Symplectic Killing spinors

Svatopluk Krýsl

Charles University of Prague
Kühlungsborn, March 30 - April 4, 2008

Segal-Shale-Weil representation

(\mathbb{V}, ω) real symplectic vector space of dimension $2 l$
$\mathbb{L}, \mathbb{L}^{\prime}$ Lagrangian subspaces of (\mathbb{V}, ω) such that $\mathbb{V}=\mathbb{L} \oplus \mathbb{L}^{\prime}$
$G:=S p(\mathbb{V}, \omega) \simeq S p(2 l, \mathbb{R})$ symplectic group
$K:=$ maximal compact subgroup of $G, K \simeq U(l)$
$\pi_{1}(G) \simeq \pi_{1}(K) \simeq \mathbb{Z} \Longrightarrow \exists 2: 1$ covering of G
$\lambda: \tilde{G} \xrightarrow{2: 1} G \tilde{G}=: M p(\mathbb{V}, \omega) \simeq M p(2 l, \mathbb{R})$
metaplectic group
(\tilde{G} is not simply connected)

Real Heisenberg group

$$
\begin{aligned}
& H_{l}:=\left(\mathbb{L} \oplus \mathbb{L}^{\prime}\right) \oplus \mathbb{R} \\
& \quad(v, t) \cdot\left(v^{\prime}, t^{\prime}\right):=\left(v+v^{\prime}, t+t^{\prime}+\frac{1}{2} \omega\left(v, v^{\prime}\right)\right),
\end{aligned}
$$

$(v, t),\left(v^{\prime}, t^{\prime}\right) \in H_{l}$
$(v, t)^{-1}=(-v,-t), e=(0,0)$
Schödinger representation

$$
\pi: H_{l} \rightarrow \mathcal{U}\left(L^{2}(\mathbb{L})\right),
$$

$\mathcal{U}(\mathbf{W})$ unitary operators on a Hilbert space \mathbf{W}

$$
\begin{aligned}
& (\pi(((p, q), t)) f)\left(p^{\prime}\right):=e^{-\imath\left(t+\omega\left(q, p^{\prime}-\frac{1}{2}\right)\right)} f\left(p-p^{\prime}\right), \\
& ((p, q), t) \in H_{l}, p^{\prime} \in \mathbb{L}, f \in L^{2}(\mathbb{L})
\end{aligned}
$$

Stone-von Neumann Theorem: Up to a unitary equivalence, there is exactly one irreducible unitary representation of H_{l} on $L^{2}(\mathbb{L})$

$$
\pi: H_{l} \rightarrow \mathcal{U}\left(L^{2}(\mathbb{L})\right)
$$

satisfying $\pi(0, t)=e^{-\imath t} i d_{L^{2}(\mathbb{L})}, t \in \mathbb{R}$.
From the Schrödinger representation of the Heisenberg group H_{l}, we would like to build a representation of the metaplectic group $M p(\mathbb{V}, \omega)$.

$$
\begin{aligned}
& S p(V, \omega) \times H_{l} \rightarrow H_{l} \\
& (g,(v, t)) \mapsto(g v, t), g \in S p(\mathbb{V}, \omega),(v, t) \in H_{l}
\end{aligned}
$$

Twisting of the Schrödinger representation π by the previous action, we get $\pi^{g}(v, t):=\pi(g v, t)$,

$$
\begin{aligned}
& \pi^{g}: H_{l} \rightarrow \mathcal{U}\left(L^{2}(\mathbb{L})\right) \\
& \pi^{g}(0, t)=e^{-\imath t} i d_{L^{2}(\mathbb{L})}
\end{aligned}
$$

Use the Stone-von Neumann theorem \Longrightarrow
$\pi^{g}(v, t)=U(g) \pi(v, t) U(g)$ for some unitary $U(g)$.
The prescription $g \mapsto U(g)$ gives

$$
U: S p(\mathbb{V}, \omega) \rightarrow \mathcal{U}\left(L^{2}(\mathbb{L})\right)
$$

(unitary) Schur lemma \Longrightarrow

$$
U(g h)=c(g, h) U(g) U(h)
$$

for some $c(g, h) \in S^{1}$.
Thus U is a projective unitary representation of the symplectic group $\operatorname{Sp}(\mathbb{V}, \omega)$ on the Hilbert space $L^{2}(\mathbb{L})$ of the complex valued square Lebesgue integrable functions on the Lagrangian subspace \mathbb{L}.

André Weil / Berezin: U lifts to $\tilde{G}=M p(\mathbb{V}, \omega)$, i.e.,

$$
\begin{aligned}
& M p(\mathbb{V}, \omega)=\tilde{G} \\
& \lambda! \\
& S p(\mathbb{V}, \omega)=G \xrightarrow{U} \mathcal{U}\left(L^{2}(\mathbb{L})\right)
\end{aligned}
$$

where SSW : $\tilde{G} \rightarrow \mathcal{U}\left(L^{2}(\mathbb{L})\right)$ is a "true" representation of $\tilde{G}=M p(\mathbb{V}, \omega)$.

Call $L^{2}(\mathbb{L})$ the space of L^{2}-symplectic spinors.
SSW - Segal-Shale-Weil representation of \tilde{G}.
$L^{2}(\mathbb{L})=L^{2}(\mathbb{L})_{+} \oplus L^{2}(\mathbb{L})_{-}$decomposition into \tilde{G}-invariant irreducible subspaces (even and odd L^{2} functions).

Analytical aspect

Schmid: Existence of an adjoint functor $m g$ (so called minimal globalization) to the forgetful Harish-Chandra functor $H C$.

$$
L^{2}(\mathbb{L}) \xrightarrow{H C} \odot \cdot \mathbb{L} \xrightarrow{m g} \mathbf{S}
$$

Elements of \mathbf{S} - symplectic spinors. Denote this representation of \tilde{G} by

$$
\text { meta : } \tilde{G} \rightarrow \operatorname{Aut}(\mathbf{S}) .
$$

(Only an analytical derivate of the SSW representation.)

$$
\odot^{\bullet} \mathbb{L}^{\mathcal{C}^{\infty} \text {-globalization }} \mathcal{S}(\mathbb{L})
$$

$$
\odot \mathbb{L}^{L^{2} \text {-globalization }} L^{2}(\mathbb{L})
$$

$$
\mathbf{S}=\mathbf{S}_{+} \oplus \mathbf{S}_{-}
$$

Why should we call the symplectic spinors spinors?

1. orthogonal spinors:

1.1. (\mathbb{W}, B) even dimensional real Euclidean vector space,
$\left(\mathbb{W}^{\mathbb{C}}, B^{\mathbb{C}}\right)$ complexification, $\operatorname{dim}_{\mathbb{C}} \mathbb{W}^{\mathbb{C}}=2 l$.
1.2. $G^{\prime}=S O(\mathbb{W}, B), \mathfrak{g}^{\mathbb{C}}=\mathfrak{s o}\left(\mathbb{W}^{\mathbb{C}}, B^{\mathbb{C}}\right)$.
1.3. Take an isotropic subspace \mathbb{M} of dimension l.
1.4. $\mathbb{S}=\bigwedge^{\bullet} \mathbb{M}$ is the space of spinors ... exterior power
2. symplectic spinors:
2.1. $L^{2}(\mathbb{L}), \mathfrak{g}=\mathfrak{s p}(\mathbb{V}, \omega), K \simeq \tilde{U(l)}$
2.2. Harish-Chandra (\mathfrak{g}, K)-module of $L^{2}(\mathbb{L})$ is
$\mathbb{C}\left[x^{1}, \ldots, x^{l}\right] \simeq \odot^{\bullet} \mathbb{L} \ldots$ symmetric power
2.3. Highest weights of
$\mathbf{S}_{+}, \lambda_{+}=\left(-\frac{1}{2}, \ldots,-\frac{1}{2}\right)$
$\mathbf{S}_{-}, \lambda_{-}=\left(-\frac{1}{2}, \ldots,-\frac{1}{2},-\frac{3}{2}\right)$ wr. to the standard $\left\{\epsilon^{i}\right\}_{i=1}^{l}$-basis.

Thus, the notions are parallel; (super)symmetric wr. to the simultaneous change of symplectic - orthogonal and symmetric - exterior.

Symplectic Clifford multiplication

In Physics: Schrödinger quantization prescription.
Aim: We would like to multiply symplectic spinors from S by vectors from \mathbb{V}. For our purpose, $\hbar=1$.
. : $\mathbb{V} \times \mathbf{S} \rightarrow \mathbf{S}$. For $f \in \mathbf{S} \subseteq \mathcal{S}(\mathbb{L})$

$$
\begin{gathered}
\left(e_{i} . f\right)(x):=x^{i} f(x) \\
\left(e_{i+l} \cdot f\right)(x):=\imath \frac{\partial f}{\partial x^{i}}(x), i=1, \ldots, l,
\end{gathered}
$$

$x \in \mathbb{L}$.
Extend linearly to \mathbb{V}.

Howe-type duality

1. Schur duality $G:=G L(\mathbb{V})$

$$
\begin{gathered}
\rho_{k}: G \rightarrow \operatorname{Aut}\left(\mathbb{V}^{\otimes k}\right) \\
\rho_{k}(g)\left(v_{1} \otimes \ldots \otimes v_{k}\right):=g v_{1} \otimes \ldots \otimes g v_{k}
\end{gathered}
$$

$$
g \in G, v_{i} \in \mathbb{V}, i=1, \ldots, k
$$

$$
\begin{gathered}
\sigma_{k}: \mathfrak{S}_{k} \rightarrow \operatorname{Aut}\left(\mathbb{V}^{\otimes k}\right) \\
\sigma_{k}(\tau)\left(v_{1} \otimes \ldots \otimes v_{k}\right):=v_{\tau(1)} \otimes \ldots \otimes v_{\tau(k)} \\
\tau \in \mathfrak{S}_{k}, v_{i} \in \mathbb{V}, i=1, \ldots, k
\end{gathered}
$$

Easy:

$$
\sigma_{k}(\tau) \rho_{k}(g)=\rho_{k}(g) \sigma_{k}(\tau)
$$

$g \in G, \tau \in \mathfrak{S}_{k}$.
Not so easy $=$ Schur duality: $T \rho_{k}(g)=\rho_{k}(g) T \Rightarrow$ $T \in \mathbb{C}\left[\sigma_{k}\left(\mathfrak{S}_{k}\right)\right]$ (the group algebra of $\sigma_{k}\left(\mathfrak{S}_{k}\right)$.) \mathfrak{S}_{k} is called the Schur dual of $G L(\mathbb{V})$ for $\mathbb{V}^{\otimes k}$.

Leads to Young diagrams.
2.) Another type of duality: spinor valued forms, $\tilde{G}=\operatorname{Spin}(\mathbb{V}, B)$

Space: $\bigwedge^{\bullet} \mathbb{V} \otimes \mathbb{S}$, where \mathbb{S} is the space of (orthogonal) spinors
$\operatorname{End}_{\tilde{G}}\left(\bigwedge^{\bullet} \mathbb{V} \otimes \mathbb{S}\right):=\left\{T: \bigwedge^{\bullet} \mathbb{V} \otimes \mathbb{S} \rightarrow \bigwedge^{\bullet} \mathbb{V} \otimes\right.$ $\mathbb{S} \mid$ for all $g \in G T \rho(g)=\rho(g) T\}$.

Result:
End $_{\tilde{G}}\left(\bigwedge^{\bullet} \mathbb{V} \otimes \mathbb{S}\right)=\langle\sigma(\mathfrak{s l}(2, \mathbb{C}))\rangle$ for certain representation σ of $\mathfrak{s l}(2, \mathbb{C})$. Thus, $\mathfrak{s l}(2, \mathbb{C})$ is a Howe type dual of $\operatorname{Spin}(\mathbb{V}, B)$ on $\Lambda^{\bullet} \mathbb{V} \otimes \mathbb{S}$.

Leads to a systematic treatment of some questions on Dirac operators and their higher spin analogues.

Lefschetz decomposition on Kähler manifolds and $\mathfrak{s l}(2, \mathbb{C})$.
3. Symplectic spinor valued forms, i.e., $\tilde{G}=M p(\mathbb{V}, \omega)$ on $\Lambda^{\bullet} \mathbb{V} \otimes \mathbf{S}$.

Consider the representation ρ of $M p(\mathbb{V}, \omega)$

$$
\rho: \tilde{G} \rightarrow \operatorname{Aut}(\grave{\bigwedge} \mathbb{V} \otimes \mathbb{S})
$$

$$
\rho(g)(\alpha \otimes s):=\lambda(g)^{* \wedge r} \alpha \otimes \operatorname{meta}(g) s
$$

where $g \in \tilde{G}, \alpha \in \bigwedge^{r} \mathbb{V}^{*}$ and $s \in \mathbb{S}$.

Decomposition of symplectic spinor valued forms

Using results of Britten, Hooper, Lemire [1], one can prove

Theorem:

$$
\bigwedge^{i} \mathbb{V} \otimes \mathbf{S}_{ \pm} \simeq \bigoplus_{(i, j) \in=} \mathbf{E}_{i j}^{ \pm}
$$

where $i=0, \ldots, 2 l, \Xi:=\{(i, j) \mid i=0, \ldots, l ; j=$ $0, \ldots, i\} \cup\{(i, j) \mid i=l+1, \ldots, 2 l ; j=0, \ldots, 2 l-i\}$ and the infinitesimal $(\mathfrak{g}, \tilde{K})$-structure $\mathbb{E}_{i j}^{ \pm}$of $\mathbf{E}_{i j}^{ \pm}$satisfies

$$
\begin{aligned}
& \mathbb{E}_{i j}^{ \pm} \simeq L(\underbrace{\frac{1}{2}, \ldots, \frac{1}{2}}_{j}, \underbrace{-\frac{1}{2}, \ldots,-\frac{1}{2}}_{l-j-1},-1+\frac{1}{2}(-1)^{i+j+\operatorname{sgn}(\pm)}), \\
& \operatorname{sgn}(\pm):= \pm 1 .
\end{aligned}
$$

Example: $\operatorname{dim} \mathbb{V}=2 l=6$, i.e., $l=3$.
$\mathbb{S}_{+} \quad \mathbb{V} \otimes \mathbb{S}_{+} \quad \Lambda^{2} \mathbb{V} \otimes \mathbb{S}_{+} \quad \Lambda^{3} \mathbb{V} \otimes \mathbb{S}_{+} \quad \Lambda^{4} \mathbb{V} \otimes \mathbb{S}_{+} \quad \Lambda^{5} \mathbb{V} \otimes \mathbb{S}_{+} \quad \Lambda^{6} \mathbb{V} \otimes \mathbb{S}_{+}$

$$
\begin{gathered}
\mathbb{E}_{00}^{+} \longrightarrow \mathbb{E}_{10}^{+} \longrightarrow \mathbb{E}_{20}^{+} \longrightarrow \mathbb{E}_{30}^{+} \longrightarrow \mathbb{E}_{40}^{+} \longrightarrow \mathbb{E}_{50}^{+} \longrightarrow \mathbb{E}_{60}^{+} \\
\mathbb{E}_{11}^{+} \longrightarrow \mathbb{E}_{21}^{+} \longrightarrow \mathbb{E}_{31}^{+} \longrightarrow \mathbb{E}_{41}^{+} \longrightarrow \mathbb{E}_{5} 1^{+} \\
\mathbb{E}_{22}^{+} \longrightarrow \mathbb{E}_{32}^{+} \longrightarrow \mathbb{E}_{42}^{+} \\
\mathbb{E}_{33}^{+}
\end{gathered}
$$

The orthosymplectic Lie super algebra $\mathfrak{o s p}(1 \mid 2)$

Ortho-symplectic super Lie algebra $\mathfrak{o s p}(1 \mid 2)=$ $\left\langle f^{+}, f^{-}, h, e^{+}, e^{-}\right\rangle$.

Relations

$$
\begin{gathered}
{\left[h, e^{ \pm}\right]= \pm e^{ \pm} \quad\left[e^{+}, e^{-}\right]=2 h} \\
{\left[h, f^{ \pm}\right]= \pm \frac{1}{2} f^{ \pm} \quad\left\{f^{+}, f^{-}\right\}=\frac{1}{2} h} \\
{\left[e^{ \pm}, f^{\mp}\right]=-f^{ \pm} \quad\left\{f^{ \pm}, f^{ \pm}\right\}= \pm \frac{1}{2} e^{ \pm}}
\end{gathered}
$$

Consider the following mapping.

$$
\begin{aligned}
\sigma: \mathfrak{o s p}(1 \mid 2) & \rightarrow \operatorname{End}(\bigwedge \mathbb{V} \otimes \mathbf{S}) \\
\sigma\left(f^{ \pm}\right) & :=F^{ \pm} \\
\sigma(h) & :=2\left\{F^{+}, F^{-}\right\} \\
\sigma\left(e^{ \pm}\right) & := \pm 2\left\{F^{ \pm}, F^{ \pm}\right\},
\end{aligned}
$$

where the lowering and rising operators $F^{ \pm}$are defined as follows:

$$
\begin{aligned}
& F^{ \pm}: \bigwedge^{r} \mathbb{V}^{*} \otimes \mathbb{S} \rightarrow \bigwedge^{r \pm 1} \mathbb{V}^{*} \otimes \mathbb{S}, \\
& r=0, \ldots, 2 l .
\end{aligned}
$$

$$
\begin{aligned}
F^{+}(\alpha \otimes s) & :=\sum_{i=1}^{l} \epsilon^{i} \wedge \alpha \otimes e_{i} . s \\
F^{-}(\alpha \otimes s) & :=\sum_{i=1}^{l} \iota_{\check{e}_{i}} \alpha \otimes e_{i} . s,
\end{aligned}
$$

where $\alpha \otimes s \in \bigwedge^{\bullet} \mathbb{V}^{*} \otimes \mathbb{S}$ and $\left\{\check{e}_{i}\right\}_{i=1}^{2 l}$ is the ω-dual basis to the symplectic basis $\left\{e_{i}\right\}_{i=1}^{2 l}$.

Theorem: The mapping $\sigma: \mathfrak{o s p}(1 \mid 2) \quad \rightarrow$ $\operatorname{End}\left(\bigwedge^{\bullet} \mathbb{V} \otimes \mathbf{S}\right)$ is a super Lie algebra representation.

Theorem: The image $\operatorname{Im}(\sigma)$ of the representation σ satisfies $\operatorname{Im}(\sigma) \subseteq \operatorname{End}_{\tilde{G}}\left(\bigwedge^{\bullet} \mathbb{V}^{*} \otimes \mathbf{S}\right)$.

Moreover, the space End $\tilde{G}\left(\bigwedge^{\bullet} \mathbb{V}^{*} \otimes \mathbf{S}\right)$ of \tilde{G}-invariants is generated as an associative algebra by $\sigma(\mathfrak{o s p}(1 \mid 2))$. Thus $\mathfrak{o s p}(1 \mid 2)$ is the Howe dual of the metaplectic group \tilde{G} acting on $\bigwedge^{\bullet} \mathbb{V}^{*} \otimes \mathbf{S}$ by the representation ρ introduced above.

Moreover, we have the following 2-folded Howe type decomposition:

Theorem :

$$
\grave{\bigwedge} \mathbb{V}^{*} \otimes \mathbf{S} \simeq \bigoplus_{i=0}^{l}\left[\left(\mathbf{E}_{+}^{i i} \otimes G_{i}\right) \oplus\left(\mathbf{E}_{-}^{i i} \otimes G_{i}\right)\right]
$$

as an $(M p(\mathbb{V}, \omega) \times \mathfrak{o s p}(1 \mid 2))$-module.
The spaces G_{i} are certain irreducible finite dimensional super Lie algebra representations of the super Lie algebra $\mathfrak{o s p}(1 \mid 2)$.

Geometric part

(M, ω) symplectic manifold of dimension $2 l$. \mathcal{R} bundle of symplectic bases in $T M$, i.e.,
$\mathcal{R}:=\left\{\left(e_{1}, \ldots, e_{2 l}\right)\right.$ is a symplectic basis of $\left.\left(T_{m}, \omega_{m}\right) \mid m \in M\right\}$.
$p_{1}: \mathcal{R} \rightarrow M$, the foot-point projection, is a principal $S p(2 l, \mathbb{R})$-bundle.
$p_{2}: \mathcal{P} \rightarrow M$ be a principal $M p(2 l, \mathbb{R})$-bundle.
$\Lambda: \mathcal{P} \rightarrow \mathcal{R}$ be a surjective bundle morphism over the identity on M.

Definition: We say that (\mathcal{P}, Λ) is a metaplectic structure if

commutes. The horizontal arrows are the actions of the respective groups.

Symplectic spinors

$$
\mathcal{S}:=\mathcal{P} \times \text { meta } \mathbf{S} .
$$

Elements of $\Gamma(M, \mathcal{S})$ symplectic spinors (Kostant)
Symplectic connection $=$ torsion-free affine connection ∇ satisfying $\nabla \omega=0$. It gives rise to a principal bundle connection Z on $p_{1}: \mathcal{R} \rightarrow M$. Take a lift \hat{Z} of Z to the metaplectic structure $p_{2}: \mathcal{P} \rightarrow M$. Consider the associated covariant derivative on $\mathcal{S} \Longrightarrow$ symplectic spinor derivative $\nabla^{\mathcal{S}}$.

Remark. With help of $\nabla^{\mathcal{S}}$, one can define the symplectic Dirac operator and do, e.g., harmonic analysis for symplectic spinors (Habermann).

Manifolds admitting a metaplectic structure:
1.) phase spaces $\left(T^{*} N, d \theta\right), N$ orientable,
2.) complex projective spaces $\mathbb{P}^{2 k+1} \mathbb{C}, k \in \mathbb{N}_{0}$,
3.) Grassmannian $\operatorname{Gr}(2,4)$ e.t.c.

Symplectic curvature tensor

(M, ω) symplectic manifold
∇ symplectic connection (no uniqueness)

$$
R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

$$
S(X, Y, Z, U):=\omega(R(X, Y) Z, U)
$$

for $X, Y, Z, U \in \Gamma(M, T M)$. (different from Vaisman)
Symmetries of the symplectic curvature tensor S
1.) $S(X, Y, Z, U)=-S(Y, X, Z, U)$
2.) $S(X, Y, Z, U)=S(X, Y, U, Z)$
3.) $S(X, Y, Z, U)+S(Y, Z, X, U)+S(Z, X, Y, U)=0$
(Bianchi)

Symplectic Ricci tensor

$$
\operatorname{sRic}(X, Y):=S\left(e_{j}, X, Y, e_{i}\right) \omega^{i j}
$$

(Einstein summation convention)

$$
\begin{aligned}
\widetilde{s \operatorname{Ric}}(X, Y, Z, U) & :=\frac{1}{2 l+2}(\omega(X, Z) \operatorname{sic}(Y, Z)- \\
-\omega(X, U) \operatorname{sic}(Y, Z) & -\omega(Y, Z) \operatorname{sic}(X, U)- \\
-\omega(Y, U) \operatorname{sic}(X, Z) & +2 \omega(X, Y) \operatorname{Ric}(Z, U))
\end{aligned}
$$

In general, we define \tilde{T} for each $(2,0)$-covariant tensor (field) T.

Symplectic Weyl tensor

$s W(X, Y, Z, U):=S(X, Y, Z, U)-\widetilde{s \operatorname{Ric}}(X, Y, Z, U)$

Theorem (Vaisman): Let $\mathcal{C} \subseteq \bigotimes^{4} \mathbb{V}$ be a subspace satisfying (1), (2) and (3). Then $\mathcal{C}=\mathcal{C}^{0} \oplus \mathcal{C}^{r}$ is an $S p(\mathbb{V}, \omega)$-irreducible decomposition, where

$$
\begin{gathered}
\mathcal{C}^{0}:=\{T \in \mathcal{C} \mid \widetilde{T}=0\} \\
\mathcal{C}^{r}:=\{T \in \mathcal{C} \mid \exists K \in \bigotimes 㔾 \mathbb{V}, T=\widetilde{K}\} .
\end{gathered}
$$

Remark: No nontrivial inner (=symplectic) traces.
Theorem: (M, ω) symplectic manifolds admitting a metaplectic structure Λ and ∇ a symplectic connection. \mathcal{S} symplectic spinor bundle $d^{\nabla^{S}}$ symplectic spinor exteriror derivative associated to ∇. Then for each $(i, j) \in \Xi$ we have
$d^{\nabla^{S}}: \Gamma\left(M, \mathcal{E}_{ \pm}^{i j}\right) \rightarrow \Gamma\left(M, \mathcal{E}_{ \pm}^{i+1, j-1} \oplus \mathcal{E}_{ \pm}^{i+1, j} \oplus \mathcal{E}_{ \pm}^{i+1, j+1}\right)$,
where $\mathcal{E}_{ \pm}^{i j}$ is the associated bundle to the principal $M p(\mathbb{R}, 2 l)$-bundle via the representation $\mathbf{E}_{ \pm}^{i j}$ of \tilde{G}.

Back to the picture.

Symplectic Killing spinors

(M, ω) symplectic manifold admitting a metaplectic structure

$$
\nabla^{S} \phi=\lambda F^{+} \phi,
$$

$\phi \in \Gamma(\mathcal{S}, M) \Longrightarrow$ call ϕ symplectic Killing spinor. λ is called symplectic Killing number. Equivalently,

$$
\nabla_{X}^{S} \phi=\lambda X . \phi
$$

for each $X \in \Gamma(T M, M)$.

Example: $\quad\left(\mathbb{R}^{2}, \omega_{0}\right)$. Symplectic Killing spinor equation equivalent to

$$
\begin{aligned}
\frac{\partial \psi}{\partial t} & =\lambda \frac{\partial \psi}{\partial x} \\
\frac{\partial \psi}{\partial s} & =\lambda \imath x \psi
\end{aligned}
$$

where
$\psi: \mathbb{R}^{3} \rightarrow \mathbb{C}$ such that $(\mathbb{R} \ni x \mapsto \psi(s, t, x)) \in \mathcal{S}(\mathbb{R})$.
Then the symplectic Killing spinor is a constant, i.e., there exists $f \in \mathcal{S}(\mathbb{R})$ such that for each $(s, t) \in \mathbb{R}^{2}$ we have $\phi(s, t):=f$.

Remark: The same is true for \mathbb{R}^{2} and the standard Euclidean structure in the Riemannian spin-geometry.

Use of symplectic Killing spinor

- Sepectra embedding (Obstruction to a linear embedding of the spectrum of the symplectic Dirac into the spectrum of the symplectic Rarita-Schwinger operator.)
- Existence of a (nontrivial) symplectic Killing spinor \Rightarrow symmetry.

Symplectic Dirac operator

$$
\mathfrak{D}_{1}:=-F^{-} \circ D_{1}
$$

Symplectic Rarita-Schwinger operator

$$
\mathfrak{R}_{1}:=-F^{-} \circ R_{1}
$$

$$
\begin{aligned}
\mathbb{E}_{00}^{+} \xrightarrow[T_{1}]{D_{1}} \mathbb{E}_{10}^{+} \\
\mathbb{E}_{11}^{+} \xrightarrow{R_{2}} \\
\xrightarrow{R_{1}} \mathbb{E}_{21}^{+}
\end{aligned}
$$

Theorem: (M, ω) symplectic manifold of dimension $2 l$ admitting a metaplectic structure Λ. Let ∇ be a Weyl flat symplectic connection.
1.) If $\lambda \in \operatorname{Spec}(\mathfrak{D})$ and $-\imath l \lambda$ not a symplectic Killing number. Then $\frac{l-1}{l} \lambda \in \operatorname{Spec}(\mathfrak{R})$.
2.) If ϕ is an eigenvector of \mathfrak{D} and not a symplectic Killing spinor. Then ϕ is an eigenvector of \mathfrak{R}.

Existence of symplectic Killing spinor \Rightarrow rigidity (symmetry) of (M, ω, ∇).

Lemma: If ψ is a symplectic Killing spinor, which is not identically zero. Then ψ is nowhere zero.

Proof. Method of characteristics.
Theorem: (M, ω) Weyl-flat symplectic manifold, Λ metaplectic structure, ∇ symplectic connecton, ψ nonzero symplectic Killing spinor with constant energy, i.e., $H^{s R i c} \psi=\tilde{\lambda} \psi$ for a $\tilde{\lambda} \in \mathbb{C}$. Then (M, ω, ∇) is flat, i.e., $R^{\nabla}=0$.

$$
H^{s R i c}(\psi):=\frac{1}{2} s \operatorname{Ric}_{i j} e_{i} \cdot e_{j} \cdot \psi \text { (energy) }
$$

