chapters of this disserta-

tion thesis. The first chapter includes this introduction.

In the second chapter some introductory notions and basic facts are pre-

sented. In the first section, the definitions of a |k|-grading and standard parabolic

subalgebras are given. We have mentioned the relationship between |k|-gradings

and parabolic subalgebras of a simple Lie algebra in the real and complex case.

In the second section, standard cyclic modules over simple Lie algebras are

sketched and real representations of real forms of simple Lie algebras explained.

Some combinatorial and algebraic structures like Hasse and Bernstein-Gelfand-

Gelfand (BGG) diagrams and cohomologies of Lie algebras with values in finite-

dimensional g-modules are introduced in the third section. In this section, we
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have also presented the Kostant theorem on cohomologies together with the

relationship between cohomologies of Lie algebras and the BGG-diagrams. The

fourth section is devoted to symplectic Clifford algebras, Heisenberg algebras

and groups together with their representation. In this section the Segal-Shale-

Weil representation of a metaplectic group is introduced. The last two sec-

tions of this chapter involve some basic facts on Cartan geometries (especially

the parabolic ones), first jet-prolongation of a P -module, absolutely invariant

derivative and invariant differential operators.

The third chapter is devoted to the study of certain class of irreducible

infinite-dimensional standard cyclic modules over symplectic algebras, the so

called harmonic modules. In the first section we have summarized some results

of Kostant on tensor products of finite and infinite dimensional g-modules ad-

mitting a central character. In the second section, we present a generalization

of some theorems on completely reducible modules, which are well known in

the finite dimensional case, to the infinite dimensional one. In the third section

the half-spinor representations of the symplectic algebra are introduced together

with a description of an analogy between this modules and the spinor modules

for orthogonal algebras. We have summarized some results of Britten, Hooper

and Lemire written in articles [3], [2] in the fourth section. In the fifth section,

a theorem is proved, in which the modules occurring in the tensor product of

a harmonic module with the defining representation are described. We shall

need this theorem for future application in the theory of invariant differential

operators for projective contact geometries.

In the fourth chapter the projective contact geometries are studied. We

present a theorem in which the bijective relationship between contact projections

and quotient connection is described. We have also derived some transformation

formulas for contact projections and quotient connections. Further, we have

introduced the projective contact sphere as a homogeneous model of projective

contact geometry. This introduction can be found in the book of Čap, Slovák

[7]. The last part of this chapter involves a computation of Hasse and BGG

diagram for the contact graded symplectic algebra of general rank and for a

general dominant integral weight. The mentioned diagrams for the real form of
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this algebra are also presented.

We study the Hasse and BGG diagrams for contact graded orthogonal al-

gebras of a general odd rank in the fifth chapter. For this type of grading

the saturated sets are computed and the prescription for weights in the BGG

diagram is given.

In the sixth chapter, the theory of first order invariant differential operators

for parabolic geometries is introduced. We have generalized this theory to the

case of some infinite-dimensional standard cyclic modules. The main ingredient

needed for this generalization is the multiplicity freeness of the tensor product

of such a standard cyclic module with the defining representation.
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Chapter 2

Lie algebras and their

representations, symplectic

Clifford algebras and

parabolic geometries

2.1 |k|-graded Lie algebras

In this section we summarize some basic concepts of real or complex |k|-graded

semisimple Lie algebras, parabolic subalgebras, contact gradings and some groups

associated to a |k|-grading. More information on this topic and related geomet-

rical ideas (prolongations of systems of differential equations) can be found in

Yamaguchi [31].

At first let us recall some basic facts on complex and real simple Lie al-

gebras. It is well known that the complex simple Lie algebras are classi-

fied by their Dynkin diagrams. We denote the Dynkin diagram of a sim-

ple complex Lie algebra g by Xl if the rank of g is l. In this case Xl ∈

{Al, Bl, Cl, Dl, E6, E7, E8, F4, G2}.

In the real case, there is a similar result for real forms of complex simple

Lie algebras. A real Lie algebra g is simple if and only if it is a real form of a

complex simple Lie algebra f, i.e., f = g⊗C, or it is a complex simple Lie algebra

considered as a real Lie algebra (we simply forget the multiplication by complex

numbers). The real forms (in some books only the noncompact real forms) of

complex simple Lie algebras are classified by the so called Satake (orVogan)
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diagrams. Satake diagrams look like the Dynkin diagrams, but some nodes of

the Satake diagram are black and some white nodes of this diagram are joined

by an arrow, see Šilhan [28] or Knapp [20], pp. 339. We denote the Satake

diagram of a (noncompact) real form g by Sl if the rank of g is l. The arrows

joining some white nodes of a Satake diagram induce a map of the system of

simple roots ∆. This map will be called symmetry and will be denoted by sν,

see Šilhan [28]. We define sν(αi) = αj if and only if αi ∈ ∆ is joined by an

arrow with αj ∈ ∆ (αi, αj are white nodes).

Definition 2.1.1. A |k|-graded Lie algebra is a complex or real Lie algebra

equipped with the vector space decomposition g = g−k ⊕ . . . ⊕ g0 ⊕ . . . ⊕ gk

such that [gi, gj ] ⊆ gi+j for i, j ∈ {−k, . . . , k}1 and such that the negative part

g− := g−k ⊕ . . . ⊕ g−1 is generated by g−1 as a Lie algebra. We call such a

grading |k|-grading.

Let p denote the subalgebra g0 ⊕ . . .⊕ gk of g and p+ denote the subalgebra

g1 ⊕ . . . ⊕ gk called the positive part of a |k|-graded Lie algebra. In the case g

is a semisimple Lie algebra, the subalgebra p is a parabolic subalgebra of g. We

will call this parabolic subalgebra associated parabolic subalgebra.2 From the

definition 2.1.1 it follows that p+ is a nilpotent Lie algebra. To any |k|-grading

of a simple Lie algebra, we can associate a unique element E ∈ g such that

[E,X ] = jX for each X ∈ gj for j = −k, . . . , k. For proof see the book Čap,

Slovák [7]. We call such an element the grading element. It is also well known

that g0 is a reductive subalgebra of g, thus we have a decomposition g0 = gss
0 ⊕z,

where z is the center of g0 and gss
0 := [g0, g0] is the semisimple part of g0, see

the book Čap, Slovák [7] for details.

Let g be a simple Lie algebra, h any Cartan subalgebra of g and Φ the system

of roots for (g, h). Chose a system Φ+ of positive roots. To the choice (h,Φ+),

we can associate the so called standard Borel subalgebra, i.e., certain maximal

solvable subalgebra of g. The standard Borel subalgebra b is defined by

b := h ⊕ n+,

1for |i| > k, gi = {0} is to be understood
2associated to the |k|-graded Lie algebra g
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where n+ :=
⊕

α∈Φ+ gα.

Definition 2.1.2 (Standard parabolic subalgebra). Let g be a simple Lie

algebra. We call any subalgebra p ⊆ g standard parabolic subalgebra with respect

to (h,Φ+) if h is a Cartan subalgebra of g and a Φ+ is a system of positive roots

such that p ⊇ b, where b is the standard Borel subalgebra with respect to

(h,Φ+).

Gradings of complex simple Lie algebra. Let g be a complex simple Lie

algebra. For a given tuple (h,Φ+) of a Cartan subalgebra and a choice of the

system of positive roots, one can show that there is a bijective correspondence

between the set of all standard parabolic subalgebras p ⊆ g with respect to

(h,Φ+) and subsets Σ of the system of simple roots ∆(⊆ Φ+).

This correspondence is given as follows. Let (h,Φ+) be a choice of a Cartan

subalgebra and a system of positive roots. From the structure theory of Lie

algebras it follows that any standard parabolic p subalgebra with respect to

(h,Φ+) is of the form p = b ⊕
⊕

α∈Ψ g−α for a subset Ψ ⊆ Φ+, see the book

Čap, Slovák [7]. To such a parabolic subalgebra, we associate a subset Σ of

the system of simple roots ∆ given by Σ = {α ∈ ∆; g−α * p}. Conversely, for

a choice (h,Φ+) of a Cartan subalgebra and a system of positive roots, let a

subset Σ of the system of simple roots be given. Let b be the standard Borel

subalgebra with respect to (h,Φ+). Then we define p to be the direct sum

p = b ⊕
⊕

α∈Ψ g−α, where Ψ ⊆ Φ+ is defined to consist of those α ∈ Φ+ with

the property that in the decomposition of α into simple roots no element of Σ

occurs in it with a nonzero coefficient.

The next construction defines a |k|-grading from a given subset Σ of the

system of simple roots. Let g be a simple Lie algebra, h a Cartan subalgebra of

g, Φ+ a choice of positive roots and ∆ the system of positive roots according to

(h,Φ+). Let Σ be a subset of ∆, Σ ⊆ ∆. Put

Φ+
j := {α =

l∑

i=1

niαi ∈ Φ+;
∑

αi∈Σ

ni = j}

for j ≥ 0, where ∆ =: {α1, . . . , αl}. A nonnegative number j is called the
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Σ-height of a root α ∈ Φ+, if α ∈ Φ+
j . We can construct

g0 := h ⊕
⊕

α∈Φ+
0

(gα ⊕ g−α),

gj :=
⊕

α∈Φ+
k

gα, g−j :=
⊕

α∈Φ+
k

g−α

for j > 0. Then it can be shown that g = ⊕k
j=−kgj is a |k|-graded Lie algebra,

where k is the largest nonnegative number such that there is a positive root

α ∈ Φ+ the Σ-height of which equals k. Conversely, for any |k|-grading g =

g−k⊕ . . .⊕g0⊕ . . .⊕gk a Cartan subalgebra h of g and a system of positive roots

Φ+ can be chosen such that the associated parabolic subalgebra p = g0⊕ . . .⊕gk

is a standard parabolic subalgebra with respect to (h,Φ+). The subset Σ of the

system of simple roots ∆ corresponding to p is such that the |k|-grading is given

by the Σ-height, described above. For details, see the book of Čap, Slovák [7].

The depth k of this |k|-grading can be read off the expansion of the highest root θ

(i.e., the highest weight of the adjoint representation of g). Let θ =
∑l

i=1 ni(θ)αi

then k =
∑

αi∈Σ ni(θ), see Yamaguchi [31].

For a subset Σ ⊆ ∆ we denote by (Xl,Σ) the corresponding |k|-grading or

the standard parabolic Lie algebra associated to Σ, if Xl is the Dynkin diagram

of g. Sometimes we will write the symbol (Xl,Σ) as the so called crossed Dynkin

diagram which is the Dynkin diagram Xl with nodes in Σ being crossed.

Example: Let g = A2 = sl(3,C). Let us denote the algebra of diagonal

matrices in g by h. This algebra is a Cartan subalgebra of g. Let {εi}3
i=1 be

elements of h∗ defined by their action on an element d = diag [a1, a2, a3] for

ai ∈ mathbbC, i = 1, . . . , 3 by the formula ǫi(d) := di for i = 1, . . . , 3. We choose

a system of positive roots for (g, h) as follows Φ+ = {ε1 − ε2, ε1 − ε3, ε2 − ε3}.

Then ∆ = {α1 := ε1 − ε2, α2 := ε2 − ε3} is the system of simple roots for (g, h)

and the choice of Φ+. Let us put Σ = {α1} ⊆ ∆. We construct the grading

(A2, {α1}). The highest root of A2 is θ = ε1 − ε3 (see Knapp [20], pp. 509).

The expansion θ = α1 + α2 shows that k = 1. In this case Φ+
1 = {α1, α1 + α2},

Φ+
0 = {α2}. Thus dim g0 = 2 + 1 + 1 = 4, and dim g−1 = dim g1 = 2. In terms
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of matrices this grading is given as follows

A =

( g0 g1

g−1 g0

)
,

where the the diagonal boxes are of size one and two. The associated parabolic

subalgebra consists of matrices of type A2 where the g−1 block is zero, i.e.,

p =

{
A =

(∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
∈ sl(3,C)

}
.

Gradings of a real form of a simple complex Lie algebra. In the real

case, there is a similar result as in the complex one. We will mention it only

briefly, for details see Yamaguchi [31]. Let g be a real form of a complex simple

Lie algebra of rank l. Let Sl be the Satake diagram of g. We call any subset

Σ of the set of white nodes of the Satake diagram Sl admissible subset, if it is

invariant under the symmetry sν of the Satake diagram Sl. In Yamaguchi [31],

a construction of a grading corresponding to an admissible subset Σ is written.

Moreover, a bijective correspondence (in the similar sense as in the complex

case) between the set of all admissible subsets Σ and gradings of the real form

g is established.

We will denote this grading or the corresponding standard parabolic sub-

algebra by (Sl,Σ) if the Satake diagram of g is Sl. Sometimes we will write

the symbol (Sl,Σ) as the so called crossed Satake diagram which is the Satake

diagram Sl with nodes in Σ being crossed.

Contact gradings. In sections 4.4 and 5.1, we will need the notion of contact

grading.

Definition 2.1.3. Let g be a real or complex |k|-graded semisimple Lie algebra.

We call this grading contact if it is a depth two grading, i.e.,

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

satisfying the following two properties

(1) [, ] : g−1 × g−1 → g−2 is nondegenerate and
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(2) dim g−2 = 1.

In Yamaguchi [31] there is a classification of contact gradings for each com-

plex simple Lie algebra and each real form of a complex simple Lie algebra.

We only mention that for each complex simple Lie algebra there is exactly one

contact grading. For each real form there is exactly one contact grading, except

of the following real forms: AI(l = 1), AII, BII, CII, DII, EIV or FII (in

the list of table VI in Helgason [17]).

Groups associated to a |k|-grading. Now, let us define some groups associ-

ated to a |k|-grading of a semisimple Lie algebra g. Let g = g−k⊕. . .⊕g0⊕. . .⊕gk

be a |k|-graded complex semisimple Lie algebra. Let G be a complex Lie group

such that its Lie algebra is g. We denote the subgroup of G of elements g ∈ G for

which Ad(g)gi ⊆ gi for i = −k, . . . , k by G0. To the |k|-grading of g we associate

the filtration g = F−k(g) ⊆ . . . ⊆ Fk(g) of g defined by Fi(g) = gi ⊕ . . . ⊕ gk,

i = −k, . . . , k, and call it the associated filtration. We denote the subgroup of G

consisting of elements g ∈ G such that their Ad-action preserves the associated

filtration, i.e., Ad(g)(gi) ⊆ Fi(g) for i = −k, . . . , k, by P. It can be shown that

this group is a parabolic subgroup of G. We will call it an associated parabolic

group to the |k|-graded Lie algebra g and the group G.

Theorem 2.1.1. Let g be |k|-graded simple Lie algebra. Then the associated

parabolic group P has Lie algebra p, and G0 has Lie algebra g0. Let g ∈ P be any

element. Then there exist unique elements g0 ∈ G0 and Xi ∈ gi for i = 1, . . . , k,

such that

g = g0 expX1 . . . expXk.

Proof. See Čap, Schichl [6].✷

Remark 2.1.1. If V,W are P -modules and Φ : V → W is a linear mapping

which is G0-equivariant and infinitesimally p+-equivariant then it is a P -module

homomorphism. This remark is an easy consequence of the previous theorem,

for comments see Čap, Slovák, Souček [10].
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2.2 Representation theory of semisimple Lie al-

gebras

There is a well known theorem which holds for all complex simple Lie algebras

g about their complex representation. It says that the set of all complex irre-

ducible finite dimensional representations of g is in a bijective correspondence

with certain semigroup in the dual h∗ of a Cartan subalgebra h of g. In this

section we present a generalization of this theorem and its extension to the real

case (i.e., the case in which g is a real form of a complex simple Lie algebra)

together with introducing some preparatory notions.

2.2.1 Standard cyclic modules

The main source of this subsection is the book of Humphrey [18]. Let g be a

complex semisimple Lie algebra, B its Killing form, h its Cartan subalgebra, Φ

the system of roots with respect to (g, h), Φ+ a system of positive roots and ∆

the system of simple ones with respect to the previous choices of h and Φ+. Let

U(g) be the universal enveloping algebra of g and δ the half sum of all positive

roots, i.e.,

δ =
1

2

∑

φ∈Φ+

φ ∈ h∗.

Let V be a complex finite or infinite dimensional g-module; the action of g on

V is denoted by a dot. For an element λ ∈ h∗ let us denote by V(λ) the vector

subspace

V(λ) = {v ∈ V ;H.v = λ(H)v,H ∈ h}.

(This subspace is called weight space if V(λ) 6= {0} and in such case λ is called

weight of h on V.) Due to the notation introduced before, the root spaces gα

for α ∈ Φ can be seen as weight spaces of the adjoint representation of g.

A maximal vector (of weight λ) is a nonzero vector v+ ∈ V(λ) such that it

is killed by gα for all α ∈ ∆, i.e., X.v+ = 0 for all X ∈ gα, α ∈ ∆. (In case

in which dim V = ∞, the maximal vector need not to exist.) A g-module V is

called standard cyclic if it is generated by its maximal vector, i.e., V = U(g).v+

for a maximal vector v+ ∈ V(λ), and we call λ the highest weight of V.
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Similar theorems hold for standard cyclic modules as for the finite dimen-

sional one. For example, the maximal vector is unique up to a scalar multiple

and therefore the highest weight is uniquely defined.

We present the following existence theorem.

Theorem 2.2.1. Let λ ∈ h∗. Then there exist an irreducible standard cyclic

module of the highest weight λ, denoted by L(λ).

Proof. See Humphrey [18], pp. 110. ✷

Remark 2.2.1. This irreducible module of the highest weight λ is constructed

as a quotient of a standard cyclic module of the same highest weight by its

maximal submodule.

We shall also need the notion of Casimir element and some formula of its

action on a standard cyclic module. Let {hα}α∈∆ be the standard basis of the

Cartan subalgebra h and {kα}α∈∆ the dual basis with respect to the restriction

of the Killing form B to the Cartan subalgebra h. Chose a nonzero element xα

of gα and an element zα ∈ g−α such that B(xα, zα) = 1 for each α ∈ Φ. The

element c of the universal enveloping algebra U(g) defined by the equation

c :=
∑

α∈∆

hαkα +
∑

α∈Φ

xαzα

is called the universal Casimir element of g.

Theorem 2.2.2. The action of the universal Casimir element on a standard

cyclic module of the highest weight λ is by a scalar

(λ+ δ, λ+ δ) − (δ, δ) = (λ+ 2δ, λ).

Proof. See Humphrey [18], pp. 143. ✷

2.2.2 Real representations of real forms of simple Lie al-

gebras

Let V be a real vector space. We call an automorphism J of V complex structure

if J2 = −id. For a complex vector space W, a real (quaternionic) structure is

an antiautomorphism of W, such that J2 = id (J2 = −id). A real vector space

equipped with a complex structure can be understood as a complex vector space,
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the multiplication by the imaginary unit corresponds to the application of the

complex structure J (the complex dimension of such complex vector space is

half of the real dimension of the real space).

Denote the complexification of g by gC and the complexification of V by VC.

The complexification (ρC,VC) of the representation (ρ,V) is a complex linear

g-module homomorphism of gC into End(VC) defined by ρC(X + iY )(v+ iw) =

ρ(X)v − ρ(Y )w + i(ρ(Y )v + ρ(X)w) for X,Y ∈ g and v, w ∈ V.

Let (ρ,V) be a real representation of a real Lie algebra g on a real vector space

V. We define the so called representations of real, quaternionic and complex

types.

(1) (ρ,V) is called of quaternionic type, if there exists a complex structure

and a quaternionic structure commuting with ρ (in this case V is viewed

as a complex vector space, the multiplication by i corresponds to the

application of the complex structure);

(2) (ρ,V) is called of complex type if there exists a complex structure com-

muting with ρ and (ρ,V) is not of quaternionic type;

(3) (ρ,V) is called of real type if there is no complex structure commuting

with ρ.

To a complex representation (ρ,V) on a finite dimensional complex vector

space V of a complex Lie algebra f, we can associate the so called conjugated

representation ρ : f →End(V) given in the following way. If [ρ(X)] is a matrix

of the endomorphism ρ(X) (X ∈ f) of the vector space V with respect to some

basis of V then the matrix [ρ(X)] of the endomorphism ρ(X) equals [ρ(X)],

i.e., the matrix entries of [ρ(X)] are complex conjugate of the entries of [ρ(X)].

We call a complex representation self-dual if it is isomorphic to its complex

conjugate.

Let us suppose that (ρ,V) is an irreducible real representation of a real Lie

algebra g. The complexification of this representation depends on the type of

this real representation in the following way. If (ρ,V) is of complex (quater-

nionic) type then (ρC,VC) is reducible and ρC = π ⊕ π where π is a complex
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representations of gC and π ≁ π (π ∼ π). If (ρ,V) is of real type then its

complexification is irreducible and ρC ≃ ρC. See Zhida, Dagan [32].

If g is a real form of a complex simple Lie algebra f = g⊗C then we can find

out whether a finite dimensional irreducible complex representation of f with

the highest weight λ is a complexification of a real representation of the given

real form g of f (i.e., a complexification of a representation of real type) or it is

a proper component of the complexification of a real representation of g (i.e.,

necessary of complex or quaternionic type). Moreover, in the latter case we can

distinguish whether it is a component of the complexification of a representa-

tion of quaternionic or of complex type. Our procedure will go in the opposite

direction to the mentioned one as follows. At first we give a tool (symmetry of

the Satake diagram) how to distinguish the representations of real or quater-

nionic type from the representations of complex type, at second we introduce

a notion (Maltsev height) which enables to distinguish the representations of

quaternionic type from the representations of real type.

Let (ρ,V) be a finite dimensional irreducible real representation of a real form

g of a complex simple Lie algebra on a real vector space V. Let λ be the highest

weight of a component of the complexification (ρC,VC) of the representation

(ρ,V). Writing the weight λ above the Satake diagram of the real form g we

obtain the so called weighted Satake diagram. Then it is well known that this

component is self-dual (i.e., it is the complexification or a direct summand of the

complexification of a representation of real or quaternionic type, respectively)

if and only if sν(λ) = λ, where sν is the symmetry of the Satake diagram of g.

Thus we know how to distinguish the representations of real and quaternionic

type from the complex type ones; by the symmetry sν.

Now,we would like to know how to distinguish the representations of real type

from the representations of quaternionic one. To each weighted Satake diagram

we can associate the so called Maltsev height m(λ) (we omit the dependence of

the Maltsev height on the Satake diagram in its symbolic notation) which is a

certain integer, see Goodman, Wallach [14], chapter 5.1.7, Zhida, Dagan [32] or

Šilhan [28]. (In the work of Šilhan [28], the so called index is used instead of

the Maltsev height; it equals (−1)m(λ).)
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Summing-up the previous discussion, we get the following

Theorem 2.2.3. Let g be a real form of a complex simple Lie algebra f =

g⊗C and (ρ,V) be a finite dimensional irreducible real representation of g. Let

(ρC,VC) be a complexification of (ρ,V). Denote by λ the highest weight of a

component of this complexification. Then (ρ,V) is of

(1) real type, if and only if sν(λ) = λ and m(λ) is even;

(2) quaternionic type, if and only if sν(λ) = λ and m(λ) is odd;

(3) complex type, if and only if sν(λ) 6= λ.

Proof. See Zhida, Dagan [32]. ✷

2.3 Lie algebra cohomology, Hasse and Bernstein-

Gelfand-Gelfand diagrams

In this section we introduce some basic algebraic and combinatorial structures

related to |k|-graded Lie algebras and their representations, like Lie algebra

cohomology, saturated sets, Hasse and Bernstein-Gelfand-Gelfand (BGG) dia-

grams.

2.3.1 Lie algebra cohomology

We begin with the algebraic notions. Let g be a |k|-graded complex semisimple

Lie algebra and g− its negative part. Suppose there is given a representation

(ρ,V) of g. Then one can define the so called nth chain group Cn(g−,V) :=
∧n

g∗− ⊗V for each n ∈ N0. For this chain groups we can define a (Lie algebra)

differential ∂ : Cn(g−,V) → Cn+1(g−,V) acting between them by the formula

∂ω(X1, . . . , Xn+1) :=

n+1∑

j=1

ρ(Xj)ω(X1, . . . , X̂j , . . . , Xn+1) +

+
∑

1≤r<s≤n+1

(−1)r+sω([Xr, Xs], X1, . . . , X̂r, . . . , X̂s, . . . , Xn+1),

where Xi ∈ g−, i = 1, . . . , n+ 1 and ω ∈ Cn(g−,V). It can be checked that ∂ is

a boundary operator, i.e., ∂ ◦ ∂ = 0, thus (C•(g−,V), ∂) is a chain complex for
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which one can define its cohomology, so called nth Lie algebra cohomology with

coefficients in V

Hn(g−,V) := Zn(g−,V)/Bn(g−,V)

where Zn(g−,V) := Ker(∂ : Cn(g−,V) → Cn+1(g−,V)) and Bn(g−,V) :=

∂(Cn−1(g−,V)).

Let G be a Lie group with Lie algebra is g. It is well known that the Lie

algebra codifferential ∂∗ is a P -module homomorphism where P is the associated

parabolic subgroup to the |k|-graded Lie algebra g and the group G. This result

is proved in the paper of Čap, Schichl [6] for example.

2.3.2 Saturated sets, Hasse and BGG diagrams

In this subsection we define some combinatorial structure associated to |k|-

graded simple Lie algebras and their finite dimensional representations.

Let g be a |k|-graded semisimple Lie algebra and p the associated parabolic

subalgebra, p+ the positive part and g− the negative part of g. Choose a Cartan

subalgebra h and a system of positive roots Φ+ of (g, h) such that p is a standard

parabolic algebra with respect to (h,Φ+), for details see 2.1. For the pair (g, h),

the Weyl group W of g is defined. A subset Q of the system of positive roots

of the Lie algebra g, Q ⊆ Φ+ is called saturated set if there is an element w of

the Weyl group W such that Q = Q(w), where Q(w) is the set of all positive

roots which are mapped into the set of negative roots by the element w−1, i.e.,

Q(w) := {α ∈ Φ+;w−1α ∈ −Φ+}.

Example: Let g = A2 = sl(3,C) and {εi}
3
i=1 be the canonical basis of (C3)∗.

The set of positive roots looks like Φ+ = {ε1−ε2, ε2−ε3 ε1−ε3}. Let us denote

w1 = σε1−ε2 , w2 = σε2−ε3 , w3 = σε1−ε3 the reflections in the corresponding roots

(i.e., with respect to the planes perpendicular to the corresponding roots). Then

Q(id) = ∅, Q(w1) = {ε1−ε2}, Q(w3) = {ε1−ε3}, Q(w1w2) = {ε1−ε2, ε2−ε3},

Q(w1w3) = {ε2 − ε3, ε1 − ε3}, Q(w2) = {ε1 − ε2, ε2 − ε3, ε1 − ε3}.

A subset A of the system of positive roots is called saturated set for the pair

(g, p), if and only if it is a saturated set and A ⊆ Φp+ where Φp+ is the set

of all positive roots for which the corresponding root spaces belong to p+. The

following theorem is well known (see Goodman, Wallach [14], section 7.3.2).
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Theorem 2.3.1. A subset A ⊆ Φp+ is a saturated set for the pair (g, p) if and

only if the following two conditions

(R1) if α, β ∈ A and α+ β ∈ Φ then α+ β ∈ A and

(R2) if γ ∈ A and γ = α+ β where α, β ∈ Φ then α ∈ A or β ∈ A

hold.

Proof. See Goodman, Wallach [14], pp. 328. ✷

Hasse diagram of the pair (g, p) is a labelled oriented graph defined as fol-

lows. Vertices are saturated sets for (g, p) and there is a labelled oriented arrow

Q(w1)
α
→ Q(w2) (w1, w2 ∈ W) if and only if there is an element α ∈ Φp+ such

that w2 = σαw1 and |w2| = |w1| + 1, where σα is the reflection in the root α

and |w| for a w ∈ W is the reduced length of the element w. (The reduced length

of an element of the Weyl group W is the smallest number of members of the

decomposition of this element into simple reflections.)

The following lemma gives an information about arrows of Hasse diagram.

Lemma 2.3.1 (Arrows in Hasse diagram). There is an oriented labelled

arrow Q
α
→ Q′ in the Hasse diagram for (g, p) if and only if there is a positive

integer k ∈ N such that |Q′| − |Q| = kα, where

|Q| :=
∑

β∈Q

β

for an element α ∈ Φp+ and saturated sets Q,Q′ for the pair (g, p).

Proof. See Krump, Souček [21].✷

There is a famous connection between the cohomology groups and Hasse

diagrams described by the Kostant theorem. The explicit version of Kostant

theorem is as follows. (It does not use the notion of Hasse diagram.) The weights

of h on g∗− are −α with multiplicity one, where α ∈ Φ+. We choose a nonzero

element ω−α in the weight space g∗−(−α). For each subset Q = {β1, . . . , βp} ⊆

Φ+ we set ωQ = ω−β1 ∧ . . .∧ω−βp
∈
∧p

g∗−. Let an irreducible finite dimensional

g-module V be given. We denote by vλ ∈ V a nonzero vector in the weight space

V(λ).
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Theorem 2.3.2 (Kostant). If V is an irreducible finite-dimensional complex

g-module with the highest weight λ then

Hp(g−,V) =
⊕

s∈W,|s|=p

Hp
s , p = 0, . . . ,dim g−

is a decomposition into irreducible p-modules, where Hp
s is a module with the

highest weight vector ω−Q(s−1) ⊗ vs(λ) for p = 0, . . . ,dim g− and s ∈ W , |s| = p.

Proof. See Goodman, Wallach [14], pp. 332. ✷

Using the Kostant theorem, we obtain an explicit description of the 1-1

correspondence between the vertices of the Hasse graph and Lie algebra coho-

mologies. Let V be the irreducible g-module with the highest weight λ. Denote

by Hj(λ) the Lie algebra cohomology Hj(g−,V). Let us consider the following

decomposition into irreducible p-modules:

Hj(λ) = ⊕
mj

k=1H
j
k(λ), j = 0, . . . ,dim g−.

Then there is a 1-1 correspondence between the modules Hj
1(λ),. . . ,H

j
mj

(λ) and

the vertices Q(wj
1), . . . , Q(wj

mj
) of the Hasse diagram for (g, p) with |wj

r | = j,

r = 1, . . . ,mj, j = 0, . . . ,dim g−.

Now, we are able to write down the definition of the Bernstein-Gelfand-

Gelfand (BGG) diagram. Let g and p as defined above. Let λ ∈ h∗ be a

dominant integral weight for g. 3 Let us denote the highest weight of Hj
k(g,V∗)∗

for j = 0, . . . ,dim g−, k = 1, . . . ,mj by λj
k. Bernstein-Gelfand-Gelfand (BGG)

diagram for the triple (g, p, λ) is an oriented labelled graph. Its vertices are

the weights (not necessary dominant for g) λj
k mentioned above and there is a

labelled oriented arrow λj
r

α
→ λj+1

s if and only if α ∈ Φp+ is a positive root in

the parabolic part of the root system of g and

λj+1
s = λj

r − 2
(λj

r + δ, α)

(α, α)
α,

where δ is the half-sum of all positive roots of g.

Remark 2.3.1. From practical reasons, we will compute the BGG diagrams using

the ”non-shifted” version of the formula written above, i.e., we omit the weight

3with respect to a Cartan subalgebra h and a choice of the set of positive roots Φ+ for
which p is a standard parabolic with respect to (h, +).
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δ in our computations. In the fourth and fifth chapter, some prescription for

vertices of BGG diagrams will be given. These computations use the non-shifted

version. To get the shifted version, one can use the mentioned prescription for

λ+ δ and after this application the weight δ is to be subtracted.

Remark 2.3.2. The BGG diagram for (g, p, λ) for any g-dominant integral weight

λ and the Hasse diagram are isomorphic as labelled oriented graphs (see Krump,

Souček [21]). For a more general setting, see Lepowsky [26].

Remark 2.3.3. The oriented arrow in the BGG diagram for (g, p, λ) represents

a unique differential operator up to a scalar multiple acting between sections

of homogeneous vector bundles Hj
k(λ) (associated to the principle P -bundle

G → G/P via the P -modules Hj
k(λ)), see the notion of BGG-sequence in Čap,

Slovák, Souček [10] and section 2.6.

2.4 Symplectic Clifford algebra, metaplectic group

and Segal-Shale-Weil representation

In this section we review some well known concepts like symplectic Clifford

algebra, Weyl algebra, Heisenberg algebra, Heisenberg group and metaplectic

group. We also introduce the Segal-Shale-Weil representation of the metaplectic

group.

2.4.1 Symplectic Clifford algebra

Consider a linear symplectic structure (V, ω), i.e., V is a finite dimensional vec-

tor space and ω is an antisymmetric nondegenerate bilinear form on V. A

linear map F : V → V′ is called a symplectomorphism of (V, ω) and (V′, ω′) if

F ∗ω′ = ω. Two linear symplectic structures are called equivalent if there is a

symplectomorphism of these structures which is a linear isomorphism. It is well

known that there is a unique linear symplectic structure up to an equivalence

(Darboux theorem for vector spaces). The dimension of the linear symplectic

structure is necessarily even. We call a basis {q1, . . . , qk, p1, . . . , pk} symplectic

basis if and only if ω(qj , pj) = −1 for j = 1, . . . , k and other products are zero.
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Definition 2.4.1 (Symplectic Clifford algebra). Let (V, ω) be a linear sym-

plectic structure. We call a pair (A, i) symplectic Clifford algebra if i : V → A

is a linear map and A is an associative algebra with unit, such that

(1) i(v).i(w) − i(v).i(w) = −ω(v, w) for all v, w ∈ V,

(2) (universal property) if (A′, i′) is a pair of a linear map i′ : V→ A′ and A′

is an associative algebra with unit satisfying the first item then there is a

unique algebra homomorphism ρ : A→ A′ satisfying i′ = ρi.

Remark 2.4.1. Each linear map i : V→ A satisfying

i(v).i(w) − i(v).i(w) = −ω(v, w)

(i.e., the first item of the definition of the symplectic Clifford algebra) is called

symplectic inclusion. The condition i′ = ρi described in the second item is

called compatibility property and such a map is called compatible.

Theorem 2.4.1 (Uniqueness of symplectic Clifford algebra). For each

linear symplectic structure (V, ω), there is at most one symplectic Clifford alge-

bra up to an isomorphism. We denote it by sCliff(V, ω).

Proof. The uniqueness of such an algebra is a categorial fact (the second

condition is the well known universal property which establishes the unique-

ness), but we prove it explicitely. Consider an another symplectic Clifford al-

gebra (sCliff(V, ω)′, i′). Using the universal property for both symplectic Clif-

ford algebras, we obtain an existence of a homomorphisms ρ : sCliff(V, ω) →

sCLiff(V, ω)′ and ρ′ : sCliff(V, ω)′ → sCliff(V, ω), such that i′ = ρi and

i = ρ′i′. Combining theses two equations we obtain i′ = ρρ′i′ and i = ρ′ρi. Thus

ρρ′ and ρ′ρ are endomorphisms of sCliff(V, ω)′ and sCliff(V, ω) respectively

and these endomorphisms satisfy the compatibility property. The mappings

idsCliff(V,ω) and idsCliff(V,ω)′ are compatible mapping too, thus using the uni-

versality property, we obtain ρ′ρ = idsCliff(V,ω) and ρρ′ = idsCliff(V,ω)′ , i.e.,

sCliff(V, ω) and sCliff(V, ω)′ are isomorphic.✷

Theorem 2.4.2 (Existence of symplectic Clifford algebra). For each

linear symplectic structure (V, ω), there is a symplectic Clifford algebra

(sCliff(V, ω), i).
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Proof. We define a two sided ideal I(V, ω) in the tensor algebra T (V) gen-

erated by v ⊗ w − w ⊗ v + ω(v, w), i.e

I(V, ω) :=< v ⊗ w − w ⊗ v + ω(v, w); v, w ∈ V > .

The symplectic Clifford algebra is defined to be the quotient sCliff(V, ω) :=

T (V)/I(V, ω). Denote by π the canonical projection onto this quotient space,

π : T (V) → sCliff(V, ω). The inclusion j : V → T (V) together with the pro-

jection define a mapping i := πj. This mapping satisfies i(v).i(w) − i(w).i(v) =

j(v)⊗j(w)−j(w)⊗j(v) mod I(V, ω) = −ω(v, w), for all v, w ∈ V, i.e., this map

is a symplectic inclusion. Consider an another associative algebra A′ with unit

together with the linear mapping i′ : V→ A′ satisfying the first item of the defi-

nition of symplectic Clifford algebra. We shall show that there is a unique com-

patible algebra homomorphism ρ : sCliff(V, ω) → A′, i.e., ρi = i′. The homo-

morphism ρ is uniquely determined on the image of i, thus on V ⊆ sCliff(V, ω).

There is a unique linear extension of its definition on V to the tensor algebra

T (V) and thus its definition on the factor sCliff(V, ω) = T (V)/I(V, ω) is de-

termined and therefore ρ is unique too.✷

Remark 2.4.2. The definition of the symplectic Clifford algebra is analogous

to the standard modern definition of Clifford algebra for a linear symmetric

(not necessarily nondegenerate) structure. In the work of Klein [19], an explicit

definition is used.

2.4.2 Heisenberg algebra, metaplectic group and the Segal-

Shale-Weil representation

Weyl and Heisenberg algebra, Heisenberg and metaplectic group.

The (associative) symplectic Clifford algebra equipped with a bracket [x, y] :=

x.y − y.x becomes a Lie algebra which is often called Weyl algebra.

Remark 2.4.3. The name Weyl algebra is sometimes reserved for the set of

polynomial coefficients linear differential operators on the ring of polynomials or

for some notions generalizing (in the realm od D-modules) this one. In physical

literature, the name Weyl algebra is reserved for what is called Heisenberg

algebra in mathematics. We will follow the mathematical convention.
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Now, we can define the Heisenberg algebra. Let (V, ω) be a linear symplectic

structure. Choose a symplectic basis {q1, . . . , qk, p1, . . . , pk} of (V, ω). The set

of polynomials of degree less or equal to one defines a Lie subalgebra of the Weyl

algebra, isomorphic to R⊕R2k. To see that it is subalgebra of the Weyl algebra,

consider two elements of Heisenberg algebra x = T +
∑k

i=1 P
ipi +

∑k
i=1Qiq

i

and x′ = T ′+
∑k

i=1 P
′ipi +

∑k
i=1Q

′
iq

i for T, T ′, P i, P i′ , Qi, Qi, i = 1, . . . , k. The

only nontrivial bracket is [qi, pi] = −1 for i = 1, . . . , k. The bracket [x, x′] =
∑k

i=1QiP
′i −

∑k
i=1 PiQ

′i ∈ R; this proves that the Heisenberg algebra is a

subalgebra of the Weyl algebra. We shall denote it by Hk, if it is isomorphic to

R⊕ R2k.

There is also a group structure on the Heisenberg algebra the multiplication

of which is defined in coordinates by

(t, v).(s, w) := (t+ s+
1

2
ω(v, w), v + w)

for all (t, v), (s, w) ∈ Hk. The neutral element of this group is (0, 0). The inverse

element to an element (t, v) is (−t,−v). This group is called the Heisenberg

group.

Let us introduce the so called metaplectic group. From the differential topol-

ogy of Lie groups it is well known that the first homotopy group of a Lie group

G is equal to the first homotopy group of the compact component of its Iwa-

sawa decomposition G = KAN, see Knapp [20], pp. 72 or 317. It is known

that the compact component of the symplectic group Sp(2k,R) is diffeomorphic

to the unitary group, U(k) (see again Knapp [20], pp. 72), the first homotopy

group of which is isomorphic to Z, see Hatcher [16], pp. 416. Summing-up,

π1(Sp(2k,R)) ≃ π1(U(k)) ≃ Z. By the theory of covering spaces (see again

Hatcher [16], chapter 1.3), it is well known that there is a uniquely determined

two-fold covering of this symplectic group up to a diffeomorphism, which is

called metaplectic group and denoted by Mp(2k,R).

Stone-von Neumann theorem and Segal-Shale-Weil representation.

Now, let us concentrate to some representations of the Heisenberg algebra and

Heisenberg group. The most known representation is the so called Schrödinger
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quantization prescription used in Quantum Mechanics.

Definition 2.4.2 (Schrödinger quantization prescription). Let (V, ω) be

a linear symplectic structure and {qi, pi}k
i=1 some symplectic basis of (V, ω).

The mapping σ : Hk → End(L2(Rk)) given by

(1) 1 ∈ Hk 7→ i,

(2) qi ∈ Hk 7→ ixi, i = 1, . . . , k

(3) pi ∈ Hk 7→ i ∂
∂xi , i = 1, . . . , k.

is called Schrödinger quantization prescription4.

To see that σ is a representation of a Lie algebra, it is sufficient to observe

that multiplication commutes on the space S(Rk) and the same is true for partial

derivatives. The last nontrivial condition we shall check is

σ([qi, pi])f = [σ(qi), σ(pi)]f

for i = 1, . . . , k and an element f ∈ S(Rk) The R.H.S. equals

ixi ∂f

∂xi
−
∂(ixif)

∂xi
= −if.

The L.H.S. equals

σ([qi, pi])f = σ(−1)f = −if.

Thus R.H.S.=L.H.S.

Let us define a representation of the Heisenberg group,

π : Hk → Aut (L2(Rk)) given by

π(t, (x, z))f = ei(t+<x,z− 1
2y>)f(z − y)

for a function f ∈ L2(Rk) and an element (t, (x, z)) ∈ Hk ≃ R ⊕ (Rk ⊕ Rk)

where < ,> is the standard Euclidean product on Rk. We can define an action

of the symplectic group Sp(2k,R) on the Heisenberg algebra Hk,

Sp(2k,R) ×Hk → Hk

4In fact, the mappings σ(X) for X ∈ Hk are defined only on the Schwartz space S(Rk)
which is dense in L2(Rk).

29



by

(g, (t, v)) 7→ (t, gv),

for g ∈ Sp(2k,R), (t, v) ∈ Hk ≃ R ⊕ R2k. This action determines a family

representations {πg; g ∈ Sp(2n,R)} of Hk, π
g(t, v) := π(t, gv) which satisfies

the condition πg(0, t) = eitidL2(Rk) for all t ∈ R.

Theorem 2.4.3 (Stone-von Neumann theorem). There is exactly one ir-

reducible representation of Hk on L(Rk), π : Hk →Aut(L2(Rk)) up to a unitary

equivalence satisfying the condition π(0, t) = eitidL2(Rk) for all t ∈ R.

Proof. See Folland [13], chapter 1.5. ✷

Using this theorem for the family {πg; g ∈ Sp(2k,R)}, there are unitary

operators U(g) such that

πg = U(g)πU(g)−1,

for each g ∈ Sp(2k,R). It can be checked, that this procedure defines a projective

unitary representation of Sp(2n,R), i.e.,

U(gh) = c(g, h)U(g)U(h)

for some c(g, h) ∈ C. After Shale and Weil (see Kashiwara, Vergne [25]), this

projective unitary representation lifts to a unitary representation of Mp(2k,R)

in a unique manner. This representation

L : Mp(2k,R) → U(L2(Rk)),

where U(H) is the group of all unitary operators on a Hilbert vector space H,

is called the Segal-Shale-Weil representation.

2.5 Cartan geometries

In this part we introduce some basic concepts used in this dissertation thesis

- the Cartan geometries, especially the parabolic ones. Élie Cartan’s point of

view, which generalizes the Klein’s Erlangen program and unify it with the

investigation of metric/tensor defined geometries, helps to see many well known

geometries like Riemannian, conformal, CR, projective or contact as examples
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of a unique geometrical structure, namely the Cartan geometry. For a detailed

approach see the book of Sharpe [27], in which foremost the Riemannian, Möbius

and conformal geometries are treated.

Definition 2.5.1 (Cartan geometry). Let H ⊆ G be a Lie subgroup of a

Lie group G, and g be the Lie algebra of G. Cartan geometry of type (G,H)

on a manifold M is a principal H-bundle p : P → M endowed with a g-valued

differential one form ω ∈ Ω1(M, g), which is called Cartan connection, such that

(1) ω is H-equivariant, i.e., (rh)∗ω = Adh−1 ◦ ω, for all h ∈ H,

(2) ω reproduces the fundamental vector fields, i.e., ω(ζX(u)) = X for all

X ∈ h, u ∈ P and ζX being the fundamental vector filed corresponding to

X,

(3) ω is an absolute parallelism, i.e., ωTuP : TuP → g is a linear isomorphism

for each u ∈ P .

We denote the Cartan geometry of type (G,H) on a manifold M by

(P ,M,G,H, ω) or simply by (P , ω).

To each Cartan geometry, we can associate the vector space of constant

vector fields. Let X ∈ g then we denote by ω−1(X) the vector field on P

defined by the formula ωu(ω−1(X))u = X for each u ∈ P and call it constant

vector field.

Further, to any Cartan geometry (P , ω), we can associate its curvature K ∈

Ω2(P , g) defined by the formula

K(ξ, η) =: dω(ξ, η) + [ω(ξ), ω(η)],

for any vector fields ξ, η ∈ X(P).

One can show (see Čap, Slovák [7]) that this tensor field is horizontal and

H-equivariant and thus in particular it defines the curvature function κ : P →
∧2

g∗− ⊗ g

κ(u)(X,Y ) := Ku((ω−1(X))u, (ω
−1(Y ))u),

for u ∈ P and X,Y ∈ g.
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Definition 2.5.2 (Flat Cartan geometry). We call a Cartan geometry (P , ω)

flat if κ = 0.

Definition 2.5.3 (Parabolic geometry). Parabolic geometry of type (G,P )

on a manifold M is a Cartan geometry (P ,M,G, P, ω) with P being a parabolic

subgroup of a semisimple Lie group G.

Let g be a |k|-graded simple Lie algebra, g− its negative part and G a Lie

group the Lie algebra of which is g and P be the associated parabolic subgroup

of G. Let (P , G, P,M, ω) be a parabolic geometry of type (G,P ) on a manifold

M and (ρ,V) be a representation of P on a vector space V. Let VM = P ×ρ V

be the associated vector bundle over M to the principle P -bundle P → M via

the representation (ρ,V). We would like to derive a notion of differentiation of

sections of VM. To do this, we can identify the smooth sections Γ(M,VM)

with P -equivariant maps from P to V, C∞(P ,V)P . To any equivariant function

s : P → V we associate a smooth function ∇ωs : P → g∗− ⊗ V defined by

∇ωs(u)(X) = Lω−1
u (X)s,

for X ∈ g−, u ∈ P and L denotes the Lie derivative. This operation is called

the absolutely invariant derivative. It is associated to the |k|-graded Lie algebra

g, parabolic geometry (P , G, P,M, ω) and the representation (ρ,V) of P.

2.6 Invariant differential operators and Bernstein-

Gelfand-Gelfand resolutions

In this subsection, we will summarize some concepts related to invariant differ-

ential operators on parabolic geometries. Our definitions will be very pragmatic;

the motivations and other details on this topic can be found in Čap, Slovák,

Souček [10].

Let g be a complex |k|-graded semisimple Lie algebra, g− its negative part,

G a Lie group the Lie algebra of which is g and P the associated parabolic

subgroup of G. Let (P , G, P,M, ω) be a parabolic geometry of type (G,P ) on

a manifold M. Suppose that E and F are two P -modules. Let us denote by

J1E = E ⊕ (g∗− ⊗ E) the so called first jet prolongation of the P -module E.
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Let us denote the action of p on E by λ, i.e., λ : p →End(E) is a Lie algebra

homomorphism obtained from the P -action by derivation. The action of p on

the vector space J1E is given by

Z.(v, φ) = (λ(Z)v, λ(Z) ◦ φ− φ ◦ ad−(Z) + λ(adp(Z)(−)v))

for Z ∈ p, v ∈ E and φ ∈ g∗−⊗E. This action is called induced action. The action

of G0 is given by restriction, tensor product and direct sum. With these two

actions J1E becomes a P -module due to the theorem 2.1.1 and remark 2.1.1.

Remark 2.6.1. The importance of the first jet prolongation is that the absolute

invariant derivative associated to a |k|−graded Lie algebra and a parabolic ge-

ometry (P , G, P,M, ω) and a P -module E is invariant in the sense that given

any s ∈ C∞(P ,E)P , the element (s,∇ωs) ∈ C∞(P , J1E)P , see Čap, Slovák,

Souček [10].

Definition 2.6.1 (Invariant differential operator). Let (P , ω) be a parabolic

geometry of type (G,P ) on a manifold M. Let EM and FM be the associated

vector bundles to the principle P -bundle P → M via the P -modules E and F,

respectively. We call a mapping D(P,ω) from Γ(M,EM) → Γ(M,FM) invari-

ant differential operator of the parabolic geometry (P , ω) of degree 1 if and only

if there is a P -module homomorphism Φ : J1E → F such that for a section

s ∈ Γ(M,EM) considered as an equivariant mapping s ∈ C∞(P ,E)P we can

write

D(P,ω)(s)(u) = Φ(s(u),∇ωs(u))

for u ∈ P .

Remark 2.6.2. It can be shown that D(P,ω) is a natural operator of order ≤ 1;

for details and definition of natural operator see Čap, Slovák, Souček [10].

Now, we can define the so called BGG sequence and standard invariant op-

erators. Consider the homogeneous principle P -bundle G → G/P. Let V be

the representation of G with the highest weight λ. Let us denote by Hj(λ)

the jth cohomology Hj(g−,V) of g− with coefficients in V. The homogenous

vector bundle associated to the principle homogeneous bundle G → G/P via
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the P -module Hj(λ) will be denoted by Hj(λ). The Bernstein-Gelfand-Gelfand

(BGG) sequence for the triple (g, p, λ) consists of invariant differential opera-

tors acting between the sections of the bundles Hj(λ), D : Γ(G/P,Hj(λ)) →

Γ(G/P,Hj+1(λ)). These operators are called standard invariant operators.
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Chapter 3

Harmonic representations

This chapter is devoted to a distinguished class of infinite-dimensional irre-

ducible representations of the symplectic algebra Cn, called harmonic represen-

tations. We shall show a theorem on decomposition of the tensor product of

such a representation and the defining representation of Cn (theorem 3.5.1).

We shall also prove a theorem on complete reducibility of the tensor product of

the tensor powers of the defining representation and a harmonic representation

(theorem 3.5.2).

3.1 Tensor products of finite and infinite dimen-

sional representations

In this section we shall review some basic facts on tensor products of finite

and infinite dimensional representations, details can be found in Kostant [24].

Let g be a complex semisimple Lie algebra, h a Cartan subalgebra of g, Φ the

system of roots with respect to (g, h), U(g) the universal enveloping algebra

of g and U(h) the universal enveloping algebra of h. Let us choose a system

Φ+ of positive roots and the corresponding decomposition g = n− ⊕ h ⊕ n+,

where n± are nilpotent subalgebras, defined by n± :=
⊕

α∈±Φ+ gα. Denote by

Z the center of the universal enveloping algebra U(g) and by Z∗ the set of all

infinitesimal characters χ : Z → C, i.e., associative algebra homomorphisms

from Z to C. Consider a representation π : g → End(V), where V is a finite

or infinite dimensional complex vector space. Assume that π admits a central
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character1 χ : Z → C, i.e., π(X)v = χ(X)v for all v ∈ V and X ∈ Z. This is the

case, e.g., if π is irreducible, see Kostant [24]. For any u ∈ Z one knows that

there is a unique element fu ∈ U(h) such that

u− fu ∈ Un+,

where Un+ is the ideal in g generated by n+. There is a map

h∗ → Z∗

given by λ 7→ χλ, where χλ(u) := fu(λ), u ∈ Z and λ ∈ h∗. Let W denote the

Weyl group of the algebra g and let σ̃ denote the affine action of a Weyl group

element σ ∈ W on h∗, i.e.,

σ̃(λ) = σ(λ+ δ) − δ,

where λ ∈ h∗ and

δ =
1

2

∑

φ∈Φ+

φ ∈ h∗

as we have already defined.

Theorem 3.1.1 (Harish-Chandra). The map h∗ → Z∗ sending λ → χλ is

an epimorphism and χλ = χν if and only if λ and ν are conjugate with respect

to the affine action σ̃.

Proof. See Knapp [20], pp. 249. ✷

Let us consider a representation πλ : g →End(Vλ) of the algebra g on a finite

dimensional complex vector space Vλ with the highest weight λ ∈ h∗. The main

result needed from Kostant [24] is the following theorem.

Theorem 3.1.2. Let Π := {µ1, . . . , µk} denote the set of all weights of the

representation πλ and

Yi := {y ∈ V⊗ Vλ;uy = χν+µi
(u)y, u ∈ Z}, i = 1, . . . , k.

Assume that the characters χν+µi
are all distinct. Then

V⊗ Vλ =
k⊕

i=1

Yi.

1The central character is often called infinitesimal character.
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Moreover, if Yi is not zero, then Yi is the maximal submodule of V⊗Vλ admitting

χν+µi
.

Proof. See Kostant [24].✷

3.2 Complete reducibility

Let us prove some theorems on complete reducibility for infinite dimensional

modules, which are well known in the finite dimensional case. We shall begin

with a definition of complete reducibility.

Definition 3.2.1. Let g be a complex Lie algebra and V a g-module. We say

that V is completely reducible if for every submodule U there is a g-module W

such that V = U⊕W where the sum is supposed to be direct sum of g-modules.

Lemma 3.2.1. Let g be a complex Lie algebra. Let V be a g-module and let

V = V1⊕ . . .⊕Vd for some d ∈ N be a direct sum decomposition into irreducible

g-modules. Then V is completely reducible.

Proof. We shall prove this theorem using the induction on d. I. If d = 1,

the proof is trivial. II. Let d > 1 and W be a g-invariant subspace of V. Let us

denote by πi : V→ Vi for i = 1, . . . , d the projections of V onto the submodules

Vi. These projections are g-module homomorphisms. We shall distinguish two

cases: first, if π1(W) = 0 then

W ⊆ V2 ⊕ . . .⊕ Vd.

By induction hypothesis, we know that there is a g-module U in V2 ⊕ . . .⊕ Vd

such that V2 ⊕ . . . ⊕ Vd = W ⊕ U. Then it follows that V = W ⊕ (U ⊕ V1).

Second, suppose that π1(W) 6= 0. Because of the irreducibility of V1 we know

that π1(W) = V1. Set W′ := Ker (π1|W), which is clearly a g-invariant subspace

as a kernel of a g-module homomorphism. We have

W′ ⊆ V2 ⊕ . . .⊕ Vd.

Using the induction hypothesis, we obtain that there is a g-module U such that

W′ ⊕ U = V2 ⊕ . . .⊕ Vd. (3.1)
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Take x ∈ W ∩ U, then we know that π1(x) = 0, because x ∈ U. Since also

x ∈ W, then x ∈ W′, i.e., x ∈ W′ ∩ U which equals {0} and thus U ⊕W is a

direct sum (of two g-modules). Further, we would like to show that W⊕U = V.

It is sufficient to show that each element of V can be expressed as a sum of

two elements U,W ∈ U,W, respectively. Take x ∈ V. Then there are xi ∈ Vi,

i = 1, . . . , d such that x =
∑d

i=1 xi. Thus we may write x = x1 +
∑d

i=1 xi.

Because of the decomposition (3.1) we know that there are u ∈ U, w′ ∈W′ such

that x = x1+u+w′. Now, we need to decompose x1. Take some y ∈ π−1
1|W({x1});

the set π−1
1|W({x1}) is nonempty because of π1(W) = V1. Define ũ := x1 − y.

To show that ũ ∈ V2 ⊕ . . . ⊕ Vd, let us compute π1(ũ) = π1(x1) − π1(y) =

x1 − π1|W(y) = x1 − x1 = 0 and thus ũ ∈ V2 ⊕ . . . ⊕ Vd = U ⊕W′. Hence, we

can write ũ = u′ +w′′ for u′ ∈ U and w′′ ∈W′ Summing up, x = x1 + u+w′ =

ũ+ y+u+w′ = u′ +w′′ + y+u+w′ = (u+u′)+ (y+w′ +w′′). Set U := u+u′

and V := y + w′ + w′′. We have x = U + V for some U ∈ U and V, what we

have had to prove. ✷

Remark 3.2.1. It is easy to see that the preceding lemma holds not only for

complex Lie algebra modules but also for any G-modules and modules over

associative algebras. This theorem is a generalization of a theorem in the book

Goodman, Wallach [14], pp. 119. This cited theorem needs this generalization

because it uses the implication: if W is a submodule of V which is isomorphic

to V, then W = V, which does not hold in the infinite dimension.

Remark 3.2.2. Let us remark that any submodule W of a finite direct sum of

irreducible submodules V is equipped with a projection πW : V→W defined in

the following manner. Let V = W⊕ U for some submodule U, the existence of

which establishes the preceding lemma. Then we can define πW(w⊕u) := w for

w ∈W and u ∈ U. This projection is clearly a module homomorphism.

Next, we show a lemma which characterizes all submodules of a module

which is a direct sum of irreducible submodules.

Lemma 3.2.2. Let g be a complex Lie algebra. Let V = V1 ⊕ . . . ⊕ Vd for

some d ∈ N be a direct sum decomposition into irreducible g-modules and W

be a submodule of V. Then W = W1 ⊕ . . . ⊕Wc for some c ≤ d such that for
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each j ∈ {1, . . . , c}, there is an element i(j) ∈ {1, . . . , d} for which the relation

Wj ≃ Vi(j) holds and if j 6= j′, then i(j) 6= i(j′).

Proof. Because of the previous lemma 3.2.1, we know that there is an in-

variant vector space U ⊆ V such that V = W ⊕ U, i.e., there is a projection

π = πW : V → W, which is a g-module homomorphism. It is easy to see that

π(Vr) for r = 1, . . . , d is an irreducible g-module. Indeed, suppose there is a

g-invariant subspace {0}  Q  π(Vr). Take π−1(Q) ⊆ Vr. This subspace is

g-invariant, because for q ∈ π−1(Q), there is a w ∈ Q such that w = π(q). For

any X ∈ g we have Q ∋ Xw = Xπ(q) = π(Xq). Therefore Xq ∈ π−1(Q), i.e.,

π−1(Q) is a g-invariant subspace. Suppose that π−1(Q) = {0} and take y ∈ Q.

Then π−1({y}) = {0} and therefore y = π(0) = 0, i.e., Q = {0}. If π−1(Q) = Vr

then it follows that π(Vr) ⊆ Q, which is impossible. Indeed, take y ∈ π(Vr),

then there is an element x ∈ Vr such that π(x) = y. Because of the equal-

ity π−1(Q) = Vr we know that x ∈ π−1(Q) and therefore y = π(x) ∈ Q, i.e.,

π(Vr) ⊆ Q. Summing up, we have proved that π(Vr) is an irreducible g-module.

We define a set X ⊆ {1, . . . , d} inductively. I. Denote by k the smallest

element i of {1, . . . , d} for which π(Vi) is a nonzero module. II. For k < i ≤ d,

let i ∈ X if and only if π(Vi) 6= {0} and π(Vj) 6= π(Vi) for all j ∈ X such that

j < i.

Now, prove that
⊕

i∈X π(Vi) is a direct sum. Take two distinct r, s ∈ X

and suppose that r < s without lost of generality. We know that π(Vr)∩ π(Vs)

is a submodule of π(Vr) and of π(Vs). Since these modules are irreducible

π(Vr)∩π(Vs) is either {0} or π(Vr)∩π(Vs) = π(Vr) and π(Vs)∩π(Vr) = π(Vs).

But the second possibility implies that π(Vr) = π(Vs) which is impossible due

to the construction of the set X, i.e., π(Vr) ∩ π(Vs) = {0} and the considered

sum is direct.

Further, we prove that W =
⊕

i∈X π(Vi). Let x =
∑

i∈X xi ∈
⊕

i∈X π(Vi).

There are yi for i ∈ X such that π(yi) = xi. Thus we may write x =
∑

i∈X xi =
∑

i∈X π(yi) = π(
∑

i∈X yi), i.e., x ∈ Im (π) = W. Suppose that x ∈ W.

Then there is an element y ∈ V such that x = π(y). We can decompose y

as y =
∑d

i=1 yi for yi ∈ Vi, i = 1, . . . , d. Thus we obtain the decomposition
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x =
∑d

i=1 π(yi). For any i = 1, . . . , d we have either π(yi) = 0 or π(yi) = π(zj),

where zj ∈ Vj and j ∈ X. Therefor, we can write x =
∑d

i=1 π(yi) =
∑

j∈X π(zj)

what we have had to prove.

It is easy to see that π|Vj
is an isomorphism for all j ∈ X . The mapping

πj := π|Vj
: Vj → π(Vj) for j ∈ X is a map between irreducible modules.

Thus either Ker(πj) = Vj or Ker(πj) = {0}. In the first case, we obtain that

πj is a zero homomorphism, which is impossible due to the construction of X.

In the second case, πj is a monomorphism. The surjectivity of πj follows from

the fact that π(Vj) is irreducible. Because π is a g-module homomorphism it

follows that πi for i ∈ X are intertwining isomorphism and thus for i ∈ X we

have Vi ≃ π(Vi) as g-modules. The statement follows (the last duty is only a

renumbering of the elements of the set X). ✷

3.3 Spinor representations of sp(2n,C)

To fix a notation, we introduce some standard facts on the symplectic algebra

Cn in this section. Further, we mention an analogy between the tensor repre-

sentations of the algebra Dn and representation of the symplectic algebra Cn.

We introduce the half-spinor representations of the algebra Cn and the notion

of a harmonic module.

3.3.1 Some basic facts on Cn

First, let us recall some basic facts on the symplectic algebra g = Cn =

sp(2n,C). This algebra consists of 2n × 2n matrices over complex numbers of

the form

A =
(
A1 A2
A3 A4

)
,

where A1 = −AT
4 , A2 = AT

2 and A3 = AT
3 . We choose a Cartan subalgebra h of

Cn consisting of all diagonal 2n× 2n matrices in g. If ǫi denotes the projection

onto the (i, i) element of the matrix, then the set of all roots Φ equals

Φ = {±(ǫi ± ǫj); 1 ≤ i < j ≤ n} ∪ {±2ǫi; i = 1, . . . , n}.

We chose a system ∆ of simple roots as follows

∆ = {α1 := ǫ1 − ǫ2, . . . , αn−1 := ǫn−1 − ǫn, αn := 2ǫn}.
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The Chevalley basis of Cn is given by

Xǫi−ǫj
:= Ei,j − En+j,n+i, 1 ≤ i < j ≤ n,

X2ǫi
:= Ei,n+i, i = 1, . . . , n

Xǫi+ǫj
:= Ei,n+j − Ej,n+i, 1 ≤ i < j ≤ n,

Yµ := XT
µ , µ ∈ Φ,

Hi := Ei,i − Ej,j + En+j,n+j − En+i,n+i, i = 1, . . . , n− 1,

Hn := En,n − E2n,2n,

where Ei,j is a matrix having 1 at the place (i, j) and 0 at the other places.

The algebra Cn has a very useful realization consisting of differential opera-

tors on C[x1, . . . , xn]. It is shown in Dixmier [12] that the Lie algebra generated

by {xi∂i+1, x
i+1∂i; i = 1, . . . , n−1}∪{∂2

1, (x
1)2} (where ∂i is the partial differen-

tiation in xi, i = 1, . . . , n) is isomorphic to the algebra Cn via the isomorphism

ψ : Cn →End(C[x1, . . . , xn]), defined by

ψ(Xǫi−ǫi+1) := xn−i∂n−i+1, i = 1, . . . , n− 1,

ψ(X−(ǫi−ǫi+1)) := xn−i+1∂n−i, i = 1, . . . , n− 1,

ψ(X2ǫn
) := −

1

2
∂2
1 ,

ψ(X−2ǫn
) :=

1

2
(x1)2.

The requirement that the basis {ǫi}n
i=1 is an orthonormal basis defines an

inner product ( , ) on h∗. Using the standard notation

α̌ :=
2α

(α, α)
,

for α ∈ h∗ − {0}, the set of fundamental weights {̟i}n
i=1 is defined as the dual

basis to the basis {α̌i}n
i=1, i.e., (̟i, α̌j) = δij . In our case, ̟j =

∑j
i=1 ǫi, j =

1, . . . , n.
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3.3.2 Half-Spinor representations of Cn

Now, we can come to the representation part of this section. There is a very

close analogy between representations of Cn = sp(2n,C) and Dn = so(2n,C).

Finite dimensional representations of Cn have their counterpart in tensor rep-

resentations of Dn (i.e., representations of Dn with highest weights consisting

from integers). On the other hand, there is no finite dimensional representation

of Cn similar to spinor representations of Dn.

It was suggested by Kostant ([23]) that a proper analogy of spinor represen-

tations of orthogonal algebras are certain infinite-dimensional representations

of the symplectic algebra called the Segal-Shale-Weil representations. (One can

show that the complexification of the derivation of the Segal-Shale-Weil repre-

sentation of the metaplectic group considered acting on the ring of polynomials,

introduced in section 2.4.1, decomposes into this Segal-Shale-Weil representa-

tions of the symplectic algebra.) The mentioned analogy can be nicely seen

using the following realization of these representations.

Consider first the orthogonal algebrasDn = so(2n,C) and choose a maximal

isotropic subspace V of C2n, it has dimension n. Spinor representations of Dn

can be realized on the Grassmann algebra S =
∧•

(V) = ⊕n
i=1

∧i
(V). It decom-

poses into two irreducible subspaces S = S+ ⊕ S−, where

S+ = ⊕j∈2Z

∧j(V) and S− = ⊕j∈2Z+1

∧j(V) are the so called half-spinor rep-

resentations.

In the case of symplectic algebra, there is a similar construction. Consider

the defining representation C2n of sp(2n,C) with the corresponding standard

symplectic form and choose again a maximal isotropic subspace V ≃ Cn (as a

vector space). The infinite dimensional space C[x1, . . . , xn] ≃ ⊕∞
i=1 ⊙i (V) is

a representation of Cn as described above (using the isomorphism ψ). It also

decomposes as ⊕∞
i=1 ⊙i (V) = S+ ⊕ S− as a Cn-module. As in the orthogonal

case, the first representation is the direct sum of even dimensional symmetric

powers and the second one of the odd dimensional ones. We will call this

representations half-spinor representations of Cn.

Remark 3.3.1. This is a nice example of a supersymmetry, where the space of

42



polynomials in n commuting variables (the symplectic case) has as an analogy

the space of polynomials in n anticommuting variables (the orthogonal case).

This analogy explains why spinor representations for Cn are infinite dimensional.

Finite dimensional representations ofDn can be all realized as spinor-tensors,

i.e., as submodules of tensor products of one of the two half-spinor representa-

tions with a tensor representation. Consequently, an analogue of these finite-

dimensional representations of Dn is a class of infinite dimensional represen-

tations of Cn consisting of submodules of tensor products of one of the two

infinite dimensional half-spinor representations of Cn with a finite dimensional

representation of Cn. This is a class of representations we are going to study in

this chapter.

3.4 Completely pointed modules

In this section we review some basic facts on bounded and completely pointed

modules from Britten, Lemire [2]. More details can be found there.

Let g be a complex simple Lie algebra and h its Cartan subalgebra. Let

us consider an h-diagonalizable g-module V, i.e., V =
⊕

ν∈wt(V) V(ν), where

wt(V) ⊆ h∗ is the space of all weights of the module V.2 We say that it is a

module with bounded multiplicities if and only if there is a k ∈ N such that

dimV(ν) ≤ k for all ν ∈ wt(h). The minimal k is called the order of the module.

The module is called completely pointed provided the order of this module is 1.

The modules with bounded multiplicities have some nice properties. For exam-

ple, it is known that a simple complex Lie algebra has an infinite dimensional

irreducible module with bounded multiplicities if and only if it is a either a

special linear algebra or a symplectic algebra.

In this chapter, we shall consider irreducible standard cyclic modules. For

any weight ν ∈ h∗, we shall denote by L(ν) the unique irreducible standard

cyclic module with highest weight ν, see 2.2.1. The half-spinor representations

(or the Segal-Shale-Weil representations) of Cn belong to this class. It is easy

to compute that the weight of a constant polynomial is ν+ = − 1
2̟n and the

2Any standard cyclic module is h-diagonalizable, for instance.
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weight of the monomial x1 is ν− = ̟n−1−
3
2̟n. One can easily check that these

monomials are highest weight vectors of the half-spinor representations. Hence

S+ ≃ L(ν+) and S− ≃ L(ν−). Both these representations are completely pointed

(different monomials have different weights), see Britten, Hooper, Lemire [3]. It

can be shown that the opposite claim is also true. If an irreducible standard

cyclic module L(ν) is a completely pointed Cn-module, then ν = ν+ or ν = ν−,

see again Britten, Hooper, Lemire [3]).

The following key facts describe the structure of the tensor product of a

spinor representations with a finite dimensional module (for details see Britten,

Lemire [2] and Britten, Hooper, Lemire [3]).

Theorem 3.4.1. Let ν =
∑n

i=1 νi̟i be a dominant integral weight of Cn and let

L(ν) be the corresponding irreducible finite dimensional highest weight module.

Let

T+
ν := {ν −

n∑

i=1

diǫi; di ∈ Z≥0,
n∑

i=1

di ∈ 2Z, 0 ≤ di ≤ νi,

i = 1, . . . , n− 1, 0 ≤ dn ≤ 2νn + 1}

T−
ν := {ν −

n∑

i=1

diǫi; dj + δn,j ∈ Z≥0,

n∑

i=1

di ∈ 2Z, 0 ≤ di ≤ νi,

i = 1, . . . , n− 1, 0 ≤ dn ≤ 2νn + 1}.

Then

L(ν±) ⊗ L(ν) =
⊕

κ∈T±
ν

L(ν± + κ)

Proof. See Britten, Hooper, Lemire [3].✷

Definition 3.4.1. Let us denote by A the following set of weights.

A := {
n∑

i=1

λi̟i;λi ≥ 0, λi ∈ Z, i = 1, . . . , n−1; λn ∈ Z+
1

2
, λn−1+2λn+3 > 0}.

Denote by A the following set of representations

A := {L(ν); ν ∈ A}

and call each member of A a harmonic module .

Theorem 3.4.2. The following conditions are equivalent
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(1) L is a harmonic module

(2) L is a direct summand in the decomposition of L(λ)⊗L(− 1
2̟n) for some

dominant integral weight λ

(3) L is an infinite dimensional Cn-module with bounded multiplicities.

Proof. See Britten, Lemire [2].✷

Let us define two subsets of h∗.

Z+ := {
n∑

i=1

λiǫi;λi ∈ Z, i = 1, . . . , n,
n∑

i=1

λi ∈ 2Z}

and

Z− := {
n∑

i=1

λiǫi;λi ∈ Z, i = 1, . . . , n,

n∑

i=1

λi ∈ 2Z+ 1}.

(The first defined set is a lattice in h∗.) Let us write the set A as a disjoint union

of two subsets A = A+ ∪ A−, where

A+ := {−
1

2
̟n + κ;κ ∈ Z+} ∩ A,

A− := {−
1

2
̟n + κ;κ ∈ Z−} ∩ A.

For an integral number k ∈ Z, we define sn(k) := + if and only if k ∈ 2Z and

sn(k) := − if and only if k ∈ 2Z+ 1.

3.5 Tensor products with the defining represen-

tation

In this section, we are going to study tensor products of any harmonic mod-

ule with the defining representation L(̟1). We show that these products are

completely reducible and characterize the constituents of the decomposition. By

induction, we get complete reducibility also for a product with powers of L(̟1).

These are exactly facts needed for future applications in a study of invariant

differential operators on projective contact structures (see Čap, Slovák, Souček

[10]).
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Theorem 3.5.1. Let λ ∈ A and let Π(̟1) := {±ǫi, i = 1, . . . , n} denote the

set of all weights3of the defining representation L(̟1). Then L(λ) ⊗ L(̟1) is

completely reducible and

L(λ) ⊗ L(̟1) =
⊕

κ∈Aλ

L(κ),

where Aλ ⊆ {κ = λ+ µ;κ ∈ A, µ ∈ Π(̟1)}.

Remark 3.5.1. For better understanding of the following proof, see the picture

below the proof together with the remark 3.5.2.

Proof. Part I. Due to the theorem 3.4.2 we know that L(λ) is a direct

summand in the direct sum decomposition of

L(−
1

2
̟n) ⊗ L(ν)

for some integral dominant weight ν. Thus L(λ)⊗L(̟1) ⊆ (L(− 1
2̟n)⊗L(ν))⊗

L(̟1) = L(− 1
2̟n)⊗ (L(ν)⊗L(̟1)). The representation L(ν)⊗L(̟1) decom-

poses into (finitely many) irreducible finite dimensional representations directly,

because both L(ν) and L(̟1) are finite dimensional representations of the sim-

ple Lie algebra Cn. Due to the theorem 3.4.1, we know that L(− 1
2̟1)⊗ (L(ν)⊗

L(̟1)) also decomposes into (finitely many) irreducible representation directly.

The lemma 3.2.2 enables the conclusion that L(λ) ⊗ L(̟1) is a direct sum of

irreducible representations and due to the theorem 3.4.2 these direct summands

are in A. Further, because of the lemma 3.2.1, we know that L(λ) ⊗ L(̟1) is

completely reducible, which was to prove.

Part II. Now, we would like to use the Kostant theorem 3.1.2. We shall

prove that the characters χλ+ν and χλ+µ are distinct for any distinct µ, ν ∈

Π(̟1). We know from theorem 3.1.1 that this is equivalent to the fact that

λ + µ and λ + ν are not conjugated by the affine action of an element of the

Weyl group W of the algebra Cn. Two elements φ, ψ ∈ h∗ are conjugated by the

affine action of an element of the Weyl group if and only if φ+ δ and ψ + δ are

conjugated by an element of the Weyl group, i.e., if and only if σ(φ+δ) = ψ+δ,

3One easily verifies that Π(̟1) is really the set of all weight of L(̟1), i.e., the smallest
Φ-saturated set containing ̟1.
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for some σ ∈ W . We prove that {λ+ ν + ρ, λ+ µ+ ρ} ⊆W1 ∪W2, where

W1 := {
n∑

i=1

βiǫi;β1 > . . . > βn > 0},

W2 := {
n∑

i=1

βiǫi;β1 > . . . > βn−1 > −βn > 0}

are two open neighbor Weyl chambers of Cn. Let us denote µ = sǫp for s ∈

{−1, 1} and some p = 1, . . . , n. In the case of Cn the element δ = nǫ1 + (n −

1)ǫ2 + . . .+ ǫ1. Using the relation ̟j = ǫ1 + . . .+ ǫj for j = 1, . . . , n one easily

computes that

λ+ µ+ δ =:
n∑

i=1

βiǫi =
n∑

i=1

[(
n∑

j=i

λj) + n− i+ 1 + sδip]ǫi

for λ =
∑n

i=1 λi̟i. Thus the requirement λ + µ + δ ∈ W1 reduces to λi +

1 ≥ s(δi+1,p − δip) which is evidently satisfied for all i = 1, . . . , n − 1, see the

definition 3.4.1. For i = n, the condition we need to check is βn−1 ≥ βn ≥ 0 or

βn−1 ≥ −βn ≥ 0. If λn ≥ 0 then λ + µ + δ ∈ W1. Suppose that λn < 0, then

the condition λ+ µ+ δ ∈W2 reduces to λn−1 + 2λn + 3 + s(δn−1,p − δnp) ≥ 0.

This condition is satisfied because of the last inequality in the definition 3.4.1.

(These conditions are nearly ”optically” equivalent.)

Suppose that λ+ µ+ δ and λ+ ν + δ are conjugated by an element σ of the

Weyl group of Cn, i.e., σ(λ + µ+ δ) = λ+ ν + δ.

(1) Suppose that λ+ µ+ δ ∈W1 and λ+ ν + δ ∈ W2 (or λ+ µ+ δ ∈W2 and

λ+ν+δ ∈ W1, which is analogous). The condition σ(λ+µ+δ) = λ+ν+δ

implies σW1 = W2. It is evident that σǫn
W1 = W2. The Weyl group acts

simply transitively on the set of open (or closed) Weyl chambers. Hence

σ = σǫn
.4 Now, σǫn

(λ + µ + δ) = λ + µ + δ − 2(ǫn, λ + µ + δ)ǫn =

λ+ µ+ δ − 2(λn + sδnp + 1)ǫn. This element equals λ+ ν + δ if and only

if µ− ν = 2(λn + sδnp + 1)ǫn which is impossible due to the structure of

the set Π(̟1) and the condition λn ∈ Z+ 1
2 .

(2) The case λ+µ+ δ, λ+ ν+ δ ∈ Wi and σ(λ+µ+ δ) = λ+ ν+ δ for i = 1, 2

leads to the condition σ = id, i.e., ν = µ - a contradiction.

4Although ǫn does not belong to the system of simple roots, it is evident that we could
have written σ2ǫn instead of σǫn .
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(3) The remaining case is λ + µ + δ, λ + ν + δ ∈ W1 ∪ W2 − (W1 ∪ W2),

i.e., the considered elements lie on the walls of the two Weyl chambers.

(The other cases are impossible: if there is an element lying on a wall

of a closed Weyl chamber and an another one is lying in the open Weyl

chamber, then they cannot be conjugated.) The inspection of the fact

λ+µ+δ, λ+ν+δ ∈W1∪W2 showed that if these elements lie on the walls

of W1 and W2, then they lie in their interior (i.e., they do not lie on the

walls of codimension 2): the inequations βj ≥ βj+1, for j = 1, . . . , n − 1

happen equations exactly for one j ∈ {1, . . . , n − 1}. Let us define two

families of open Weyl chambers

Wr := {
n∑

i=1

βiǫi;β1 > . . . > βr−1 > −βr > βr+1 > . . . > βn > 0},

r = 1, . . . , n− 1 and

W ′
t := {

n∑

i=1

βiǫi;β1 > . . . > βt−1 > −βt > βt+1 > . . . > −βn > 0},

t = 1, . . . , n− 1.

(3.1) Suppose that λ+µ+ δ ∈W1 ∩Wr and λ+ ν+ δ ∈W2 ∩W ′
t for some

r, t = 1, . . . , n− 1. If we suppose that σ(λ+ µ+ δ) = λ+ ν + δ, then

the fact that these elements lie in the interior of the walls implies

that σW1 = W2 or σW1 = W ′
t . The first case leads to a contradiction

as we have shown. Using the fact that the Weyl group acts simply

transitively, we easily find that σ = σǫt
σǫn

in the second case. Let us

compute σǫt
σǫn

(λ+µ+ δ) = λ+µ+ δ− 2(ǫt, λ+µ+ δ)ǫt − 2(ǫn, λ+

µ+ δ)ǫn = λ+µ+ δ− 2(λt + sδpt +n− t+ 1)ǫt − 2(λn + sδpn + 1)ǫn.

This element equals λ+ ν+ δ if and only if µ− ν = 2(λt + sδpt +n−

t + 1)ǫt + 2(λn + δpt + 1)ǫn. Because of the structure of Π(̟1), we

obtain: µ− ν ∈ {±2ǫt,±2ǫn,±ǫt ± ǫt,±ǫt ∓ ǫn}. The first possibility

leads to 0 = λn + sδnp + 1, which is impossible because λn is half-

integral. The second possibility implies 0 = λt + sδtp + n − t + 1 ≥

λt + n − t > 0 - a contradiction. The third and fourth possibilities

force ±1 = 2(λt + sδtp + n− t+ 1) - an odd number equals an even

one, i.e., a contradiction.
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(3.2) Suppose that λ + µ + δ ∈ W1 ∩ Wr and λ + ν + δ ∈ W1 ∩ Wt.

In this case, σW1 = W1 or σW1 = Wt. The first case leads to a

contradiction as we already know. In the second case, one easily

finds that σǫt
W1 = Wt, i.e., using the simplicity of the Weyl group

action, this implies σ = σǫt
. Let us compute σǫt

(λ + µ + δ) = λ +

µ + δ − 2(λt + sδpt + n − t + 1)ǫt. This element equals λ + ν + δ if

and only if {µ, ν} = {ǫt,−ǫt}, i.e., µ − ν = ±2ǫt. That means that

1 = λt +1+n− t+1 or −1 = λt − 1+n− t+1 which are impossible

because λt ≥ 0 and t < n for t = 1, . . . , n− 1.

(3.3) The remaining cases are analogous to the previous ones and actually

have been done.

Summarizing the part II, we have proved that the condition of the Kostant

theorem 3.1.2 is satisfied.

Part III. Thus we know that L(λ) ⊗ L(̟1) =
⊕k

i=1 Yi, where Yi are sub-

modules of L(λ) ⊗ L(̟1) and if not zero, they admit the infinitesimal char-

acter χλ+νi
, where νi ∈ Π(̟1). (Moreover, νi 6= νj for i 6= j and for each

µ ∈ Π(̟1) there is an i ∈ {1, . . . , k} such that µ = νi.) Because Yi is a

submodule of a direct sum of irreducible modules (as we have proved in part

I), we know that for each i = 1, . . . , k there are κ
(i)
1 , . . . κ

(i)
di

∈ A such that

Yi = L(κ
(i)
1 ) ⊕ . . . ⊕ L(κ

(i)
di

). Denote the infinitesimal character of L(κ
(i)
j ) for

j = 1, . . . di by χ
(i)
j . For an element X in the center Z of the universal envelop-

ing algebra U(g) of g = Cn and v = v1 + . . .+vdi
∈ L(κ

(i)
1 )⊕ . . .⊕L(κ

(i)
di

) we can

write π(X)v = π(X)(v1+. . .+vdi
) = π1(X)v1+. . .+πdi

(X)vdi
, where π denotes

the considered representation on the space Yi and πj denote the representation

on L(κ
(i)
j ) for j = 1, . . . , di. The last equation simplifies into

χλ+νi
(X)v = χ

(i)
1 (X)v1 + . . .+ χ

(i)
di

(X)vdi
. (3.2)

Inserting v1 = . . . = vj−1 = vj = . . . = vdi
= 0 into 3.2 we get χλ+νi

= χ
(i)
j for

each j = 1, . . . , di. But χ
(i)
j = χ

κ
(i)
j

, i.e., χλ+νi
= χ

κ
(i)
j

. According to the theorem

3.1.1, there is an element σ of the Weyl group W such that λ+νi = σ(κ
(i)
j +δ)−δ,

i.e., κ
(i)
j +δ is conjugated with λ+νi+δ by the element σ : σ(κ

(i)
j +δ) = λ+νi+δ.
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Using the inspection of part II of this proof, we know that κ
(i)
j + δ ∈ W1 ∪W2

and λ+ νi + δ ∈ W1 ∪W2. We may suppose that λ+ νi + δ ∈ W1 ∪W2, because

this element is supposed to be conjugated with element κ
(i)
j + δ lying in the

union of two open Weyl chambers W1 ∪W2.

(1) Suppose that λ + νi + δ, κ
(i)
j + δ ∈ Wr for r = 1, 2. Due to the simplicity

of the action of an Weyl group element on the set of open (closed) Weyl

chambers, we get that σ = id and thus κ
(i)
j = λ+ νi, which was to prove.

(2) Suppose that λ+ νi + δ ∈ W1 and κ
(i)
j + δ ∈ W2 (the remaining case can

be treated in a similar way). We have already mentioned that in this case,

σ = σǫn
. To conclude the proof let us show the following

Lemma 3.5.1. Let L(κ) ⊆ L(̟1)
⊗k

be an irreducible summand with the

highest weight κ, then κ ∈ Zsn(k).

Proof. I. For k = 0 the fact is obvious. II. Let us suppose that the

statement holds for k. The tensor product L(̟1)
⊗k+1

decomposes into a

direct sum of irreducible modules (as a tensor power of finite dimensional

modules over simple Lie algebras). Suppose that κ is the highest weight

of one of the irreducible summands in L(̟1)
⊗k+1

. We can decompose

L(̟1)
⊗k+1

= L(̟1)
⊗k

⊗L(̟1) = [L(κ1)⊕. . .⊕L(κm)]⊗L(̟1) = (L(κ1)⊗

L(̟1))⊕ . . .⊕ (L(κm)⊗L(̟1)) for some m ∈ N and κj ∈ Zsn(k) (it is the

induction hypothesis). Let L(κ) ⊆ L(κj) ⊗ L(̟1) for some j = 1, . . . ,m.

It is a well known fact in representation theory (a consequence of the Weyl

character formula, see Knapp [20], pp. 285) that κ = κj + τ where τ is

a weight of L(̟1). From the structure of the set Π(̟1), it follows that

κ− κj = τ ∈ Z−. Using the induction assumption, we get that κ ∈ Z± if

and only if κj ∈ Z∓. ✷

Because L(ν) is a finite dimensional representation of Cn, there is a k ∈ N0

such that L(ν) ⊆ L(̟1)
⊗k, i.e., it is a tensor representation. We know

that L(λ) ⊆ L(− 1
2̟n)⊗L(ν) ⊆ L(− 1

2̟n)⊗L(̟1)
⊗k

. From the theorem

3.4.1, it follows that λ = − 1
2̟n+κ, i.e., λ ∈ A± if and only if κ ∈ Z±. Due

the theorem 3.4.1, we know that κ = ν−
∑n

i=1miǫi for
∑n

i=1miǫi ∈ 2Z+,
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i.e., κ ∈ Z± if and only if ν ∈ Z±. Due to the previous lemma 3.5.1,

we know that ν ∈ Zsn(k). Summing up, λ ∈ Asn(k). This implies that

λ+ δ+ νi ∈ Asn[k+ 1
2n(n+1)+1]. On the other hand, we know that L(κ

(i)
j ) ⊆

L(λ)⊗L(̟1) ⊆ L(− 1
2̟n)⊗L(̟1)

⊗k

⊗L(̟1) ⊆ L(− 1
2̟n)⊗L(̟1)

⊗k+1

.

Let us write the decomposition L(̟1)
⊗k+1

= L(ξ1)⊕ . . .⊕L(ξr) for some

r ∈ N and ξj ∈ Zsn(k+1) for j = 1, . . . , r. Let us suppose that L(κ
(i)
j ) ⊆

L(− 1
2̟n) ⊗ L(ξs) for some s = 1, . . . , r. Then due to the theorem 3.4.1,

it follows that κ
(i)
j = − 1

2̟n + κ, where κ = ξs −
∑n

i=1miǫi for some
∑n

i=1miǫi ∈ Z+, i.e., κ
(i)
j ∈ A± if and only if ξs ∈ Z±. Due to the previous

lemma 3.5.1, we know that ξs ∈ Zsn(k+1). Thus κ
(i)
j ∈ Asn(k+1). This

implies, κ
(i)
j + δ ∈ Asn[k+1+ 1

2n(n+1)]. It is easy to see that σǫn
: A± → A∓.

Indeed, take ψ = − 1
2̟n+

∑n
i=1miǫn and compute σǫn

ψ−ψ = −2(ψ, ǫn) =

−2(− 1
2 +mn) = −2mn + 1 ∈ 2Z + 1 and the statement follows. Thus it

is impossible that σǫn
(λ+ δ+ νi) = κ

(i)
j + δ, i.e., the remaining possibility

σ = id holds. This possibility implies κ
(i)
j = λ+ νi.

Part IV. Thus we know that if Yi 6= {0} then it is a direct sum of copies of

L(λ + νi). For irreducible finite dimensional modules over simple Lie algebras,

one can prove that the multiplicity of L(λ+νi) in the tensor product L(λ)⊗L(ν)

(where νi ∈ Π(ν)) is smaller or equal to the multiplicity of the weight νi in the

representation L(ν), see the book Čap, Slovák [7]. It is easy to prove that the

same is true for irreducible standard cyclic modules. Because each weight of

L(̟1) has multiplicity one, we deduce that the multiplicity of representation

with the highest weight λ+ νi in the tensor product is at most one.✷

Remark 3.5.2. Weights from the set A + δ (i.e., we consider weights from A

shifted by δ) are all included in two Weyl chambers only - the union of the

dominant Weyl chamber and its image under the reflection with respect to ǫn.

All that can be nicely illustrated in the case of C2. At the next picture, we can

see the corresponding two Weyl chambers in the Cartan-Stiefel diagram of C2

below. Elements of A are shifted by δ, elements of A+ are denoted by dots and

elements of A− by squares. At the picture of the Cartan-Stiefel diagram for

C2, we can see that if λ and κ are conjugated by the reflection in the plane
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orthogonal to ǫ2 then one of them is represented by a dot and the second one

by a square. (But λ + νi and κ
(i)
j are both represented either by dots or by

squares.)

ǫ2

ǫ1 = ω1

ω2

Consider the representation L(̟1)
⊗k

⊗ V for some V ∈ A. We know that

L(̟1)⊗V is completely reducible and its direct summands are in A. Let us label

these summands by integers, denoting their chosen position in the direct sum.

Tensoring L(̟1)⊗V = ⊕n1

b1=1Vb1 by L(̟1), we obtain a direct sum again since

each Vb1 , b1 = 1, . . . , n1 is in A and therefore decomposes when tensored by

L(̟1) due to the previous theorem 3.5.1. We denote the b2 therm of the direct

sum of Vb1 ⊗L(̟1) by V(b1,b2). Continuing in this process (or by induction) we

obtain L(̟1)
⊗k

⊗ V = ⊕b1,...,bk
V(b1,...,bk). Thus we have proved

Theorem 3.5.2. The representation of L(̟1)
⊗k

⊗ V is completely reducible

and decomposes as

L(̟1)
⊗k

⊗ V = ⊕b1,...,bk
V(b1,...,bk).

Example: In this example we shall denote a module L(ν) with highest weight ν
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simply by (ν) written in the basis of fundamental weights and we shall describe

the set Aλ for λ = (10 . . . 01 − 3
2 ).

We know that

(0 . . . 01 −
3

2
) ⊗ (10 . . . 0) = (0 . . . 0 −

1

2
) ⊕ (10 . . . 01 −

3

2
).

We also know that

(10 . . . 0) ⊗ (10 . . . 0) = (20 . . . 0) ⊕ (010 . . .0) ⊕ (0).

We can decompose the following tensor products using the prescription of the

theorem 3.4.1 to obtain that

(0 . . . 01 −
3

2
) ⊗ (20 . . . 0) = (20 . . .01 −

3

2
) ⊕ (10 . . . 01 −

3

2
) ⊕ (0 . . . 01 −

3

2
)

(0 . . . 01 −
3

2
) ⊗ (010 . . . 0) = (010 . . . 01 −

3

2
) ⊕ (10 . . . 0 −

1

2
)

(0 . . . 01 −
3

2
) ⊗ (0) = (0 . . . 01 −

3

2
)

We also know that

(0 . . . 0 −
1

2
) ⊗ (10 . . . 0) = (0 . . . 01 −

3

2
) ⊕ (1 . . . 0 −

1

2
)

From this we can deduce that:

(10 . . .01 −
3

2
) ⊗ (10 . . . 0) = (20 . . . 01 −

3

2
) ⊕ (0 . . . 01 −

3

2
) ⊕

⊕(010 . . .01 −
3

2
) ⊕ (10 . . . 0 −

1

2
).

Hence we can see here that in this case, the set Aλ is given by

Aλ = {κ = λ+ µ;κ ∈ A, µ ∈ Π(̟1)}.

Many other examples lead to the same result, hence we conjecture that the

same fact will be true in general.
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Chapter 4

Projective Contact

Geometry

4.1 Contact bundle and Levi form

Let M be a smooth n dimensional manifold.

Let us assume a smooth subbundle HM of corank one of the tangent bundle

TM . Denote QM := TM/HM the quotient bundle of rank one. This subbundle

comes up with the canonical quotient projection q : TM → QM. Recall the

standard definition of Levi form L : Γ(M,HM) × Γ(M,HM) → Γ(M,QM),

L(ξ, η)(m) := q([ξ, η]m)

for each ξ, η ∈ Γ(M,HM) and m ∈ M. The Levi form is antisymmetric and

bilinear over C∞(M,R). The antisymmetry is evident. To prove the bilinearity,

let us take f ∈ C∞(M,R), ξ, η ∈ Γ(M,HM) and compute

L(fξ, η)(m) = q([fξ, η]m)

= q(f(m)ξmη − ηm(fξ))

= q(f(m)ξmη − f(m)ηmξ − (ηm.f)ξm)

= q(f(m)[ξ, η]m − (ηm.f)ξm)

= f(m)q([ξ, η]m) = f(m)L(ξ, η)(m)

which proves the bilinearity. So the Levi form factors to a tensor field, i.e.,

there is an element L ∈
∧2

H∗M ⊗ QM such that Lm(ξm, ηm) = L(ξ, η)(m).
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We shall not distinguish between the Levi form L and the corresponding tensor

field L ∈
∧2

H∗M ⊗QM and denote them both by the calligraphic L.

Definition 4.1.1. We call the subbundle HM contact bundle and the triple

(M,HM,L) contact structure if the associated Levi form L is nondegenerate, i.e

for eachm ∈M and 0 6= ξ ∈ HmM there is ηm ∈ HmM such that Lm(ξm, ηm) 6=

0.

The nondegeneracy of the Levi form immediately implies that the dimension

n of the manifold M is odd, i.e., n = 2k+1, if (M,HM,L) is a contact structure.

Remark 4.1.1. According to the definition of the Levi form, the nondegeneracy

means that to each 0 6= ξm ∈ HmM there is a ηm ∈ HmM such that [ξm, ηm] /∈

HmM. More classically, this condition can be expressed by the equation

θm ∧ (dθm)k 6= 0,

where θ is a differential 1-form defining the contact subbundle HM, i.e.,

HM = {t ∈ TM ; θ(t) = 0}.

Thus the nondegeneracy of the Levi form represents the notion of maximal

nonintegrability in Frobenius sense which is classically used to define a contact

subbundle. Sometimes a contact structure will be denoted by the pair (M, θ).

The differential 1-form θ defining the contact structure is called a contact form.

Example: There is a well known example of a contact structure, which is

a model for all contact structures, namely

(R2k+1[q1, . . . , qk, p1, . . . , pk, t], θ0 = dt+

k∑

i=1

pidq
i).

A short computation gives that

HM = {
k∑

i=1

(piQ
i)
∂

∂t
+

k∑

i=1

Pi
∂

∂pi

+

k∑

i=1

Qi ∂

∂qi
;Qi, Pi ∈ C∞(R2k+1,R), i = 1, . . . k}.

In the section 4.3, we meet another example of contact structure, the so called

projective contact sphere.
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4.2 Connections on the contact and quotient bun-

dle

Denote the kernel Ker(L) ⊆
∧2HM of the Levi form L by

∧2
0HM and suppose

that the above given contact structure (M,HM,L) is equipped with a partial

linear connection ∇, i.e., there is a mapping ∇ : Γ(M,HM) × Γ(M,HM) →

Γ(M,HM) satisfying the obvious relations

(1) ∇fξη = f∇ξη

(2) ∇ξfη = (ξ.f)η + f∇ξη,

for all f ∈ C∞(M,R), ξ, η ∈ Γ(M,HM).

Assume that the connection is compatible with the Levi form, i.e., that the

induced connection satisfies ∇ξ(
∧2

0HM) ⊆
∧2

0HM for all ξ ∈ Γ(M,HM). We

call such a partial linear connection contact connection.

The contact connection ∇ on HM induces a partial linear connection ∇Q

on the one dimensional quotient bundle QM (the so called induced quotient

connection) in the following way

∇Q
ξ (L(η, ζ)) = L(∇ξη, ζ) + L(η,∇ξζ), ξ, η, ζ ∈ Γ(M,HM).

At first, let us rewrite its righthand side using the antisymmetry of the Levi

form, L(ξ, η) = L(ξ∧η) which holds for each ξ, η ∈ Γ(M,HM), and the Leibniz

like behavior of the contact connection induced to differential 2-forms: R.H.S. =

L(∇ξη, ζ) + L(η,∇ξζ) = L(∇ξη ∧ ζ) + L(η ∧∇ξζ) = L(∇ξ(η ∧ ζ)). As a result

we have

∇Q
ξ L(η, ζ) = L(∇ξ(η ∧ ζ))

for each η, ζ, ξ ∈ Γ(M,HM). To see that the definition of ∇Q is independent

on the choice of η, ζ ∈ Γ(M,HM), (i.e., the correctness of the definition) take

ω, ω′ ∈ Γ(M,
∧2

HM) such that L(ω) = L(ω′). That means that there is an

element τ ∈
∧2

0HM such that ω′ = ω + τ. Thus we may write ∇Q
ξ L(ω′) =

L(∇ξω
′) = L(∇ξ(ω + τ)) = L(∇ξω) + L(∇ξτ) = ∇Q

ξ L(ω) which proves the

correctness of the definition. In the last step we have used the compatibility
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property, ∇(
∧2

0HM) ⊆
∧2

0HM
1. The nondegeneracy of the Levi form implies

that it is surjective, i.e., to each vector filed R ∈ Γ(M,QM) there are (not

uniquely determined) vector fields η, ζ ∈ Γ(M,HM) such that L(η, ζ) = R.

Now, we shall show that this formula defines a partial connection. First, let

us check the tensorial property in the ξ-argument. ∇Q
fξ(L(η, ζ)) = L(∇fξη, ζ)+

L(η,∇fξζ) = f∇Q
ξ L(η, ζ), which follows from the definition of the contact con-

nection on HM and the tensorial property of the Levi form L. Second, to check

the Leibniz rule, consider

∇Q
ξ (fL(η, ζ)) = ∇Q

ξ (L(fη, ζ))

= L(∇ξfη, ζ) + L(fη,∇ξζ)

= L(ξ.fη, ζ) + fL(∇ξη, ζ) + fL(η,∇ξζ)

= f∇Q
ξ L(η, ζ) + ξ.fL(η, ζ),

which proves the correctness of the definition of the quotient connection ∇Q.

4.2.1 Contact bundle projections and quotient connections

In this paragraph we shall show that the choice of a partial linear connection

∇Q on the quotient bundle QM is in 1-1 correspondence to a choice of a bundle

projection p : TM → HM.

First, we shall use the partial linear connection ∇Q to define a bundle sur-

jection p : TM → HM. Consider the map P : Γ(M,HM) × Γ(M,TM) →

Γ(M,QM) given by the formula

P (ξ, η) := q([ξ, η]) −∇Q
ξ q(η)

for each ξ ∈ Γ(M,HM) and η ∈ Γ(M,TM). Check that this expression is

C∞(M,R)-linear in η.

P (ξ, fη) = q([ξ, fη]) −∇Q
ξ q(fη)

= fq([ξ, η]) + ξ.fq(η) − ξ.fq(η) − f∇Q
ξ q(η)

= fP (ξ, η).

1Informally, the contact connection factors through the kernel of the Levi form to define
the quotient connection.
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This means that there is an element p∇,Q(η) ∈ Γ(M,HM) such that

P (ξ, η) = q([ξ, η]) −∇Q
ξ q(η) = L(ξ, p▽,Q(η)),

for each ξ ∈ Γ(M,TM). The element is uniquely defined due to the nondegen-

eracy of L. We shall prove that the map p∇,Q : η 7→ p∇,Q(η) is a projection,

i.e., a surjective (onto HM) idempotent in Hom (TM,HM). Consider

L(ξ, p∇,Q(p∇,Q(η))) = P (ξ, p∇,Q(η))

= q([ξ, p∇,Q(η)]) −∇Q
ξ q(p

∇,Q(η))

= L(ξ, p∇,Q(η)) −∇Q
ξ 0

= L(ξ, p∇,Q(η))

which implies that (p∇,Q)2(η) = p∇,Q(η) (again due to the nondegeneracy prop-

erty of Levi form). We prove that p∇,Q is surjective. Let η ∈ Γ(M,HM),

P (ξ, η) = q([ξ, η]) − ∇Q
ξ q(η) = L(ξ, η) −∇Q

ξ q(η) = L(ξ, η) + 0 = L(ξ, p∇,Q(η))

which implies p▽,Q(η) = η which means that p is a surjection.

Conversely, consider the map p 7→ ∇p,Q
ξ q(η) := q([ξ, η]) − L(ξ, p(η)), where

ξ, η ∈ Γ(M,HM). This map defines a partial linear connection on QM. To

prove the correctness, take another η′ such that q(η) = q(η′), it means that

there exists a χ ∈ Γ(M,HM) such that η′ = η + χ. ∇p,Q
ξ q(η′) = q([ξ, η′]) −

L(ξ, p(η′)) = q([ξ, η])−L(ξ, p(η))+q([ξ, χ])−L(ξ, p(χ)) = ∇p,Q
ξ q(η)+q([ξ, χ])−

L(ξ, χ) = ∇p,Q
ξ q(η). Thus the definition is correct. Now, we shall prove that this

map defines a linear connection. First, we check that ∇p,Q
fξ q(η) = q([fξ, η]) −

L(fξ, η) = fq([ξ, η])−fL(ξ, η) = f∇p,Q
ξ q(η). Second, we check the Leibniz rule.

∇p,Q
ξ fq(η) = q([ξ, fη]) − L(ξ, fp(η))

= q([ξ, fη]) − fL(ξ, p(η))

= q((ξ.f)η + fξη − fηξ) − fL(ξ, p(η))

= (ξ.f)q(η) + fq([ξ, η]) − fL(ξ, p(η))

= (ξ.f)q(η) + f∇π,Q
ξ q(η).

It is obvious that the map p 7→ ∇p,Q is inverse to the map which associate a

bundle projection p∇,Q to each quotient connection ∇Q considered above and

vice versa. Thus we have proved the
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Theorem 4.2.1. There is a 1-1 correspondence

A : Proj(TM,HM) → LinConn(QM)

between the set Proj(TM,HM) of all bundle projections p of the tangent bundle

TM to the contact bundle HM and the set LinConn(QM) of all partial linear

quotient connections ∇Q.

The kernel of the projection p∇,Q is of rank one and will be denoted by Q.

Thus the projection gives us a splitting TM = Q⊕HM.

4.2.2 Projective structure on the set of contact connec-

tions and Transformation formulas

In this subsection, we shall define the so called projective equivalence on the set

of contact connections. Given a one form Υ ∈ Γ(M,HM∗), the nondegeneracy

of L implies that the definition of a bundle homomorphism Υ♮ : QM → HM

given by

L(Υ♮(ψ), ζ) := Υ(ζ)ψ

for all ψ ∈ Γ(M,QM) and ζ ∈ Γ(M,HM) is correct. Due to the nondegeneracy

of the Levi form L, it is possible to define the projective structure on the set

of all partial linear connections. We call two partial linear connections ∇̂, ∇

projective equivalent contact connections if there exists a smooth one form Υ ∈

Γ(M,HM∗) such that

∇̂ξη −∇ξη = Υ(ξ)η + Υ(η)ξ + Υ♮(L(ξ, η)), ξ, η ∈ Γ(M,HM).

It is an easy computation to check that this gives a relation of equivalence

on the set of all contact connections. We shall denote the class of equivalent

connections by [∇] if the contact connection ∇ belongs to this class. Now, we

are ready to give the definition of projective contact structure.

Definition 4.2.1. We call the quadruple (M,HM,L, [∇]) projective contact

structure if (M,HM,L) is a contact structure and [∇] is the class of projective

connections to which a compatible contact connection ∇ belongs.
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Remark 4.2.1. It can be checked that the compatibility property is conserved

within a projective contact class, i.e., if ∇̂ ∼ ∇ and ∇ is compatible, then ∇̂ is

compatible.

Transformation formulas. Let us compute how the induced quotient con-

nection on QM changes by changing a representant of given projective class [∇].

∇̂Q
ξ (L(η, ζ)) =

= L(∇̂ξη, ζ) + L(η, ∇̂ξζ)

= L(∇ξη + Υ(ξ)η + Υ(η)ξ + Υ♮(L(ξ, η)), ζ)

+L(η,∇ξζ + Υ(ξ)ζ + Υ(ζ)ξ + Υ♮(L(ξ, ζ)))

= ∇Q
ξ (L(η, ζ)) + Υ(ξ)L(η, ζ) + Υ(η)L(ξ, ζ) + L(Υ♮(L(ξ, η)), ζ)

+Υ(ξ)L(η, ζ) + Υ(ζ)L(η, ξ) + L(η,Υ♮(L(ξ, ζ)))

= ∇Q
ξ (L(η, ζ)) + 2Υ(ξ)L(η, ζ) + Υ(η)L(ξ, ζ) + Υ(ζ)L(η, ξ) + Υ(ζ)L(ξ, η)

−Υ(η)L(ξ, ζ)

= ∇Q
ξ L(η, ζ) + 2Υ(ξ)L(η, ζ).

(We used the definition of the bundle homomorphism Υ♮, the quotient connec-

tion ∇Q and the antisymmetry and bilinearity of L.) We can write this result

(transformation law for quotient connection) in a more convenient way

∇̂Q
ξ ψ −∇Q

ξ ψ = 2Υ(ξ)ψ

for all ψ ∈ Γ(M,QM) and ξ ∈ Γ(M,HM).

The next simple quantity besides the induced quotient connection ∇Q which

transforms changing a representant of a given projective class of contact con-

nections is the bundle projection p. Let us write the definitions of p = p∇,Q and

p̂ = p
b∇,Q

L(ξ, π(η)) = q([ξ, η]) −∇Q
ξ q(η),

L(ξ, p̂(η)) = q([ξ, η]) − ∇̂Q
ξ q(η)

for each ξ ∈ Γ(M,HM) and η ∈ Γ(M,TM). These two equations imply that

L(ξ, (p̂− p)η) = ∇Q
ξ q(η) − ∇̂Q

ξ q(η)

= −2Υ(ξ)q(η)
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= −2L(Υ♮(q(η)), ξ)

= L(ξ, 2Υ♮q(η)).

As a result, we obtain the following transformation law for the contact projection

p̂(η) − p(η) = 2Υ♮q(η)

for all η ∈ Γ(M,TM).

4.2.3 Torsion of projective contact structure

Let us consider a mapping T∇ : Γ(M,HM)×Γ(M,HM) → Γ(M,HM) associ-

ated to each contact structure (M,HM,L) and contact connection ∇ given by

the formula

T∇(ξ, η) = ∇ξη −∇ηξ − p([ξ, η])

where ξ, η ∈ Γ(M,HM) and p : TM → HM is a projection associated to the

induced quotient connection ∇Q. In what follows, we shall prove the

Theorem 4.2.2. The torsion T∇ of a contact structure (M,HM,L) and a

contact connection ∇ remains unchanged under a change of a representant ∇

of a projective class of contact connections [∇], i.e., it is an invariant of a

projective contact structure (M,HM,L, [∇]).

Proof. Let us take two projective equivalent contact connections ∇̂,∇ and

consider appropriate torsions T̂ = T
b∇, T = T∇ associated to these connections.

For ξ, η ∈ Γ(M,HM) we can compute

T̂ (ξ, η) = ∇̂ξη − ∇̂ηξ − p̂([ξ, η])

= ∇ξη + Υ(ξ)η + Υ(η)ξ + Υ♮(L(ξ, η))

−∇ηξ − Υ(η)ξ − Υ(ξ)η − Υ♮(L(η, ξ)) − p̂([ξ, η])

= T (ξ, η) + 2Υ♮(L(ξ, η)) + p([ξ, η]) − p̂([ξ, η])

= T (ξ, η) + 2Υ♮(L(ξ, η)) − 2Υ♮q([ξ, η])

= T (ξ, η),

where we have used the definition of Levi form, torsion and the transformation

law for the contact projection p : TM → HM. ✷
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This theorem also proves the correctness of the following definition. We shall

call a projective contact geometry (M,HM,L, [∇]) torsion free, if the torsion

T of (M,HM,L, [∇]) vanishes.

4.3 Homogeneous model of projective contact

geometry

In this section we introduce the homogeneous model of projective contact ge-

ometry, the so called projective contact sphere.

Let us assume the canonical basis {ǫi}2k
i=1 of the vector space (R2k)∗. The

linear symplectic structure (R2k, ω), where the symplectic form ω :=
∑k

i=1 ǫ
i ∧

ǫi+k, is called canonical linear symplectic structure . Consider the tautological

action of Sp(2k,R) on the canonical linear symplectic structure (R2k, ω). This

action restricts to C := R2k − {0} and factors to a transitive action on C/R+

which can be identified with S2k−1.

There is a map π : C → S2k−1 associating to each vector in C a point of

sphere the S2k−1 which is an intersection of this sphere S2k−1 and a half line

{tx, t ∈ R+} passing through the vector x ∈ C, i.e.,

π(x) :=
x

|x|
, x ∈ C

where | | is the Euclidean norm on R2k. This map defines a principle R+-bundle

over the base S2k−1. We can form a family of associated bundles E [α] = C×ρα
R

to this principle bundle via a representation ρα : R+ → Aut(R) = R − {0},

ρα(t)x = t−αx for each t ∈ R+, x, α ∈ R. We shall consider the mapping

π∗ : X(C) → X(S2k−1)

and restrict it to invariant vector fields to obtain a mapping π∗ : X(C)R+ →

X(S2k−1). We shall prove in the next lemma, that the kernel of this map consists

of all vector fields of the form fE where f is an invariant function, i.e.,

f(tx) = f(x), t ∈ R+, x ∈ C

and E is the Euler vector field defined by

Ex :=
n∑

i=1

xi(
∂

∂xi
)x, x = (x1, . . . , xn) ∈ C,
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where n := 2k.

Lemma 4.3.1 (Kernel of π∗). The kernel

Ker(π∗) = {fE; f : C → R, f(tx) = f(x), t ∈ R+, x ∈ C}.

Proof. At first, consider X ∈ X(C) such that π∗(X) = 0, i.e., π∗(X)g =

X(gπ) for each g ∈ C∞(S2k−1,R). Consider the canonical coordinates xi, i =

1, . . . , n on C. We shall suppose, that the vector field X is in the following form

X =
∑n

i=1 f
i ∂
∂xi . Writing the expression 0 = X(gπ) in the coordinate way, we

obtain

0 =
n∑

i=1

f i ∂

∂xi
(gπ)

=

n∑

i=1

n∑

j=1

f i ∂g

∂xj

∂πj

∂xi
.

Considering the last equation holds for each g = xl, l = 1, . . . , n, we obtain
n∑

i=1

f i ∂π
l

∂xi
= 0.

We use the definition of π to obtain

∂πl

∂xi
=
δl
i|x| − xlxi/|x|

|x|2
.

Substituting this to the previous expression and multiplying the result by |x|2,

we obtain a set of equations

f l|x|2 − (f, x)xl = 0, l = 1, . . . , n.

From these equations it follows that

f l(x) =
(f(x), x)

|x|2
xl, x ∈ C.

Thus

X =
(f, x)

|x|2

n∑

l=1

xl ∂

∂xl
= ψE,

for a function ψ : C → R.

If we want to compute the kernel of the restricted mapping π∗ : X(C)R+ →

X(S2k−1), it is sufficient to use the previous computation with the restriction

on the function ψ(tx) = ψ(x). ✷

For later use, we can write the function ψ in a form ψ = Υ(ξ)π, where

Υ ∈ Ω1(S2k−1) is a differential 1-form on the sphere and ξ ∈ X(S2k−1).
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4.3.1 Contact structure on the sphere S2k−1

In this subsection we shall define a contact structure on the sphere S2k−1, the

so called contact sphere. We can define a mapping qσ : X(S2k−1) → C∞(C,R)

by the formula

qσ(ξ) := ω(σ(ξ), E)

where ξ ∈ X(S2k−1) and σ is a section of the map π∗ : X(C)R+ → X(S2k−1),

where X(C)R+ denotes the vector space of R+-invariant vector fields on C.

Theorem 4.3.1. The triple (S2k−1, H,L) where H := Ker (qσ) and L is the

Levi form is a contact structure independent of the choice of section σ.

Proof. At first, we check that the definition is independent of the choice of

the section σ : X(S2k−1) → X(C) and that q is a bundle morphism. Then we

check that the subbundle H is a contact subbundle. Having two sections σ, σ′

of π∗, we know that σ′(ξ) − σ(ξ) is in kernel of π∗ thus σ′(ξ) − σ(ξ) = fE for

some invariant function f, see the lemma 4.3.1. As a result, we get qσ′

(ξ) =

ω(σ′(ξ), E) = ω(σ(ξ) + fE,E) = ω(σ(ξ), E) = qσ(ξ), using the antisymmetry

of ω.

It is easy to verify that ξ 7→ q(ξ) is linear over C∞(S2k−1,R) for ξ ∈

X(S2k−1). Indeed, fξ 7→ ω(σ(fξ), E) = ω(fσ(ξ), E) = fω(σ(ξ), E) for each

f ∈ C∞(S2k−1,R). We know that q(ξ) is a homogeneous function of degree two

on C. These functions correspond to sections of E [2] over S2k−1. As a result we

obtain that q : TS2k−1 → E [2] is a bundle morphism covering the identity on

S2k−1 and thus its kernel H is a smooth subbundle.

To show that H is a contact subbundle, we need to show that the Levi form

L : H ×H → E [2] defined by L(ξ, η) = q([ξ, η]) is nondegenerate.2 This map

equals to a mapping ω([σ(ξ), σ(η)], E). We know that the symplectic form is

closed, thus we can write

0 = dω(σ(ξ), σ(η), E) =

= σ(ξ)ω(σ(η), E) − σ(η)ω(σ(ξ), E)

2Actually, the Levi form is defined by L(ξ, η) = q′(q([ξ, η])) where q′ is the inverse of the
bundle isomorphism TM/H → E[2] as one easily checks. But for our purposes it is sufficient
to consider L defined above.
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+ Eω(σ(ξ), σ(η)) − ω([σ(ξ), σ(η)], E)

+ ω([σ(ξ), E], σ(η)) − ω([σ(η), E], σ(ξ)).

It is easy to verify that the first two and the last two terms are zero. The

first two are zero because ξ, η ∈ H and thus ω(σ(ξ), E) = ω(σ(η), E) = 0. For

the last two terms, consider the following computation [E, σ(ξ)] = LE(σ(ξ)) =

d
dt t=0

Flt∗E σ(ξ) = d
dt t=0

ret∗σ(ξ) = d
dt t=0

σ(ξ) = 0. The last but one equation

is a consequence of the invariance of σ(ξ) which can be seen as follows. The

invariance of σ(ξ) is expressed by

σ(ξ)rtσ(u) = (Trt)σ(u)Tσuξu.

This equation implies that

rt∗σ(ξ)σ(u) = (Trt)−1
σ(u)σ(ξ)rtσ(u) = Tσuξu = σ(ξ)σ(u),

for each t ∈ R+, u ∈ S2k−1.

Thus

ω([σ(ξ), σ(η)], E) = Eω(σ(ξ), σ(η)). (4.1)

Because of the degree two homogeneity of ω(σ(ξ), σ(η)), we obtain that the

action of Euler vector field on it is equal 2ω(σ(ξ), σ(η)). But the symplectic

form is nondegenerate and therefore L is nondegenerate too and thus H is a

contact subbundle. ✷

The triple (S2k−1, H,L) is called contact sphere.

4.3.2 Projective contact structure on the sphere S2k−1

In the last subsection we have defined the contact structure (S2k−1, H,L) on

the sphere S2k−1. In this subsection we define a projective contact structure on

the contact sphere. Choose a section σ of the mapping π∗. Take ξ, η ∈ H. We

define a partial connection

∇σ
ξ η := pσ(π∗(∇σ(ξ)σ(η)))

where ∇ is the flat connection on R2k and pσ is a projection pσ : TS2k−1 → H

defined in the following way. Choose a θσ ∈ X(C) defined by the equations
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ω(θσ, E) = 1 and ω(θσ, σ(ξ)) = 0 for any ξ ∈ X(S2k−1). It can be checked that

σ(ξ)−ω(σ(ξ), E)θσ is an invariant vector field on C, thus it descends to a vector

field on S2k−1. This vector field will be denoted by pσ(ξ).

To show that pσ is a projection onto the contact subbundle H, we make

following computations. First, take a ξ ∈ X(S2k−1) and assume

qσpσ(ξ) = ω(σ(pσ(ξ)), E)

= ω(σ(ξ) − ω(σ(ξ), E)θσ , E)

= ω(σ(ξ), E) − ω(σ(ξ), E)ω(θσ , E) = 0,

i.e., pσ(ξ) ∈ H.

Second, let us compute

pσ(pσ(ξ)) = pσ(σ(ξ) − ω(σ(ξ), E)θσ)

= pσ(σ(ξ)) − ω(σ(ξ), E)pσ(θσ)

= pσ(ξ) − ω(σ(ξ), E)(θσ − ω(θσ, E)θσ)

= pσ(ξ),

i.e., pσ is an idempotent.

Third, take a ξ ∈ H and consider the vector field σ(ξ) − ω(σ(ξ), E)θσ =

σ(ξ) − q(ξ)θσ = σ(ξ), because H = Ker (q). Thus we have proved that pσ

is a surjective (onto H) idempotent of Hom (TS2k−1, H), i.e., a projection

pσ : TS2k−1 → H

It is an easy exercise to compute that

pσ′ − pσ = 2Υ♮q,

where σ′ − σ = ΥπE. Indeed, take a ξ ∈ X(S2k−1) and compute

pσ′(ξ) − pσ(ξ) = ω(σ′(ξ), E)θσ′ − ω(σ(ξ), E)θσ

= ω(σ(ξ) + Υ(ξ)πE,E)θσ′ − ω(σ(ξ), E)θσ

= ω(σ(ξ), E)(θσ′ − θσ)

= qσ(ξ)(θσ′ − θσ).
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We need to prove that q(ξ)(θσ′ −θσ) = 2Υ♮q(ξ). To proceed take a ζ ∈ X(S2k−1)

and consider

L(q(ξ)(θσ′ − θσ), σ(ζ)) =

q(ξ)[L(θσ′ , σ′(ζ) − Υ(ζ)πE) − L(θσ, σ(ζ))] =

q(ξ)ω([θσ′ , σ′(ζ) − Υ(ζ)πE], E) − ω([θσ, σ(ζ)], E).

Using the equation 4.1, we obtain

q(ξ)[E.ω(θσ′ , σ′(ζ)) − E.ω(θσ, σ(ζ)) − Υ(ζ)πE.ω(θσ′ , E)] =

q(ξ)[2ω(θσ′ , σ′(ζ)) − 2ω(θσ, σ(ζ)) − Υ(ζ)π2ω(θσ′ , E)] =

−2Υ(ζ)πq(ξ) =

L(2Υ♮q(ξ), σ(ζ)).

The desired equation follows by the nondegenracy of the Levi form.

Let us take a section σ′ and compute ∇σ′

. As we know for such an element

σ′(ξ) = σ(ξ) + Υ(ξ)πE holds, thus we can write

∇σ′

ξ η = pσ′(π∗∇σ′(ξ)σ
′(η))

= pσ(π∗∇σ′(ξ)σ
′(η)) + 2Υ♮q(π∗∇σ′(ξ)σ

′(η)).

At first we compute the first summand.

pσπ∗(∇σ′(ξ)σ
′(η)) = pσ{π∗[∇σ(ξ)(σ(η) + Υ(η)πE)

+∇Υ(ξ)πE(σ(η) + Υ(η)πE)]}

= pσ{π∗[∇σ(ξ)σ(η) + σ(ξ).(Υ(η)π)E + Υ(η)π∇σ(ξ)E

+Υ(ξ)π∇E(σ(η) + Υ(η)πE)]}

= pσ[π∗(∇σ(ξ)σ(η))] + pσ{π∗[σ(ξ).(Υ(η)π)E

+Υ(η)π∇σ(ξ)E + Υ(ξ)π∇Eσ(η)

+Υ(ξ)πE.(Υ(η)π)E + (Υ(ξ)π)(Υ(η)π)∇EE]}.

Because of the flatness of the connection ∇, one can easily compute, that

∇σ(ξ)E = σ(ξ)

∇Eσ(η) = ∇σ(η)E + [E, σ(η)] = σ(η)

∇EE = E.
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Substituting these three equations in the previous one and applying the

mapping π∗ (which kills the Euler vector field E), one obtains

pσπ∗(∇σ′(ξ)σ
′(η)) = ∇σ

ξ η + Υ(η)ξ + Υ(ξ)η.

At second we compute the second summand.

2Υ♮q(π∗∇σ′(ξ)σ
′(η)) = 2Υ♮q(∇σ(ξ)σ(η) + Υ(η)ξ + Υ(ξ)η)

= 2Υ♮q∇σ(ξ)σ(η) = 2Υ♮ω(∇σ(ξ)σ(η), E).

Now, we use the fact that ω is covariantly constant, thus we can rewrite the last

term as

−2Υ♮ω(σ(η),∇σ(ξ)E) = −2Υ♮ω(σ(η), σ(ξ))

= 2
1

2
Υ♮ω([σ(ξ), σ(η)], E)

= Υ♮L(ξ, η)

The second last equation is a consequence of that fact

2ω(σ(ξ), σ(η)) = ω([σ(ξ), σ(η)], E) which was derived when we have computed

the nondegeneracy of the Levi form above, see the equation (4.1).

As a result of these two computations, we realized that we have obtained

the relation of projective contact equivalence.

∇σ′

ξ η = ∇σ
ξ η + Υ(η)ξ + Υ(ξ)η + Υ♮L(ξ, η)

Thus the choice of a section σ corresponds to a choice of projective contact

representant within a projective class of connections.

Summing-up this section, we have proved that S2k−1 posseses a projective

contact structure. At the beginning of this section, we have introduced the

sphere S2k−1 as a homogeneous space G/P, where G = Sp(2k,R) and P is the

subgroup of G fixing an open ray in C. It can be checked that the subgroup P

is a parabolic subgroup of G and therefore (G,S2k−1, G, P, ω), where ω is the

Maurer-Cartan form of G, is a parabolic geometry. This leads to the definition

Definition 4.3.1. Let G = Sp(2k,R) and P be the parabolic subgroup of G

fixing an open ray in C. Then the parabolic geometry of type (G,P ) is called

projective contact geometry.
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4.4 Bernstein-Gelfand-Gelfand resolution for pro-

jective contact geometry

Contact graded symplectic algebra

Recall that a contact graded Lie algebra is a special case of a |2|-graded Lie

algebra, see the section 2.1.

In our case of the contact grading of the algebra g = Ck = sp(2k,C), the

corresponding set Σ = {α1}, see Yamaguchi [31] or the section 2.1). Thus the

grading is given by the pair (Ck, {α1}). In the cited work of Yamagouchi [31],

the elements of the contact grading of sp(2k,C) are written. They have the

following form.

(1) g0 = sp(2k−2,C)⊕CE where E is the grading element uniquely associated

to the grading,

(2) g−1 = C2k−2,

(3) g−2 = C.

Their placement in a matrix A representing an element of g is displayed bellow.

A =

( g0 g1 g2

g−1 g0 g1

g−2 g−1 g0

)

To fix a notation, let us recall some basic facts on the symplectic algebra

g = sp(2k,C). Let {ǫi}k
i=1 be the standard basis of the Cartan subalgebra h of g

which is considered to consist of all diagonal matrices in sp(2k,C). The set of all

positive roots is Φ+ = {ǫi − ǫj, ǫi + ǫj, 2ǫi; 1 ≤ i ≤ j ≤ k}. The set of all positive

roots which root spaces are in p+ is Φp+ = {ǫ1 − ǫi, ǫ1 + ǫi, 2ǫ1; 2 ≤ i ≤ k}.

The corresponding root spaces of the roots in Φp+ are placed in the first row of

a matrix A ∈ sp(2k,C) as it is shown in the next picture (the star denote an

empty space).

⋆ ǫ1 − ǫ2 ǫ1 − ǫ3 . . . ǫ1 − ǫk ǫ1 + ǫk ǫ1 + ǫk−1 . . . ǫ1 + ǫ2 2ǫ1

The fundamental weights for the symplectic algebra Ck are given by ̟i =
∑i

j=1 ǫj, i = 1, . . . , k.
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The structure of saturated sets for (g, p) is in the case of contact graded

symplectic algebras simple (compared with the structure of saturated sets for

contact graded orthogonal algebras, for example).

Saturated sets and Hasse diagram

Theorem 4.4.1 (Saturated sets for (Ck, {α1})). A ⊆ Φp+ is a saturated set

for pair (Ck, {α1}) if and only if it is one of the following types

(1) A = ∅;

(2) Ai = {ǫ1 − ǫ2, . . . , ǫ1 − ǫi}, i = 2, . . . , k;

(3) Ak+1 = Ak ∪ {2ǫ1};

(4) Ai = Ak+1 ∪ {ǫ1 + ǫk, . . . , ǫ1 + ǫ2k−i+2}, i = k + 2, . . . , 2k.

Proof. First, we shall show that each of the sets written above is a saturated

set, i.e., that conditions (R1) and (R2) in theorem 2.3.1 are satisfied. To check

(R1), consider ǫ1−ǫj , ǫ1−ǫl ∈ Ai, i = 2, . . . , k then (ǫ1−ǫj)+(ǫ1−ǫl) ∈ Φ is an

empty condition, thus Ai, i = 2, . . . , k is a saturated set. The same is true for

Ak+1. To check (R1) for Ai, i = k+2, . . . , 2k, consider (ǫ1 − ǫj)+ (ǫ1 + ǫl). This

element is in Φ if and only if j = l. In this case this element equals 2ǫ1, which is

an element of Ai, i = k + 2, . . . , 2k, so again the condition (R1) is satisfied. To

check (R2) it necessary to decompose each element into a sum of positive roots.

ǫ1 − ǫl = (ǫ1 − ǫj)+ (ǫj − ǫl) where 2 ≤ j ≤ l ≤ k. Due to the construction of Ai

we know that if ǫ1−ǫl ∈ Ai then ǫ1−ǫj ∈ Ai for all 2 ≤ j ≤ l thus the condition

(R2) is satisfied. The next decomposition is ǫ1 + ǫl = (ǫ1 − ǫj) + (ǫj + ǫl) where

2 ≤ j ≤ l ≤ k. If ǫ1 + ǫl ∈ Ai, i = k + 2, . . . , 2k then ǫ1 − ǫj ∈ Ai, thus (R2) is

satisfied. The last decomposition to be considered is 2ǫ1 = (ǫ1 − ǫj) + (ǫ1 + ǫj).

Again from the construction of Ai we know that if 2ǫ1 ∈ Ai then ǫ1 − ǫj ∈ Ai,

i = k + 1, . . . , 2k.

Second, we shall prove that the sets written in the statement of this theorem

build all saturated sets for (Ck, {α1}). The empty set is a saturated set. If A 6= ∅

then there is a root α ∈ Φp+ which is an element of A.
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(1) If α = ǫ1 + ǫj ∈ A then because of the decomposition ǫ1 + ǫj = (ǫ1 + ǫl) +

(ǫj − ǫl), 2 ≤ j ≤ l ≤ k we know that ǫ1 + ǫl ∈ A, 2 ≤ j ≤ l ≤ k. The

second decomposition ǫ1 + ǫj = (ǫ1 − ǫj) + 2ǫj for 2 ≤ j ≤ k shows that

ǫ1 − ǫj ∈ A, 2 ≤ j ≤ k due to the condition (R2). Due to the (R1), we

obtain 2ǫ1 = ǫ1 − ǫl + ǫ1 + ǫl, 2 ≤ l ≤ k, i.e., that 2ǫ1 ∈ A. Thus A has the

shape Ai, i = k + 2, . . . , 2k.

(2) If α = 2ǫ1 ∈ A, then the decomposition 2ǫ1 = (ǫ1 + ǫj) + (ǫ1 − ǫj) shows

that ǫ1 + ǫj ∈ A or ǫ1 − ǫj ∈ A for 2 ≤ j ≤ k.

(2.1) If ǫ1 + ǫj ∈ A we achieve the previous case.

(2.2) If ǫ1 − ǫj , and ǫ1 + ǫj /∈ A, 2 ≤ j ≤ k we get that Ais of the shape

Ak+1.

(3) If α = ǫ1 − ǫj ∈ A then ǫ1 − ǫj = (ǫ1 − ǫl) + (ǫl − ǫj), 2 ≤ l ≤ j ≤ k shows

that ǫ1 − ǫl ∈ A for 2 ≤ l ≤ j ≤ k, thus A is of the shape Ai for 2 ≤ i ≤ k.

✷

Example: The Hasse diagram for (sp(6,C), {α1}) is of the following shape:

// // // // //

Each vertex of this diagram represents the first row of a matrix in sp(6,C).

There is a black box in the previous Hasse diagram if and only if the root

corresponding to a (in such way marked) root space belongs to the saturated

set (see the previous picture of displacement of root spaces in the matrix).

In the next theorem, we prove that the previous example is typical, i.e., that

the shape of the Hasse diagram is similar to the shape of the Hasse diagram

written in the previous example.

Theorem 4.4.2 (Hasse diagram for (Ck, {α1})). There are exactly following

labelled arrows in the Hasse diagram for the pair (Ck, {α1}) :

Ai
ǫ1−ǫi+1
−→ Ai+1, i = 2, . . . , k;

Ak
2ǫ1−→ Ak+1;

Ai
ǫ1+ǫ2k−i+1

−→ Ai+1, i = k + 1, . . . , 2k − 1.
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Proof. We know from the lemma 2.3.1 on arrows in Hasse diagram, that we

need to compute |Ai| − |Aj | for all 2 ≤ i ≤ j ≤ 2k.

First, take 2 ≤ i < j ≤ k. In this case, |Aj | − |Ai| = |{ǫ1 − ǫ2, . . . , ǫ1 − ǫj}|−

|{ǫ1 − ǫ2, . . . , ǫ1 − ǫi}| = |{ǫ1 − ǫi+1, . . . , ǫ1 − ǫj}| = (j − i)ǫ1 − (ǫi+1 + . . .+ ǫj).

This element is a multiple of a positive root the corresponding root space of

which is in the parabolic part, i.e., it belongs to Φp+ if and only if j = i+ 1.

Second, consider 2 ≤ i ≤ k and the difference |Ak+1| − |Ai| = |{ǫ1 −

ǫ2, . . . , ǫ1 − ǫk, 2ǫ1}| − |{ǫ1 − ǫ2, . . . , ǫ1 − ǫi}| = |{ǫ1 − ǫi+1, . . . , ǫ1 − ǫk, 2ǫ1}| =

(k − i + 2)ǫ1 − (ǫi+1 + . . . + ǫk). The only possible relation between i and k

to make this difference a multiple of a root of Φp+ is i = k. In this case the

difference is 1.(2ǫ1).

Third, consider 2 ≤ i ≤ k < k+ 1 < j ≤ 2k. In this case, it is easy to obtain

that the difference cannot be a multiple of a root in Φp+ for any choice of i, j

satisfying the previous relation.

Fourth, k + 2 ≤ j ≤ 2k. The difference equals |{ǫ1 − ǫ2, . . . , ǫ1 − ǫk, 2ǫ1, ǫ1 +

ǫk, . . . , ǫ1+ǫ2k−i+2}|−|{ǫ1−ǫ2, . . . , ǫ1−ǫk, 2ǫ1}| = |{ǫ1+ǫk, . . . , ǫ1−ǫ2k−i+2}| =

(k − i + 3)ǫ1 + (ǫk + ǫ2k−i+2). The last written expression is a multiple of an

element of Φp+ if and only if i = k+2. In this case, the difference equals ǫ1 + ǫk.

Fifth, consider k+2 ≤ i < j ≤ 2k in this last case, we obtain a similar result

as in the first case, i.e., the difference is acceptable if and only if j = i + 1. In

this case the difference equals ǫ1 − ǫ2k−i+1. ✷

Bernstein-Gelfand-Gelfand diagram for contact graded symplectic al-
gebra

In this paragraph we compute the vertices of the BGG diagram for a given g-

dominant weight. See the remark 2.3.1 for comments on the computation of a

BGG diagram.

Example: Let us compute the BGG diagram for (sp(8,C), {α1}) and a

dominant integral weight λ =
∑4

i=1 λi̟i. An explicit computation gives the

following BGG diagram written in the basis of dominant weights.

(λ1, λ2, λ3, λ4)
ǫ1−ǫ2−→ (−λ1, λ1 + λ2, λ3, λ4)

ǫ1−ǫ3−→ (−λ1 − λ2, λ1, λ2 + λ3, λ4)
ǫ1−ǫ4−→

(−λ1 − λ2 − λ3, λ1, λ2, λ3 + λ4)
2ǫ1−→ (−λ1 − λ2 − λ3 − 2λ4, λ1, λ2, λ3 + λ4)

ǫ1+ǫ4−→

72



(−λ1−λ2−2λ3−2λ4, λ1, λ2+λ3, λ4)
ǫ1+ǫ3−→ (−λ1−2λ2−2λ3−2λ4, λ1+λ2, λ3, λ4)

ǫ1+ǫ2−→ (−λ1 − 2λ2 − 2λ3 − 2λ4, λ2, λ3, λ4).

Let us denote the vertex in BGG diagram for (Ck, {α1}) and a weight λ

corresponding to the set Ai, i = 2, . . . , 2k in the (isomorphic) Hasse diagram by

Ai(λ). Let us define following vectors written in the coordinates of the basis of

the fundamental weights.

γj := (−

j−1∑

i=1

λi, λ1, . . . , λj−2, λj−1 + λj , λj+1, . . . , λk), j = 1, . . . , k;

γj := (−
k∑

i=1

λi−
k∑

i=2k−j+1

λi, λ1, . . . , λ2k−j−1, λ2k−j +λ2k−j+1, λ2k−j+2, . . . , λk),

j = k + 1, . . . , 2k.

The last written vector for j = 2k is to be understood as equal to (−λ1 −

2
∑k

i=2 λi, λ1, . . . , λk).

Theorem 4.4.3 (BGG diagram for (Ck, {α1}, λ)). The BGG diagram for

(Ck, {α1}) and an integral dominant weight λ for Ck has the following vertices

written in the basis of fundamental weights:

Ai(λ) = γi, i = 1, . . . , 2k.

There is an oriented labelled arrow between two vertices Ai(λ) and Aj(λ) if and

only if j = i + 1, i = 1, . . . , 2k − 1 and j = 2, . . . , 2k. The labels of oriented

arrows are the same as those in the Hasse diagram.

Proof. We prove the statement only for i = 1, . . . , k. A similar proof can

be done for i = k + 1, . . . , 2k. We prove the statement by induction on i. I. is

immediately. II. Suppose we have proved the statement for i. Consider

Ai+1(λ) = Ai(λ) − 2
(Ai(λ), ǫ1 − ǫi+1)

(ǫ1 − ǫi+1, ǫ1 − ǫi+1)
(ǫ1 − ǫi+1)

= γi − 2
(γi, ǫ1 − ǫi+1)

2
(ǫ1 − ǫi+1)

= γi − (γi, ǫ1 − ǫi+1)(ǫ1 + ǫi+1)

After a short computation (using only the prescriptions for γi), one obtains

that (γi, ǫ1−ǫi+1) = λi. Substituting ǫ1−ǫi+1 = ̟1−̟i+1+̟i one immediately

obtains Ai+1(λ) = γi+1 what we have had to compute. ✷
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4.4.1 BGG diagram for the contact graded real form CIk

The only real form of Ck admitting the contact grading is the split real form

CIk denoted by the Satake diagram in which all of the nodes are white, see

Yamaguchi [31] and 2.1.

Let V be a real representation of CIk, we call it real representation with the

highest weight λ if its complexification contains a complex irreducible represen-

tation with the highest weight λ. This definition is correct, see Zhida, Dagan

[32] and subsection 2.2.2 for comments. The Maltsev height m(λ) of a complex

representation with the highest weight λ = (λ1, . . . , λl) is equal to

m(λ) =
∑

i(2l− i)λi,

where the sum goes over all black nodes in the Satake diagram of a real form

of Ck, see Goodman, Wallach [14] (5.1.8 Exercises, where the Maltsev height

is computed for the compact form and is denoted by h0 there). For the split

real case, where all the nodes are white, we conclude that the Maltsev height

m(λ) = 0. Next, we know that the weighted Satake diagram of CIk is symmetric

because there are no (nontrivial) arrows; thus the symmetry sν = id. Hence we

know that all such representation are of real type, due to the theorem 2.2.3. This

means in particular that their complexification is an irreducible CIk⊗C-module.

Using that we obtain a

Corollary(BGG diagram for (CIk, {α1}, λ)).: The BGG diagram for

(CIk, {α1}, λ) looks the same as the BGG diagram for (Ck, {α1}, λ).

Proof. It is only necessary to remark that the complexification of each node

of the diagram gives an irreducible representation, i.e., we get the same diagram

as in the complex case.✷
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Chapter 5

Contact odd orthogonal

geometry

The geometrical structure of contact orthogonal geometries of odd rank is well

known, the homogeneous model of these geometries are isotropic Grassman-

nians, see Yamaguchi [31] for example. Therefore we omit the treatment of

geometrical structures and begin with the algebraic and combinatorial aspects

related to these geometries like BGG and Hasse diagrams.

5.1 Bernstein-Gelfand-Gelfand resolution for con-

tact odd orthogonal geometry

5.1.1 Contact graded orthogonal algebra of odd rank

To fix a notation, let us recall some basic facts on the structure theory of odd

dimensional orthogonal algebras Bl = so(2l + 1,C). Let us choose an arbitrary

Cartan subalgebra h of the algebra Bl. Let the set {ε1, ..., εl} be the standard

basis of the dual of h. We assume that this is an orthogonal basis with respect

to the Killing-Cartan form (, ) : h → C. Then it is possible to choose the system

of simple roots in the following way:

(1) αi = εi − εi+1, i = 1, . . . , l− 1,

(2) αl = εl.

Now, we give a description of the root spaces of the parabolic subalgebra

associated to the contact graded algebra (Bl, {α2}) in terms of matrices.
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We shall use following symbols: let i − j, k, i + j denote the roots εi − εj,

εk, εi + εj respectively for suitable i, j, k.

It is possible to choose the defining bilinear form of the algebra Bl in such a

way that the root spaces are placed in the matrix as it is shown at the following

picture:

1 − 3 1 − 4 . . . 1 − l 1 1 + l . . . 1 + 3 1 + 2
2 − 3 2 − 4 . . . 2 − l 2 2 + l . . . 2 + 3 ⋆

As a shorthand, we shall use the corresponding notation:

(1) ai := ε1 − εi+1, 1 ≤ i ≤ l − 1; al := ε1; al+i := ε1 + εl−i+1, 1 ≤ i ≤ l − 1;

(2) bi := ε2 − εi+1, 1 ≤ i ≤ l − 1; bl := ε2; bl+i := ε2 + εl−i+1, 1 ≤ i ≤ l − 2.

It is easy to compute the sets Φai
and Φbi

, where Φα = Q(σα).

5.1.2 Saturated sets and the Hasse diagram for (Bl, {α2})

We shall start drawing some Hasse diagrams for odd dimensional orthogonal

algebras with the contact grading. One can derive these examples by the defini-

tion of the Hasse diagram. Then we shall prove a theorem on the Hasse diagram

for general odd dimensional contact graded orthogonal algebra.

Example: Let us write the Hasse diagram for the pair (B3, {α2}).

""D
DD

DD
DD

D

""DD
DD

DD
DD

""DD
DD

DD
DD

""DD
DD

DD
DD

==zzzzzzzz
//

��2
22

22
22

22
22

22
22

2

""DD
DD

DD
DD

==zzzzzzzz

==zzzzzzzz

""DD
DD

DD
DD

==zzzzzzzz

==zzzzzzzz

//

FF����������������

==zzzzzzzz

There is the Hasse diagram for (B4, {α2}) at the following picture.
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Remark 5.1.1. The examples of the Hasse diagrams for B3 and B4 make it easy

to see how the shape of the Hasse diagram for Bl is changing with increasing l.

The following lemma describes the form of the saturated sets in a general

situation (see the special cases for illustration above).

Lemma 5.1.1 (Saturated sets for (Bl, {α2})). A set A is a saturated set for

the contact graded algebra (Bl, {α2}) if and only if A is one of the two following

types:

(1) Al
1,ij := ({ak; k = 1, . . . , i}∪{bk; k = 1, . . . , j})∩Φp+ , for 1 ≤ i ≤ j ≤ 2l−2

and i+ j ≤ 2l− 1,

(2) Al
2,ij := ({ak; k = 1, . . . , i} ∪ {bk; k = 1, . . . , j} ∪ {ε1 + ε2}) ∩ Φp+ , for

1 ≤ i ≤ j ≤ 2l− 2 and i+ j ≥ 2l − 1.

Proof. Firstly, we shall prove that each set of type Al
k,ij for i, j, k satisfying

the conditions in the formulation of the lemma, is a saturated set. To check (R1),

take α, β ∈ Al
1,ij and α+β ∈ Φ. We should make a conclusion that α+β ∈ Al

1,ij .

Because of α+ β never belongs to Φ, the implication is trivially satisfied. Now,

we do the same for the sets of type Al
2,ij . The only pairs α, β ∈ Al

r,ij for which

α+β ∈ Φ, are those for which α+β = ε1 + ε2. But the sum ε1 + ε2 is contained

in Al
2,ij for each i, j. We shall show that the condition (R2) holds. We shall go

through the list of all decompositions of an element of Al
1,ij or Al

2,ij into two

positive roots.
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(1) ε1 − εk = (ε1 − εm) + (εm − εk); the element εm − εk is a positive root, if

and only if the relation m < k is satisfied. From the definition of Al
r,ij it

follows that if ε1 − εk ∈ Al
r,ij and m < k then ε1 − εm ∈ Al

r,ij .

(2) ε2 − εk = (ε2 − εm) + (εm − εk); the element εm − εk is a positive root, if

and only if the relation m < k is satisfied. From the definition of Al
r,ij it

follows that if ε2 − εk ∈ Al
r,ij and m < k, then ε2 − εm ∈ Al

r,ij .

(3) ε1 = (ε1 − εm) + εm, it is obvious that ε1 − εm ∈ Al
r,ij , if ε1 ∈ Al

r,ij .

(4) ε2 = (ε2 − εm) + εm, it is obvious that ε2 − εm ∈ Al
r,ij , if ε2 ∈ Al

r4,ij

(5) ε1+εk = (ε1+εm)+(εk−εm),m > k; if ε1+εk ∈ Al
r,ij then ε1+εm ∈ Al

r,ij .

(6) ε2+εk = (ε2+εm)+(εk−εm),m > k; if ε2+εk ∈ Al
r,ij then ε2+εm ∈ Al

r,ij .

(7) The only remaining root is ε1 + ε2 ∈ Al
2,ij . We can decompose it into two

sums: ε1 + ε2 or (ε1 − εk) + (ε2 + εk). In each decomposition, there is a

summand which belongs to Al
2,ij .

Secondly, we are going to check, that there are no other saturated sets then

those that are written in the formulation of this lemma. Let A be a saturated

set for (Bl, {α2}).

(1) First, let us suppose that ε1 + ε2 /∈ A.

(1.1) If ε1 − εk ∈ A then the decomposition ε1 − εk = (ε1 − εj) + (εj − εk)

for 2 < j < k implies ε1 − εj ∈ A.

(1.2) If ε1 ∈ A then the decomposition ε1 = (ε1−εj)+εj implies ε1−εj ∈ A

for j = 3, . . . , l.

(1.3) If ε1 + εk ∈ A for k ≥ 3 then ε1 ∈ A. The decomposition ε1 + εk =

(ε1 − εj) + (εj + εk) implies ε1 − εj ∈ A for j = 3, . . . , k − 1.

(1.4) A similar inspection could be done for ”b-roots.”

(1.5) The following decomposition ε1 + εk = (ε1 − ε2) + (ε2 + εk) implies

that if ε1 +εk ∈ A then ε2 +εk ∈ A. This implies the inequality i ≤ j

in the formulation of this lemma.
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(1.6) We shall show that the inequality i + j ≤ 2l − 1 holds. Suppose

i+j ≥ 2l to get a contradiction. Thus if ε2+εk ∈ A and ε2−εk+1 /∈ A,

then ε1 − εk ∈ A and consequently ε1 + ε2 ∈ A, a contradiction. If

ε2 ∈ A and ε2 + εj /∈ A, j = 3, . . . , l, then ε1 ∈ A and consequently

ε1 + ε2 ∈ A, a contradiction again. Because there is no other possi-

bility different from those we have discussed, the claim of this item

is proved.

(2) The case ε1+ε2 ∈ A is quite similar. We shall comment only the inequality

i + j ≥ 2l − 1. If ε1 + ε2 ∈ A then ε2 ∈ A or ε1 ∈ A. Because ε1 ∈ A

implies ε2 ∈ A (due to the inequality i ≤ j), the root ε2 is in A in the case

of that ε1 + ε2 ∈ A. Therefore j ≥ l and we shall discuss two cases. First,

suppose that ε2 + εk ∈ A and ε2 + εk+1 /∈ A. From the decomposition

ε1 + ε2 = ε2 + εk+1 + ε1 − εk+1, it follows that ε1 − εk+1 ∈ A. Thus

i+ j ≥ 2l−1. Second, suppose that ε2 ∈ A and ε2 +εk /∈ A for k = 3, . . . l.

From the decomposition ε1 + ε2 = (ε2 + εl) + (ε1 − εl), it follows that

ε1 − εl ∈ A and therefore i+ j ≥ 2l − 1.✷

To describe the structure of arrows in the Hasse diagram, we shall need the

lemma 2.3.1.

Theorem 5.1.1 (Hasse diagram for (Bl, {α2})). The Hasse diagram for the

parabolic algebra (Bl, {α2}) has the following structure: The set of all vertices

V l may be identified with the set {Al
1,ij}∪{A

l
2,ij}, for i, j written in the previous

lemma 5.1.1. There are following arrows in the Hasse diagram

(1) Al
1,ij

bj+1
−→ Al

1,i(j+1), where i+ j < 2l − 1, 1 ≤ i ≤ j ≤ 2l − 2,

(2) Al
1,ij

ai+1
−→ Al

1,(i+1)j , where i+ j < 2l − 1, 1 ≤ i ≤ j ≤ 2l − 2,

(3) Al
1,ij

ai+1
−→ Al

2,(i+1)(j−1), where i+ j = 2l − 1, i = 1, . . . , 2l − 2,

(4) Al
1,ij

a2l−1
−→ Al

2,ij , where i+ j = 2l − 1, i = 1, . . . , 2l − 2,

(5) Al
1,ij

bj+1
−→ Al

2,(i−1)(j+1), where i+ j = 2l − 1, i = 1, . . . , 2l − 2,

(6) Al
2,ij

bj+1
−→ Al

2,i(j+1), where i+ j > 2l − 1, 1 ≤ i ≤ j ≤ 2l − 2,
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(7) Al
2,ij

ai+1
−→ Al

2,(i+1)j , where i+ j > 2l − 1, 1 ≤ i ≤ j ≤ 2l − 2.

Proof. We use the lemma 2.3.1. It is easy to compute the first two coor-

dinates of |Al
k,ij | in the {εr}l

r=1 basis. Let us denote the projection onto the

sth coordinate of an element of the subalgebra h by prs : h → C, 1 ≤ s ≤ l.

Regarding the structure of saturated sets, we obtain

(1) pr1(|Al
1,ij |) = i− 1; pr2|Al

1,ij | = j − 1

(2) pr1(|Al
2,ij |) = i; pr2|Al

2,ij | = j, for all admissible i, j.

Clearly prs(A
l
r,ij) ∈ {0,±1,±2}, for s > 2 and all admissible r, i, j. We already

know that the only possible labels of arrows in the Hasse diagram, are ε1 ± εk,

ε2 ± εk, ε1, ε2. Second, we know that the number of elements of sets which

are joined by an arrow differs exactly by one. If we add a a−root or a b−root,

respectively the first or the second coordinate, respectively of |Al
k,ij | increases of

one. Other coordinates of |Al
k,ij | either decrease (if the root aj, j < l was added

into the set) or increase (if the root aj , j > l was added into the set) or do not

change. From that, it is clear that all arrows occurring in the Hasse diagram

must be exactly those that described in the formulation of this theorem. The

inspection of this fact is very simple and it suffers only a carefully handling with

indices and using the facts on projections written above.

The only problem could be caused by handling with the root ε1 + ε2. An

arrow labelled by this root could by placed only between those saturated sets A,

B for which the coordinates of |A| and |B| differ by 1 at the two first positions

and are the same on the other one. Thus these sets differs only by the element

ε1 + ε2. From this it is evident that these arrows are exactly of the fourth case

mentioned in the formulation of this theorem. ✷

5.1.3 BGG diagrams for (Bl, {α2}) and its real forms

We shall compute the BGG diagrams for contact graded orthogonal Lie algebra

of odd rank and its real form. At the first part, we shall deal with the complex

case, in the second part of this subsection with the real one. In that part we

shall use some basic facts on representation theory of real forms of simple Lie

algebras, see the section 2.2.2.
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BGG diagrams - the complex case

See the remark 2.3.1 for comments on the computation of a BGG diagram. Let

us fix a notation for writing of weights which occur in the BGG diagram for

(p, g). For a vector (in fact, we shall use this notation only for g−dominant

weights) β = (c1, . . . , cl) written in the basis of fundamental weights, let us

define the following vectors (”γ−vectors”):

For 1 ≤ i ≤ j ≤ l,

γ1,ij := (

j∑

k=i

ck,−

j∑

k=1

ck, c1, . . . , cl).

For 1 ≤ i ≤ j ≤ 2l − 2 and j > l,

γ1,ij := (

l∑

k=i

ck +

j−l∑

k=1

cl−k,−(

l∑

k=1

ck +

j−l∑

k=1

cl−k), c1, . . . , cl).

Now, we define the following vectors (”β−vectors”):

(1) βl
1,ij :=

(γ1
ij , . . . , γ

i
1,ij , γ

i+1
1,ij + γi+2

1,ij , γ
i+3
1,ij , . . . , γ

j+1
1,ij , γ

j+2
1,ij + γj+3

1,ij , γ
j+4
1,ij , . . . , γ

l+2
1,ij ),

1 ≤ i ≤ j ≤ 2l − 2 and j < l − 1.

(2) βl
1,ij :=

(γ1
ij , . . . , γ

i
1,ij , γ

i+1
1,ij +γi+2

1,ij , γ
i+3
1,ij , . . . , γ

2l−j
1,ij , γ

2l−j+1
1,ij +γ2l−j+2

1,ij , γ2l−j+3
1,ij , . . . , γl+2

1,ij ),

1 ≤ i ≤ j ≤ 2l − 2 and j > l.

(3) βl
1,ij := (γ1

ij , . . . , γ
i
1,ij , γ

i+1
1,ij + γi+2

1,ij , γ
i+3
1,ij , . . . , γ

l
1,ij , 2γ

l+1
1,ij + γl+2

1,ij ), i =

1, . . . , l − 2, j = l − 1, l.

(4) βl
1,(l−1)j := (γ1

ij , . . . , γ
l−1
1,ij , 2γ

l
1,ij + 2γl+1

1,ij + γl+2
1,ij ), j = l − 1, l.

Let us define βl
2,ij . In the case of i + j ≥ 2l − 1, the vector γ2,ij is equal

to γ1,ij , only with the exception of its second coordinate. The second coordi-

nate of this ”γ−vector” is equal to −(
∑l

k=1 ck +
∑l−1

k=2 ck). The vector βl
2,ij is

constructed in the same way as in the case of β1,(2l−j+1)(2l−i+1) but using the

vector γ2,(2l−j+1)(2l−i+1) defined above.
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Thus the betas are symmetric w.r. to the vertical symmetry axis of the Hasse

diagram with the only exception, namely the coefficient above the crossed node

{α2}.

Let us denote the weight in the BGG diagram for β placed at the position

corresponding to the saturated set Al
k,ij in the Hasse diagram by Al

k,ij(β).

With help of this notation we can formulate the following theorem on the

complex BGG-diagram.

Theorem 5.1.2 (BGG diagram for (Bl, {α2}, β)). Let β =
∑l

k=1 ck̟k be a

g-dominant integral weight.

(1) If 1 ≤ i ≤ j ≤ 2l− 2, i+ j ≤ 2l − 1 then Al
1,ij(β) = βl

1,ij ,

(2) If 1 ≤ i ≤ j ≤ 2l− 2, i+ j ≥ 2l − 1 then Al
2,ij(β) = βl

2,ij .

Proof. We prove this theorem for the case 1 only. The second case could

be proved in a similar way. We shall use an induction on k := i + j. I. The

first step k = 2 is clear, Al
1,11 = β = βl

1,ij . II. Let us suppose that the theorem

is true for all i, j, s.t. i + j = k. From the structure of the Hasse diagram

which is isomorphic to the BGG diagram, it follows that it suffices to prove that

σε1−εi+2(β
l
1,ij) = β1,(i+1)j and σε2−εi+2(β

l
1,ij) = β1,i(j+1). Let us compute

σε1−εi+2(β
l
1,ij) = βl

1,ij − 2
(ε1 − εi+2, β

l
1,ij)

(ε1 − εi+2, ε1 − εi+2)
(ε1 − εi+2).

From the structure theory of the odd orthogonal algebras, it is well known that

(1) ̟i = ε1 + . . .+ εi, i = 1, . . . l − 1; ̟l = 1
2 (ε1 + . . .+ εl),

(2) αi = εi − εi+1, i = 1, . . . l − 1; αl = εl.

By substituting that relations into the previous formula for the reflection

(using the fact that {εi}l
i=1 is an orthogonal basis), we obtain σε1−εi+2(β

l
1,ij) =

β1,(i+1)j after a straightforward computation regarding the recipe of the con-

struction of βl
r,ij described above. In a similar way, one can prove the remaining

induction step, from (i, j) to (i, j + 1).✷
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BGG diagrams - the real case

We shall denote the Satake diagram of type BI (see Goodman, Wallach [14],

pp. 544) by (Bl, p) if there are l nodes in the diagram and the last p nodes are

black. A weighted Satake diagram of type (Bl, p) with p black nodes will be

denoted by (λ1, . . . , λl|p) if the numbers λ1, . . . , λl are written above the nodes

of such a diagram.

From the structure theory of simple real Lie algebras, it follows that the

only admissible real forms of odd dimensional orthogonal algebras admitting

the contact grading are represented by Satake diagrams of the type BI the first

black node of which (counting from the left side) may be the third one, i.e {α3},

see the section 2.1.

We shall denote the real representation by Vβ , and call it real representation

with the highest weight β if its complexification contains a complex irreducible

representation with the highest weight β. This definition is correct, see Zhida,

Dagan [32] and the subsection 2.2.2 for comments. We shall use the same

notation as for a weighted Satake diagram β = (λ1, . . . , λl|p) as for the highest

weight of the corresponding real representation.

The Maltsev height m(β) in the case of β = (λ1, ..., λl|p) is equal to

m(β) =

l−1∑

k=p

i(2l+ 1 − i)λk +
l(l+ 1)

2
λl,

see Goodman, Wallach [14] (5.1.8 Exercises, the Maltsev height is computed for

the compact form and is denoted by h0 there). The symmetry sν of the Satake

diagram of BI is trivial, i.e., we know that sν(λ) = λ.

Theorem 5.1.3. The complexification Vβ ⊗R C of the real representation Vβ

of the corresponding real form (Bl, p) splits (into two self-dual representations)

if and only if the complexification Vβ′ ⊗ C of the representation Vβ′ with the

highest weight β′ = Al
k,ij(β) does.

Proof. From the previous theorem 5.1.2 on the complex BGG diagram, we

know that the number λ′l above the last node in the weighted Dynkin diagram

of the complex representation Vβ′ ⊗R C of Bl (which is placed at the position
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Al
k,ij) differs from the number λl over the last node of the Dynkin diagram at

the position Al
1,11 in this BGG diagram only by an even number, say 2k (see the

last components in the β-vectors defined above). From the form of the Maltsev

height for β = (λ1, . . . , λl, p) given above, it follows that m(β) = l(l+1)
2 λl mod

2. Thus m(Al
k,ij(β)) = l(l+1)

2 λ′l mod 2 = l(l+1)
2 (2k + λl) mod 2 = l(l+1)

2 λl mod

2 = m(β). We have already mentioned that sν(λ) = λ for each λ. Thus Vβ is

of quaternionic or real type if and only if Vβ′ is of quaternionic or real type,

respectively, see the theorem 2.2.3. This together with the remark implies the

statement we had to prove. ✷

Theorem 5.1.4 (BGG diagram for ((Bl, p), {α2}, β)). The BGG diagram

for the contact graded real form ((Bl, p){α2}) and a g-dominant integral weight

has the same form as the BGG diagram in the complex case (for the same

weight).

Proof. If we complexify each representation in the real BGG diagram, we

should get either a sum of two self-dual complex irreducible representations or

a complex irreducible representation. According to the previous corollary, we

get the mentioned sum at the first position A1,11, if and only if we get it at any

position of the BGG diagram. Analogously for the irreducible complexification.

✷
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Chapter 6

Invariant differential

operators for fields with

values in some standard

cyclic modules

The aim of this section is to rewrite the theory of first order invariant differential

operators in parabolic geometries for the case of certain infinite dimensional

standard cyclic modules.

6.1 General theory of first order invariant dif-

ferential operators

Let g be a |k|-graded semisimple Lie algebra, p the associated parabolic subal-

gebra of g, p+ the positive part, g− the negative part of g, for details see 2.1.

Let E, F be p-modules. Denote the action of p on E by λ, λ : p →End(E).

Further, let J1E be the first jet prolongation of the p-module E associated to

the |k|-graded Lie algebra g. Let us recall that the induced action of p on J1E

is given by

Z.(v, φ) = (λ(Z)v, λ(Z) ◦ φ− φ ◦ ad−(Z) + λ(adp(Z)(−)v))

for Z ∈ p, v ∈ E and φ ∈ g∗− ⊗ E, see the section 2.6.

It is a well known fact that g∗−i ≃ gi for i = 1, . . . , k as g0-modules. Let p2
+

denote the space [p+, p+] = g2 ⊕ . . . ⊕ gk. We call the space J1
RE = E ⊕ (g∗− ⊗

85



E)/({0}⊕ (p2
+ ⊗E)) ≃ E⊕ (g∗−1 ⊗E) ≃ E⊕ (g1 ⊗E) the space of restricted jets.

This space carries the structure of p-module inherited by factorization. Let us

denote the bases of g±1 by {ηα′

}, {ξα′}.

Theorem 6.1.1. Let E,F be irreducible p-modules with the trivial action of

p+. Let Ψ : J1E → F be a g0-module homomorphism. Then Ψ is a p-module

homomorphism if and only if Ψ factors through the restricted jets J1
RE and for

all Z ∈ g1 and v0 ∈ E

Ψ(
∑

α′

ηα′

⊗ [Z, ξα′ ].v0) = 0.

Proof. To prove that Ψ is a p-module homomorphism it sufficient and nec-

essary to show that it is a p+-module homomorphism, because we suppose that

it is a g0-module homomorphism, see the section 2.6. Suppose that Ψ is a p-

module homomorphism. Let A be the image of the restriction of the induced

action of p to p+ on J1E, i.e., for an element w ∈ J1E the relation w ∈ A holds

if and only if there is some Z ∈ p+ such that w = Z.v for some v ∈ J1E. Now,

assume the value of Ψ on an element w ∈ A. We can write Ψ(w) = Ψ(Z.v) for

some Z ∈ p+ and v ∈ J1E. Because Ψ is a p+-module homomorphism the last

expression equals Z.Ψ(v) = 0 because of the triviality of the representation of

p+ on F. Thus we have proved that Ψ vanishes on A (the image of the action

of p+ on J1E).

Now, we prove that Ψ factors through the restricted jets. Let us fix dual

basis {ξα}, {η
α} of g− and p+. We know that for the induced action we can

write

Z.(v0, Y ⊗ v1) = (λ(Z)v0, Y ⊗ λ(Z)v1 + [Z, Y ] ⊗ v1 +
∑

α

ηα ⊗ [Z, ξα]pv0)

for all v0, v1 ∈ E, Z ∈ gi, i > 0, Y ∈ g∗−. Inserting v0 = 0 we obtain

Z.(0, Y ⊗ v1) = [Z, Y ] ⊗ v1.

For Zi ∈ gi, vi ∈ E, i = 1, . . . , k, we shall compute Ψ(
∑k

i=1 Zi ⊗vi). Because

g1 generates p+ there are Xi ∈ g1, Yi ∈ gi−1 for i = 2, . . . , k such that Zi =

[Xi, Yi]. Thus we can write Ψ(
∑k

i=1 Zi ⊗ vi) = Ψ(Z1⊗ v1 +
∑k

i=2[Xi, Yi]⊗ vi) =
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Ψ(Z1 ⊗ v1) + Ψ(X2.(0, Y2 ⊗ v2)) + . . .+ Ψ(Xk.(0, Yk ⊗ vk)) = Ψ(Z1 ⊗ v1). The

terms Ψ(Xk.(0, Yk ⊗ vk)) = 0 for k = 2, . . . , k because Ψ vanish on the image of

the p+ action on J1E. Thus we have proved that Ψ factors through the restricted

jets. Looking at the induced action of p+ on J1E we derive the condition

Ψ(
∑

α′

ηα′

⊗ [Z, ξα′ ].v0) = 0.

The opposite direction of the implication in the statement of this theorem

is obvious. ✷

To further purposes let as define an endomorphism

Φ : g1 ⊗ E→ g1 ⊗ E

Φ(Z ⊗ s) :=
∑

α′

ηα′

⊗ [Z, ξα′ ].s

for Z ∈ g1, s ∈ E.

Thus we can reformulate the last theorem as

Theorem 6.1.2. Let E,F be irreducible p-modules. Let Ψ : J1E → F be a

g0-module homomorphism. Then Ψ is a p-module homomorphism if and only if

Ψ factors through the restricted jets J1
RE and Ψ|Im(Φ) = 0.

Computing of the mapping Φ. In this paragraph, we would like to compute

the mapping Φ with help of the universal Casimir element.

(1) First, let us make some assumptions on the Lie algebra g. Suppose that the

subalgebra g0 of g has an one dimensional center. This center is necessarily

generated by the grading element E of the |k|-graded Lie algebra g. Thus

we can decompose g = gss
0 ⊕ CE where the part gss

0 = [g0, g0] denotes

the semisimple part of g, see the section 2.1. The Killing form B of the

Lie algebra g when restricted to g0 is nondegenerate too, see the book

Čap, Slovák [7]. Let us normalize the Killing form B by the condition

B(E,E) = 1 and denote this resulting nondegenerate invariant form on

g0 by (, ) : g0 × g0 → C. It is easy to compute that the decomposition

g0 = gss
0 ⊕CE is an orthogonal decomposition. Indeed, take an arbitrary

X ∈ gss
0 = [g0, g0] in the form X = [U, V ] for a U, V ∈ g0 and compute
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(E,X) = (E, [U, V ]) = ([E,U ], V ) = 0 because E is the grading element

and U ∈ g0.

Let us denote the basis of gss
0 by {Ya}k

a=1 and the dual basis with respect

to (, ) by {Y ′
a}

k
a=1. Sometimes we will denote the element E by Yk+1.

(2) Now, we derive the following

Lemma 6.1.1. Let V be representation of a semisimple |k|-graded Lie

algebra g then

Φ(Z ⊗ s) =
k∑

a=1

Y ′
a.Z ⊗ Ya.s

for each Z ∈ g1 and s ∈ V.

Proof. We use the invariance of the Killing form [Z, ξα′ ] =
∑

a(Y ′
a , [Z, ξα′ ])Ya =

∑
a([Y ′

a , Z], ξα′)Ya to compute the value Φ(Z ⊗ s).

Φ(Z ⊗ s) =
∑

α′

ηα′

⊗ [Z, ξα′ ].s

=
∑

α′

ηα′

⊗
∑

a

(Y ′
a, [Z, ξα′ ])Ya.s

=
∑

α′

ηα′

⊗
∑

a

([Y ′
a, Z], ξα′)Ya.s

=
∑

α′

∑

a

([Y ′
a , Z], ξα′)ηα′

⊗ Ya.s

=
∑

a

Y ′
a.Z ⊗ Ya.s.

✷

(3) Now, we make some assumptions on the representations we shall consider.

We will consider that V is an irreducible standard cyclic g-module with

the highest weight λ considered as a gss
0 -module. Further, we assume

that g1 ⊗V decomposes into a finite direct sum of irreducible gss
0 -modules

without multiplicities and denote by πµ the projection πµ : g1 ⊗ V→ Vµ

where Vµ is the representation with highest weight µ which occurs in the

decomposition of the completely reducible tensor product g1 ⊗ V. Let

us suppose that the representation of the center CE of g0 is given by

E.v := wv for each v ∈ V and a w ∈ C. So we are given a representation

of the whole g0 which is characterized by the tuple (λ,w). The complex
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number w is often called conformal weight. Finally, we assume that g1 is

an irreducible gss
0 -module with the highest weight α.

(4) In order to compute the mapping Φ let us evaluate the following expression
∑k+1

a=1(Y
′
aYa)(Z ⊗ s) for s ∈ V and Z ∈ g1.

k+1∑

a=1

(Y ′
aYa).(Z ⊗ s) =

k+1∑

a=1

(Y ′
aYa).Z ⊗ s+ Z ⊗

k+1∑

a=1

(Y ′
aYa).s+

k+1∑

a=1

Y ′
a.Z ⊗ Ya.s+

k+1∑

a=1

Ya.Z ⊗ Y ′
a.s

=

k+1∑

a=1

(Y ′
aYa).Z ⊗ s+ Z ⊗

k+1∑

a=1

(Y ′
aYa).s+

2Φ(Z ⊗ s), (6.1)

where we have used the lemma 6.1.1 above. Now, we would like to compute

the first two terms of the last written equation using the universal Casimir

element, see theorem 2.2.2.

k+1∑

a=1

(Y ′
aYa).Z ⊗ s =

k∑

a=1

(Y ′
aYa).Z ⊗ s+ (E′E).Z ⊗ s =

= (α, α + 2δ)Z ⊗ s+ Z ⊗ s (6.2)

Z ⊗
k+1∑

a=1

(Y ′
aYa).s = Z ⊗

k∑

a=1

(Y ′
a.Ya).s+ Z ⊗ (E′E).s =

= (λ, λ+ 2δ)Z ⊗ s+ w2Z ⊗ s (6.3)

Let us compute the L.H.S. of 6.1

k+1∑

a=1

(Y ′
aYa).(Z ⊗ s) =

k+1∑

a=1

∑

µ

(Y ′
aYa).πµ(Z ⊗ s)

=

k∑

a=1

∑

µ

(Y ′
aYa)πµ(Z ⊗ s) +

∑

µ

(E′E)πµ(Z ⊗ s)

=
∑

µ

(µ, µ+ 2δ)πµ(Z ⊗ s) +
∑

µ

πµ(E′E).(Z ⊗ s)
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=
∑

µ

(µ, µ+ 2δ)πµ(Z ⊗ s) +
∑

µ

πµ[(E′E).Z ⊗ s+

E′.Z ⊗ E.s+ Z ⊗ (E′E).s+ E.Z ⊗ E′.s]

=
∑

µ

(µ, µ+ 2δ)πµ(Z ⊗ s)

+
∑

µ

πµ[Z ⊗ s+ 2wZ ⊗ s+ w2Z ⊗ s] (6.4)

Substituting these equations 6.2, 6.3 and 6.4 into the equation 6.1 we

obtain

∑

µ

(µ, µ+ 2δ)πµ(Z ⊗ s) + 2
∑

µ

wπµ(Z ⊗ s) +
∑

µ

w2πµ(Z ⊗ s) =

= 2Φ(Z ⊗ s) + (α, α+ 2δ)Z ⊗ s+ Z ⊗ s+ (λ, λ+ 2δ)Z ⊗ s+ w2Z ⊗ s.

As a result we obtain

Φ(Z ⊗ s) =
∑

µ

(w − cµλα)πµ(Z ⊗ s),

where

cµλα =
1

2
[(λ, λ+ 2δ) + (α, α+ 2δ) − (µ, µ+ 2δ)].

We state this result as a theorem formulating explicitly the assumptions we

have made.

Theorem 6.1.3. Let g be a |k|-graded simple Lie algebra such that the subal-

gebra g0 has an one dimensional center CE. Let V be an irreducible g0-module

with the highest weight λ when considered as a gss
0 -module. Let the grading ele-

ment E acts by the complex number w (conformal weight). Further, let g1 be an

irreducible gss
0 -module with the highest weight α. Assume that the tensor product

g1 ⊗ V decomposes into a finite direct sum of irreducible gss
0 -modules and has

no multiplicities then

Φ(Z ⊗ s) =
∑

µ

(w − cµλα)πµ(Z ⊗ s),

where

cµλα =
1

2
[(λ, λ+ 2δ) + (α, α+ 2δ) − (µ, µ+ 2δ)].
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Proof. See the analyzes above this theorem. ✷

Remark 6.1.1. In the future, we would like to use the last written theorem in

the case of projective contact geometries and harmonic modules. It can be done

when one knows a relationship between the representations of the Lie algebra

G0 and those of g0.
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[21] Krump, L., Souček,V.: Hasse diagrams for parabolic geometries, to appear

in Proc. of the 22nd Winter School ”‘Geometry and Physics”’, Srni, 2002,

Rend. Circolo Mat.Palermo.

[22] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theo-

rem, Ann. Math. 74. No. 2, 1961, 329-387.

93



[23] Kostant, B.: Symplectic Spinors, Symposia Mathematica, Vol. XIV, 1974.

[24] Kostant, B.: On the tensor Product of a Finite and an Infinite Dimensional

Representations, Journal of Functional Analysis 20, 1975, 257-285.

[25] Kashiwara,M, Vergne, M.: On the Segal-Shale-Weil representation and har-

monic polynomials, Inventiones Mathematicae 44, 1978, 1-47.

[26] Lepowsky, J.: A generalization of Bernstein-Gelfand-Gelfand resolution, J.

of algebra, 1977, 496-511.

[27] Sharpe, R.W.: Differential geometry: Cartan’s generalization of Klein’s

Erlangen program, Graduate Texts in Mathematics, Vol. 166., Springer.
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