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Motivation, Source, Aim

Explain relation between structure of curvature and complexes
on an example which is ”not too known”.

Example are the symplectic spinor structures. Introduced by
Kostant [Kostant] and Habermann [Haber]

Source for talk:“Twistor operators in symplectic geometry”
Adv. Applied Cliff. Analysis 32 (2022); or preprint
https://www2.karlin.mff.cuni.cz/~krysl/Twist.pdf

Known: Riemannian or pseudoriemannian spin geometry.
Twistor operators in classical spin geometry for specific
manifolds with Spin(p, q)-structure - [Penrose] for signature
(1,3). Spinor bundles are associated bundles to the spinor reps
of spin group; model for the bundle’s fibres

https://www2.karlin.mff.cuni.cz/~krysl/Twist.pdf
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Known: Dolbeault operators: (Mn, J) almost complex

manifold; (Γ(E i ,j+k), ∂
i ,j+k

)k∈Z holomorphic–antiholomorphic
differential forms

If the Nijenhuis tensor
NJ(X ,Y ) = [X ,Y ] + J[JX ,Y ] + [X , JY ]− [JX , JY ] = 0 for
all smooth vector fields X ,Y , the Dolbeault operators form

(families of) complexes ∂
i ,j+k+1

∂
i ,j+k

= 0 for each (i , j)

Moreover NJ = 0 =⇒ ∂ i+k+1,j∂i+k,j = 0 and ∂∂ + ∂∂ = 0

Newlander–Nirenberg: NJ = 0 ⇔ J induces a holomorphic
subatlas on M (complex structure)

holomorphic–antiholomorphic forms are associated bundles to
representations of the unitary group U(n). Defining rep. of
U(n) on Cn is the model for the bundle’s fibre

Use Lie groups representation theory (of so-called
(g,K )-modules)
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Plan

Present the ”not too known”structure by introducing the
”symplectic spin group”, the representation model for the
complex, and the ”symplectic spin structure”

Define sequence of symplectic twistor operators on induced
bundles’ sections

Analyse curvature of the induced connection

Connect the curvature to the complex condition ”∂∂ = 0”or
”TT = 0”



Symplectic Vector Spaces

(V , ω) real symplectic vector space of dimension 2n; model of
the tangent space

Sp(2n,R) symplectic group (the non-compact one),
π1(Sp(2n,R)) = π1(U(n)) = Z; symmetry group

There exists connected Lie group that covers Sp(2n,R) twice
unique as Lie group up to choice of neutral element and
deck-transformation

the metaplectic group, denoted by G̃ or Mp(2n,R)
Choose a maximal ω-isotropic subspace L ⊆ V and a complex
structure J on V such that g(u, v) = ω(Ju, v) is positive
definite - sometimes called adapted cplx str.; (J is then
g -orthogonal, ω-symplectic)



Symplectic Spinors

There is a ‘distinguished’ faithful unitary representation of
G̃ = Mp(V , ω); model for the induced bundles

called the symplectic spinor representation (oscillator,
metaplectic, Segal–Shale–Weil, Shale–Weil). Denote it by
m : G̃ → U(E ), where E = L2(L) square integrable on the
Euclidean vector space (L, g|L×L), ([Shale] (’60), I. E. Segal,
[Weil] (’60), Berezin). U denotes unitary operators. Realizable
by minimal left ideals in the infinite dimensional
sCliff (V , ω) = T (V )/⟨v ⊗ w − w ⊗ v − ω(v ,w)1| v ,w ∈ V ⟩
There is no non-trivial unitary representation on a finite
dimensional vector space (Weyl’s unitary trick)

There is no faithful representation of G̃ on a finite
dimensional vector space, non-matrix group

E = E+ ⊕ E−, even and odd square integrable functions on
Lagrangian space L, it is a decomposition into irreducibles
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Model for the Complex - Symplectic Spinor Valued
Exterior Forms

Notation:

The double cover λ : G̃ → Sp(2n,R) ≃ λ∗ : G̃ → Aut(V ∗) is
a representation; wedge-powers λi : G̃ → Aut(

∧i V ∗) exterior
forms

tensor product with symplectic spinors:
mi

± : G̃ → Aut(
∧i V ∗ ⊗ E±) sympl. spinor valued ext. forms;

often considered by Penrose in the pseudoriemannian case of
sign. (1, 3) mi = mi

+ ⊕mi
−

Theorem [Krysl, Lie Theory]: For each i , there are irreducible
modules E ij

±, j = 0, . . . , ki = n − |n − i |, such that

i∧
V ∗ ⊗ E± = E i

± = ⊕ki
j=0E

ij
±.

We set E ij = E ij
+ ⊕ E ij

−.
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Decomposition Diagram (in dimension six)

Representations E ij
± described by highest weight (of the

”infinitesimal”g-structure) with respect to a Cartan subalgebra and
a choice of positive roots, 2n = 6.

E 0 E 1 E 2 E 3 E 4 E 5 E 6

E 00 E 10 E 20 E 30 E 40 E 50 E 60

E 11 E 21 E 31 E 41 E 51

E 22 E 32 E 42

E 33



Symplectic Spinor or Metaplectic Structure

(M2n, ω) symplectic manifold (dω = 0, ωm non-deg. in each
point)

Q = {A : V → TmM|ω(Av ,Aw) = ω0(v ,w), v ,w ∈ V ,m ∈
M} bundle of symplectic frames, pQ : Q → M

(P,Λ) metaplectic structure = 1) pP : P → M is principal
G̃ -bundle and 2) Λ : P → Q is a morphism of fibre bundles
and for each g ∈ G̃ : Λ(Ag) = Λ(A)λ(g), i.e.,

P ×Mp(V )

Λ×λ

��

// P

Λ

��

πP

$$
M

Q× Sp(V ) // Q
πQ

::

Existence [Forger, Hess] - obstacle: second Stiefel-Whitney
class non-zero; T ∗N for N orientable, tori, CP2n+1
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Symplectic Connections

Definition: Let (M, ω) be a symplectic manifold. A covariant
derivative on TM is called symplectic if it preserves the
symplectic form (∇ω = 0). It is called Fedosov if it is
symplectic and torsion-free.

Theorem [Tondeur (’60)]: The affine space of Fedosov
connections is in an affine bijection with the affine space
(Γ(S3M), 0).
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Symplectic Curvature Tensors

Curvature definition and symmetries:
Rijkl = ω(R(Xk ,Xl)Xj ,Xi ), Rijkl = Rjikl and
Rijkl + Riljk + Riklj = 0

Ricci tensor σ(X ,Y ) = Tr(Z 7→ R∇(Z ,X )Y ),
σij = Rk

ijk = +Rk
ikj , coordinates with respect to a local

symplectic frame (ei )
2n
i=1, R

∇ classical curvature of affine
connection ∇
Extended Ricci tensor:
σijkl =

1
2n+2(ωilσjk − ωikσjl + ωjlσik − ωjkσil + 2σijωkl),

σ̂ = σijklϵ
i ⊗ ϵj ⊗ ϵk ⊗ ϵl where (ϵi )i is the dual basis (not

ω-dual) (See [I. Vaisman])

W = R∇ − σ̂ symplectic Weyl curvature tensor

Definition: A Fedosov connection is called Weyl-flat (or of
Ricci-type) if W = 0.
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Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

symplectic spinor bundle E i = P ×m E i , E ij = P ×m E ij ,
E = E0 symplectic spinors (their sections are symplectic spinor
fields, of Kostant)

∇ Fedosov connection −→ associated cov. derivative ∇0 on E
∇i exterior cov. derivative on E i , and ∇ij on E ij

i-th curvature R i = ∇i+1∇i . Total curvature R =
∑2n−2

i=0 R i



Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

symplectic spinor bundle E i = P ×m E i , E ij = P ×m E ij ,
E = E0 symplectic spinors (their sections are symplectic spinor
fields, of Kostant)

∇ Fedosov connection −→ associated cov. derivative ∇0 on E
∇i exterior cov. derivative on E i , and ∇ij on E ij

i-th curvature R i = ∇i+1∇i . Total curvature R =
∑2n−2

i=0 R i



Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

symplectic spinor bundle E i = P ×m E i , E ij = P ×m E ij ,
E = E0 symplectic spinors (their sections are symplectic spinor
fields, of Kostant)

∇ Fedosov connection −→ associated cov. derivative ∇0 on E

∇i exterior cov. derivative on E i , and ∇ij on E ij

i-th curvature R i = ∇i+1∇i . Total curvature R =
∑2n−2

i=0 R i



Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

symplectic spinor bundle E i = P ×m E i , E ij = P ×m E ij ,
E = E0 symplectic spinors (their sections are symplectic spinor
fields, of Kostant)

∇ Fedosov connection −→ associated cov. derivative ∇0 on E
∇i exterior cov. derivative on E i , and ∇ij on E ij

i-th curvature R i = ∇i+1∇i . Total curvature R =
∑2n−2

i=0 R i



Symplectic Spinor Bundles and Connections

Suppose that a metaplectic structure exists on (M, ω)

symplectic spinor bundle E i = P ×m E i , E ij = P ×m E ij ,
E = E0 symplectic spinors (their sections are symplectic spinor
fields, of Kostant)

∇ Fedosov connection −→ associated cov. derivative ∇0 on E
∇i exterior cov. derivative on E i , and ∇ij on E ij

i-th curvature R i = ∇i+1∇i . Total curvature R =
∑2n−2

i=0 R i



Family of Twistor Operators

Spaces indexed by integer couples “outside of triangle” are set
zero for convenience, i.e., E iji = 0 if i /∈ {0, . . . , 2n} or
ji /∈ {0, . . . ki}

pij : E i → E ij well defined since E i is multiplicity-free (for
each i). The same symbol - when it acts on bundles and
bundle sections
Definition: For any (i , j) we set
T ij
± = pi+1,j±1 ◦ ∇ij : Γ(E ij) → Γ(E i ,j±1) and call it the (i , j)th

symplectic twistor operator; ∇ij = ∇|Γ(E ij )

In the decomposition diagram of
∧i V ∗ ⊗ E into irreducible

representations =⇒

E i ,j−1 E i+1,j−1

E i ,j

T ij
− 55

T ij
+
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E i+1,j

E i ,j+1 E i+1,j+1
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Condition for Forming a Complex

We would like to investigate the chain-complex condition

T i+k+1,j+k±1
± ◦ T i+k,j+k

± = 0, i.e.,

pi+k+2,j+k±2 ◦ ∇i+k+1,j+k±1 ◦ pi+k+1,j+k±1 ◦ ∇i+k,j+k = 0

(Induced) covariant derivative ∇ij :

Γ(E i ,j−1) Γ(E i+1,j−1)

Γ(E i ,j)

55

//

))

Γ(E i+1,j)

Γ(E i ,j+1) Γ(E i+1,j+1)

=⇒ T i+1,j±1
± T i ,j

± = pi+2,j±2∇i+1∇ij = pi+2,j±2R∇
|Γ(E ij )

. Thus

analyze the curvature.
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Curvature Structure of Weyl-Flat Connection -
Representation Approach

Symplectic spinor multiplication · : V × E → E

(ϵi )2ni=1 the dual basis to a symplectic basis (ei )
2n
i=1, ei ∈ V

(ei .f )(x
1, . . . , xn) = ıx i f (x), ei+n.f = ∂f

∂x i
, 1 ≤ i ≤ n. Where

f ∈ S(L) (Schwartz space of rapidly decreasing functions)
⊆ E = L2(L). See [Habermann, K., Habermann, L.].
Symplectic spinor multiplication/Canonical Quantization up to
multiples

Equivariant properties of this multiplication with respect to m
=⇒ it can be defined on symplectic spinor bundle
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Representation of osp(1|2) on Symplectic Spinor Forms

F+(α⊗ f ) := ı
2

∑n
i=1 ϵ

i ∧ α⊗ ei · f , α⊗ f ∈
∧i V ∗ ⊗ S(L)

F−(α⊗ f ) := 1
2

∑n
i=1 ω

ij ιeiα⊗ ej · f , ωikωkj = δij , where
ωij = ω(ei , ej)

E± := ±2{F±,F±}, anticommutator.

H = [E+,E−]

This define a representation of the five dimensional Lie
superalgebra osp(1|2) = ⟨e+, e−, h, f +, f −⟩/ ≃
Span by anticommutators ab − ba and commutators ab + ba,
a, b ∈ ⟨e+, e−, h, f +, f −⟩
f ± 7→ F±, e± 7→ E±, h 7→ H
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Curvature of Weyl-flat Connection - Representational
Approach

Non-equivariant maps:

Σσ(α⊗ f ) :=
∑2n

i ,j=1 σ
i
jϵ
j ∧ α⊗ ei · f

Θσ(α⊗ f ) =
∑2n

i ,j=1 α⊗ σijei · ej · f

Lemma (curvature). If ∇ is a symplectic Weyl-flat
connection, then

R =
1

n + 2
(E+Θσ + 2F+Σσ).
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Curvature in Diagram Decomposition

F+:

E i ,j F+
// E i+1,j

Σσ:
E i ,j−1 E i+1,j−1

E i ,j

55

//

))
E i+1,j

E i ,j+1 E i+1,j+1

E+:

E i ,j F+
// E i+2,j

Θσ:
E i ,j−1

E i ,j

OO

��
E i ,j+1



Curvature and Connection

Curvature R = 1
n+2(E

+Θσ + 2F+Σσ) :

E i ,j−1 E i+1,j−1 E i+2,j−1

E i ,j //

22

,,

E i+1,j // E i+2,j

E i ,j+1 E i+1,j+1 E i+2,j+1

Cov. derivative ∇ij :

Γ(E i ,j−1) Γ(E i+1,j−1)

Γ(E i ,j)

55

//

))

Γ(E i+1,j)

Γ(E i ,j+1) Γ(E i+1,j+1)

Cov. derivative’s target are right also if the connection has
torsion and ω is pre-symplectic only (dω ̸= 0).



Theorem and proof

Theorem: Let (M, ω) be symplectic manifold admitting a
metaplectic structure and let ∇ a Weyl-flat Fedosov connection on
(M, ω). Then for all pairs of integers (i , j), the sequences

(Γ(E i+k,j±k),T i+k,j±k
± )k∈Z form complexes.

Proof. Basic steps, ideas

Composition of the (+)-twistor operators (upwards going)

pi+2,j+2 ◦ ∇i+1 ◦ ∇i
|Γ(E ij )

pi+2,j+2 ◦ R∇
|Γ(E ij )

= pi+2,j+2 ◦ ∇i+1∇i
|Γ(E ij )

= 0

From the structure of R∇ for Weyl-flat Fedosov connection, we see
that pi+2,j+2 ◦ R∇

|Γ(E ij )
= 0



Topology on cohomology of complexes

Result: Symplectic twistor sequences form complexes if their
inducing connection is Weyl-flat. The same is true in classical
spin geometry (but there we can choose only the torsion).

Related questions: Complexes of infinite rank bundles,
topological cohomology questions: Images with or without
completion KerD i/ImD i−1 or KerD i/ImD i−1? (Important in
Analysis and Quantum Physics of constraint systems -
Becchi–Rouet–Stora–Tyutin)
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