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Review of Hodge theory
Statements of the Hodge theory

(E" — M);cz sequence of finite rank vector bundles over
compact manifold

o D;:T(E") — I'(E™) (pseudo-)differential operators forming
a complex D* = (I(E"), D;)iez, Diy1D; =0

e principal symbols ¢;(¢, —) : E' — E™*! form a complex

e If 0;(&§,—) form an exact sequence for any 0 # ¢ € T"M —
elliptic complexes, then

e H/(E®) is finite dimensional and
o H'(E®) ~ Ker A; where A\; = D:D; + Dj_1D} ;. The adjoint
is with respect to the inner product induced by a metric on E’
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Examples of complexes satifying the results of Hodge theory

@ deRham complex over a compact manifold, 0;(§,a) = A
@ Dolbeault complex on a compact complex manifold

o Not an example: deRham complex over R”, H°(R") = R and
Ker A\ is infinite dimensional (already when restricted to
polynomials and n =2 : 1;x, y; x?> — y2, 2xy - Weyl duality)

@ "Brilinsky complex over a compact symplectic manifold and
Laplace defined via adjoints with respect to the symplectic
form - not an example from a simple reason A; = 0"

o E infinite dimensional Hilbert space, M compact manifold
E=ExM— M,V :T(E)— I'(E® T*M) trivial connection,
Vs = 0; kernel are constant functions with values in E. Kernel
is {se€Tl(E)|Je € EVm € Ms(m) = (e,m)} ~E - thus
infinite dimensional.
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Key steps in the proof of Hodge theory

@ Construction of the Green operators for the extensions E, of
A to the Sobolev spaces

e orthogonal projections
e proof that the extensions are Fredholm

o Completion of the pre-Hilbert [(E’) = Sobolev or Hardy
spaces with values in vector spaces (they are Hilbert spaces)

e Continuous extensions of D; and A\; to the completions (diff
ops are of finite integer order)

o Elliptic implies regular (Ker(A;) = Ker(Aj))

o Elliptic implies extension is Fredholm
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Metaplectic structures

Metaplectic or Segal-Shale-Weil representation

e (V,w) symplectic vector space of diemsnion 2n

e Sp(V,w), connected smooth double covering G = Mp(V,w)
unique up to a covering isotopy

@ non-universal since U(n) is a maximal compact subgroup of
Sp(V,w) and m1(U(n)) =Z

@ G can be given a Lie group structure (unique, making the
covering a group homomorphism)

e Parallel to SO(p, q) and Spin(p, q)

e Mp(V,w) is not a matrix group, no faithful representation in
finite dimensional vector space



Metaplectic structures

Segal-Shale-Weil representation

L Lagrangian subspace in V, J a complex structure on (V,w),

metric g(—, —) = w(J—, —)

o E = L?(L) for the Lebesgue measure induced by 8L

@ 0: G — Aut(E) Segal-Shale-Weil representation

o Construction: Schrédinger representation of the Heisenberg
group

@ Stone-Neumann theorem on uniqueness of representation of

the Heisenberg group up to multiple

@ "co-cycle counting"of Weil
o o(J)=+F: L%(L) — L3(L)
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Properties of the Segal-Shale-Weil representation

o It is faithful, unitary, reducible
E = L2(L) = L2(L)even ® L*(L)ogd
@ Lie alg. rep. is highest weight, parallel to spin representations
via realizing it in the symplectic Clifford algebra
sCliff(V,w) = T(V)/ <x®y -y@x—w(x,y)l,x,y e V>
e V. Berezin, V. Bargmann (Fock space), |. Segal, Shale
(quantizing of KG-fields), Weil (number theory for locally
compact fields)
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Metaplectic structures

e (M,w) symplectic manifold

e P = {f|f is a symplectic basis of (T*M,wm),me M}

e Q@ — M any Mp(2n, R)-bundle compatible with the projection
structures is called metaplectic structure

Basic exmples: even dimensional tori, $2, CP?"+1 T*M cotangent
bundle of orientable manifold M.

Theorem (Kostant): (M, w) admits a metaplectic structure iff the
Chern class of (TM, J) is even for any J almost complex
compatible.

There is a notion of an Mp€ structure which exists on any
symplectic manifold (Rawnsley, Gutt, Cahen)
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Some a priori constructions

e (M,w) sympletic manifold admitting a metaplectic structure
P—M

e E =P X, E Segal-Shale-Weil bundle (Kostant)

@ sections [(E) Kostants spinors

@ V symplectic connection = Z principal connection on Q@ —
lift on P = V£ associated connection on E = exterior

covariant derivative dY on QK(E) -forms with values in the
SSW-bundle

o If Vis flat, then (dY, QK(E)) forms a complex - SSW twisted
de Rham complex
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Symplectic Dirac operators of Habermann

p:L2(L)®R? ~ [2(L)® T — L%(L), T is a G-module
L?(L) = I the Segal-Shale-Weil representation

o (M?" w) symplectic manifold admitting a metaplectic
structure

@ Ds=poVEs scT(E)
o Ds=35%" ¢ - VEs

=

® ¢ s=1x's, e, s=25 (defined on dense subset, smooth
Y + 8XI

vectors of |E)
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Contact projective Dirac operator

G = Mp(2n,R), P parabolic subgroup of contact grading, i.e.,
p=sp(2n —2,R) SR> 2gR

(G — M,w) any Cartan geometry of type (G, P)

Go = Mp(2n — 2,R) x R* (reductive part)

E = L2(R2n72)

Extension of the SSW-representation ¢ : Mp(2n — 2,R) — Aut(E')
to P; R?"~2 acts by identity, on R \ {0} by a character - ¢’

E' = g Xt E’

Ds = p(V“E's) contact projective Dirac operator, V<F'
connection associated to E’ via o’
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Generalization Hodge thy to infinite dimension

@ Our aim: generalize the Hodge theory to infinite dimension
o [E infinite dimensional Hilbert space, M compact manifold
E=ExM— M,V :T(E)— ['(E x T*M) trivial connection,
Vs = 0; kernel are constant functions with values in E. Kernel
is {s|JeVms(m) = (e, m)} ~ E - thus infinite dimensional.
e Do the fibers cause it?

e Solutions are somehow "finite over E".

@ What if E is a Banach space only, no inner product structures,
cannot produce the Green operators via self adjoint projections

e [ a Hilbert module over the C*-algebra B(E) = Hilbert
modules over C*-algebras
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E* as a B(H)-module

@ Multiplication
tE*xB(E) - E* l-a=loa, | € E* and a € B(E)

@ "Inner product"
(,):E* x E* — B(E), (k,/) € B(E) defined by
(k,1)(v) = I(v)k* for any v € E where k* € E such that
(k*,v)g = k(v) (unique)

e Note: (,) maps into F(E) C K(E) C B(E)
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C*-algebras

C*-algebra (J. von Neumann, I. M. Gelfand, Naimark, |.E.

Segal)

@ A s a complex associative algebra (za, a + b, ab, distributive)
@ ||:A—[0,00) is a norm on A making A a Banach space

@ *: A— Ais an involutive antihomomorphism of A

e |a*al? = |a|? for each a € A

o If 1€ A, A € Cis a spectral element of a € A:=if (a— A1) is
not invertible in A

e 1¢ A make extension A" = A @ C1, the spectrum of a is
defined by non-invertibility in A’

@ We say that a = a* is positive if any spectral element \ of a is
non-negative



C*-algebras

Examples of C* algebras

o C with z* =7 and |a + ib| = (a° + b?)!/?
e (E,(,)r) Hilbert space

B(E) ={a:E — E|a linear and bounded}

(a*V7 W) = (Vv aW)a |8| = sup‘v|=l’a(v)|H
e Mp(C) is B(E) for E = C" with the Hermitian norm on C”
o K(E) C B(E) algebra of compact operators on E

@ X topological space, continuous functions with compact
support Cc(X) with £*(x) = f(x) and the supremum norm
(non-unital)

@ X locally compact topological space, continuous functions

vanishing at infinity; operations as above



C*-algebras
Not C* algebras

Which algebras are not C*?

e E infinite dimensional Hilbert space F(E) linear operators
F(E) C B(EE) operators with finite rank (star not well defined)

e S(E) C B(E) self-adjoint operators; (ab)* = b*a* = ba # ab
if dimE > 1 - Jordan algebras

e Several LP(R"), f*(x) = f(x), |f|p = Jgn [fIPdX with
multiplication convolution (point-wise multiplication, not even
an algebra)
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Hilbert modules over C*-algebras

Definition of Hilbert A-modules

Let A be a C*-algebra and [E be a vector space over the complex
numbers. We call (E, (,)) a Hilbert A-module if

E is a right A-module — operation - : E x A — E

(,) :E xE — Ais a C-bilinear mapping

u, v+ w) = (u,v) + ANu, w)

u,v ) (u,v)a - at right is the the product in A
= (v, u)*

u,u) >0 and (u,u) =0 implies u =0

<
—
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(
(
(
(




Hilbert modules over C*-algebras

Definition of Hilbert and pre-Hilbert A-modules

Definition
If (E,(,)) is a pre-Hilbert A-module we call it Hilbert A-module if it
is complete with respect to the norm || : E — [0, c0) defined by

u3 E— |ul = +/|(u,u)|a where | |a is the norm in A.

@ Closed submodules need to have neither orthogonal nor only
topological complements: C°((0, 1)) € C°([0, 1])

@ Continuous linear maps need not be adjointable
(=(T*u,v) = (u, Tv))

0 Autp(E) ={T :E—E|T(u-a)=
T(u)-a, T is continuous and bijective}
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Examples of Hilbert A-modules

@ For A= C, a Hilbert C-module is = Hilbert space
@ For A a C*-algebra, E= A, a- b= ab and (a, b) = a*b.
e For A= K(E), the C*-algebra of bounded operators on a

separable Hilbert space E, E* is a Hilbert A-module with
respect to (,) : E* x E* — K(EE) as above.

o A=E = C%[0,1]), (f g)(x) = f(x)g(),
(f.g) = fg € C°([0,1])

o (A)={(ai)2y C Al X lail* < oo}, (ai)i - b= (ai - b},
((ai)i, (bi)i) = >_; a7 bi.

@ Sections of A-Hilbert bundles over compact manifolds form
pre-Hilbert modules. (A. S. Mishchenko, A. T. Fomenko,
champs contunud des algebres C*; construction of Sobolev
type completions of the section spaces)
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Generalization of the Fredholm property

o Fuy(w)=u-(v,w), FIE—E

o A-finite rank any of form E 5 v — Y7 \;Fy, ,,(v) for some
uj, Vi € E and Aj eC

@ A-compact operators = closure of A-finite rank, (E is Banach,
B(E) is a normed space with the operator norm)

o A-Fredholm = invertible modulo A-compact

@ The image of A-Fredholm neeed not be closed (F C-Fredholm
implies M/Im F < oo implies Im F is closed)!
Ff = xf, A=E = C°([0, 1]) - counterexample: A-Fredholm
but not closed range
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Complexes in Hilbert L

Bundles of Hilbert modules

p: E— M, Ais called an A-Hilbert bundle if

@ there exists a Hilbert A-module (E, (,))

@ pis a smooth Banach bundle with typical fiber E and A is (a
maximal) smooth bundle atlas of p

@ the transition maps of the atlas are maps into Auts(E)

Example: the Segal-Shale-Weil bundle E =P x, E over a
symplectic manifold admitting a metaplectic structure.

Atlas - any atlas containing the global trivialization map (Kuiper
thm. = exists) Take any maximal atlas from the (nonempty) set
of atlae containing this trivialization.
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Key technical tool

Theorem [Fomenko, Mishchenko, 1979]: Let A be a C*-algebra, M
a compact manifold and E — M be finitely generated projective
A-Hilbert bundle over M. If D is an elliptic operator, its extension
is an A-Fredholm operator. In particular, Ker D is a finitely
generated projective Hilbert A-module.

Generalization of the procedures from parametrix construction for
elliptic operators on compact manifolds. However, no results
connected to cohomologies, their topology (closedness of operator
images) and their projective/finite properties.
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Complexes and their cohomology groups

Theorem [Krysl, J. Geom. Phys. (accepted)]: Let A= K(E) be
the algebra of compact operators and M be a compact manifold
and D* = (T(E"), D;); be an elliptic complex on finitely generated
projective K(EE)-Hilbert bundles over M. Then

o H'(D®) ~ Ker A\; and it is finitely generated projective Hilbert

K(E)-module
o NEN=KerA;®Imdi_1 @ Im df
o ImA;=Imdi_; @Im d. In particular images of all operators

involved are closed.
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Complexes and their cohomology properties

Theorem [Krysl, J. Global. Analysis Geom.]: Any elliptic complex
of operators D;, i € Z in sections of finitely generated projective
Hilbert bundles E' over a compact manifold whose Laplace
operators have a closed image satisfies

o H'(D®) ~ Ker A\; and it is finitely generated projective Hilbert
modules

o NEN=KerA;®ImD;_; ®Im Dr
o ImA;=Imdi_; ®Im d
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Application

(in progress)

Theorem: Let M be a symplectic manifold equipped with a
metaplectic structure and VE be a connection for which the
associated Segal-Shale-Weil bundle E — M is trivial. The
cohomology groups of the SSW-twisted deRham complex
(QX(E), dY )k are isomorphic to the kernels of the associated
Laplace operators and they are finitely generated projective
K (E)-Hilbert modules.

Paralelly for the contact projective case.

Theorem: Let (M,w) admitting a metaplectic structure be
symplectic manifold and V be a symplectic connection. Then the
kernel of the Habrmann Dirac operator is a finitely generated
projective K(IE)-module.

Question: Do we have HK(QK(E)) ~ HX . (M) ® K(E).
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