Hodge theory for C^* -Hilbert bundles

Svatopluk Krýsl

Mathematical Institute, Charles University in Prague

Warsaw, Banach Center, October 2013

Symplectic vector space

 (V, ω_0) - real 2*n* dimensional vector space, $\omega_0 : V \times V \to \mathbb{R}$ non-degenerate antisymmetric

Symplectic group

$$\begin{split} &Sp(V,\omega_0) = \{A: V \to V \,|\, \omega_0(Av,Aw) = \\ &\omega_0(v,w) \text{ for each } v,w \in V \} \\ &\text{Retractable onto } U(n), \text{ of homotopy type of } S^1, \\ &\pi_1(Sp(V,\omega_0)) = \mathbb{Z}. \\ &\text{Possesses a non-universal connected 2-fold covering, the so called} \end{split}$$

Metaplectic group $Mp(V, \omega_0), \lambda : Mp(V, \omega_0) \xrightarrow{2:1} Sp(V, \omega_0)$

Universal covering would be infinitely many folded over $Sp(V, \omega_0)$.

Segal-Shale-Weil representation of the metaplectic group. Inventors:

David Shale - quantization of solutions to the Klein-Gordon equation, dissertation by I. Segal **André Weil** - short after, true rep of $Mp(V, \omega_0)$

Vladimir Berezin - used it at the infinitesimal level

- Underlying vector space $L^2(\mathbb{R}^n)$

- $\rho_0: Mp(V, \omega_0) \rightarrow \mathcal{U}(L^2(\mathbb{R}^n))$ (continuous homomorphism)
- Non-trivial faithful unitary representation of $Mp(V, \omega_0)$
- Splits into 2 irreducible representations, odd and even L^2 functions on \mathbb{R}^n .

- There exists $g_0 \in Mp(V, \omega_0)$ such that $\rho_0(g_0) = \mathcal{F}^{-1} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ (continuous on $L^2(\mathbb{R}^n)$) - Similar to the spinor representation of Spin groups - it is not a representation of the underlying $Sp(V, \omega_0)$.

- Highest weights $(\frac{1}{2}, \dots, \frac{1}{2}, -\frac{1}{2}), (\frac{1}{2}, \dots, \frac{1}{2}, -\frac{3}{2})$

Symplectic manifolds

 (M, ω) - M manifold, ω non-degenerate differential 2-form and $d\omega = 0$.

Examples:

1) T^*M , where M is any manifold, $\omega_U = \sum_{i=1}^n dp_i \wedge dq^i$, q^i local coordinates on the manifold, p_i coordinates at $T_{(q^1,...,q^n)}M$

2)
$$S^2$$
 with $\omega = \text{vol} = r^2 \sin \vartheta d\phi \wedge d\vartheta$

- 3) even dimensional tori $\omega = d\phi_1 \wedge d\vartheta^1 + \ldots + d\phi_n \wedge d\vartheta^n$ (in mechanics: action-angle variables)
- 4) Kähler manifolds, $\omega(-,-) = h(-,J-)$
- 5) Kodaira-Thurtson manifold compact non-Kähler symplectic manifold

Darboux theorem: In a neighborhood of any point, one can choose coordinates in which $\omega = \sum_{i=1}^{n} dq^i \wedge dp_i$. In Riemannian, geometry the metric can be transformed into the "canonical" form only point-wise - curvature obstruction. Measured by the curvature tensor. In s.g., due to Darboux theorem, the connection cannot have such meaning.

Definition: A connection on a symplectic manifold (M, ω) equipped with a symplectic form ω is called symplectic if $\nabla \omega = 0$, and it is called Fedosov if in addition, it is torsion-free.

Symplectic structure

 (M, ω) symplectic manifold. At any point $m \in M$, consider the set $P_m = \{b = (e_1, \ldots, e_{2n}) | b$ is a symplectic basis of $(T_m^*M, \omega_m)\}$. $P = \bigcup_{m \in M} P_m$ the space of symplectic repères, $p : P \to M$ ("foot-point" projection). Metaplectic structure Q

- Formally: $(Q, \Lambda), q : Q \to M$ is $Mp(V, \omega_0)$ -bundle over M
- $\Lambda: Q \rightarrow P$ bundle morphism
- Compatibility with the symplectic structure:

Associated bundles

 $\mathcal{S} = (Q imes_{
ho_0} L^2(\mathbb{R}^n))$ Introduced by Bertram Kostant: oscillatory bundle

Associated connections

For a symplectic connection $\nabla \Rightarrow$ $\nabla^{S} : \Gamma(M, TM) \otimes \Gamma(M, S) \rightarrow \Gamma(M, S)$ $\Omega^{i}(M, S) = \Gamma(M, \bigwedge^{i} T^{*}M \otimes S)$ $d_{i}^{\nabla^{S}} : \Omega^{i}(M, S) \rightarrow \Omega^{i+1}(M, S)$ exterior oscillatory derivative

Operators generated by symplectic connections Symplectic Dirac operators (M, ω, ∇) with a metaplectic structure $(e_i.s)(x) = ix^i s(x), \quad (e_{i+n}.s)(x) = \frac{\partial s}{\partial x^i}(x)$ (quantization).

 $[e_i.e_j.,e_j.e_i.] = -\imath\omega(e_i,e_j)$, densely defined a) $\mathfrak{D}: \Gamma(M,\mathcal{S}) \to \Gamma(M,\mathcal{S})$ is the oscillatory or Dirac operator of Habermann

$$\begin{split} \mathfrak{D}s &= \sum_{i,j=1}^{2n} \omega^{ij} e_i . \nabla^S_{e_j} s \\ \mathfrak{D} & \mathfrak{D} : \Gamma(M, \mathcal{S}) \to \Gamma(M, \mathcal{S}) \\ \widetilde{\mathfrak{D}}s &= \sum_{i,j=1}^{n} g^{ij} e_i . \nabla_{e_j} s \text{ for a metric } g \text{ of a compatible almost complex structure } J \end{split}$$

Associated second order operator $\mathfrak{P} = \imath [\mathfrak{D} \widetilde{\mathfrak{D}} - \widetilde{\mathfrak{D}} \mathfrak{D}]$

Operator \mathfrak{P} on S^2

Self-adjoint and elliptic; elliptic = its symbol is a vector bundle isomorphism

$$L^{2}(\mathbb{R}) = \widehat{\bigoplus}_{k=0}^{\infty} \mathbb{C}h_{k}, \ h_{k} = e^{x^{2}/2} \frac{d^{k}}{dx^{k}} e^{-x^{2}}$$

at bundle level as $\mathcal{S} = \bigoplus_{k=0}^{\infty} \mathcal{S}_k$,

where S_k = the line bundle corresponding to the vector space $\mathbb{C}h_k$ irreducible with respect to the group $\lambda^{-1}(U(1)) \subseteq Mp(2,\mathbb{R})$. \exists monotone sequence $(l_i)_{i=0}^{\infty}$ such that Ker $\mathfrak{P} \cap \Gamma(S^2, S_{l_i}) \neq 0$ and dim(Ker $\mathfrak{P} \cap \Gamma(S^2, S_{l_i})) = 2(i + l_i + 2)$.

In particular, the kernel of \mathfrak{P} is infinite dimensional.

For a first order differential operator $D : \Gamma(M, \mathcal{E}) \to \Gamma(M, \mathcal{F})$ $[\sigma(D, \xi)s](m) = \imath [D(fs) - fDs](m)$, where $f \in C^{\infty}(M)$, $(df)_m = \xi \in T_m^*M, s \in \Gamma(M, \mathcal{E})$ **Examples:**

- 1) exterior differentiation d, symbol $\sigma(d_i, \xi) \alpha = \imath \xi \wedge \alpha$
- 2) Laplace-Beltrami operator \triangle , symbol $\sigma(\triangle, \xi)f = -(\sum_{i=1}^{n} (\xi_i)^2)f$
- 3) Dolbeault operator, symbol $\sigma(\overline{\partial},\xi)\alpha = \imath\xi^{(0,1)} \wedge \alpha$

Definition: For any $m \in M$ and any nonzero co-vector $\xi \in T_m^*M \setminus \{0\}$, the complex

$$0 \to \Gamma(\mathcal{E}^0, M) \stackrel{D_0}{\to} \Gamma(\mathcal{E}^1, M) \stackrel{D_1}{\to} \dots \stackrel{D_{n-1}}{\to} \Gamma(\mathcal{E}^n, M)$$

is called elliptic, iff the symbol sequence

$$0 \to \mathcal{E}^0 \stackrel{\sigma_0^{\xi}}{\to} \mathcal{E}^1 \stackrel{\sigma_1^{\xi}}{\to} \dots \stackrel{\sigma_{n-1}^{\xi}}{\to} \mathcal{E}^n$$

is exact. $\sigma_i^{\xi} = \sigma(D_i, \xi), i \in \mathbb{N}_0$ Elliptic operator $D : \Gamma(M, \mathcal{E}) \to \Gamma(M, \mathcal{F}) \stackrel{\text{def}}{\Leftrightarrow}$ $0 \to \Gamma(M, \mathcal{E}) \stackrel{D}{\to} \Gamma(M, \mathcal{F}) \to 0$ is an elliptic complex.

- 1) de Rham complex is elliptic
- 2) Dolbeault complex is elliptic

3)
$$0 \to \mathcal{C}(M) \stackrel{\triangle}{\to} \mathcal{C}(M) \to 0$$
 is elliptic

Theorem (quadratic algebra): $D^{\bullet} = (D_i, \Gamma(M, \mathcal{E}^i))_{i \in \mathbb{N}_0}$ elliptic complex \Rightarrow each associated Laplacian $\triangle_i = D_{i-1}D_{i-1}^* + D_i^*D_i$ is elliptic

The order of \triangle_i denoted by r_i .

C^* -algebras

A associative algebra over $\mathbb C$ with a norm $||: A \to \mathbb R^+_0$, i.e.,

- 1) * : $A \rightarrow A$ is an antiinvolution,
- 2) $|a|^2 = |aa^*|$ for all $a \in A$ and
- 3) (A, ||) is a Banach space.

Examples:

- 1) $C_c^0(X) = \{f : X \to \mathbb{C}; \lim_{x \to \infty} f(x) = 0\}$, where X is a Hausdorff topological space
- 2) *H* a Hilbert space, $A = \{a : X \to X; a \text{ is bounded } \},$ * $A := A^*, |A| = \sup\{\frac{|A_X|}{|X|}, X \neq 0\}.$
- 3) $Mat(\mathbb{C}^n)$, $*A = A^{\dagger}$, $|A| = max\{|\lambda|, \lambda \in spec(A)\}$ (the norms 2) and 3) are equal)

Pre-Hilbert C^* -modules

A a unital C*-algebra, 1 unit
spec(a) = {
$$\lambda \in \mathbb{C} | a - \lambda 1$$
 does not possesses inverse (in A)}
 $a = a^* \implies \operatorname{spec}(a) \subseteq \mathbb{R}$
 $A_0^+ = \{a \in A | a = a^* \text{ and } \operatorname{spec}(a) \subseteq \mathbb{R}_0^+\}$ - positive elements.
U a vector space with a left action on A equipped with
(,): $U \times U \rightarrow A$ (mimics the Hilbert product) such that for each
 $u, v, w \in U, r \in \mathbb{C}, a \in A$
1) $(u + rv, w) = (u, w) + r(u, w)$
2) $(a.u, v) = a(u, v)$
3) $(u, v) = (v, u)^*$
4) $(u, u) \in A_0^+$ and $(u, u) = 0 \Rightarrow u = 0$

is called pre-Hilbert module. If $U \ni u \mapsto |(u, u)|^{1/2}$ makes U a **complete** normed space is called an A-Hilbert module.

Homomorphisms

 $L: U \to V$, pre-Hilbert A-modules $U, V - a \in A$ $u \in U, L(a.u) = a.L(u)$ and continuous with respect to the topologies induced by $||_U$ and $||_V$. adjoint of $L: U \to V$ is a map $L^*: V \to U$ satisfying $(Lu, v)_V = (u, L^*v)_U$ for each $u \in U, v \in V$ Adjoint need not exist. If it exists, it is unique and moreover, a

pre-Hilbert module homomorphism

For any pre-Hilbert A-submodule $V \subseteq U$, we set $V^{\perp} = \{u \in U | (u, v)_U = 0 \text{ for all } v \in V\}.$ Not in general true that $V \oplus V^{\perp} = U$ U is finitely generated projective, if $U \oplus U^{\perp} \cong A^n$, where A^n is the direct sum of n copies of A. In more detail, $A^n = \underbrace{A \oplus \ldots \oplus A}_{n}$ as a vector space, the action is given by $a.(a_1, \ldots, a_n) = (aa_1, \ldots, aa_n)$ and the A-Hilbert product $(,)_{A^n}$ is defined by the formula

$$((a'_1,\ldots,a'_n),(a_1,\ldots,a_n))_{A^n}=\sum_{i=1}^n a'_i a^*_i,$$

(日) (同) (三) (三) (三) (○) (○)

where $a, a_i, a'_i \in A, i = 1, \ldots, n$.

Let $(U, (,)_U)$ be a Hilbert A-module. A Banach bundle $p : \mathcal{E} \to M$ is called an A-Hilbert bundle with typical fiber $(U, (,)_U)$ if

- 1) p is a Banach bundle with fiber $(U, ||_U)$,
- 2) each fiber p⁻¹({m}) is equipped with a Hilbert A-product (,)_m such that (p⁻¹({m}), (,)_m) isomorphic to the fixed (U, (,)_U) as a Hilbert A-module via a bundle chart of p,
- there exists an atlas of bundle charts of p the elements of which satisfy the above item and such that its transition maps are Hilbert A-module automorphisms of (U, (,)_U), i.e., elements of Aut_A(U).

Sections and completions

 $p: \mathcal{E} \to M$ be an A-Hilbert bundle space of smooth sections $\Gamma(M, \mathcal{E})$ The space of sections admits a left action of A (a.s)(m) = a.(s(m)) for $a \in A, s \in \Gamma(M, \mathcal{E})$ and $m \in M$. M is compact

Riemannian metric g on M and a volume element vol_g for this metric

An A-product on $\Gamma(M, \mathcal{E})$ is defined by

$$(s',s)_0 = \int_{m\in M} (s(m),s'(m))_m (\operatorname{vol}_g)_m,$$

where $(,)_m$ denotes the Hilbert *A*-product in fiber $p^{-1}(\{m\})$ $\Gamma(M, \mathcal{E})$ pre-Hilbert *A*-module We denote the completion of the normed space $(\Gamma(M, \mathcal{E}), ||_0)$ by $W^0(\mathcal{E})$ and call it the zeroth Sobolev type completion Let us denote the Laplace-Beltrami operator for g by \triangle_g . For each $t \in \mathbb{N}_0$, we define an A-product $(,)_t$ on $\Gamma(M, \mathcal{E})$

$$(s',s)_t = \int_{m\in M} (s'(m),(1+\bigtriangleup_g)^t s(m))_m (\operatorname{vol}_g)_m \ s',s\in \Gamma(M,\mathcal{E}).$$

We denote the completion of $\Gamma(M, \mathcal{E})$ with respect to the norm $||_t$ induced by $(,)_t$ by $W^t(\mathcal{E})$ and call it the Sobolev type completion (of order t).

Sobolev type completions form Hilbert A-modules.

- 1) Differential operators in A-Hilbert bundles, in local coordinates $D = c_{\alpha}\partial^{\alpha}$, $c_{\alpha} \in \text{End}_{A}(U)$
- 2) Possess continuous extensions to the Sobolev type completions
- Their extensions to the Sobolev type completions are adjointable
- Ellipticity (of complexes) is defined as in the finite rank case and is called the A-ellipticity (Mishchenko, Fomenko; Solovyov, Troitsky)

Theorem: Let A be a unital C^* -algebra and $(p_i : \mathcal{E}^i \to M)_{i \in \mathbb{N}_0}$ be a sequence of finitely generated projective A-Hilbert bundles over a compact manifold M. If $D^{\bullet} = (\Gamma(M, \mathcal{E}^i), D_i)_{i \in \mathbb{N}_0}$ is an A-elliptic complex of differential operators and for each $k \in \mathbb{N}_0$, the image of the r_k -th extension of the associated Laplacian Δ_k to the Sobolev type completion $W^{r_k}(\mathcal{E}^k)$ is closed, then for any $i \in \mathbb{N}_0$,

1) $H^i(D^{\bullet}, A) \cong \text{Ker} \bigtriangleup_i$ as Hilbert-A-modules

2) $H^i(D^{\bullet}, A)$ is a finitely generated projective Hilbert A-module.

Theorem: Let (M^{2n}, ω) be a compact symplectic manifold admitting a metaplectic structure and ∇ be a Fedosov connection. Then the kernel of \mathfrak{P} is a finitely generated projective Hilbert End(S)-module. [1] Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc., 1962.

[2] Weil A., Sur certains groups d'opé rateurs unitaires, Acta Math. 111, 1964.

[3] Kostant B., Symplectic spinors, Symposia Mathematica, Vol. XIV, pp. 139–152.

[4] Habermann K., Habermann L., Introduction to symplectic Dirac operators, Springer-Verlag.

[5] Fomenko, A., Mishchenko, A., Indeks elipticheskich operatorau nad C^* -algebrami, Izv. Akad. Nauk SSSR, Ser. Mat., 43, 1979.

[6] Krýsl, S., Cohomology of elliptic complexes with coefficient in a C^* algebra, arxiv.org, Annals Glob. Anal. Geom.

[7] Krýsl, S., Cohomology of the de Rham complex twisted by the oscillatory module, arxiv.org, Diff. Geom. Appl.

= nac

[8] Krýsl, S., Hodge theory for elliptic complexes over unital C^* -algebras, arxiv.org, subm. Banach Journal of Math. Analysis