Complexes of symplectic twistor operators

Svatopluk Krýsl

Charles University - Prague

Bari, 1st September 2022

Motivation, Source, Aim

- Explain relation between structure of curvature and complexes on an example which is "not too known".

Motivation, Source, Aim

- Explain relation between structure of curvature and complexes on an example which is "not too known".
- Example are the symplectic spinor structures. Introduced by Kostant [Kostant] and Habermann [Haber]

Motivation, Source, Aim

- Explain relation between structure of curvature and complexes on an example which is "not too known".
- Example are the symplectic spinor structures. Introduced by Kostant [Kostant] and Habermann [Haber]
- Source for talk: "Twistor operators in symplectic geometry" Adv. Applied Cliff. Analysis 32 (2022); or preprint https://www2.karlin.mff.cuni.cz/~krysl/Twist.pdf

Motivation, Source, Aim

- Explain relation between structure of curvature and complexes on an example which is "not too known".
- Example are the symplectic spinor structures. Introduced by Kostant [Kostant] and Habermann [Haber]
- Source for talk: "Twistor operators in symplectic geometry" Adv. Applied Cliff. Analysis 32 (2022); or preprint https://www2.karlin.mff.cuni.cz/~krysl/Twist.pdf
- Known: Riemannian or pseudoriemannian spin geometry. Twistor operators in classical spin geometry for specific manifolds with $\operatorname{Spin}(p, q)$-structure - [Penrose] for signature $(1,3)$. Spinor bundles are associated bundles to the spinor reps of spin group; model for the bundle's fibres
- Known: Dolbeault operators: $\left(M^{n}, J\right)$ almost complex manifold; $\left(\Gamma\left(\mathcal{E}^{i, j+k}\right), \bar{\partial}^{i, j+k}\right)_{k \in \mathbb{Z}}$ holomorphic-antiholomorphic differential forms
- Known: Dolbeault operators: $\left(M^{n}, J\right)$ almost complex manifold; $\left(\Gamma\left(\mathcal{E}^{i, j+k}\right), \bar{\partial}^{i, j+k}\right)_{k \in \mathbb{Z}}$ holomorphic-antiholomorphic differential forms
- If the Nijenhuis tensor $N_{J}(X, Y)=[X, Y]+J[J X, Y]+[X, J Y]-[J X, J Y]=0$ for all smooth vector fields X, Y, the Dolbeault operators form (families of) complexes $\bar{\partial}^{i, j+k+1} \bar{\partial}^{i, j+k}=0$ for each (i, j)
- Moreover $N_{J}=0 \Longrightarrow \partial^{i+k+1, j} \partial^{i+k, j}=0$ and $\bar{\partial} \partial+\partial \bar{\partial}=0$
- Newlander-Nirenberg: $N_{J}=0 \Leftrightarrow J$ induces a holomorphic subatlas on M (complex structure)
- holomorphic-antiholomorphic forms are associated bundles to representations of the unitary group $U(n)$. Defining rep. of $U(n)$ on \mathbb{C}^{n} is the model for the bundle's fibre
- Use Lie groups representation theory (of so-called (\mathfrak{g}, K)-modules)
- Present the " not too known" structure by introducing the "symplectic spin group", the representation model for the complex, and the "symplectic spin structure"
- Define sequence of symplectic twistor operators on induced bundles' sections
- Analyse curvature of the induced connection
- Connect the curvature to the complex condition " $\partial \partial=0$ " or $" T T=0 "$

Symplectic Vector Spaces

- (V, ω) real symplectic vector space of dimension $2 n$; model of the tangent space
- $\operatorname{Sp}(2 n, \mathbb{R})$ symplectic group (the non-compact one), $\pi_{1}(S p(2 n, \mathbb{R}))=\pi_{1}(U(n))=\mathbb{Z}$; symmetry group
- There exists connected Lie group that covers $\operatorname{Sp}(2 n, \mathbb{R})$ twice
- unique as Lie group up to choice of neutral element and deck-transformation
- the metaplectic group, denoted by \widetilde{G} or $\operatorname{Mp}(2 n, \mathbb{R})$
- Choose a maximal ω-isotropic subspace $L \subseteq V$ and a complex structure J on V such that $g(u, v)=\omega(J u, v)$ is positive definite - sometimes called adapted cplx str.; (J is then g-orthogonal, ω-symplectic)

Symplectic Spinors

- There is a 'distinguished' faithful unitary representation of $\widetilde{G}=M p(V, \omega)$; model for the induced bundles

Symplectic Spinors

- There is a 'distinguished' faithful unitary representation of $\widetilde{G}=M p(V, \omega)$; model for the induced bundles called the symplectic spinor representation (oscillator, metaplectic, Segal-Shale-Weil, Shale-Weil). Denote it by $\mathfrak{m}: \widetilde{G} \rightarrow U(E)$, where $E=L^{2}(L)$ square integrable on the Euclidean vector space ($L, g_{\mid L \times L}$), ([Shale] ('60), I. E. Segal, [Weil] ('60), Berezin). U denotes unitary operators. Realizable by minimal left ideals in the infinite dimensional

$$
\operatorname{sCliff}(V, \omega)=T(V) /\langle v \otimes w-w \otimes v-\omega(v, w) 1 \mid v, w \in V\rangle
$$

Symplectic Spinors

- There is a 'distinguished' faithful unitary representation of $\widetilde{G}=M p(V, \omega)$; model for the induced bundles called the symplectic spinor representation (oscillator, metaplectic, Segal-Shale-Weil, Shale-Weil). Denote it by $\mathfrak{m}: \widetilde{G} \rightarrow U(E)$, where $E=L^{2}(L)$ square integrable on the Euclidean vector space ($L, g_{\mid L \times L}$), ([Shale] ('60), I. E. Segal, [Weil] ('60), Berezin). U denotes unitary operators. Realizable by minimal left ideals in the infinite dimensional $\operatorname{sCliff}(V, \omega)=T(V) /\langle v \otimes w-w \otimes v-\omega(v, w) 1 \mid v, w \in V\rangle$
- There is no non-trivial unitary representation on a finite dimensional vector space (Weyl's unitary trick)

Symplectic Spinors

- There is a 'distinguished' faithful unitary representation of $\widetilde{G}=M p(V, \omega)$; model for the induced bundles called the symplectic spinor representation (oscillator, metaplectic, Segal-Shale-Weil, Shale-Weil). Denote it by $\mathfrak{m}: \widetilde{G} \rightarrow U(E)$, where $E=L^{2}(L)$ square integrable on the Euclidean vector space ($L, g_{\mid L \times L}$), ([Shale] ('60), I. E. Segal, [Weil] ('60), Berezin). U denotes unitary operators. Realizable by minimal left ideals in the infinite dimensional $\operatorname{sCliff}(V, \omega)=T(V) /\langle v \otimes w-w \otimes v-\omega(v, w) 1 \mid v, w \in V\rangle$
- There is no non-trivial unitary representation on a finite dimensional vector space (Weyl's unitary trick)
- There is no faithful representation of \widetilde{G} on a finite dimensional vector space, non-matrix group

Symplectic Spinors

- There is a 'distinguished' faithful unitary representation of $\widetilde{G}=M p(V, \omega)$; model for the induced bundles called the symplectic spinor representation (oscillator, metaplectic, Segal-Shale-Weil, Shale-Weil). Denote it by $\mathfrak{m}: \widetilde{G} \rightarrow U(E)$, where $E=L^{2}(L)$ square integrable on the Euclidean vector space ($L, g_{\mid L \times L}$), ([Shale] ('60), I. E. Segal, [Weil] ('60), Berezin). U denotes unitary operators. Realizable by minimal left ideals in the infinite dimensional $\operatorname{sCliff}(V, \omega)=T(V) /\langle v \otimes w-w \otimes v-\omega(v, w) 1 \mid v, w \in V\rangle$
- There is no non-trivial unitary representation on a finite dimensional vector space (Weyl's unitary trick)
- There is no faithful representation of \widetilde{G} on a finite dimensional vector space, non-matrix group
- $E=E_{+} \oplus E_{-}$, even and odd square integrable functions on Lagrangian space L, it is a decomposition into irreducibles

Model for the Complex - Symplectic Spinor Valued Exterior Forms

Notation:

- The double cover $\lambda: \widetilde{G} \rightarrow \operatorname{Sp}(2 n, \mathbb{R}) \simeq \lambda^{*}: \widetilde{G} \rightarrow \operatorname{Aut}\left(V^{*}\right)$ is a representation; wedge-powers $\lambda^{i}: \widetilde{G} \rightarrow \operatorname{Aut}\left(\bigwedge^{i} V^{*}\right)$ exterior forms

Model for the Complex - Symplectic Spinor Valued Exterior Forms

Notation:

- The double cover $\lambda: \widetilde{G} \rightarrow \operatorname{Sp}(2 n, \mathbb{R}) \simeq \lambda^{*}: \widetilde{G} \rightarrow \operatorname{Aut}\left(V^{*}\right)$ is a representation; wedge-powers $\lambda^{i}: \widetilde{G} \rightarrow \operatorname{Aut}\left(\bigwedge^{i} V^{*}\right)$ exterior forms
- tensor product with symplectic spinors: $\mathfrak{m}_{ \pm}^{i}: \widetilde{G} \rightarrow \operatorname{Aut}\left(\bigwedge^{i} V^{*} \otimes E_{ \pm}\right)$sympl. spinor valued ext. forms; often considered by Penrose in the pseudoriemannian case of sign. $(1,3) \mathfrak{m}^{i}=\mathfrak{m}_{+}^{i} \oplus \mathfrak{m}_{-}^{i}$

Model for the Complex - Symplectic Spinor Valued Exterior Forms

Notation:

- The double cover $\lambda: \widetilde{G} \rightarrow \operatorname{Sp}(2 n, \mathbb{R}) \simeq \lambda^{*}: \widetilde{G} \rightarrow \operatorname{Aut}\left(V^{*}\right)$ is a representation; wedge-powers $\lambda^{i}: \widetilde{G} \rightarrow \operatorname{Aut}\left(\bigwedge^{i} V^{*}\right)$ exterior forms
- tensor product with symplectic spinors:
$\mathfrak{m}_{ \pm}^{i}: \widetilde{G} \rightarrow \operatorname{Aut}\left(\bigwedge^{i} V^{*} \otimes E_{ \pm}\right)$sympl. spinor valued ext. forms; often considered by Penrose in the pseudoriemannian case of sign. $(1,3) \mathfrak{m}^{i}=\mathfrak{m}_{+}^{i} \oplus \mathfrak{m}_{-}^{i}$
- Theorem [Krysl, Lie Theory]: For each i, there are irreducible modules $E_{ \pm}^{i j}, j=0, \ldots, k_{i}=n-|n-i|$, such that

$$
\bigwedge V^{*} \otimes E_{ \pm}=E_{ \pm}^{i}=\oplus_{j=0}^{k_{i}} E_{ \pm}^{i j}
$$

Model for the Complex - Symplectic Spinor Valued Exterior Forms

Notation:

- The double cover $\lambda: \widetilde{G} \rightarrow \operatorname{Sp}(2 n, \mathbb{R}) \simeq \lambda^{*}: \widetilde{G} \rightarrow \operatorname{Aut}\left(V^{*}\right)$ is a representation; wedge-powers $\lambda^{i}: \widetilde{G} \rightarrow \operatorname{Aut}\left(\bigwedge^{i} V^{*}\right)$ exterior forms
- tensor product with symplectic spinors:
$\mathfrak{m}_{ \pm}^{i}: \widetilde{G} \rightarrow \operatorname{Aut}\left(\bigwedge^{i} V^{*} \otimes E_{ \pm}\right)$sympl. spinor valued ext. forms; often considered by Penrose in the pseudoriemannian case of sign. $(1,3) \mathfrak{m}^{i}=\mathfrak{m}_{+}^{i} \oplus \mathfrak{m}_{-}^{i}$
- Theorem [Krysl, Lie Theory]: For each i, there are irreducible modules $E_{ \pm}^{i j}, j=0, \ldots, k_{i}=n-|n-i|$, such that

$$
\bigwedge V^{*} \otimes E_{ \pm}=E_{ \pm}^{i}=\oplus_{j=0}^{k_{i}} E_{ \pm}^{i j}
$$

- We set $E^{i j}=E_{+}^{i j} \oplus E_{-}^{i j}$.

Decomposition Diagram (in dimension six)

Representations $E_{ \pm}^{i j}$ described by highest weight (of the "infinitesimal" \mathfrak{g}-structure) with respect to a Cartan subalgebra and a choice of positive roots, $2 n=6$.

$$
\begin{array}{lllllll}
E^{0} & E^{1} & E^{2} & E^{3} & E^{4} & E^{5} & E^{6} \\
E^{00} & E^{10} & E^{20} & E^{30} & E^{40} & E^{50} & E^{60} \\
& E^{11} & E^{21} & E^{31} & E^{41} & E^{51} & \\
& & E^{22} & E^{32} & E^{42} & & \\
& & & E^{33} & & &
\end{array}
$$

Symplectic Spinor or Metaplectic Structure

- $\left(M^{2 n}, \omega\right)$ symplectic manifold $\left(d \omega=0, \omega_{m}\right.$ non-deg. in each point)

Symplectic Spinor or Metaplectic Structure

- $\left(M^{2 n}, \omega\right)$ symplectic manifold $\left(d \omega=0, \omega_{m}\right.$ non-deg. in each point)
- $\mathcal{Q}=\left\{A: V \rightarrow T_{m} M \mid \omega(A v, A w)=\omega_{0}(v, w), v, w \in V, m \in\right.$ $M\}$ bundle of symplectic frames, $p_{Q}: \mathcal{Q} \rightarrow M$

Symplectic Spinor or Metaplectic Structure

- $\left(M^{2 n}, \omega\right)$ symplectic manifold $\left(d \omega=0, \omega_{m}\right.$ non-deg. in each point)
- $\mathcal{Q}=\left\{A: V \rightarrow T_{m} M \mid \omega(A v, A w)=\omega_{0}(v, w), v, w \in V, m \in\right.$ $M\}$ bundle of symplectic frames, $p_{Q}: \mathcal{Q} \rightarrow M$
- $(\underset{\sim}{\mathcal{G}}, \wedge)$ metaplectic structure $=1) p_{P}: \mathcal{P} \rightarrow M$ is principal \mathfrak{G}-bundle and

Symplectic Spinor or Metaplectic Structure

- $\left(M^{2 n}, \omega\right)$ symplectic manifold $\left(d \omega=0, \omega_{m}\right.$ non-deg. in each point)
- $\mathcal{Q}=\left\{A: V \rightarrow T_{m} M \mid \omega(A v, A w)=\omega_{0}(v, w), v, w \in V, m \in\right.$ $M\}$ bundle of symplectic frames, $p_{Q}: \mathcal{Q} \rightarrow M$
- $(\underset{\sim}{\mathcal{G}}, \wedge)$ metaplectic structure $=1) p_{P}: \mathcal{P} \rightarrow M$ is principal \widetilde{G}-bundle and 2) $\Lambda: \mathcal{P} \rightarrow \mathcal{Q}$ is a morphism of fibre bundles and for each $g \in \widetilde{G}: \Lambda(A g)=\Lambda(A) \lambda(g)$, i.e.,

Symplectic Spinor or Metaplectic Structure

- $\left(M^{2 n}, \omega\right)$ symplectic manifold $\left(d \omega=0, \omega_{m}\right.$ non-deg. in each point)
- $\mathcal{Q}=\left\{A: V \rightarrow T_{m} M \mid \omega(A v, A w)=\omega_{0}(v, w), v, w \in V, m \in\right.$ $M\}$ bundle of symplectic frames, $p_{Q}: \mathcal{Q} \rightarrow M$
- $(\underset{\sim}{\mathcal{G}}, \Lambda)$ metaplectic structure $=1) p_{P}: \mathcal{P} \rightarrow M$ is principal \widetilde{G}-bundle and 2) $\Lambda: \mathcal{P} \rightarrow \mathcal{Q}$ is a morphism of fibre bundles and for each $g \in \widetilde{G}: \Lambda(A g)=\Lambda(A) \lambda(g)$, i.e.,

Symplectic Spinor or Metaplectic Structure

- $\left(M^{2 n}, \omega\right)$ symplectic manifold $\left(d \omega=0, \omega_{m}\right.$ non-deg. in each point)
- $\mathcal{Q}=\left\{A: V \rightarrow T_{m} M \mid \omega(A v, A w)=\omega_{0}(v, w), v, w \in V, m \in\right.$ $M\}$ bundle of symplectic frames, $p_{Q}: \mathcal{Q} \rightarrow M$
- $(\underset{\sim}{\mathcal{G}}, \wedge)$ metaplectic structure $=1) p_{P}: \mathcal{P} \rightarrow M$ is principal \widetilde{G}-bundle and 2) $\Lambda: \mathcal{P} \rightarrow \mathcal{Q}$ is a morphism of fibre bundles and for each $g \in \widetilde{G}: \Lambda(A g)=\Lambda(A) \lambda(g)$, i.e.,

- Existence [Forger, Hess] - obstacle: second Stiefel-Whitney class non-zero; $T^{*} N$ for N orientable, tori, $\mathbb{C P}_{\rho}^{2 n+1}$

Symplectic Connections

- Definition: Let (M, ω) be a symplectic manifold. A covariant derivative on TM is called symplectic if it preserves the symplectic form $(\nabla \omega=0)$. It is called Fedosov if it is symplectic and torsion-free.

Symplectic Connections

- Definition: Let (M, ω) be a symplectic manifold. A covariant derivative on TM is called symplectic if it preserves the symplectic form $(\nabla \omega=0)$. It is called Fedosov if it is symplectic and torsion-free.
- Theorem [Tondeur ('60)]: The affine space of Fedosov connections is in an affine bijection with the affine space $\left(\Gamma\left(S^{3} M\right), 0\right)$.

Symplectic Curvature Tensors

- Curvature definition and symmetries:

$$
\begin{aligned}
& R_{i j k l}=\omega\left(R\left(X_{k}, X_{l}\right) X_{j}, X_{i}\right), R_{i j k l}=R_{j i k l} \text { and } \\
& R_{i j k l}+R_{i j k}+R_{i k l j}=0
\end{aligned}
$$

Symplectic Curvature Tensors

- Curvature definition and symmetries:

$$
\begin{aligned}
& R_{i j k l}=\omega\left(R\left(X_{k}, X_{l}\right) X_{j}, X_{i}\right), R_{i j k l}=R_{j i k l} \text { and } \\
& R_{i j k l}+R_{i l j k}+R_{i k l j}=0
\end{aligned}
$$

- Ricci tensor $\sigma(X, Y)=\operatorname{Tr}\left(Z \mapsto R^{\nabla}(Z, X) Y\right)$,
$\sigma_{i j}=R^{k}{ }_{i j k}=+R^{k}{ }_{i k j}$, coordinates with respect to a local symplectic frame $\left(e_{i}\right)_{i=1}^{2 n}, R^{\nabla}$ classical curvature of affine connection ∇

Symplectic Curvature Tensors

- Curvature definition and symmetries:

$$
\begin{aligned}
& R_{i j k l}=\omega\left(R\left(X_{k}, X_{l}\right) X_{j}, X_{i}\right), R_{i j k l}=R_{j i k l} \text { and } \\
& R_{i j k l}+R_{i j k}+R_{i k l j}=0
\end{aligned}
$$

- Ricci tensor $\sigma(X, Y)=\operatorname{Tr}\left(Z \mapsto R^{\nabla}(Z, X) Y\right)$,
$\sigma_{i j}=R^{k}{ }_{i j k}=+R^{k}{ }_{i k j}$, coordinates with respect to a local symplectic frame $\left(e_{i}\right)_{i=1}^{2 n}, R^{\nabla}$ classical curvature of affine connection ∇
- Extended Ricci tensor:
$\sigma_{i j k l}=\frac{1}{2 n+2}\left(\omega_{i l} \sigma_{j k}-\omega_{i k} \sigma_{j l}+\omega_{j l} \sigma_{i k}-\omega_{j k} \sigma_{i l}+2 \sigma_{i j} \omega_{k l}\right)$, $\widehat{\sigma}=\sigma_{i j k l} \epsilon^{i} \otimes \epsilon^{j} \otimes \epsilon^{k} \otimes \epsilon^{\prime}$ where $\left(\epsilon^{i}\right)_{i}$ is the dual basis (not ω-dual) (See [I. Vaisman])

Symplectic Curvature Tensors

- Curvature definition and symmetries:

$$
\begin{aligned}
& R_{i j k l}=\omega\left(R\left(X_{k}, X_{l}\right) X_{j}, X_{i}\right), R_{i j k l}=R_{j i k l} \text { and } \\
& R_{i j k l}+R_{i j k}+R_{i k l j}=0
\end{aligned}
$$

- Ricci tensor $\sigma(X, Y)=\operatorname{Tr}\left(Z \mapsto R^{\nabla}(Z, X) Y\right)$,
$\sigma_{i j}=R^{k}{ }_{i j k}=+R^{k}{ }_{i k j}$, coordinates with respect to a local symplectic frame $\left(e_{i}\right)_{i=1}^{2 n}, R^{\nabla}$ classical curvature of affine connection ∇
- Extended Ricci tensor:
$\sigma_{i j k l}=\frac{1}{2 n+2}\left(\omega_{i l} \sigma_{j k}-\omega_{i k} \sigma_{j l}+\omega_{j l} \sigma_{i k}-\omega_{j k} \sigma_{i l}+2 \sigma_{i j} \omega_{k l}\right)$, $\widehat{\sigma}=\sigma_{i j k l} \epsilon^{i} \otimes \epsilon^{j} \otimes \epsilon^{k} \otimes \epsilon^{\prime}$ where $\left(\epsilon^{i}\right)_{i}$ is the dual basis (not ω-dual) (See [I. Vaisman])
- $W=R^{\nabla}-\widehat{\sigma}$ symplectic Weyl curvature tensor

Symplectic Curvature Tensors

- Curvature definition and symmetries:

$$
\begin{aligned}
& R_{i j k l}=\omega\left(R\left(X_{k}, X_{l}\right) X_{j}, X_{i}\right), R_{i j k l}=R_{j i k l} \text { and } \\
& R_{i j k l}+R_{i l j k}+R_{i k l j}=0
\end{aligned}
$$

- Ricci tensor $\sigma(X, Y)=\operatorname{Tr}\left(Z \mapsto R^{\nabla}(Z, X) Y\right)$,
$\sigma_{i j}=R^{k}{ }_{i j k}=+R^{k}{ }_{i k j}$, coordinates with respect to a local symplectic frame $\left(e_{i}\right)_{i=1}^{2 n}, R^{\nabla}$ classical curvature of affine connection ∇
- Extended Ricci tensor:
$\sigma_{i j k l}=\frac{1}{2 n+2}\left(\omega_{i l} \sigma_{j k}-\omega_{i k} \sigma_{j l}+\omega_{j l} \sigma_{i k}-\omega_{j k} \sigma_{i l}+2 \sigma_{i j} \omega_{k l}\right)$, $\widehat{\sigma}=\sigma_{i j k l} \epsilon^{i} \otimes \epsilon^{j} \otimes \epsilon^{k} \otimes \epsilon^{\prime}$ where $\left(\epsilon^{i}\right)_{i}$ is the dual basis (not ω-dual) (See [I. Vaisman])
- $W=R^{\nabla}-\widehat{\sigma}$ symplectic Weyl curvature tensor
- Definition: A Fedosov connection is called Weyl-flat (or of Ricci-type) if $W=0$.

Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

- symplectic spinor bundle $\mathcal{E}^{i}=\mathcal{P} \times_{\mathfrak{m}} E^{i}, \mathcal{E}^{i j}=\mathcal{P} \times_{\mathfrak{m}} E^{i j}$, $\mathcal{E}=\mathcal{E}^{0}$ symplectic spinors (their sections are symplectic spinor fields, of Kostant)

Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

- symplectic spinor bundle $\mathcal{E}^{i}=\mathcal{P} \times_{\mathfrak{m}} E^{i}, \mathcal{E}^{i j}=\mathcal{P} \times_{\mathfrak{m}} E^{i j}$, $\mathcal{E}=\mathcal{E}^{0}$ symplectic spinors (their sections are symplectic spinor fields, of Kostant)
- ∇ Fedosov connection \longrightarrow associated cov. derivative ∇^{0} on \mathcal{E}

Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

- symplectic spinor bundle $\mathcal{E}^{i}=\mathcal{P} \times_{\mathfrak{m}} E^{i}, \mathcal{E}^{i j}=\mathcal{P} \times_{\mathfrak{m}} E^{i j}$, $\mathcal{E}=\mathcal{E}^{0}$ symplectic spinors (their sections are symplectic spinor fields, of Kostant)
- ∇ Fedosov connection \longrightarrow associated cov. derivative ∇^{0} on \mathcal{E}
- ∇^{i} exterior cov. derivative on \mathcal{E}^{i}, and $\nabla^{i j}$ on $\mathcal{E}^{i j}$

Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

- symplectic spinor bundle $\mathcal{E}^{i}=\mathcal{P} \times_{\mathfrak{m}} E^{i}, \mathcal{E}^{i j}=\mathcal{P} \times_{\mathfrak{m}} E^{i j}$, $\mathcal{E}=\mathcal{E}^{0}$ symplectic spinors (their sections are symplectic spinor fields, of Kostant)
- ∇ Fedosov connection \longrightarrow associated cov. derivative ∇^{0} on \mathcal{E}
- ∇^{i} exterior cov. derivative on \mathcal{E}^{i}, and $\nabla^{i j}$ on $\mathcal{E}^{i j}$
- i-th curvature $R^{i}=\nabla^{i+1} \nabla^{i}$. Total curvature $R=\sum_{i=0}^{2 n-2} R^{i}$

Family of Twistor Operators

- Spaces indexed by integer couples "outside of triangle" are set zero for convenience, i.e., $E^{i j_{i}}=0$ if $i \notin\{0, \ldots, 2 n\}$ or $j_{i} \notin\left\{0, \ldots k_{i}\right\}$

Family of Twistor Operators

- Spaces indexed by integer couples "outside of triangle" are set zero for convenience, i.e., $E^{i j_{i}}=0$ if $i \notin\{0, \ldots, 2 n\}$ or $j_{i} \notin\left\{0, \ldots k_{i}\right\}$
- $p^{i j}: E^{i} \rightarrow E^{i j}$ well defined since E^{i} is multiplicity-free (for each i). The same symbol - when it acts on bundles and bundle sections

Family of Twistor Operators

- Spaces indexed by integer couples "outside of triangle" are set zero for convenience, i.e., $E^{i j_{i}}=0$ if $i \notin\{0, \ldots, 2 n\}$ or $j_{i} \notin\left\{0, \ldots k_{i}\right\}$
- $p^{i j}: E^{i} \rightarrow E^{i j}$ well defined since E^{i} is multiplicity-free (for each i). The same symbol - when it acts on bundles and bundle sections
- Definition: For any (i, j) we set $T_{ \pm}^{i j}=p^{i+1, j \pm 1} \circ \nabla^{i j}: \Gamma\left(\mathcal{E}^{i j}\right) \rightarrow \Gamma\left(\mathcal{E}^{i, j \pm 1}\right)$ and call it the (i, j) th symplectic twistor operator; $\nabla^{i j}=\nabla_{\mid \Gamma\left(\mathcal{E}^{i j}\right)}$

Family of Twistor Operators

- Spaces indexed by integer couples "outside of triangle" are set zero for convenience, i.e., $E^{i j_{i}}=0$ if $i \notin\{0, \ldots, 2 n\}$ or $j_{i} \notin\left\{0, \ldots k_{i}\right\}$
- $p^{i j}: E^{i} \rightarrow E^{i j}$ well defined since E^{i} is multiplicity-free (for each i). The same symbol - when it acts on bundles and bundle sections
- Definition: For any (i, j) we set $T_{ \pm}^{i j}=p^{i+1, j \pm 1} \circ \nabla^{i j}: \Gamma\left(\mathcal{E}^{i j}\right) \rightarrow \Gamma\left(\mathcal{E}^{i, j \pm 1}\right)$ and call it the (i, j) th symplectic twistor operator; $\nabla^{i j}=\nabla_{\mid \Gamma\left(\mathcal{E}^{i j}\right)}$
- In the decomposition diagram of $\bigwedge^{i} V^{*} \otimes E$ into irreducible representations \Longrightarrow

Condition for Forming a Complex

- We would like to investigate the chain-complex condition

$$
\begin{gathered}
T_{ \pm}^{i+k+1, j+k \pm 1} \circ T_{ \pm}^{i+k, j+k}=0, \text { i.e. } \\
p^{i+k+2, j+k \pm 2} \circ \nabla^{i+k+1, j+k \pm 1} \circ p^{i+k+1, j+k \pm 1} \circ \nabla^{i+k, j+k}=0
\end{gathered}
$$

Condition for Forming a Complex

- We would like to investigate the chain-complex condition

$$
\begin{gathered}
T_{ \pm}^{i+k+1, j+k \pm 1} \circ T_{ \pm}^{i+k, j+k}=0, \text { i.e. } \\
p^{i+k+2, j+k \pm 2} \circ \nabla^{i+k+1, j+k \pm 1} \circ p^{i+k+1, j+k \pm 1} \circ \nabla^{i+k, j+k}=0
\end{gathered}
$$

- (Induced) covariant derivative $\nabla^{i j}$:

$$
\begin{array}{ll}
\Gamma\left(\mathcal{E}^{i, j-1}\right) & \Gamma\left(\mathcal{E}^{i+1, j-1}\right) \\
\\
\Gamma\left(\mathcal{E}^{i, j}\right) & \Gamma\left(\mathcal{E}^{i+1, j}\right) \\
\Gamma\left(\mathcal{E}^{i, j+1}\right) & \Gamma\left(\mathcal{E}^{i+1, j+1}\right)
\end{array}
$$

Condition for Forming a Complex

- We would like to investigate the chain-complex condition

$$
\begin{gathered}
T_{ \pm}^{i+k+1, j+k \pm 1} \circ T_{ \pm}^{i+k, j+k}=0, \text { i.e. } \\
p^{i+k+2, j+k \pm 2} \circ \nabla^{i+k+1, j+k \pm 1} \circ p^{i+k+1, j+k \pm 1} \circ \nabla^{i+k, j+k}=0
\end{gathered}
$$

- (Induced) covariant derivative $\nabla^{i j}$:

$$
\begin{array}{ll}
\Gamma\left(\mathcal{E}^{i, j-1}\right) & \Gamma\left(\mathcal{E}^{i+1, j-1}\right) \\
\\
\Gamma\left(\mathcal{E}^{i, j}\right) & \Gamma\left(\mathcal{E}^{i+1, j}\right) \\
\Gamma\left(\mathcal{E}^{i, j+1}\right) & \Gamma\left(\mathcal{E}^{i+1, j+1}\right)
\end{array}
$$

- $\Longrightarrow T_{ \pm}^{i+1, j \pm 1} T_{ \pm}^{i, j}=p^{i+2, j \pm 2} \nabla^{i+1} \nabla^{i j}=p^{i+2, j \pm 2} R_{\mid \Gamma\left(\mathcal{E}^{i j}\right)}^{\nabla}$. Thus analyze the curvature.

Curvature Structure of Weyl-Flat Connection Representation Approach

- Symplectic spinor multiplication •: V $\times E \rightarrow E$

Curvature Structure of Weyl-Flat Connection Representation Approach

- Symplectic spinor multiplication : $V \times E \rightarrow E$
- $\left(\epsilon^{i}\right)_{i=1}^{2 n}$ the dual basis to a symplectic basis $\left(e_{i}\right)_{i=1}^{2 n}, e_{i} \in V$

Curvature Structure of Weyl-Flat Connection Representation Approach

- Symplectic spinor multiplication $\cdot: V \times E \rightarrow E$
- $\left(\epsilon^{i}\right)_{i=1}^{2 n}$ the dual basis to a symplectic basis $\left(e_{i}\right)_{i=1}^{2 n}, e_{i} \in V$
- $\left(e_{i} . f\right)\left(x^{1}, \ldots, x^{n}\right)=\imath x^{i} f(x), e_{i+n} . f=\frac{\partial f}{\partial x^{i}}, 1 \leq i \leq n$. Where $f \in \mathcal{S}(L)$ (Schwartz space of rapidly decreasing functions) $\subseteq E=L^{2}(L)$. See [Habermann, K., Habermann, L.].
Symplectic spinor multiplication/Canonical Quantization up to multiples

Curvature Structure of Weyl-Flat Connection Representation Approach

- Symplectic spinor multiplication : $V \times E \rightarrow E$
- $\left(\epsilon^{i}\right)_{i=1}^{2 n}$ the dual basis to a symplectic basis $\left(e_{i}\right)_{i=1}^{2 n}, e_{i} \in V$
- $\left(e_{i} . f\right)\left(x^{1}, \ldots, x^{n}\right)=\imath x^{i} f(x), e_{i+n} . f=\frac{\partial f}{\partial x^{i}}, 1 \leq i \leq n$. Where $f \in \mathcal{S}(L)$ (Schwartz space of rapidly decreasing functions) $\subseteq E=L^{2}(L)$. See [Habermann, K., Habermann, L.]. Symplectic spinor multiplication/Canonical Quantization up to multiples
- Equivariant properties of this multiplication with respect to \mathfrak{m} \Longrightarrow it can be defined on symplectic spinor bundle

Representation of $\operatorname{osp}(1 \mid 2)$ on Symplectic Spinor Forms

$$
\text { - } F^{+}(\alpha \otimes f):=\frac{\imath}{2} \sum_{i=1}^{n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot f, \alpha \otimes f \in \bigwedge^{i} V^{*} \otimes \mathcal{S}(L)
$$

Representation of $\operatorname{osp}(1 \mid 2)$ on Symplectic Spinor Forms

$$
\begin{aligned}
& \text { - } F^{+}(\alpha \otimes f):=\frac{\imath}{2} \sum_{i=1}^{n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot f, \alpha \otimes f \in \bigwedge^{i} V^{*} \otimes \mathcal{S}(L) \\
& \text { - } F^{-}(\alpha \otimes f):=\frac{1}{2} \sum_{i=1}^{n} \omega^{i j} \iota_{e_{i}} \alpha \otimes e_{j} \cdot f, \omega^{i k} \omega_{k j}=\delta_{j}^{i}, \text { where } \\
& \omega_{i j}=\omega\left(e_{i}, e_{j}\right)
\end{aligned}
$$

Representation of $\operatorname{osp}(1 \mid 2)$ on Symplectic Spinor Forms

- $F^{+}(\alpha \otimes f):=\frac{\imath}{2} \sum_{i=1}^{n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot f, \alpha \otimes f \in \bigwedge^{i} V^{*} \otimes \mathcal{S}(L)$
- $F^{-}(\alpha \otimes f):=\frac{1}{2} \sum_{i=1}^{n} \omega^{i j} \iota_{e_{i}} \alpha \otimes e_{j} \cdot f, \omega^{i k} \omega_{k j}=\delta_{j}^{i}$, where $\omega_{i j}=\omega\left(e_{i}, e_{j}\right)$
- $E^{ \pm}:= \pm 2\left\{F^{ \pm}, F^{ \pm}\right\}$, anticommutator.

Representation of $\operatorname{osp}(1 \mid 2)$ on Symplectic Spinor Forms

- $F^{+}(\alpha \otimes f):=\frac{\imath}{2} \sum_{i=1}^{n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot f, \alpha \otimes f \in \bigwedge^{i} V^{*} \otimes \mathcal{S}(L)$
- $F^{-}(\alpha \otimes f):=\frac{1}{2} \sum_{i=1}^{n} \omega^{i j} \iota_{e_{i}} \alpha \otimes e_{j} \cdot f, \omega^{i k} \omega_{k j}=\delta_{j}^{i}$, where $\omega_{i j}=\omega\left(e_{i}, e_{j}\right)$
- $E^{ \pm}:= \pm 2\left\{F^{ \pm}, F^{ \pm}\right\}$, anticommutator.
- $H=\left[E^{+}, E^{-}\right]$

Representation of $0.5 p(1 \mid 2)$ on Symplectic Spinor Forms

- $F^{+}(\alpha \otimes f):=\frac{\imath}{2} \sum_{i=1}^{n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot f, \alpha \otimes f \in \bigwedge^{i} V^{*} \otimes \mathcal{S}(L)$
- $F^{-}(\alpha \otimes f):=\frac{1}{2} \sum_{i=1}^{n} \omega^{i j} \iota_{e_{i}} \alpha \otimes e_{j} \cdot f, \omega^{i k} \omega_{k j}=\delta_{j}^{i}$, where $\omega_{i j}=\omega\left(e_{i}, e_{j}\right)$
- $E^{ \pm}:= \pm 2\left\{F^{ \pm}, F^{ \pm}\right\}$, anticommutator.
- $H=\left[E^{+}, E^{-}\right]$
- This define a representation of the five dimensional Lie superalgebra $\mathfrak{o s p}(1 \mid 2)=\left\langle e^{+}, e^{-}, h, f^{+}, f^{-}\right\rangle / \simeq$

Representation of $0.5 p(1 \mid 2)$ on Symplectic Spinor Forms

- $F^{+}(\alpha \otimes f):=\frac{\imath}{2} \sum_{i=1}^{n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot f, \alpha \otimes f \in \bigwedge^{i} V^{*} \otimes \mathcal{S}(L)$
- $F^{-}(\alpha \otimes f):=\frac{1}{2} \sum_{i=1}^{n} \omega^{i j} \iota_{e_{i}} \alpha \otimes e_{j} \cdot f, \omega^{i k} \omega_{k j}=\delta_{j}^{i}$, where $\omega_{i j}=\omega\left(e_{i}, e_{j}\right)$
- $E^{ \pm}:= \pm 2\left\{F^{ \pm}, F^{ \pm}\right\}$, anticommutator.
- $H=\left[E^{+}, E^{-}\right]$
- This define a representation of the five dimensional Lie superalgebra $\mathfrak{o s p}(1 \mid 2)=\left\langle e^{+}, e^{-}, h, f^{+}, f^{-}\right\rangle / \simeq$ Span by anticommutators $a b-b a$ and commutators $a b+b a$, $a, b \in\left\langle e^{+}, e^{-}, h, f^{+}, f^{-}\right\rangle$

Representation of $\operatorname{osp}(1 \mid 2)$ on Symplectic Spinor Forms

- $F^{+}(\alpha \otimes f):=\frac{\imath}{2} \sum_{i=1}^{n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot f, \alpha \otimes f \in \bigwedge^{i} V^{*} \otimes \mathcal{S}(L)$
- $F^{-}(\alpha \otimes f):=\frac{1}{2} \sum_{i=1}^{n} \omega^{i j} \iota_{e_{i}} \alpha \otimes e_{j} \cdot f, \omega^{i k} \omega_{k j}=\delta_{j}^{i}$, where $\omega_{i j}=\omega\left(e_{i}, e_{j}\right)$
- $E^{ \pm}:= \pm 2\left\{F^{ \pm}, F^{ \pm}\right\}$, anticommutator.
- $H=\left[E^{+}, E^{-}\right]$
- This define a representation of the five dimensional Lie superalgebra $\mathfrak{o s p}(1 \mid 2)=\left\langle e^{+}, e^{-}, h, f^{+}, f^{-}\right\rangle / \simeq$ Span by anticommutators $a b-b a$ and commutators $a b+b a$, $a, b \in\left\langle e^{+}, e^{-}, h, f^{+}, f^{-}\right\rangle$
- $f^{ \pm} \mapsto F^{ \pm}, e^{ \pm} \mapsto E^{ \pm}, h \mapsto H$

Curvature of Weyl-flat Connection - Representational Approach

- Non-equivariant maps:

Curvature of Weyl-flat Connection - Representational Approach

- Non-equivariant maps:
- $\Sigma^{\sigma}(\alpha \otimes f):=\sum_{i, j=1}^{2 n} \sigma^{i}{ }_{j} \epsilon^{j} \wedge \alpha \otimes e_{i} \cdot f$

Curvature of Weyl-flat Connection - Representational Approach

- Non-equivariant maps:
- $\Sigma^{\sigma}(\alpha \otimes f):=\sum_{i, j=1}^{2 n} \sigma^{i}{ }_{j} \epsilon^{j} \wedge \alpha \otimes e_{i} \cdot f$
- $\Theta^{\sigma}(\alpha \otimes f)=\sum_{i, j=1}^{2 n} \alpha \otimes \sigma^{i j} e_{i} \cdot e_{j} \cdot f$

Curvature of Weyl-flat Connection - Representational Approach

- Non-equivariant maps:
- $\Sigma^{\sigma}(\alpha \otimes f):=\sum_{i, j=1}^{2 n} \sigma^{i}{ }_{j} \epsilon^{j} \wedge \alpha \otimes e_{i} \cdot f$
- $\Theta^{\sigma}(\alpha \otimes f)=\sum_{i, j=1}^{2 n} \alpha \otimes \sigma^{i j} e_{i} \cdot e_{j} \cdot f$
- Lemma (curvature). If ∇ is a symplectic Weyl-flat connection, then

$$
R=\frac{1}{n+2}\left(E^{+} \Theta^{\sigma}+2 F^{+} \Sigma^{\sigma}\right)
$$

Curvature in Diagram Decomposition

- F^{+}:

$$
\underline{E^{i, j}} \xrightarrow{F^{+}} E^{i+1, j}
$$

- Σ^{σ} :

- E^{+}:

$$
E^{i, j} \xrightarrow{F^{+}} E^{i+2, j}
$$

- Θ^{σ} :

$$
\begin{gathered}
E^{i, j-1} \\
\uparrow \\
\frac{E^{i, j}}{\downarrow} \\
E^{i, j+1}
\end{gathered}
$$

Curvature and Connection

- Curvature $R=\frac{1}{n+2}\left(E^{+} \Theta^{\sigma}+2 F^{+} \Sigma^{\sigma}\right)$:

- Cov. derivative $\nabla^{i j}$:

$$
\begin{array}{ll}
\Gamma\left(\mathcal{E}^{i, j-1}\right) & \Gamma\left(\mathcal{E}^{i+1, j-1}\right) \\
\Gamma\left(\mathcal{E}^{i, j}\right) & \Gamma\left(\mathcal{E}^{i+1, j}\right) \\
\Gamma\left(\mathcal{E}^{i, j+1}\right) & \Gamma\left(\mathcal{E}^{i+1, j+1}\right)
\end{array}
$$

Cov. derivative's target are right also if the connection has torsion and ω is pre-symplectic only $(d \omega \neq 0)$.

Theorem and proof

Theorem: Let (M, ω) be symplectic manifold admitting a metaplectic structure and let ∇ a Weyl-flat Fedosov connection on (M, ω). Then for all pairs of integers (i, j), the sequences $\left(\Gamma\left(\mathcal{E}^{i+k, j \pm k}\right), T_{ \pm}^{i+k, j \pm k}\right)_{k \in \mathbb{Z}}$ form complexes.
Proof. Basic steps, ideas
Composition of the $(+)$-twistor operators (upwards going)
$p^{i+2, j+2} \circ \nabla^{i+1} \circ \nabla_{\mid \Gamma(\mathcal{E} i j)}^{i}$
$p^{i+2, j+2} \circ R_{\mid \Gamma(\mathcal{E} i j)}^{\nabla}=p^{i+2, j+2} \circ \nabla^{i+1} \nabla_{\mid \Gamma\left(\mathcal{E}^{i j}\right)}^{i}=0$
From the structure of R^{∇} for Weyl-flat Fedosov connection, we see that $p^{i+2, j+2} \circ R_{\mid \Gamma(\mathcal{E} i j)}^{\nabla}=0$

Topology on cohomology of complexes

- Result: Symplectic twistor sequences form complexes if their inducing connection is Weyl-flat. The same is true in classical spin geometry (but there we can choose only the torsion).

Topology on cohomology of complexes

- Result: Symplectic twistor sequences form complexes if their inducing connection is Weyl-flat. The same is true in classical spin geometry (but there we can choose only the torsion).
- Related questions: Complexes of infinite rank bundles, topological cohomology questions: Images with or without completion $\operatorname{Ker} D^{i} / \operatorname{Im} D^{i-1}$ or $\operatorname{Ker} D^{i} / \overline{\operatorname{Im} D^{i-1}}$? (Important in Analysis and Quantum Physics of constraint systems -Becchi-Rouet-Stora-Tyutin)

囯 Cahen, M., Gutt, S., La Fuente Gravy, L., On Mp ${ }^{c}$-structures and symplectic Dirac operators, J. Geom. Phys. 86 (2014), 434-466.
國 Cahen, M., Gutt, S., Schwachhöfer, L. Construction of Ricci-type connections by reduction and induction. The breadth of symplectic and Poisson geometry, 41-57, In: Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005.
R Friedrich, T., Dirac operators in Riemannian geometry. Graduate Studies in Mathematics, 25, American Mathematical Society, Providence, RI, 2000.
Gelfand, I., Retakh, V., Shubin, M., Fedosov Manifolds, Adv. Math. 136 (1998), no. 1, 104-140.

Fing Forger, M., Hess, H., Universal metaplectic structures and geometric quantization, Commun. Math. Phys. 67 (1979), 267-278.

圊 Habermann，K．，The Dirac operator on symplectic spinors， Ann．Global Anal．Geom． 13 （1995），no．2，155－168．

國 Habermann，K．，Klein，A．，Lie derivative of symplectic spinor fields，metaplectic representation，and quantization．Rostock． Math．Kolloq．，No． 57 （2003），71－91．
（ Habermann，K．，Habermann，L．，Introduction to symplectic Dirac operators，Lecture Notes in Math．，Springer－Verlag， Berlin－Heidelberg， 2006.
國 Knapp，A．，Lie groups beyond an introduction．Progress in Mathematics，140，Birkhäuser Boston，Inc．，Boston，MA， 1996.
國 Kostant，B．，Symplectic Spinors．In Symposia Mathematica， Vol．XIV，Cambridge Univ．Press，Cambridge，1974，139－152．

嗇 Krýsl，S．，Complex of twistor operators in spin symplectic geometry，Monatshefte für Mathematik，Vol． 161 （2010）4， 381－398．

Rrýsl，S．，Howe duality for the metaplectic group acting on symplectic spinor valued forms，Journal of Lie theory，Vol． 22 （2012）4，1049－1063．
（ Krýsl，S．，Twistor operators in symplectic spin geometry，Adv． Applied Clifford algebras 32 （2022）；preprint at https：／／www2．karlin．mff．cuni．cz／～krysl／Twist．pdf
囯 Krýsl，S．，Symplectic spinor valued forms and operators acting between them，Arch．Math． 42 （2006），279－290．

圊 Krýsl，S．，Symplectic Spinors and Hodge theory，Habilitation， Charles University，Prague，2017；short version at ArXiv server．

國 Papadopoulos，G．，Spin cohomology．J．Geom．Phys． 56 （2006），no．9，1893－1919．
Renrose，R．，Twistor Algebra，Journal of Mathematical Physics． 8 （1967）（2），345－366．

目 Shale，D．，Linear symmetries of free boson fields，Trans．Amer． Math．Soc． 103 （1962），149—167．

䡒 Sommen，F．，An extension of Clifford analysis towards super－symmetry．In Clifford algebras and their applications in mathematical physics 2 （1999），199—224；Progr．Phys．19， Birkhäuser， 2000.
围 Tondeur，P．，Affine Zusammenhänge auf Mannigfaltigkeiten mit fast－symplektischer Struktur，Comment．math．Helv． 36 （1962），no．3，234－264．
囯 Vaisman I．，Symplectic Curvature Tensors，Monatsh．Math． 100 （1985），299－327．
？Weil，A．，Sur certains groupes d＇opérateurs unitaires，Acta Math． 111 （1964），143－211．

