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Abstract

We prove that the image of each elliptic operator on a smooth separable

Hilbert fibre bundle on a compact manifold is closed with respect to the

topology generated by a natural inner product. We consider the completed

injective tensor product of the elliptic operator with the identity operator
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of the original operator. Further we show that the operators image is

orthogonally complemented.
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1 Introduction

Thanks to the Hodge theory it is known that kernels and cokernels of elliptic
operators on finite rank hermitian vector bundles on a compact manifold M

are finite dimensional vector spaces and that the images of these operators are
closed with respect to the topology generated by a natural inner product on the
space of smooth sections of the vector bundle. The closed image property of the
images is tightly related to the known fact that continuous extensions of elliptic
operators to Sobolev spaces are Fredholm. See, e.g., Palais [42] and Wells [62].
In the paper, we prove that images of elliptic operators on smooth sections of
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separable infinite rank Hilbert bundles on compact manifolds are closed and that
they are orthogonally complemented with respect to the topology generated by
the natural inner product on the space of smooth sections of the bundle, that
we shall call the pre-Hilbert topology (Theorem 11). Notice that in the infinite
rank case the kernel of an elliptic operator needn’t be a finite dimensional vector
space. Indeed, let us consider the product bundle of the unit circle with an
infinite dimensional real or complex Hilbert space V and the operator of the
directional derivative with respect to an angle coordinate on the circle that acts
on smooth V -valued maps. It is easy to compute the symbol of this operator and
to realize that the operator is elliptic, i.e., that its symbol is an isomorphism
outside of the zero section of the cotangent bundle of the circle. Since the
kernel of the directional derivative is the infinite dimensional space of constant
V -valued maps, any extension of the operator to a Banach space is not Fredholm.
Obviously, this does not mean that the image of the operator is not closed.

Context and Applications. The closed image property of elliptic operators on
finite rank bundles plays an important role in the Hodge theory of elliptic com-
plexes (Wells [62] and Hodge [19]) and in the representation theory of Lie groups
concerning the Borel–Weil theorem and cohomological induction (Knapp, Vo-
gan [24], Schmid [52] and Wong [64]). Regarding the infinite rank bundles
there are articles devoted to consequences of the topological complementabil-
ity of kernels of elliptic operators with respect to the natural Fréchet topology
that is related to the so-called Schwartz kernel theorem. See, e.g., Tréves [58]
and [59] (Grothendieck’s theorem in Appendix C.1), Poly [44], and Vogt [60].
We refer to Illusie [20] and Röhrl [47] for treatises on topological complexes on
Banach and Fréchet bundles. For holomorphic Banach bundles, see Lempert
[34] and Kim [23]. Notice that there is an example of a holomorphic Banach
fibre bundle on the two dimensional sphere whose first sheaf cohomology is
non-Hausdorff, i.e., the image of the zeroth codifferential is not closed in the
space of 1-cochains. See Erat [10]. Regarding the analysis on Banach fibre bun-
dles related to non-commutative geometry, quantization, and global analysis on
infinite rank bundles, let us mention, e.g., Higson and Roe [17], Maeda and
Rosenberg [36], Freed and Lott [15], Larráın-Hubach [33], Krýsl [30] and [29],
Fathizadeh and Gabriel [11], and Habermann, Habermann [18]. This reference
list shall not be considered as complete.

Methods for finite rank bundles. In the case of a finite rank vector bundle
on a compact manifold, the compact embedding theorem of Rellich and Kon-
drachov for the Sobolev spaces is usually applied for proving that continuous
extensions of elliptic operators to the Sobolev spaces are Fredholm and that
consequently, the images of these extensions are closed. See, e.g., Seeley [50]
or Palais [42]. However, it is not difficult to see that a straight-forward gener-
alization of this compact embedding theorem does not hold for Sobolev spaces
Hk,2pM,V q of V -valued functions on M if V is infinite dimensional. By such a
generalization we mean the assertion that the inclusion Jk`1 : Hk`1,2pM,V q Ñ
Hk,2pM,V q is a compact map for a separable Hilbert space V. Indeed, let us
consider the inclusion map J0

k`1
: Hk`1,2pMq Ñ Hk,2pMq of the scalar Sobolev

spaces for a smooth compact manifold M. By Wloka [63], there is a unitary
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isomorphism Φk : Hk,2pM,V q Ñ Hk,2pMqpbHSV of Hilbert spaces, where
pbHS denotes the so-called Hilbert–Schmidt tensor product. The inclusion map
Jk`1 : Hk`1,2pM,V q Ñ Hk,2pM,V q is equal to Φ´1

k ˝ pJ0

k`1
pbHSIdV q ˝ Φk`1.

Since in this case IdV is a non-compact operator and Φk and Φk`1 are unitary,
Jk`1 cannot be compact. As follows by our main result, this does not show that
images of elliptic operators on infinite rank Hilbert bundles can not be closed
though. If E is a Banach space, we denote the Sobolev-type space of E-valued
maps on M by HkpM,Eq because we use the Sobolev spaces Hk,lpM,Eq for
l “ 2 only. We give a definition of these spaces based on [56] in our paper if E
is the so-called Hilbert A-module.

C˚-elliptic theory of Fomenko and Mishchenko. We apply parts of the theory
of Fomenko and Mishchenko developed in [39] for so-called C˚-elliptic operators
on Hilbert C˚-bundles whose fibres are finitely generated and projective Hilbert
C˚-modules. From the point of view of topological vector spaces, Hilbert C˚-
modules are specific Banach spaces that are generalizations of Hilbert spaces as
well as of C˚-algebras. From the algebraic point of view, they are modules over
a C˚-algebra. These modules are considered with the topology generated by the
so-called induced C˚-norm. Let us notice that they are introduced together with
pre-Hilbert C˚-modules in Paschke [43] and Rieffel [46]. Since the terminology
concerning Hilbert C˚-modules is non-unique (cf., e.g., Lance [31], Wegge-Olsen
[61] and Blackadar [5]), we fix a terminology which we use in our paper (Chapter
2). The space of smooth sections of a smooth Hilbert C˚-bundle is a pre-Hilbert
C˚-module in a natural way and its Sobolev-type completions form Hilbert C˚-
modules. We call the topology on the smooth sections generated by the induced
C˚-norm the pre-Hilbert topology though it need not be generated by an inner
product. In the theory of Hilbert C˚-modules, generalizations of compact and
Fredholm operators are defined, which are called C˚-compact and C˚-Fredholm,
respectively. Let us notice that continuous extensions of C˚-elliptic operators
to Sobolev-type completions are proved to be C˚-Fredholm in [39] if the fibres
of the bundle are topologically finitely generated and projective Hilbert C˚-
modules. We cannot use this result since the fibres of the bundles considered in
our paper are not topologically finitely generated. Proofs of several theorems in
[39] and [56] are only sketched foremost if they are parallel to the proofs for the
finite rank bundles. When we need a generalization of a result from [39] or [56],
but we find its proof too brief there, we dare to add some details in our article.

For completeness, let us notice that compact perturbations of pseudodiff-
erential operators are handled regarding their Fredholm property also without
the assumption on the C˚-linearity of these operators. See, e.g., Luke [35] and
citations therein. However, we do not get topological properties of the image if
we allow perturbations though by compact operators only.

Now we describe the procedure which leads to the proof of the closed image
property of elliptic operators on Hilbert bundles. By Burghelea and Kuiper [6]
and Moulis [40], an infinite rank Hilbert bundle with fibre the Hilbert space V
is C8-diffeomorphic to the product Hilbert bundle M ˆ V Ñ M. It is straight-
forward to realize that the space Γ8pM,Vq of smooth sections of V is linearly
homeomorphic to the space C8pM,V q of smooth V -valued functions if both of
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these spaces are equipped with Fréchet topologies or if both are equipped with
the natural pre-Hilbert topologies.

Transfer to compact CV -bundles. The first step we undertake is a transfer
to Hilbert C˚-bundles and C˚-elliptic pseudodifferential operators for the C˚-
algebra CV of compact operators of a Hilbert space V. The vector space of
compact operators carries a natural structure of a Hilbert CV -module with
the C˚-product p, qCV given by pA,BqCV “ A˚B, A,B P CV, whose induced
C˚-norm equals to the operator norm. We call the Hilbert CV -module CV
the compact CV -module, and any Hilbert C˚-bundle isomorphic to the product
Hilbert C˚-bundle M ˆ CV Ñ M the compact CV -bundle. For the transfer
procedure we consider the completed injective tensor product of the Fréchet
space C8pM,V q with the continuous dual V ˚ of V. The resulting Fréchet space
is denoted by C8pM,V qpbǫV

˚. (See Grothendieck [16] or Tréves [58].) By Tréves
[58], C8pM,V qpbǫV

˚ and C8pM,CV q are linearly homeomorphic when both
of them are equipped with Fréchet topologies. We consider the tensor product
of an elliptic operator D with the identity on V ˚ and extend it continuously to
C8pM,V qpbǫV

˚ – C8pM,CV q, denoting the resulting operator DpbǫIdV ˚ by
pDǫ. We show that pDǫ is CV -linear (Lemma 8) and elliptic (Theorem 9). We
prove that its image is closed in the Fréchet topology.

Properties of continuous extensions of CV -elliptic operators to Sobolev spaces.
The compact CV -module is not topologically finitely generated and thus the
appropriate results of Fomenko and Mishchenko in [39] on the C˚-compact
embedding of the Sobolev-type completions of smooth sections of Hilbert C˚-
bundles cannot be used. Let us notice that the compact CV -module is well
known to be projective as a consequence of the results of Magajna [37] and
Schweitzer [53]. (See Frank and Paulsen [14].) We derive a C˚-compact em-
bedding for compact CV -bundles on tori using a theorem of Bakić and Guljaš
in [4]. We adapt a classical procedure (Palais [42] or Solovyov and Troitsky
[56]) to prove a CV -compact embedding for compact CV -Hilbert bundles on
a compact manifold M (Theorem 7, part a)), i.e., that the inclusion map
Hk`1pM,CV q Ñ HkpM,CV q is CV -compact. Then we show that the con-
tinuous extension Dk to the Sobolev-type completions HkpM,CV q of an elliptic
operator D : C8pM,CV q Ñ C8pM,CV q are CV -Fredholm (Theorem 7 b)).
By Lemma 1 the image of the extension is closed in Hk´dpM,CV q with respect
to the topology generated by the induced C˚-norm where d denotes the order of
D. Let us notice that an operator with a closed image need not be C˚-Fredholm
for trivial reasons and that on the other hand, an C˚-Fredholm operator need
not have a closed image (e.g., [26]). However, by [4], for the C˚-algebra of
compact operators it is known that the C˚-Fredholm property implies that the
image is closed.

Properties of pDǫ. Since pDǫ “ DpbǫIdV ˚ is CV -elliptic (Theorem 9), its

continuous extension p pDǫqk to HkpM,CV q is CV -Fredholm for any k P Z by
the mentioned Theorem 7 b) and regular by Theorem 6. We want to prove

that the image of pDǫ : C8pM,CV q Ñ C8pM,CV q is closed using Theorem 2
and Corollary 3, which contain assumptions on the regularity not only of the
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operator but also of the operator’s adjoint. In the Hilbert bundle case, the
adjoint operators are usually constructed by considering transposed operators
defined on the topological duals of the Sobolev-type spaces using the self-duality
of Hilbert spaces forming the fibres of the considered bundle. See, e.g., Palais
[42] and a parallel construction in Solovyov, Troitsky [56] for Hilbert C˚-bundles
with the so-called C˚-self-dual fibres. However, it is known that the compact
CV -module is not C˚-self-dual if V is infinite dimensional. The C˚-dual of the
compact CV -module, i.e., the space of all operators of the Hilbert C˚-module
CV into the C˚-algebra CV contains all bounded operators on V which forms
a strict superset of the set of compact operators. We thus have to analyse
the adjoints of CV -pseudodifferential operators of type DpbǫIdV ˚ on compact
CV -bundles. This is done carefully in part 2) of the proof of Theorem 9.

Properties of D and complementability. At the end of the paper, we return
our attention to the investigation of the image of D. We prove that the image
of D is closed in the inner product space of the smooth sections of the Hilbert
bundle. This is done in Theorem 11, in whose proof we use a lemma on a pre-
sentation of elements in C8pM,V qpbǫV

˚ (Lemma 10). In the proof of Theorem
11, we make a use of a theorem on the interchange of the limiting and summa-
tion processes for vector-valued double series (Scholium 3), based on a result of
Antosik in [1]. In Pap et al. [41], there are further results on the convergence
of vector-valued double series. Nevertheless, it looks like that no theorems are
available that could be used for the purpose of our paper directly. After proving
the closed image of D we show that it is complemented in the inner product
space of the smooth sections by proving the closed image for Dk in the appro-
priate Hilbert space-valued Sobolev space and by using the Corollary 3 for the
C˚-algebra of complex numbers. Notice that this inner product space is not
complete if the dimension of the base manifold M is at least 1.

Organization of the paper. In the second section, we summarize the ter-
minology on Hilbert A-modules and their morphisms and prove two assertions
(Theorem 2, and Corollary 3) on pre-Hilbert module morphisms whose con-
tinuous extensions are specific Hilbert A-module operators with closed images.
At the beginning of the third section, we give a definition of a smooth Hilbert
C˚-bundle based on the notion of the one-point Hilbert C˚-module. We prove
a lemma in which the pre-Hilbert topology is compared with the Fréchet topol-
ogy (Lemma 4) and a lemma on adjoints of pseudodifferential operators on
Hilbert bundles (Lemma 5). In the main part of the third section, we deal with
morphisms of Hilbert CV -modules. We prove the regularity for CV -elliptic op-
erators on compact manifolds (Theorem 6), an assertion on the CV -compact
embedding for Sobolev-type spaces on tori (Scholium 1) and on general compact
manifolds (Theorem 7). The fourth chapter is devoted to the main theme of the
paper, namely to the images of elliptic operators on Hilbert bundles themselves.
We recall the completed injective tensor products, prove that continuous ex-
tensions to completed injective tensor products of pseudodifferential operators
multiplied by the appropriate identity operator are CV -linear and that they
inherit the ellipticity property (Lemma 8 and Theorem 9). We also prove a
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lemma on a representation of smooth CV -valued maps (Lemma 10). In this
part, the theorem is proved on the closed image property of elliptic operators
and the complementability of the image with respect to the pre-Hilbert topology
(Theorem 11).

The next preamble concerns the notation and conventions used in the pa-
per foremost, regarding the notions of smoothness of maps, smooth Banach
manifolds and bundle atlases and their charts. Its parts can be read when the
appropriate notions appear in the text.

1.1 Preamble

a) We denote the composition of maps a : Y Ñ Z and b : X Ñ Y by a ˝ b
as well as by ab. The value of a map D : X Ñ Y on an element x P X is
denoted by Dpxq or by Dx.

b) We suppose that a Fréchet topological vector space structure on a vector
space E is defined by an ordered countable family of separating seminorms.
We equip E with the canonical translation invariant metric induced by this
ordered family. The space is complete with respect to this metric.

c) For topological vector spaces W 1 and W 2 the symbol HompW 1,W 2q de-
notes the vector space of continuous linear maps of W 1 into W 2, EndpW q
denotes the set of all linear continuous maps of W into W, and AutpW q is
the subset of EndpW q consisting of all continuously invertible maps of W
ontoW. The continuous dual of any topological vector spaceW is denoted
by W˚.

d) The field R of real numbers is considered as the image in the field C of
the injection r P R ÞÑ r ` 0ı P C. Inner product spaces are considered
over real or complex numbers. The inner product is complex anti-linear
in the first variable and complex linear in the second variable (physicist’s
convention). For pre-Hilbert C˚-modules, we suppose the same behaviour
of the C˚-product. The topology of inner product spaces and Hilbert C˚-
modules is generated by the metric induced by the inner and C˚-products,
respectively.

e) Continuous maps of topological vector spaces are called Ck-differentiable
briefly if their lth order Fréchet differential is continuous for l “ 0, . . . , k.
We call them C8-differentiable (or smooth) if they are Ck-differentiable
for all k P N0 “ N Y t0u. A map is called a C8-diffeomorphism if it is
smooth, bijective and its inverse is smooth.

f) Any manifold is considered to be a C8-differentiable Banach manifold
without boundary, i.e., a Hausdorff second countable topological space lo-
cally homeomorphic to a fixed Banach space E and equipped with a max-
imal C8-differentiable manifold atlas. Elements of a C8-differentiable
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atlas, called manifold charts, have to be homeomorphisms of open sub-
sets of the manifold into open subsets in E. Transition maps of a C8-
differentiable manifold atlas are demanded to be C8-diffeomorphisms of
subsets of E. For simplicity, we do not consider manifolds as equivalence
classes of maximal smooth atlases with respect to C8-diffeomorphisms.
Therefore a manifold in our sense is what is usually called a
C8-differentiable structure.

g) Let W be a manifold, M be a finite dimensional manifold, and W be a
Banach space. A Banach fibre bundle p : W Ñ M with a fibre the Banach
space W is a smooth submersion of manifolds such that for each m P M,

the fibre p´1pmq is a Banach space whose normed topology is equal to
the subset topology induced by the inclusion p´1pmq Ď W. The manifold
W is called the total space and the manifold M is called the base space
of p. Further, a Banach fibre bundle has to be equipped with a maximal
C8-differentiable bundle atlas. By our convention, elements of the bundle
atlas, called bundle charts, have to be C8-diffeomorphisms of UˆW, U Ď
M open, onto the open subset p´1pUq of the C8-differentiable manifold
W, such that its restriction to tmu ˆ W is a linear homeomorphism of
Banach spaces onto p´1pmq for each point m P M . A subatlas of an atlas
A is a subset of A such that the union of the domains of its charts is
M ˆ W, i.e., it is still an atlas. Let us notice that by the chain rule for
Banach spaces, transition maps of a bundle atlas are smooth maps into
the vector space EndpW q considered with the strong operator topology.

Comparison to different concepts. We do not consider Banach fibre bun-
dles as equivalence classes of maximal C8-differentiable atlases with re-
spect to C8-diffeomorphisms of bundles that cover the identity on the
base space. The fibre bundles, which we consider, are smooth analogues
of the so-called coordinate G-bundles as defined, e.g., in Steenrod [57],
where G “ AutpW q with the strong operator topology. (For details, see
the Remark below the Definition 2 in the Section 3.)

h) Pseudodifferential operators on a fibre bundle are, in particular, real or
complex linear maps defined on the vector space of smooth sections of the
fibre bundle.

2 Images of pre-Hilbert CV -module morphisms

Let pA, ¨, | |A,
˚q be a C˚-algebra and let us denote the closed half-cone of pos-

itive elements in A by A`. The spectrum of a positive element in A has to
be contained in the set of non-negative real numbers. (See, e.g., [8].) A right
pre-Hilbert A-module is a complex vector space W on which A acts from the
right compatibly with the multiplication by scalars, and that is equipped with
a hermitian-symmetric map p, qW :W ˆW Ñ A that is
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i) sesquilinear with respect to the action of the field C and to the right action
of the C˚-algebra A; and

ii) positive definite in the sense that for each w P W, the element pw,wqW
belongs to A` and pw,wqW “ 0 only if w “ 0.

Such a pre-Hilbert A-module is denoted by pW, p, qW q. The hermitian-symmetric
map p, qW is called the C˚-product or the A-product when the C˚-algebra is A.
Since we shall consider only right pre-Hilbert A-modules, we omit the word
‘right’ and call any right Hilbert A-module a Hilbert A-module only. Let c P C,

a P A, and v, w P W. The compatibility of the C˚-algebra action with the
multiplication by scalars means that v ¨ pcaq “ pcvq ¨ a “ cpv ¨ aq. The C˚-
product p, q is hermitian-symmetric, i.e., pv, wq “ pw, vq˚. By the sesquilinearity
we mean that the C˚-product p, qW satisfies pv ¨a,wqW “ a˚pv, wqW and that a
similar rule holds for the multiplication by complex numbers. The equivariance
in the second entry follows from the hermitian-symmetry. The induced C˚-norm
| |W :W Ñ R (called also the induced A-norm if the C˚-algebra is Aq is defined
by |w|W “

a
|pw,wqW |A, where w P W. It satisfies |pv, wqW |A ď |v|W |w|W

(Cauchy–Schwartz-type inequality) for all v, w P W.We consider any pre-Hilbert
A-module as an A-module and as a topological vector space with the topology
generated by the metric dpv, wq “ |v ´ w|W , v, w P W. (See [31].) Let us
notice that a pre-Hilbert C˚-module for the C˚-algebra of complex numbers is
an inner product space. (We shall not use the term ‘pre-Hilbert space’ for the
inner product spaces in the text.)

Objects in the category of pre-Hilbert A-modules are pre-Hilbert A-modules.
Let pW, p, qW q and pW 1, p, qW 1 q be pre-Hilbert A-modules and L : W Ñ W 1 be
a map. It is called adjointable if there exists a map L˚ : W 1 Ñ W such that
pLw,w1qW 1 “ pw,L˚w1qW for all w P W and w1 P W 1. By the non-degeneracy
of p, qW and p, qW 1 , the map L˚ (called the adjoint of L) is unique if it exists. It
is easy to see that an adjointable map is complex- and A-linear, i.e., Lpw ¨ aq “
Lpwq ¨a and Lpcwq “ cLpwq for all for all c P C, a P A and w P W. Morphisms of
pre-Hilbert A-modulesW andW 1 are all maps ofW intoW 1 having the adjoint.
We often call a morphism an operator. The composition of morphisms is the
composition of maps. This establishes the category of pre-Hilbert A-modules
for a C˚-algebra A since the adjoint of the composition of two operators is the
composition of the adjoints of the operators in the reversed order. We denote
the set of all adjointable A-linear maps of pre-Hilbert A-modules W and W 1 by
Hom˚

ApW,W 1q and by End˚
ApW q if W “ W 1. The set of all bijections onto W in

End˚
ApW q is denoted by Aut˚

ApW q and called the group of pre-Hilbert A-module
automorphisms of W.

We call an adjointable map L self-adjoint if L “ L˚ and we call it unitary
if L˚L “ IdW and LL˚ “ IdW 1 . A pre-Hilbert A-submodule of pW, p, qW q is
any algebraic A-submodule W1 of W equipped with the restriction to W1 ˆW1

of p, qW . A pre-Hilbert A-submodule need not be closed in W. The orthogonal
complement of a subset W1 Ď W is denoted by W1

K “ tw P W : pw,w1q “
0 for all w1 P W1u. The direct sum W “ W1 ‘W2 of pre-Hilbert A-modules W1

and W2 is the direct sum of A-modules together with the A-product defined by
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pw1 ` w2, w
1
1 ` w1

2qW “ pw1, w
1
1qW1

` pw2, w
1
2qW2

for wi, w
1
i P Wi, i “ 1, 2. It is

immediate to see that for any pre-Hilbert A-modules W1 and W2, W1 and W2

are closed in the pre-Hilbert A-module direct sum W1 ‘ W2. A pre-Hilbert A-
submodule W1 of a pre-Hilbert module W is called orthogonally complemented
if there exists a pre-Hilbert A-submodule W2 of W such that W is isomorphic
to W1 ‘ W2. By isomorphic, we mean that there is a pre-Hilbert A-module
morphism ofW ontoW1‘W2 which has an inverse in the category of pre-Hilbert
A-modules. In particular, we do not demand the morphism to be unitary. Let us
mention that pre-Hilbert A-submodules need not be orthogonally complemented
even if they are closed. See Lance [31].

A pre-Hilbert A-module pE, p, qEq is called a Hilbert A-module if it is a com-
plete normed space with respect to the induced C˚-norm | |E on E, i.e., it is
a Banach space. By the category of Hilbert A-modules we mean the full sub-
category of the category of pre-Hilbert A-modules whose objects are Hilbert
A-modules. We denote the set of all Hilbert A-module morphisms of Hilbert
A-modules E and E1 by Hom˚

ApE,E1q and by End˚
ApEq if E “ E1 as in the pre-

Hilbert A-module case. Let us remark that each Hilbert A-module morphism
is continuous and consequently, the elements in Aut˚

ApEq are homeomorphisms.
Notice that if A is the C˚-algebra of complex numbers, a Hilbert A-module is
a complex Hilbert space. A Hilbert A-submodule E1 of a Hilbert A-module
pE, p, qEq is a pre-Hilbert A-submodule of E such that pE1, p, qE |E1ˆE1

q is a
Hilbert A-module, i.e., it is a complete normed space. In particular, a Hilbert
A-submodule E1 is closed in E as a normed space. Hilbert A-submodules need
not be orthogonally complemented as well. (See [31].) For definiteness, we fix
the following definitions. A Hilbert A-module E is called finitely generated if E
is algebraically generated over A (i.e., by finite A-linear combinations) by a fixed
finite subset of E.We call it topologically finitely generated if there exists a dense
subspace of E which is finitely generated. For a positive integer q, let us consider
the Hilbert A-module Aq “ A‘ . . .‘Aloooooomoooooon

q´times

with the diagonal right action of A and

the Euclidean-type A-product given by ppa1, . . . , aqq, pb1, . . . , bqqq “
řq
i“1

a˚
i bi,

where ai, bi P A for i “ 1, . . . , q. See Solovyov, Troitsky [56].

Projectivity and self-duality. Let us denote the set of all continuous complex-
and A-linear maps of Hilbert A-modules pE, p, qEq and pF, p, qF q by HomApE,F q.
We do not demand the elements of HomApE,F q to be adjointable. A Hilbert A-
module E is called projective if for each Hilbert A-modules B and C and for every
surjective b P HomApB,Eq and every c P HomApC,Eq there exists an element
d P HomApC,Bq such that c “ b ˝ d. See, e.g., Frank and Paulsen [14] for more
details. One calls a Hilbert A-module finitely generated projective if it is finitely
generated and projective. A Hilbert A-module E is called C˚-self-dual (or A-
self-dual) if it is canonically isomorphic to the A-module E‹ “ HomApE,Aq,
that we call the continuous A-dual of E. See Frank [13]. By the canonical
map we mean the map φ : E Ñ E‹ given by φpeqpe1q “ pe, e1qE , e, e

1 P E. We
consider the action of A on the A-dual given by pf ¨ aqpeq “ fpeq ¨ a, where
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f P HomApE,Aq, a P A and e P E. Let us notice, that in the C˚-self-dual case,
HomApE,Aq can be equipped with a canonical structure of a Hilbert A-module
using the map φ. (See Frank [13] or Mishchenko [38] for details.) Notice that if
E is A-self-dual, E‹ “ Hom˚

ApE,Aq. If T : E1 Ñ E2 is a morphism of Hilbert
A-modules, its transpose T t : pE2q‹ Ñ pE1q‹ is defined by T tpfqpe1q “ fpT pe1qq
for any f P pE2q‹ and e1 P E1.

C˚-algebras of compact operators and C˚-compact operators. For a complex
Hilbert space pV, hq, let us consider the C˚-algebra consisting of all compact lin-
ear operators on V, which is equipped with the usual addition, the multiplication
by scalars, composition of operators, the adjoint of operators and the operator
norm. This algebra is called the C˚-algebra of compact operators and we denote
it by CV. Let us recall that a C˚-algebra A is called a C˚-algebra of compact
operators if it is a C˚-subalgebra of the C˚-algebra CV of compact operators
on the complex Hilbert space V. If A is a C˚-algebra, and E and E1 are Hilbert
A-modules, an A-compact operator of E into E1 is the limit in the operator norm
topology on Hom˚

ApE,E1q of the so-called A-finite rank (or elementary) opera-
tors of Hilbert A-modules E into E1. See Lance [31] or Kasparov [22], p. 789.
Let E,E1 and E2 be Hilbert A-modules. If K P Hom˚

ApE,E1q is an A-compact
operator and T P Hom˚

ApE1, E2q, the operator T ˝K is an A-compact operator
and similarly for the composition of K with a Hilbert A-module morphism from
the right. (See [31], (1.6).) We refer to this property as to the ideal property
of A-compact operators. It is easy to see that the adjoint of an A-compact
operator is A-compact as well.

Definition 1: A morphism D : X Ñ Y of Hilbert A-modules is called an
A-Fredholm operator if there is a Hilbert A-module morphism qD : Y Ñ X such
that K1 “ qDD ´ IdX and K2 “ D qD ´ IdY are A-compact operators. We call
any operator qD fulfilling this feature a partial inverse of D.

Thus an A-Fredholm operator has a left and right inverse up to an A-compact
operator.

It is well known that there exist C˚-Fredholm operators whose images are not
closed. (See, e.g., Krýsl [27].) The next lemma is a straightforward generaliza-
tion of a theorem of Bakić and Guljaš in [4] (p. 268) on images of C˚-Fredholm
endomorphisms are closed if the C˚-algebra is a C˚-algebra of compact opera-
tors.

Lemma 1: Let A be a C˚-algebra of compact operators and X and Y be
Hilbert A-modules. If D is an A-Fredholm operator of X into Y, then its image
is closed in F.

Proof. Let D : X Ñ Y be A-Fredholm and qD,K1, and K2 be an appropriate
partial inverse and A-compact operators, respectively. Thus qDD “ IdX ` K1

and D qD “ IdY ` K2. Let us consider the following block-wise anti-diagonal
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element D “
`

0 D˚

D 0

˘
P End˚

ApX ‘ Y q. We have

˜
0 qD
qD˚ 0

¸ ˆ
0 D˚

D 0

˙
“

ˆ
IdX `K1 0

0 IdY `K˚
2

˙

“

ˆ
IdX 0
0 IdY

˙
`

ˆ
K1 0
0 K˚

2

˙
.

Since the last written matrix is an A-compact operator in End˚
ApX‘Y q, operator

D has a left inverse up to an A-compact onX‘Y. The invertibility from the right
of D up to an A-compact operator is proved similarly. Consequently D has a
partial inverse and thus it is an A-Fredholm endomorphism on X‘Y. According
to [4], the image of D is closed. This implies that D has a closed image as well
because ImD “ ImD˚ ‘ ImD and X and Y are mutually orthogonal in X ‘Y.

l

Remark: 1) Let A be a C˚-algebra of compact operators. A Hilbert A-
module morphism D : X Ñ Y is A-Fredholm if and only if the image of D
is closed and the so-called A-dimensions dimAKerD and dimArpImDqKs are
finite (Corollary 5 in Krýsl [28]). The A-dimension is defined in [4], where its
correctness is proved.

2) Let us notice that the result from [4] used in the above proof is based on the
Theorem 2.22 in [3], where the so-called H˚-modules are investigated regarding
their relation to Hilbert–Schmidt and to compact operators on a Hilbert space
V. Let us remind the reader that the vector space of Hilbert–Schmidt operators
HSpV q on a Hilbert space V is dense in CV and when it is equipped with the
so-called Hilbert–Schmidt norm, HSpV q is unitarilly isomorphic to the Hilbert
space V.

Let X,Y be Hilbert A-modules, Z be a pre-Hilbert A-module, which is a
vector subspace of X, and let ∆ : Z Ñ Z be a pre-Hilbert A-module morphism.
If ∆ has an adjointable extension r∆ : X Ñ Y, we denote the adjoint p r∆q˚ by
r∆˚.

In the next theorem we generalize a procedure, which is used to derive the
closed image property of an elliptic operator on smooth sections of a finite rank
hermitian vector bundle on a compact manifold from the closed image property
of the continuous extensions of this operator to Sobolev completions of the
smooth sections. See, e.g., Wells [62]. We use it in the proof of Theorems 9 and
11 below. The condition b) in the next theorem is connected to the so-called
regularity of elliptic operators, that we treat in Section 3. We notice that the
second condition in b) below means in the bundle context that the adjoint of

the extension is regular in the sense that whenever r∆˚f “ g for a smooth map
g, the map f is smooth as well. In particular, Z plays a role of the space of
smooth sections and X and Y of the Sobolev-type spaces.

Theorem 2 (partial inverse on pre-Hilbert modules): Let A be a C˚-algebra,
pX, p, qXq and pY, p, qY q be Hilbert A-modules, and pZ, p, qZq be a pre-Hilbert A-
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submodule of Y and a vector subspace of X. Let us consider a self-adjoint map
∆ P End˚

ApZq that has a continuous adjointable extension r∆ P Hom˚
ApX,Y q

which satisfies

a) the image of r∆ is closed in Y and

b) r∆´1pZq, r∆˚´1pZq Ď Z.

Then the image of ∆ is closed in Z and Z “ Ker∆‘ Im∆. Moreover, there
are self-adjoint pre-Hilbert A-module morphisms q∆ : Z Ñ Z and K : Z Ñ Z

such that

∆q∆ “ q∆∆ “ K ´ IdZ and ∆K “ 0 (parametrix equations).

Proof. Assumptions in b) imply that Ker r∆,Ker r∆˚ Ď Z.

1) By the kernel-image theorem of Mishchenko (Theorem 3.2, [31]), the image

of r∆˚ : Y Ñ X is closed as well, and the following decompositions

X “ Ker r∆ ‘ Im r∆˚ and Y “ Ker r∆˚ ‘ Im r∆

hold.

2) i) If z P Ker r∆˚ Ď Y, it is an element of Z by b). Thus for each

z1 P Z, we have p∆z, z1qZ “ pz,∆z1qZ “ pz,∆z1qY “ pz, r∆z1qY “

p r∆˚z, z1qX “ 0. This implies that ∆z “ 0. Therefore Ker r∆˚ Ď
Ker∆.

ii) Now we show that Z “ Ker∆ ` pIm r∆ X Zq. For z P Z Ď Y there

are elements z1 P Ker r∆˚ and z2 P Im r∆ such that z “ z1 ` z2 by
the direct sum decomposition of Y given in the item 1. The element
z1 is in Ker∆ since Ker r∆˚ Ď Ker∆ by the previous paragraph.
Since z, z1 P Z, the element z2 “ z ´ z1 P Z. Consequently Z Ď
Ker∆ ` pIm r∆ X Zq. The opposite inclusion is trivial.

iii) Let us take an element in Im r∆ X Z which is in the kernel of ∆, i.e.,

z “ r∆z1 P Z for an element z1 P X and ∆z “ 0. Thus z1 P Z by
the assumption b) and we have pz, zqZ “ pz,∆z1qZ “ p∆z, z1qZ “ 0.

Consequently z “ 0 and the sum Ker∆ ` pIm r∆ X Zq is orthogonal.

We conclude that Z “ Ker∆ ‘ pIm r∆ X Zq.

iv) We prove that Im r∆ X Z “ Im∆. Let us suppose that z “ r∆z1 P Z
for an element z1 P X. Then z1 P Z by b). Thus z “ ∆z1 and

Im r∆XZ Ď Im∆. The opposite inclusion is obvious. Using the item
iii), we obtain Z “ Ker∆ ‘ Im∆. Since the sum is orthogonal, the
image of ∆ is closed.

3) Using the orthogonal decomposition Z “ Ker∆‘ Im∆ derived above, we
define K : Z Ñ Z as the projection onto the kernel of ∆ along Im∆. In
particular, K is a self-adjoint morphism of pre-Hilbert A-modules.
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4) Let us define q∆ : Z Ñ Z by

q∆ “

"
p∆|Im∆q´1 on Im∆
0 on Ker∆.

Using this definition, q∆ satisfies ∆q∆ “ q∆∆ “ IdZ ´K. Obviously, q∆ is a
self-adjoint pre-Hilbert A-module morphism of Z since ∆ is self-adjoint.

l

Remark: If A is a C˚-algebra of compact operators and r∆ is A-Fredholm,
its image is closed by Lemma 1 and thus the condition a) of Theorem 2 is
satisfied.

To avoid misunderstanding let us recall that if W is a real or complex topo-
logical vector space, the symbol W 1 denotes neither the dual vector space, nor
the topological dual of W. The topological dual is denoted by W˚ (Preamble
a)). The next corollary is a consequence of Theorem 2.

Corollary 3: Let A be a C˚-algebra and let two triples of A-modules X,Y
and Z and X 1, Y 1 and Z 1 satisfy the assumptions of the Theorem 2. Further
let D : Z Ñ Z 1 be a pre-Hilbert A-module morphism such that ∆ “ D˚D :
Z Ñ Z and ∆1 “ DD˚ : Z 1 Ñ Z 1 have continuous adjointable extensions
r∆ P Hom˚

ApX,Y q and Ă∆1 P Hom˚
ApX 1, Y 1q, respectively. If r∆ and Ă∆1 satisfy the

assumptions a) and b) of Theorem 2, the images of D and D˚ are closed in Z 1

and Z, respectively.

Proof. Since ∆ and ∆1 are self-adjoint and since they satisfy assumptions
a) and b) of Theorem 2, the decompositions Z “ Ker∆ ‘ Im∆ and Z 1 “
Ker∆1 ‘ Im∆1 hold. By Theorem 2, we have also the pre-Hilbert A-module
morphisms q∆, K and |∆1,K 1 at our disposal. If a P Ker∆, then pDa,DaqZ “
pa,D˚DaqZ “ pa,∆aqZ “ 0 which implies that Da “ 0, i.e., Ker∆ Ď KerD.
The opposite inclusion KerD Ď Ker∆ is obvious. Thus KerD “ Ker∆. We
obtain similarly that KerD˚ “ Ker∆1.

Now we prove identities concerning the images of D and D˚ using the
parametrix equations from the Theorem 2. For b P ImD˚, there is an ele-
ment a P Z 1 such that b “ D˚a. For a1 “ |∆1a P Z 1, we set b1 “ D˚a1 and
claim that b1 is in the ∆-preimage of b. Indeed ∆b1 “ ∆D˚a1 “ D˚DD˚a1 “
D˚DD˚|∆1a “ D˚∆1 |∆1a “ D˚pIdZ1 ´ K 1qa by Theorem 2. This expression
equals to D˚a ´ D˚K 1a “ D˚a “ b because by Theorem 2, K 1 maps into
Ker∆1 which is equal to KerD˚ due to the previous paragraph. Consequently,
ImD˚ Ď Im∆. Since also Im∆ Ď ImD˚, we conclude that ImD˚ “ Im∆.
Similarly, we prove that ImD “ Im∆1.

Consequently, we have the orthogonal sums Z “ Ker∆ ‘ Im∆ “ KerD ‘
ImD˚ and similarly Z 1 “ KerD˚ ‘ ImD. In particular, ImD and ImD˚ are
closed with respect to the topology generated by the C˚-norm on Z 1 and Z,

respectively. l
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3 Images of CV -elliptic operators on compact

CV -bundles

Let p : W Ñ Mn be a Banach fibre bundle on an n-dimensional manifold M

with (typical) fibre a Banach space pW, | |W q and a maximal C8-differentiable
bundle atlas A. In particular, for any m P M

- the fibre Wm “ p´1ptmuq is a Banach space equipped with a norm, de-
noted by | |m, and

- the topology on Wm generated by | |m is equal to the subset topology on
Wm Ď W.

The space of C8-differentiable sections of p is denoted by Γ8pM,Wq or by
Γ8pWq when the manifold is known from the context. See the Preamble e), f)
and g). Let us recall that a bundle chart of a Banach fibre bundle is in particular
a homeomorphism of U ˆW onto p´1pUq Ď W for an open subset U of M such
that its restriction to tmu ˆ W is a homeomorphism onto p´1ptmuq for each
m P U which is linear with respect to the vector space structures on W and on
p´1ptmuq.

Let g be a Riemannian metric tensor on a compact manifold M and let ∇W

be a covariant derivative on a Banach fibre bundle p : W Ñ M. Notice that the
existence of a covariant derivative is proven by a choice of a partition of unity
on M using the same formula as in the finite rank case. We set for any l ě 0
and s P Γ8pWq

|s|Fl “ supt
ˇ̌
p∇W

X1
. . .∇W

Xk
s|U qpmq

ˇ̌
m

: Xi P Γ8pU, TUq, gpXi, Xiq “ 1,

i “ 1, . . . , k, m P U, U open in M, 0 ď k ď lu

which is easily seen to be a norm on Γ8pWq, usually called the Fréchet (semi-
)norm. For k “ 0, the expression |∇W

X1
. . .∇W

Xk
s|U pmq|m means |spmq|m. We

call the topology on Γ8pWq generated by the family of these norms the Fréchet
topology. By the compactness ofM the space Γ8pWq is complete, i.e., a Fréchet
space.

For a Banach fibre bundle p : W Ñ M , let W ˆM W “ tpw,w1q P W ˆ
W| ppwq “ ppw1qu Ď W ˆW be the fibred product of W with itself. We consider
it with the subset topology of the product topology on W ˆ W. (See, e.g., [25]
for details concerning fibred products.)

A Banach fibre bundle is called a Hilbert fibre bundle if there is a smooth
map p, qh : W ˆM W Ñ C on the fibred product which is an inner product in
each fibre and such that the induced norm

a
pw,wqh equals to the Banach norm

|w|m for any w P Wm and m P M.

We introduce Hilbert C˚-bundles with the help of the next technical notion.
Cf., e.g., Schick [51] or Fomenko and Mishchenko [39].

One-point Hilbert A-module. Let A be a C˚-algebra, pE, p, qEq a Hilbert A-
module,M a finite dimensional manifold, and U Ď M an embedded submanifold

14



of M. We consider EU “ U ˆ E with the product topology, bundle projection
ppm, eq “ m, norm |pm, eq|m “ |e|E , fibre-wise addition pm, e1q ` pm, e2q “
pm, e1 ` e2q, and multiplication by scalars cpm, eq “ pm, ceq, where m P U,

e, e1, e2 P E, a P A, and c P C. Obviously the resulting structure is a Banach
fibre bundle on U when it is additionally equipped with a maximal smooth
atlas. We shall always consider the maximal atlas that contains the identity
chart U ˆ E Ñ EU . Notice that such a bundle atlas exists since the identity
chart is global on EU , i.e., defined on UˆE. Further, we define the fibre-wise C˚-
product by ppm, e1q, pm, e2qqm “ pe1, e2qE and the right action of A by pm, eq¨a “
pm, e ¨ aq, where at the right-hand side the action of A on E is considered. The
space of smooth sections Γ8pEU q of EU is linearly isomorphically identified
with C8pU,Eq.

If U “ tmu Ď M is a singleton, the structures on Etmu introduced above
make Etmu a Hilbert A-module, which we call the one-point Hilbert A-module.
In this case, Etmu is both a Hilbert A-module and a Banach fibre bundle on the
singleton tmu.

Definition 2: Let pE, p, qEq be a Hilbert A-module and p : E Ñ M be a
Banach fibre bundle with fibre the Banach space pE, | |Eq. We call p together
with a subatlas A of the atlas of p a Hilbert A-bundle with fibre a Hilbert A-
module pE, p, qEq if in addition an action ¨E : E ˆ A Ñ E of A and a mapping
p, qE : E ˆM E Ñ A are given that are smooth with respect to A and such that
for each point m P M

i) the action ¨E and the map p, qE restricted to Em ˆ A and to Em ˆ Em,

respectively, make the fibre Em a Hilbert A-module;

ii) for any chart φ : U ˆ E Ñ p´1pUq in A such that m P U, the restriction
φpm,´q : tmuˆE Ñ Em is a Hilbert A-module morphism of the one-point
Hilbert A-module Etmu “ tmu ˆ E onto the Hilbert A-module Em; and

iii) A is maximal with the properties i) and ii).

It is immediate to realize that a complex Hilbert bundle is a Hilbert A-bundle
if the C˚-algebra A is the C˚-algebra of complex numbers.

Remark: 1) By the chain rule for maps of open subsets of Rn into normed
spaces, transition maps of charts in the atlas of a Hilbert A-bundle considered as
maps of open subsets ofM into the group G “ Aut˚

ApEq are smooth if Aut˚
ApEq

is considered with the subset topology given by the inclusion
Aut˚

ApEq Ď End˚
ApEq, where the space End˚

ApEq is equipped with the strong
operator topology. Since the operator norm topology is coarser than the strong
operator topology, the transition maps are smooth also when the space of the
Hilbert A-module endomorphisms End˚

ApEq is equipped with the operator norm
topology. We consider the bundle EU as the Hilbert A-bundle with the maximal
smooth atlas containing the identity chart IdUˆE : U ˆ E Ñ EU such that the
Definition 2 is fulfilled.
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2) To avoid misunderstanding let us mention that there is a notion of a
‘bundle of C˚-algebras’ (e.g., Dixmier [8], Fell [12] and Dupré [9]) which is
different from the notion of a Hilbert C˚-bundle also in the case when the fibre
of the bundle is the Hilbert C˚-module A1, i.e., the C˚-algebra A with the action
given by the multiplication form the right and the Euclidean-type A-product as
defined above. Nevertheless, we notice that any Hilbert A-bundle on a manifold
M with a fibre the Hilbert C˚-module A1 is a ‘bundle of C˚-algebras’ on M .

By an isomorphism of Hilbert C˚-bundles p1 : E 1 Ñ M and p2 : E2 Ñ M a
C8-diffeomorphism T : E 1 Ñ E2 of Banach fibre bundles is meant such that the
restriction T|E 1

m
is an isomorphism of the Hilbert C˚-modules E 1

m and E2
m for

each m P M. In particular, an isomorphism of Hilbert C˚-bundles covers the
identity on the base manifold, i.e., p2 ˝ T “ p1.

For a Hilbert A-bundle E Ñ M, we define a right action of A on the complex
vector space Γ8pEq of smooth sections of E by the formula pf ¨aqpmq “ fpmq¨E a,
where f P Γ8pEq, a P A and m P M. The action of A restricts to the set
Γ8
c pEq of compactly supported elements of Γ8pEq. Further, we define a map

p, q„ : Γ8pEqˆΓ8pEq Ñ C8pM,Aq by the formula pf, hq„pmq “ pfpmq, hpmqqE
where f, h P Γ8pEq and m P M. For a Riemannian metric tensor g on M, we
consider its density-form and take the induced Radon measure µ on the Borel
σ-algebra ofM. Having done these choices, we define an A-valued A-sesquilinear
map on Γ8

c pEq by

pf, hq “

ż

M

pf, hq„dµ

for each f, h P Γ8
c pEq, where we consider the Bochner integral of A-valued µ-

measurable maps on M for convenience. (See, e.g., Ryan [49].) It is immediate
to realize that the pair pΓ8

c pEq, p, qq is a pre-Hilbert A-module. We denote the
induced C˚-norm by | |, and we call the topology on Γ8

c pEq induced by this
norm the pre-Hilbert topology. Let us notice that, in general, this topology is
not induced by an inner product.

Let us recall that a Hilbert A-bundle is called (topologically) finitely gener-
ated, finitely generated projective and C˚-self-dual if its fibre is (topologically)
finitely generated, finitely generated projective and C˚-self-dual as a Hilbert
A-module, respectively.

Let us summarize our notation regarding Hilbert A-modules and Hilbert
A-bundles briefly.

1) The norm on a C˚-algebra A is denoted by | |A. The C
˚-product on a

(pre-)Hilbert A-module W is denoted by p, qW and the induced C˚-norm
is denoted by | |W .

2) The norm on a fibre of a Banach bundle has the base point of the fibre
as its lower index. Thus | |m denotes the norm on the fibre p´1pmq. The
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Fréchet norms on sections of a Banach fibre bundle on a compact manifold
are indexed by non-negative integers and denoted by | |Fl .

3) The action of a C˚-algebra A on the total space E of a Hilbert A-bundle
is denoted by ¨E and the appropriate A-valued map (Definition 2) on the
fibred product E ˆM E is denoted by p, qE . The right action of A, the
A-product given by the Bochner integral, and the induced C˚-norm on
Γ8
c pEq have no indices and they are denoted by ¨, p, q, and | |, respectively.

In the next lemma, the Fréchet and the pre-Hilbert topologies are compared.

Lemma 4: Let M be a compact manifold and p : E Ñ M be a Hilbert
C˚-bundle. Then the pre-Hilbert topology on Γ8pEq is finer than the Fréchet
topology.

Proof. Since both of the considered topologies are metrisable, they are se-
quential (see e.g. [48]). Let us consider a sequence pfnqnPN Ď Γ8pEq that
converges in the Fréchet topology (i.e., in all Fréchet norms) to the zero section.
By the definition of | |F0 , it is obvious that the sequence converges also uniformly
to the zero section on M. Especially for any ǫ ą 0 there is a positive integer
n0 such that for each n ą n0 and all m P M we have |fnpmq|m ă ǫ. The con-
stant function ǫ defined on M has a finite Lebesgue integral over the compact
manifold M. Consequently, if n approaches infinity,

ş
M

pfn, fnq„dµ Ñ 0 by the
dominant convergence of the Bochner integral. Thus pfnqnPN converges to the
zero section in the pre-Hilbert topology as well. l

Sobolev-type spaces for Hilbert C˚-bundles

We generalize the definition of Sobolev-type spaces from Solovyov and Troit-
sky [56] and Fomenko and Mishchenko [39], in which topologically finitely gen-
erated projective Hilbert C˚-modules over a unital C˚-algebra are considered.
Let A be a C˚-algebra and E Ñ M be a Hilbert A-bundle on a compact manifold
M with fibre a Hilbert A-module pE, p, qEq. In particular, pE, | |Eq is a Banach
space. We consider the Euclidean space R

n with the standard scalar product
p, qRn and the Schwartz space SpRn, Eq of rapidly decreasing smooth maps on
R
n with values in the Banach space E. See Schwartz [54]. It is well known

that SpRn, Eq – SpRn,CqpbǫE as Fréchet spaces. (See, e.g., [58].) Denoting
the Lebesgue measure on R

n by λ, we consider that the direct and the inverse
Fourier transforms of the scalar-valued function f P SpRn,Cq are defined by

pF˘1fqpxq “ pF˘1

x,yfqpxq “

ż

yPRn

fpyqe¯2πipx,yqRndλpyq.

In both cases, the second lower index in Fx,y points to the variable over which
we integrate. The Fourier transforms pFEq˘1 on SpRn, Eq are defined as the
completed injective tensor product F˘1 pbǫIdE of the Fourier transforms F˘1 on
SpRn,Cq with the identity on E. See, e.g., Schwartz [54]. The map pFEq`1 is

17



denoted by FE as usual. The inverse Fourier transform pFEq´1 is the both-sided
inverse of FE .

For k P Z and f P SpRn, Eq, the so-called kth Sobolev-type norm is defined
by

|f |Sk “

˜ˇ̌
ˇ̌
ż

yPRn

`
pFEfqpyq, pFEfqpyq

˘
E

p1 ` |y|2
RnqkdλRnpyq

ˇ̌
ˇ̌
A

¸1{2

where we consider the Bochner integral (i.e., the strong integral) of A-valued
maps with respect to the Lebesgue measure.

Remark: Note that the Schwartz space SpRn,Cq is a nuclear space and
thus, its completed injective tensor product with E is linearly homeomorphic
to the completed projective tensor product with E. See [58]. Let us denote the
completed projective tensor product by pbπ. Since SpRn, Eq Ď

`
L1pRnqpbǫE

˘
X`

L1pRnqpbπE
˘
the Bochner and the Pettis integral exist on SpRn, Eq and more-

over they are equal. See Ryan [49]. The Fourier transform on SpRn, Eq can be
introduced also by the above formula for the Fouerier transform of scalar-valued
functions in which the Pettis or, equivalently, the Bochner integral is used.

The Sobolev-type space HkpRn, Eq is defined as the completion of SpRn, Eq
with respect to the norm | |Sk . For f, g P HkpRn, Eq, we set

pf, gqSk “

ż

yPRn

`
pFEfqpyq, pFEgqpyq

˘
E

p1 ` |y|2
RnqkdλRnpyq P A.

This sets up a well defined map of HkpRn, Eq ˆHkpRn, Eq into A by the domi-
nant convergence of the Bochner integral and the Cauchy–Schwarz-type inequal-
ity for |p, qE |A mentioned in Section 2. By the Gelfand–Naimark theorem, p, qSk
is positive definite. Immediately, we get that it is an A-product. The induced
C˚-norm for this C˚-product is the continuous extension of | |Sk . We denote it
by | |Sk as well. Let us notice that p, qS0 is an extension to H0pRn, EqˆH0pRn, Eq
of the C˚-product p, q on Γ8

c pRn, Eq introduced above.

For a manifold atlas on a compact manifold Mn, a compatible bundle atlas
on E Ñ M, and a subordinated partition of unity onMn, we define the Sobolev-
type spaces pHkpM, Eq, p, qSk q by a classical procedure using the partition of unity
and the Sobolev-type spaces HkpRn, Eq on R

n defined above. See, e.g., [56].
We denote them by HkpEq if the manifold is known. The Sobolev-type spaces
depend on the atlases and on the partition of unity. Let us remark, that for
different choices the resulting spaces are isomorphic as Hilbert C˚-modules that
is proved as in the finite rank case. See, e.g., Palais [42]. If the product bundle
EM “ MˆE Ñ M is considered with the canonical Hilbert A-bundle structure,
we denote the space HkpM,EM q by HkpM,Eq.

Conventions concerning C˚-pseudodifferential operators
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Let p1 : E 1 Ñ M and p2 : E2 Ñ M be Hilbert A-bundles on a compact
manifold Mn with fibres E1 and E2, respectively. We choose a partition of
unity on M subordinated to the manifold atlas and to the both bundle atlases.
A symbol is a map of T˚M that assigns to each cotangent vector ξ P T˚

mM,

m P M, a morphism σpξq P Hom˚
ApE 1

m, E
2
mq – Hom˚

ApE1, E2q of Hilbert A-
modules that satisfies specific growth conditions defined with help of the bundle
charts and the partition of the unity. We consider the growth conditions given in
[56]. They are generalizations to Hilbert A-bundles of the estimates given, e.g.,
in Seeley [50], Palais [42] and Wells [62], and formulated for smooth complex-
valued functions or for smooth sections of finite rank hermitian vector bundles.
In particular, symbols are point-wise adjointable Hilbert A-module morphisms.
The set of symbols forms a Z-filtered vector space, which induces the order of
symbols and an associated Z-grading.

For simplicity let us assume that the atlas of M contains a global chart, and
denote the image in R

n of the domain of this chart by U. Notice that we have
the induced trivialization of T˚M – U ˆ pRnq˚ – U ˆ R

n at our disposal. We
denote corresponding coordinates on T˚M by the couples px, ηq, where x P U

and η P R
n. Let σ be a symbol and σU be its coordinate expression with respect

to the manifold chart, induced cotangent bundle chart, and to the bundle charts.
For each px, ηq P U ˆ R

n, the map σU px, ηq : E1 Ñ E2 is an adjointable map of
Hilbert A-modules. With respect to the chosen charts, the A-pseudodifferential
operator generated by σ is defined in coordinates by

pDsqpxq “ ppFE2

x,ηq´1 ˝ σU px, ηq ˝ F
E1

η,yqpsq

where px, ηq P U ˆ R
n and y P U. Below we do not label the Fourier transfor-

mation by the lower indices and understand that the order of integrations is
set by this formula. In Solovyov, Troitsky [56], p. 104, there is a coordinate
expression for an A-pseudodifferential operator for the case the manifold or the
bundle atlases do not contain a global chart. We apply it in the proof of Thm.
9. Compared to the formula above, it contains a partition of unity on M. If
A “ C, we call an A-pseudodifferential operator a pseudodifferential operator.

The order of a C˚-pseudodifferential operator is defined as the order of the
symbol by which the operator is generated. Let d be the order of D. We denote
the continuous extension of the A-pseudodifferential operator D : Γ8pM, E 1q Ñ
Γ8pM, E2q to HkpM, E 1q by Dk. It is a map into the space Hk´dpM, E2q.

If the Hilbert C˚-bundles E 1 and E2 are C˚-self-dual, D is adjointable as
a morphism of the pre-Hilbert A-modules Γ8pM, E 1q and Γ8pM, E2q. This is
proved by considering the transposed operators (see Section 1) of the continuous
extensions of D to elements in the chain pHkpM, E 1qqkPZ of Hilbert A-modules.
The construction of the adjoint of D is based on the fact that HkpM, Eq‹ –
H´kpM, Eq if E is an A-self-dual bundle. See [56] or Palais [42] in which the
case of Hilbert bundles is treated.

Definition 3: An A-pseudodifferential operator of order d on Hilbert A-
bundles p1 : E 1 Ñ M and p2 : E2 Ñ M on a manifold M of dimension n ě
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1 is called A-elliptic if its symbol σpξq in ξ P T˚M is a Hilbert A-module
isomorphism of pE 1

m, | |1mq onto pE2
m, | |2mq for any non-zero element ξ P T˚

mM and
any m P M.

Remark: 1) If we allow null dimensional base manifolds, i.e., countable sets
with the discrete topology, in the definition above, the set of non-zero cotan-
gent vectors is empty, and therefore any A-pseudodifferential operator would be
A-elliptic in this “trivial” case. We exclude the case of zero dimensional man-
ifolds from the definition of the C˚-ellipticity. See the remark on C˚-compact
embeddings for null dimensional manifolds below the Scholium 1.

2) If A “ C, an A-elliptic operator is called elliptic.

Smooth trivializations of Hilbert bundles

Let p : V Ñ M be an infinite rank Hilbert bundle on a manifold Mn with a
complex Hilbert space pV, hq as the fibre and with a maximal C8-differentiable
atlas. If the dimension of V is infinite, the unitary group of V equipped with
the strong operator topology is continuously contractible. See Dixmier, Douady
[7]. Consequently, an infinite rank Hilbert bundle is continuously trivializable,
i.e., there is a homeomorphism of V onto the product Hilbert bundle VM “
M ˆ V Ñ M that covers the identity on M. See, e.g., [45] for a cohomology
approach to a proof of this fact. See also Schottenloher [55] for a treatise on the
norm and strong operator topologies on the unitary group of a Hilbert space
and on continuous Hilbert fibre bundles.

Nevertheless, the fact that the unitary group of the infinite dimensional
Hilbert space is continuously contractible is not sufficient for our purpose since
we shall consider pseudodifferential operators on Hilbert bundles. By results of
Burghelea, Kuiper [6] and Moulis in [40], it is possible to approximate a triv-
ializing bundle homeomorphism by a fibre bundle C8-diffeomorphism. Conse-
quently, p is also smoothly trivializable.

Trivializing construction. LetM be compact and a : V Ñ VM “ MˆV be a
trivializing C8-diffeomeorphism. It induces a linear isomorphism α : Γ8pVq Ñ
Γ8pVM q by αpsq “ a ˝ s, where s P Γ8pVq. whose inverse is given by a similar
formula where a´1 is used instead of a. Recall that Γ8pVM q is already linearly
homeomorphically identified with C8pM,V q.

We want to show that α is a homeomorphism of topological vector spaces
for both the introduced topologies on the section spaces. For each m P M,

am : Vm Ñ V is defined by ampvq “ apvq for any v P Vm. It is the restriction
of a to the singleton tmu. Let us denote the operator norm of continuous linear
maps of the Hilbert space Vm into the Hilbert space V by || ||m. In the case of the
pre-Hilbert topology, we use the dominant convergence of the Bochner integral,
similarly as in the proof of Lemma 4, and the fact that m P M ÞÑ ||am||m and
m ÞÑ ||pamq´1|| are continuous functions defined on the compact set M , and
thus bounded by a constant that we denote by c. Indeed, let fn Ñ 0 in the
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pre-Hilbert topology on Γ8pVq if n tends to infinity. Then

|αpfnq|2 “ |

ż

mPM

h papfnpmqq, apfnpmqqq dµpmq|

“

ż

mPM

|amppfnqpmqq|2V dµpmq ď

ż

mPM

||am||2m|fnpmq|2V dµpmq

ď c2
ż

mPM

|fnpmq|2V dµpmq

that converges to null by the assumption on pfnqn, proving that α is continuous.
The continuity of α´1 is proved by using the formula pα´1sqpmq “ a´1pspmqq
and similar estimates as above. In the case of the Fréchet topology, we assume
w.l.o.g. that the Fréchet topology on Γ8pVq is given by the pull-back ∇V

by the bundle map a of the connection ∇ on VM that is used to define a
Fréchet topology on Γ8pVM q. Let X be a local unit-length vector field on M.

Since a is C8-differentiable, its covariant derivatives with respect to the induced
connection ∇Hom

X on the homomorphism bundle HompV, VM q are bounded on
M with respect to the operator norm topology by the compactness of M. The
Fréchet norms on Γ8pVq are bounded from above by the Fréchet norms on
Γ8pVM q using the formula ∇V

Xs “ a´1 ˝
`
p∇Hom

X aqpsq
˘

´ a´1 ˝ p∇Xpa ˝ sqq ,
where X is a local vector field on M and s is a smooth section of V. This proves
that α´1 is continuous. The continuity of α is derived by the open map theorem
for Fréchet spaces or using a similar formula as above but expressing ∇X with
help of ∇V

X .

If D : Γ8pV 1q Ñ Γ8pV2q is a pseudodifferential operator on Hilbert bun-

dles V 1 and V2, we define the pseudodifferential operator rD : C8pM,V 1q Ñ

C8pM,V 2q by rD “ α2 ˝ D ˝ α1´1
, where α1 is the induced complex linear

homeomorphism of Γ8pM,V 1q with the Fréchet and the pre-Hilbert topology
onto C8pM,V 1q with the Fréchet and the pre-Hilbert topology, respectively,

and similarly for α2. We often consider rD instead of D without mentioning it
explicitly. The image of rD is closed if and only if the image is closed D with
respect to the corresponding topologies. Notice that already for finite rank
bundles, D need not be continuous with respect to the pre-Hilbert topology.

Extensions. For a C˚-algebra A, let Ae denote the unitalization of A. In
particular, Ae “ A‘C as a complex vector space. Any (pre-)Hilbert A-module
W is turned into a (pre-)Hilbert Ae-module by setting w ¨ pB, cq “ w ¨ B ` cw,

where B P A, w P W and c P C, and by keeping the A-product unchanged.
We call the resulting (pre-)Hilbert Ae-module the extended (pre-)Hilbert A-
module. It is easy to see that any morphism of (pre-)Hilbert A-modules is also a
morphism of the corresponding extended pre-Hilbert Ae-modules. Note that a
(pre-)Hilbert A-module and its extension are equal as topological vector spaces.

We use the assertion on the so-called smooth embedding of Sobolev-type
spaces for Hilbert A-bundles on compact manifolds, derived as Lemma 5 in
Krýsl [26]. The assumption on the unitality on A is not used in the proof of
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this lemma. The assumption can also be removed using the extended modules
described above. Namely, we consider the bundles as Ae-bundles and embed the
Sobolev-type spaces into the smooth sections spaces by the mentioned Lemma
5 in [26]. The embedding is a morphism of pre-Hilbert Ae-modules. Since the
considered pre-Hilbert Ae-modules are pre-Hilbert A-modules as well (i.e., the
induced C˚-products maps into A), the embedding is a morphism of pre-Hilbert
A-modules as well. Let us notice that a smooth embedding for Sobolev-type
spaces is proved in Fomenko and Mishchenko [39] for unital C˚-algebras and
topologically finitely generated projective Hilbert C˚-bundles. Nevertheless, in
that proof neither the unitality of A, nor the assumptions are used that the
fibres are topologically finitely generated and projective.

Lemma 5: Let p1 : V 1 Ñ M and p2 : V2 Ñ M be Hilbert bundles (i.e.,
Hilbert C-bundles) on a compact manifold M. Then any C-pseudodifferential
operator D : Γ8pM,V 1q Ñ Γ8pM,V2q has an adjoint as a linear map of inner
product spaces. For each ξ P T˚M if σpξq is the symbol of D in ξ, the adjoint
operator σpξq˚ is the symbol of D˚ evaluated in ξ. Moreover, if D is elliptic,
D˚ is elliptic as well.

Proof. Let V 1 and V 2 be the fibres of p1 and p2, respectively. By Wloka [63],
HkpM,V q – HkpMqpbHSV, where pbHS denotes the Hilbert–Schmidt tensor
product and V is a Hilbert space. Consequently, HkpM,V q are Hilbert spaces.
In particular, they are C-self-dual by the Riesz representation theorem. Let
us consider the pseudodifferential operator D, its continuous extensions Dk :
HkpM,V 1q Ñ Hk´dpM,V 2q for k P Z, and suppose that d is the order of D.
Since any continuous linear map of Hilbert spaces is adjointable, we have the
operator

pDkq˚ : Hk´dpM,V 2q Ñ HkpM,V 1q

and its restriction to C8pM,V 2q at our disposal. By the mentioned Sobolev-
type smooth embedding (Lemma 5, [26]), pDkq˚

|C8pM,V 2q maps into C8pM,V 1q.

By the uniqueness of adjoints, we get that D˚ “ pDdq˚
|C8pM,V 2q as in the

finite rank case, i.e., if we identify H lpM,V 1q with H´lpM,V 1q and similarly for
H lpM,V 2q. See Palais [42].

Since any continuous linear map of Hilbert spaces has an adjoint, the adjoint
σpξq˚ : V 2 Ñ V 1 of σpξq : V 1 Ñ V 2 exists for all ξ P T˚M. The facts that
ξ ÞÑ σpξq˚ satisfies the correct growth conditions and that it is a symbol of the
adjoint D˚ follow by the same lines as in the finite rank case. See, e.g., the
proof of Theorem 3.16 in Wells [62].

If D is elliptic, its symbol σpξq is a linear homeomorphism for any 0 ‰ ξ P

T˚M. It is immediate to check that the inverse of the adjoint σpξq˚ is
`
σpξq´1

˘˚
.

Consequently for each ξ ‰ 0, the symbol σpξq˚ of D˚ is a linear homeomorphism
and thus D˚ is elliptic. l

Remark: In the above proof, Theorem 3.16 from [62] is used that relies on
the Theorem 3.10 of the ibid citation on so-called generalized symbols. In its
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proof the mean value theorem is applied to scalar components of the symbols on
finite rank vector bundles. If the fibres V 1 and V 2 of V 1 and V2, respectively, are
Hilbert spaces, we use Thm. 4.2 in Lang [32], where a generalization to Banach
spaces is given of the mean value theorem. We use it for the space HompV 1, V 2q
equipped with the operator norm topology.

Let us suppose that A is a unital C˚-algebra, p1 : E 1 Ñ M and p2 : E2 Ñ M

are topologically finitely generated projective Hilbert A-bundles on a compact
manifold M , and D : Γ8pE 1q Ñ Γ8pE2q is an A-elliptic operator. It is known
that if s P HkpE 1q satisfies the equation Dks “ f for a smooth section f P
Γ8pE2q, then s is smooth. This property of D is called the elliptic regularity.
See Mishchenko and Fomenko [39] where the regularity is treated for this case.
We prove the elliptic regularity for Hilbert CV -bundles, the fibres of which need
not be topologically finitely generated projective. We use the Lemma 5 from
[26] on the smooth embedding of Sobolev-type spaces mentioned above.

Recall that an A-pseudodifferential operator is called a smoothing operator
if its continuous extension to HkpE 1q is a map into the space Hk`1pE2q for all
sufficiently big integers k.

Theorem 6 (elliptic regularity): Let A be a C˚-algebra, p1 : E 1 Ñ M and
p2 : E2 Ñ M be Hilbert A-bundles on a compact manifoldM , andD : Γ8pE 1q Ñ
Γ8pE2q be an A-elliptic operator of order d. If f “ Dks P Γ8pE2q for a map
s P HkpE 1q, then s P Γ8pE 1q.

Proof. Since D is A-elliptic, we may construct a partial inverse qDk´d :
Hk´dpE2q Ñ HkpE 1q of Dk : HkpE 1q Ñ Hk´dpE2q as in [39], i.e., by taking the
Fourier transform of the inverse of the symbol of D (out of the zero section) mul-
tiplied by a cut-off function and extending the resulting A-pseudodifferential op-
erator to the appropriate Sobolev-type completion. It follows by this construc-
tion, that the operator Nk “ qDk´dDk ´ IdHkpE 1q maps HkpE 1q into Hk`1pE 1q.

For any map s satisfying the assumptions of the theorem, we get s “ qDk´dDks´

p qDk´dDk ´ IdHkpE 1qqs “ qDk´df ´Nks P Hk`1pE 1q because qDk´df P Γ8pE 1q. By

mathematical induction s P
Ş8
l“kH

lpE 1q which equals to Γ8pE 1q by the Lemma
5 in Krýsl [26]. l

Remark: 1) For details on the construction of qDk´d sketched above, see,
e.g., the proof of Thm. 3.4 in [39]. Notice, that the assumption is not used in
the proof in [39] that the Hilbert C˚-bundle is topologically finitely generated
and projective and that the C˚-algebra is unital.

2) Using the notation in the proof of the Theorem 6, let us set qD “ p qDkq|ΓpE 1q.

Since Nk is the continuous extension to HkpE 1q of N “ qDD ´ IdΓpE 1q and Nk
maps into Hk`1pE 1q, N is smoothing.
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3.1 Compact CV -modules and compact CV -bundles

The complex vector space CV of compact operators on the Hilbert space pV, hq
is a right CV -module with respect to the action CV ˆCV Q pB,Cq ÞÑ B ¨C “
B ˝C P CV. Setting pB,CqCV “ B˚ ˝C for B,C P CV, we get a C˚-product on
CV. Since CV is a C˚-algebra, the induced C˚-norm is equal to the operator
norm on CV. The right action of CV and the C˚-product define a structure of
a Hilbert CV -module on the space of compact operators. We call this Hilbert
module the compact CV -module. It is isomorphic to the Hilbert C˚-module CV 1

defined above. The compact CV -module is not topologically finitely generated
if the dimension of V is infinite. See, e.g., Wegge-Olsen [61]. (In [61], the term
‘finitely generated’ means ‘topologically finitely generated’ in our sense.)

We mention the following definition from [4].

Definition 4: Let pE, p, qEq be a Hilbert A-module. We call a subset
pvjqjPJ Ď E an orthonormal basis of pE, p, qEq if

i) the set pvjqjPJ generates (by taking finite right A-linear combinations) a
dense A-submodule of the Hilbert A-module E;

ii) pvj , vj1 qE “ 0 whenever j ‰ j1;

iii) for each j P J, the element ξj “ pvj , vjqE P A is an orthogonal projection,
i.e., a non-zero hermitian-symmetric idempotent in A; and

iv) ξjAξj “ Cξj for all j P J (minimality).

Let us consider a Hilbert basis pejqjPN of a separable Hilbert space pV, hq,
and denote the dual basis by pǫjqjPN Ď V ˚. For each i P N, we set

vi “ ei b ǫ1 P CV

where for v P V and α P V ˚, the elementary tensor vbα is defined by the formula
pvbαqpwq “ αpwqv, w P V. It is easy to see that pviqiPN is an orthonormal basis
of the compact Hilbert CV -module. See also Bakić, Guljaš [4].

Musical isomorphisms 5 and 7: Let pV, hq be a Hilbert space. We define the
map 5 : V Ñ V ˚ by r5pvqspwq “ hpv, wq, where v, w P V. On the continuous
dual V ˚, we consider the action of complex scalars given by pcαqpvq “ cαpvq
for each α P V ˚, v P V and c P C. Also we have the map 7 : V ˚ Ñ V defined
by hp7pαq, vq “ αpvq for all v P V. The element 7pαq exists by the Riesz repre-
sentation theorem for Hilbert spaces. This makes us able to set h˚pα, βq “
hp7pβq, 7pαqq, where α, β P V ˚. It is immediate to see that the hermitian-
symmetric sesquilinear form h˚ is an inner product on V ˚ and pV ˚, h˚q is a
Hilbert space. Since 7 and 5 are mutually inverse, 5 is onto V ˚ and thus pV, hq is
C-self-dual. Notice also that 5 and 7 are complex anti-linear homeomorphisms.
We use the convenient notation α7 “ 7pαq and v5 “ 5pvq.
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Let V 1 an V 2 be Hilbert spaces and T : V 1 Ñ V 2 be a continuous linear
map. We remark that using the introduced notation, the adjoint of T can be

computed by the transposed map T t : V 2˚
Ñ V 1˚

as T˚pv2q “ rT tpv25
qs7,

where v2 P V 2 and 7 and 5 are defined with respect to the inner products on
V 1 and V 2, respectively. See Section 1 for the transposed maps of morphisms
of Hilbert A-modules. Notice that in the theory of pseudodifferential operators,
T˚ us usually called the transposed operator. However, in this case, we follow
conventions used in pre-Hilbert C˚-modules and in inner product spaces.

We shall prove a C˚-compact embedding for Hilbert C˚-bundles that satisfy
the following definition.

Definition 5: Let M be a smooth manifold and V be a Hilbert space. A
Hilbert CV -bundle onM is called a compact CV -bundle onM if it is isomorphic
as a Hilbert C˚-bundle to the product Hilbert CV -bundle CVM “ M ˆCV Ñ
M equipped with the Hilbert CV -bundle structure introduced below the Defi-
nition 2, in which we set U “ M .

Construction of embeddings for tori. Because CV is not topologically finitely
generated over the C˚-algebra CV , we shall give a construction which replaces
the formally similar construction in the proof of the Lemma 3.3 in Fomenko,
Mishchenko [39] done for topologically finitely generated Hilbert A-modules
over a unital C˚-algebra A. Let us consider the n-dimensional torus Tn as
the quotient Rn{p2πZqn of the standard manifold structures on R

n and p2πZqn,
equip it with the flat Riemannian metric induced by the Euclidean inner product
p, qRn on R

n, and denote the corresponding norm on R
n by | |Rn . Further let µTn

be the Radon measure on Tn induced by the volume density-form for the chosen
Riemannian metric. For i, j P N, ~m P Z

n and ~θ P R
n, we define the CV -valued

maps on the torus φ~m
j

i : T
n Ñ CV by

φ~m
j

i pr~θsq “ eıp~m,
~θqRn ei b ǫj

where r~θs denotes the equivalence class of ~θ P R
n in the quotient R

n{p2πZqn,
peiqiPN is a Hilbert basis of V, and pǫiqiPN Ď V ˚ is the dual Hilbert basis.

Let us consider the (positive semi-definite) Laplace operator ∆ “ ´
řn
i“1

B2

θi

defined on smooth functions on the Euclidean space pRn, p, qRnq, and the appro-
priate differential operator ∆CV that acts on smooth CV -valued functions de-
fined on R

n as well. (The partial derivative Bθi denotes the Gateaux derivative
in the direction of the i-th vector of the standard basis of Rn.) By its transla-
tional invariance, the operator ∆CV descends to a differential operator on the
smooth CV -valued functions on the torus. Due to the smoothness of the action
of CV on the total space of the compact CV -bundle, the resulting operator
is right CV -linear. We denote it by ∆CV

Tn : C8pTn, CV q Ñ C8pTn, CV q. It
is convenient to use the CV -products defined by the powers of the Laplacian
operator, that are equal to the C˚-products p, qSk up to a constant multiple. See

25



Palais [42]. We denote them by p, qSk as well. For ~m1, ~m2 P Z
n and i, j, l, p P N,

we have

pφ ~m1
j

i , φ
~m2
l

pqSk “

ż

Tn

´
φ ~m1

j

i

¯˚

˝
´`

IdC8pTn,CV q ` ∆CV
Tn

˘k
φ ~m2

l

p

¯
dµTn

“ p1 ` | ~m2|2
Rnqkδ ~m1, ~m2δipej b ǫl

where δ ~m1, ~m2 “ 0 or 1 iff ~m1 ‰ ~m2 or ~m1 “ ~m2, respectively; the Kronecker
symbol δip has its classical meaning; the kth power of the operator means the
k-fold composition of the operator with itself; and the integral is the Bochner
integral of maps defined on the torus that have values in the Banach space CV.

The above computation is based on the observations that
ş2π
0
einydλRpyq “

δ0n for each n P Z and ´B2

θj
peıp~m,

~θqRn ep b ǫlq “ m2
je
ıp~m,~θqRn ep b ǫl, where

~m “ pm1, . . . ,mnq P Z
n and j “ 1, . . . , n. For k P Z, let us set ψ ~m,k

j

i “

p1 ` |~m|2
Rnq´k{2φ~m

j

i . Due to the above computation, pψ ~m,k
1

i qiPN,~mPZn is an or-
thonormal basis of the Hilbert CV -module pHkpTn, CV q, p, qSk q.

Let us consider the canonical inclusion

Ik`1 : Hk`1pTn, CV q Ñ HkpTn, CV q

and compute the limit

lim
p~m,iqÑ8

|Ik`1pψ ~m,k`11

i q|Sk “ lim
p~m,iqÑ8

|ψ ~m,k`11

i |Sk

“ lim
p~m,iqÑ8

|p1 ` |~m|2
Rnq´ k`1

2 φ~m
1

i |Sk

“ lim
p~m,iqÑ8

|p1 ` |~m|2
Rnq´ 1

2 p1 ` |~m|2
Rnq´ k

2 φ~m
1

i |Sk

“ lim
p~m,iqÑ8

p1 ` |~m|2
Rnq´ 1

2 |ψ ~m,k
1

i |Sk

“ lim
p~m,iqÑ8

p1 ` |~m|2
Rnq´ 1

2 “ 0

if n ě 1.

Scholium 1: If n ě 1, the map Ik`1 is CV -compact.

Proof. Since limp~m,iqÑ8 |Ik`1pψ ~m,k`11

i q|Sk “ 0 as computed above, Ik`1 is
CV -compact by [4] (Theorem 9 (ii)). l

Remark: For n “ 0, T 0 “ R
0{p2πZq0 is just the singleton t0u. In this case

each Ik`1 is identified with the identity map on CV. In particular, it is not a com-

pact map. By the above computation for n “ 0, limp~m,iqÑ8 |Ik`1pψ ~m,k`11

i q|Sk “
1 because |~m|Rn “ 0. Thus the map Ik`1 is even not CV -compact as follows
from the mentioned Theorem 9 in [4].
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3.2 Closed images of CV -elliptic operators on compact

CV -bundles

For k P Z, unital C˚-algebra A, compact manifoldM , Hilbert A-bundle E Ñ M

with fibre a Hilbert A-module pE, p, qEq, each subordinated partition of unity
on M, and for a convenient integer l, the surjective Hilbert A-module mor-
phism Prks :

Àl
i“1

HkpTn, CV q Ñ HkpM,CV q is defined in Solovyov, Troitsky
(Construction 2.1.76, [56]). The construction is parallel to the finite rank case
([42]). It is easy to realize that it may be applied at least for any Hilbert
C˚-module E which is orthogonally complemented in Aq for a suitable q, re-
gardless whether A is unital or not. Let us notice that the compact CV -module
E “ CV is orthogonally complemented in CV for trivial reasons. Thus we
may define Prks for a compact CV -bundle on M by the same formula as in
[56], getting a Hilbert CV -module morphism as well. Let us notice that for
k1 ď k, Prk1s is the continuous extension of Prks since all of the maps Prks are
defined as the continuous extensions to the Sobolev-type spaces of a single map
P :

Àl
i“1

C8pTn, Eq Ñ Γ8pM, Eq, whose domain is dense in the direct sumÀl
i“1

HkpTn, Eq of the Sobolev-type completions for each k P Z.

The existence of a right inverse γrks to Prks is stated in Theorem 2.1.77 in
[56] without a precise reference to a proof. However the proof may proceed in
the same way as in Palais [42] (Theorem 2 in Paragraph 4, Chapter X). The
appropriate Hilbert A-bundle analogue of γrks is A-linear since it is constructed
by scalar-valued functions derived from the partition of unity on M and Hilbert
A-bundle charts, which are fibre-wise Hilbert A-module morphisms by Definition
2. Consequently, γrks is a Hilbert A-module morphism. Further for k ě k1, the
map γrk1s is the continuous extension of the map γrks. We remark that the proof
of this statement proceeds as in the Corollary 1 of Theorem 2, Paragraph 4,
Chapter X in Palais [42].

Let us mention (cf., e.g., 2.1.28 in [56]) that a Rellich A-chain is a descending
chain of Hilbert A-modules pXkqkPZ such that the inclusion maps Xk`1 ãÑ Xk

are A-compact for each integer k.

Below we prove a theorem whose second part is targeted to the images of
the continuous extensions to Sobolev-type spaces of CV -elliptic operators. For
simplicity, we suppose that the finite orthogonal sum

Àl
i“1

HkpTn, Eq contains
one element only, i.e., l “ 1. In the proof of the first part, we proceed similarly
as in the proof of the Thm. 3, Paragraph 4, Chapter X in [42].

Theorem 7: Let M be a compact manifold of dimension n and

D : C8pM,CV q Ñ C8pM,CV q

be an adjointable CV -elliptic operator of order d on the compact CV -bundle
CVM “ M ˆ CV on M. Then

a) the inclusion map Jk`1 : Hk`1pM,CV q Ñ HkpM,CV q is CV -compact
and
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b) the continuous extension Dk of D to HkpM,CV q is CV -Fredholm and its
image is closed in Hk´dpM,CV q with respect to the topology given by
the Sobolev-type norm | |Sk´d.

Proof. 1) We have sequences pHkpTn, CV qqkPZ and pHkpM,CV qqkPZ of
Hilbert A-modules at our disposal. The sequence pHkpTn, CV qqkPZ is a Rel-
lich CV -chain because the inclusions

Ik`1 : Hk`1pTn, CV q Ñ HkpTn, CV q

are CV -compact by Scholium 1. Let us consider the inclusion map Jk`1 :
Hk`1pM,CV q Ñ HkpM,CV q. The diagram

Hk`1pTn, CV q
Ik`1 // HkpTn, CV q

Prks

��
Hk`1pM,CV q

Jk`1 //

γrk`1s

OO

HkpM,CV q

is commutative since PrksIk`1γrk`1ss “ Prksγrk`1ss “ Prksγrkss “ s “ Jk`1s

for all s P Hk`1pM,CV q. Since Ik`1 is CV -compact (Scholium 1), Jk`1 is CV -
compact by the ideal property of C˚-compact operators (see the Remark above
the Definition 1). Consequently pHkpM,CV qqkPZ is a Rellich CV -chain as well
and the corresponding inclusions are CV -compact homomorphisms. Thus a) is
proved.

2) Let k P Z. Since D is CV -elliptic, there exists a partial inverse of Dk,

denoted by qDk´d, such that the operator Nk “ qDk´dDk ´ IdHkpM,CV q maps

HkpM,CV q into Hk`1pM,CV q Ď HkpM,CV q, i.e., it is smoothing. Recall that
qDk´d is constructed by inverting the symbol of D out of the image of the zero
section of T˚M, using the already mentioned construction. SinceNk “ Jk`1˝Nk
and Jk`1 is CV -compact by a), Nk is CV -compact as a map of HkpM,CV q
into HkpM,CV q by the ideal property for C˚-compact operators. Similarly, we

proceed for the opposite composition, i.e., of Dk with qDk´d in this order.
Consequently Dk is CV -Fredholm. By Lemma 1, the image of Dk is closed

in Hk´dpM,CV q and thus b) follows. l

4 Images of elliptic operators

In this chapter, we investigate topological properties of images of elliptic oper-
ators defined on smooth sections of Hilbert bundles on compact manifolds, not
assuming additionally the invariance of these operators with respect to a C˚-
algebra of compact operators other than the C˚-algebra of complex numbers.
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4.1 Injective completion of tensor products

Let pX be the unique completion of a metric space X up to isometry. We suppose
that it is defined by taking Cauchy sequences in X and by considering two of
such sequences equivalent if they differ by a sequence converging to zero in X
that is usually called the null-sequence. The completion pX is equipped with a
metric induced canonically by the metric on X. The element in pX determined
by a Cauchy sequence paiqiPN Ď X is denoted by rpaiqis or by limi ai. We

always consider X to be isometrically embedded into pX by the map that takes
an element a P X to the equivalence class containing the constant sequence
paqiPN.

Let X1 and X2 be both real or both complex vector spaces. We denote their
(algebraic) tensor product over the ring of real or complex numbers, respectively,
by X1 b X2. If X1 and X2 are vector spaces equipped with countable families
of seminorms, we denote the tensor product X1 b X2 by X1 bǫ X2, when we
consider it with the so-called injective family of seminorms (see Tréves [58])
which is induced by the seminorms on X1 and X2. We denote the completion
of the tensor product X1 bǫ X2 with respect to the metric generated by the
injective family of seminorms by X1

pbǫX2 and call it the completed injective
tensor product or simply the injective completion. If X1 and X2 are Fréchet
topological vector spaces, it is well known that the completion is a Fréchet
topological vector space as well. See [58].

Let Z be a Fréchet topological vector space and pV, hq be a Hilbert space.
For a homogeneous element C “ f b α P Z b V ˚ and an element B P CV, we
consider the right action of B on C defined by C ¨B “ f bpα˝Bq, and extend it
linearly to the tensor product XbV ˚.We can think of the action on ZbV ˚ by
a fixed element B P CV as of the map IdZ bPB , where PBpαq “ α ˝B for each
α P V ˚. The action by B on elements of the completed injective tensor product
Z pbǫV

˚ is defined as the unique continuous extension of the map IdZ b PB
to Z pbǫV

˚ denoted by IdZ pbǫPB . It is easy to see that the resulting action is
continuous as a map pZ pbǫV

˚q ˆ CV Ñ Z pbǫV
˚ if CV is considered with the

operator norm topology and also if it is considered with the strong operator
topology. The continuity is verified for each of the Fréchet norms defining the
metric on Z separately.

For any continuous map D : X Ñ Y of Fréchet spaces X and Y, we consider
the continuous map Dǫ “ D b IdV ˚ : X bǫ V

˚ Ñ Y bǫ V
˚ and its unique

continuous extension pDǫ : X pbǫV
˚ Ñ Y pbǫV

˚ to the completed injective tensor
product X pbǫV

˚. See Tréves [58].

Lemma 8: LetD : X Ñ Y be a continuous linear map of Fréchet topological
vector spaces X and Y. Then pDǫ is CV -linear from the right.

Proof.
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1) Each element c P X b V ˚ can be written as c “
řl
i“1

fi b αi, where l is
an integer, fi P X and αi P V ˚ for each i “ 1, . . . , l. For B P CV, we have
c ¨B “

řl
i“1

fibpαi ˝Bq and consequently pDǫpcqq ¨B “ ppD b IdV ˚ qpcqq ¨

B “
´

pD b IdV ˚ q
řl
i“1

fi b αi

¯
¨B “

´řl
i“1

pDfi b αiq
¯

¨B “
řl
i“1

Dfib

pαi ˝Bq “ pD b IdV ˚ qpc ¨Bq “ Dǫpc ¨Bq. Thus Dǫ is CV -linear from the
right.

2) For c P X pbǫV
˚, let us consider a Cauchy sequence pciqiPN in XbǫV

˚ that
converges to c in the completed injective tensor product X pbǫV

˚. Using
the fact that PB and DpbǫIdV ˚ are continuous, the CV -linearity from the
right of Dǫ “ D b IdV ˚ on X b V ˚ proved in the paragraph 1) above,

and the continuity of PB again, we obtain pDǫpc ¨Bq “ pDǫ pplimi ciq ¨Bq “
pDǫ plimipci ¨Bqq “

“ lim
i

pDǫpci ¨Bqq “ lim
i

ppDǫpciqq ¨Bq “
´
lim
i

pDǫpciqq
¯

¨B “

“
´

pDǫplim
i
ciq

¯
¨B “

´
pDǫpcq

¯
¨B.

Consequently, pDǫ is right CV -linear as a map of X pbǫV
˚ into Y pbǫV

˚. l

Let V and V 1 be Banach spaces and let us consider the operator norm
topology on the continuous dual V ˚ of V. The following isometric isomorphism
of Fréchet topological vector spaces

C8pM,V 1qpbǫV
˚ – C8pM,V 1 pbǫV

˚q

is proved in [58] (Theorem 44.1). Moreover, if V and V 1 are unitarilly isomorphic
Hilbert spaces, we have C8pM,V 1 pbǫV

˚q – C8pM,CV q, where the space CV
of compact operators on V is considered with the operator norm topology. See,
e.g., [58], Theorem 48.3.

Remark: Let us denote the C-product on C8pM,V q induced by the inner
product h on V by p, q, the CV -product on C8pM,CV q by p, q1, and the measure
induced by the volume density-form of a Riemannian metric tensor on M by µ.
For f, g P C8pM,V q and α, β P V ˚, we thus have

pf b α, g b βq1 “

ż

yPM

pfpyq b α, gpyq b βqCV dµpyq

“

ż

yPM

ppfpyq b αq˚ ˝ pgpyq b βqq dµpyq

“

ż

yPM

´
pα7 b fpyq5q ˝ pgpyq b βq

¯
dµpyq

“

ˆż

yPM

h pfpyq, gpyqq dµpyq

˙
α7 b β

“ pf, gqα7 b β
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where f b α is defined by pf b αqpyq “ fpyq b α for y P M and similarly for g
and β.

We denote the Sobolev-type product on the Hilbert CV -module HkpM,CV q

by p, q1S
k in order to distinguish it from the Sobolev-type product p, qSk on the

Hilbert C-module HkpM,V q. Note that the same multiplicative factor p1 `

|y|2
Rnqk appears in the local coordinate expressions for p, qSk as well as for p, q1S

k .

Substituting FV f and FV g for f and g, respectively, in the above integral
formulas for p, q1 considered in local coordinates, i.e., on R

n, and adding the
multiplicative factor p1 ` |y|2

Rnqk under all integral signs, we get that for f, g P
HkpM,V q b V ˚ and α, β P V ˚

pf b α, g b βq1S
k “ pf, gqSk α

7 b β (1)

In the next theorem, we analyse the C˚-ellipticity of the CV -linear operator
pDǫ “ DpbǫIdV ˚ if D is elliptic.

Theorem 9: Let D be an elliptic operator on the product Hilbert bundle
p : VM “ M ˆ V Ñ Mn on the compact manifold M with fibre a Hilbert space

V. Then the operator pDǫ : C8pM,CV q Ñ C8pM,CV q is a CV -elliptic operator
on the compact CV -bundle CVM “ M ˆ CV Ñ M whose image is closed in
the pre-Hilbert topology on C8pM,CV q.

Proof. 1) Let σ denote the symbol of D and let us consider the map σ1 “
σpbǫIdV ˚ of T˚M by which we mean that σ1pξq “ pσǫpξq “ σpξqpbǫIdV ˚ for each
ξ P T˚

mM and m P M. In particular, σ1pξq : V pbǫV
˚ Ñ V pbǫV

˚. By Lemma
8 used for σ1pξq, σ1pξq is CV -linear. In particular, σ1pξq P EndCV pCV q. This
map satisfies the growth conditions for symbols of the same order because IdV ˚

does not depend on ξ and thus it does not change the defining growth estimates
for symbols as given in [56]. The operator σ1pξq is adjointable with the adjoint
σpξq˚ pbǫIdV ˚ . Consequently, σ1 is a symbol.

SinceM is compact, there is a finite setK and a partition of unity pUj , χjqjPK

subordinated to the manifold and to the bundle atlases. Let ψj : Uj Ñ R
n be

a chart in the atlas of M , j P K, and let us denote the coordinate expression
of σ restricted to T˚Uj by σj . It maps an open subset in R

2n into EndpV q.
The coordinate expression of σ1 restricted to T˚Uj is denoted by σ1

j . It maps

an open set in R
2n into End˚

CV pCV q. We have σ1
jpξq “ σjpξqpbǫIdV ˚ , where the

cotangent vector ξ is considered as an element of pR2nq˚. For a manifold chart

pUj , ψjq, we denote the push-forward χj ˝ ψ´1

j of χj by χ
ψ
j , j P K.

Using the associativity of the tensor product and the equation IdCV “
IdV pbǫIdV ˚ , we get FCV “ F pbǫIdCV “ F pbǫpIdV pbǫIdV ˚ q “ FV pbǫIdV ˚ . In

the next computation, pDǫ denotes the coordinate expression of the correspond-
ing operator with respect to the chosen charts and to the chosen partition of
unity. We use the equations IdV ˚ “ IdV ˚ b IdV ˚ “ Id´1

V ˚ ˝ IdV ˚ and the bi-
functoriality of the tensor product with respect to composition of maps. We
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thus have

pDǫ “ DpbǫIdV ˚ “
ÿ

jPK

”
pFV q´1 ˝ χψj σj ˝ F

V
ı

pbǫIdV ˚

“
ÿ

jPK

”´
pFV q´1 ˝ χψj σj

¯
˝ F

V
ı

pbǫpIdV ˚ ˝ IdV ˚ q

“
ÿ

jPK

”´
pFV q´1 ˝ χψj σj

¯
pbǫIdV ˚

ı
˝

`
F
V pbǫIdV ˚

˘

“
ÿ

jPK

”´
pFV q´1 ˝ χψj σj

¯
pbǫpId

´1

V ˚ ˝ IdV ˚ q
ı

˝
`
F
V pbǫIdV ˚

˘

“
ÿ

jPK

”`
pFV q´1 pbǫId

´1

V ˚

˘
˝ pχψj σj pbǫIdV ˚ q

ı
˝ F

CV

“
ÿ

jPK

”`
F
V pbǫIdV ˚

˘´1

˝ pχψj σj pbǫIdV ˚ q
ı

˝ F
CV

“
ÿ

jPK

pFCV q´1 ˝ χψj σ
1
j ˝ F

CV

i.e., pDǫ is generated by the symbol σ1 “ σpbǫIdV ˚ . In particular, pDǫ is a CV -
pseudodifferential operator.

Since D is elliptic, σpξq is a linear homeomorphism for any ξ ‰ 0. It is
immediate to realize that the continuous CV -linear map σpξq´1 pbǫIdV ˚ of CV
is the inverse of σ1pξq. Thus σ1pξq “ σpξqpbǫIdV ˚ is a Hilbert CV -module

automorphism for any ξ ‰ 0 and consequently, the operator pDǫ is CV -elliptic.

2) Notice that D is adjointable by the Lemma 5. It can be easily realized

from the definition of the adjoint, that the adjoint of pDǫ as a morphism of
the pre-Hilbert C˚-module C8pM,CV q is D˚ pbǫIdV ˚ . For proving the closed

image property of pDǫ with respect to the pre-Hilbert topology on C8pM,CV q
we use the Corollary 3. We set A “ CV, X “ X 1 “ H2dpM,CV q, Y “

Y 1 “ H0pM,CV q, Z “ Z 1 “ C8pM,CV q, ∆ “ p pDǫq˚ pDǫ : Z Ñ Z, and

∆1 “ pDǫp pDǫq˚ : Z Ñ Z, where d is the order of D. We verify the assumptions
of the corollary below.

i) The CV -pseudodifferential operators ∆ and ∆1 have continuous extensions
r∆ “ ∆2d and Ă∆1 “ p∆1q

2d to X that map the space X into the space Y .
These extensions are adjointable since any continuous CV -linear map of
Hilbert CV -modules is adjointable. See Remark 5 (b) in [4].

ii) Further conditions in Corollary 3 are the assumptions a) and b) of Theo-
rem 2. Let us set D “ D˚D : C8pM,V q Ñ C8pM,V q. Since D is elliptic,
D˚ is elliptic by the Lemma 5. By the Theorem 2.1.116 [56] on the symbol
of the composition and Lemma 5 used once more, the symbol σpDqpξq of
the composition D˚D in ξ equals to σpD˚qpξq ˝ σpDqpξq “ σpDqpξq˚ ˝
σpDqpξq which is easy to see to be an isomorphism of V for each ξ ‰ 0. By
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the paragraph 1) above used for pDǫ, pDǫ is CV -pseudodifferential and its
symbol in ξ P T˚M is σpDqpξqpbǫIdV ˚ which is an automorphism of CV for
ξ ‰ 0. Thus ∆ “ pD˚ pbǫIdV ˚ q ˝ pDpbǫIdV ˚ q “ D˚DpbǫIdV ˚ “ DpbǫIdV ˚

is CV -elliptic. The operator ∆1 is elliptic by interchanging the roles of
D and D˚. By the Theorem 7, r∆ and Ă∆1 are CV -Fredholm and thus by
Lemma 1, their images are closed, i.e., the condition a) of Theorem 2 is
satisfied.

iii) Since ∆ and ∆1 are CV -elliptic, they are regular by Theorem 6, and thus
the first part of the condition b) of Thm. 2 is satisfied. We verify the

second part of b), i.e., the regularity for r∆˚ and Ă∆1
˚
. By Wloka [63],

the spaces HkpM,V q are Hilbert spaces. In particular they are self-dual
by the Riesz representation theorem. In this case the adjoint pD2dq˚ :
H0pM,V q Ñ H2dpM,V q is identified with pD˚q0 “ D0 : H0pM,V q Ñ
H´2dpM,V q by the standard procedure based on the Sobolev smooth
embedding and the uniqueness of adjoints. See Palais [42] or Solovyov,
Troitsky [56], p. 84. Denoting Γ “ C8pM,V q, we thus have

D “ pD2dq˚
|Γ (2)

Let us return to the regularity question of r∆˚ “ p∆2dq˚. Using the equa-
tions (1) and (2), we get for f, g P C8pM,V q and α, β P V ˚ that

pf b α,∆˚
2dpg b βqq1S

2d “ p∆2dpf b αq, g b βq1S
0

“ p∆pf b αq, g b βq1S
0

“ pDf b α, g b βq1S
0

“ pD2df b α, g b βq1S
0

“ pD2df, gqS0α
7 b β

“ pf, pD2dq˚gqS2dα
7 b β “ pf,DgqS2dα

7 b β “ pf b α,Dg b βq1S
2d

“ pf b α,∆pg b βqq1S
2d

where p, q1S
k denotes the Sobolev-type product on HkpM,CV q. Denot-

ing Γ1 “ C8pM,V q b V ˚ and comparing the first and the last term of
the equalities above, we get p∆2dq˚

|Γ1 “ ∆|Γ1 . Since C8pM,V q b V ˚

is dense in C8pM,V qpbǫV
˚ with respect to the Fréchet topology and

C8pM,V qpbǫV
˚ – C8pM,CV q both considered in the Fréchet topol-

ogy, ∆ and p∆2dq˚
|C8pM,CV q are equal. Since ∆ is CV -elliptic by ii),

p∆2dq˚
|C8pM,CV q is CV -elliptic as well. By Theorem 6, r∆˚ is regular

and therefore the condition b) of Theorem 2 is satisfied for the opera-

tor p r∆˚q|C8pM,CV q. For the operator Ă∆1
˚
the condition b) is verified by

interchanging the roles of D and D˚ in the composition defining D.

By Corollary 3, the images of pDǫ and p pDǫq˚ are closed with respect to the
pre-Hilbert topology on C8pM,CV q. l

Remark: 1) Let V be an infinite dimensional Hilbert space. In the part 2)
of the above proof, we do not construct the adjoints of the extensions ∆k and ∆1

k
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using the transposed operators since HkpM,CV q are not a CV -self-dual Hilbert
CV -modules in general. Note that even if M is a single point, HkpM,CV q is
isomorphic CV that is not CV -self-dual. Its CV -dual is the space of all linear
bounded operators on V. (See Jensen, Thomsen [21] (E 1.1.4) and Frank [13]
for more information.) Moreover and for different reasons, HkpM,CV q is not
linearly homeomorphic to HkpM,V qpbǫV

˚ if the dimension of M is at least 1
and V is infinite dimensional. (Private communication with D. Vogt.)

2) The previous lemma has an appropriate generalization for an elliptic oper-
ator D on smooth sections of Hilbert bundles p1 : V 1

M Ñ M and p2 : V 2
M Ñ M

with fibres the Hilbert spaces V 1 and V 2, respectively. For a Hilbert space
V , we consider the CV -linear operator pDǫ “ DpbǫIdV ˚ : C8pM,V 1 pbǫV

˚q Ñ
C8pM,V 2 pbǫV

˚q whose symbol in ξ is σpξqpbǫIdV ˚ , where σ denotes the symbol

of D. The inverse of the symbol of pDǫ is σpξq´1 pbǫIdV ˚ for any non-zero ξ. Thus
pDǫ is CV -elliptic as well. The growth condition for symbols are satisfied since
the identity does not change the appropriate estimates.

3) The adjontability of σ1pξq “ σpξqpbǫIdV ˚ from the proof of the above
theorem follows from the assertion in Remark 5 (b) of [4] as well since σ1pξq is
continuous.

Next we prove a lemma on a representation of smooth sections of the compact
Hilbert CV -bundle CVM on a compact M . Let us recall that we consider only
separable Hilbert spaces (Preamble, item d)). Nevertheless, it is easy to see that
the next lemma holds for non-separable Hilbert spaces as well, that is proved
by taking nets instead of sequences.

Lemma 10: For an arbitrary element pf 1 in C8pM,V qpbǫV
˚ and all positive

integers i, j P N, there exists a smooth V -valued function φij P C8pM,V q such

that pf 1 is the equivalence class of the Cauchy sequence in C8pM,V q bǫ V
˚

with elements f 1
i “

ř8
j“1

φij b ǫj , i P N, i.e., pf 1 “ limi f
1
i with respect to the

Fréchet topology on C8pM,V qpbǫV
˚ – C8pM,CV q. The equality pf 1 “ limi f

1
i

also holds with respect to the pre-Hilbert topology on C8pM,CV q. Moreover,
for each j P N the limit limi φij exists in both of these topologies.

Proof. Let pf 1
iqiPN Ď C8pM,V q bǫ V

˚ be a Cauchy sequence representing
pf 1, i.e., pf 1 “ limi f

1
i . By the definition of the algebraic tensor product of vector

spaces, we have that for each i P N there is a positive integer mi P N, and
for each k “ 1, . . . ,mi, there is a function fik P C8pM,V q and a continuous
functional αk P V ˚ such that f 1

i “
řmi

k“1
fik b αk. For any j P N, there exist

complex numbers θkj , k “ 1, . . . ,mi, such that αk “
ř8
j“1

θkjǫ
j , where pǫjqjPN

is a Hilbert basis of the separable Hilbert space pV, hq. Consequently, f 1
i “řmi

k“1
fik b

ř8
j“1

θkjǫ
j for each i P N. Thus f 1

i “
ř8
j“1

řmi

k“1
fik b θkjǫ

j “ř8
j“1

φij b ǫj , where φij “
řmi

k“1
θkjfik for each i, j P N. By the isomorphism

C8pM,V qpbǫV
˚ – C8pM,CV q of Fréchet topological vector spaces mentioned

above, we consider f 1
i “

ř8
j“1

φij b ǫj as an element of C8pM,CV q by f 1
ipmq “ř8

j“1
φijpmq b ǫj P CV, m P M. Since the pre-Hilbert topology on C8pM,CV q
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is finer than the Fréchet topology (Lemma 4), the equality pf 1 “ limi f
1
i holds

also in the pre-Hilbert topology on C8pM,CV q.
For v P V, let us consider the map evv : C

8pM,CV q Ñ C8pM,V q defined by
pevvfqpmq “ pfpmqqpvq, where f P C8pM,CV q and m P M. It is easy to realize
that this map is continuous for any v P V with respect to the Fréchet topologies.
Namely for l ě 0 the operator norm || ||Fl,l of evv with respect to the lth Fréchet
seminorm on C8pM,CV q and the lth seminorm on C8pM,V q is bounded by
the constant |v|V as is easily seen by the inequality |Apvq|V ď |A|CV |v|V where
A P CV. Due to f 1

i “
ř8
j“1

φij b ǫj and the mentioned continuity of evv, we
have φij “ evej pf 1

iq. Taking the limit of the expression with respect to i, we

get limi φij “ evej limipf
1
iq “ evej

pf 1. In particular, limi φij exists. Since the
pre-Hilbert topology is finer than the Fréchet topology (Lemma 4), the limit
limi φij exists for each j also with respect to the pre-Hilbert topology. l

We derive the following scholium.

Scholium 2: Let D be a pseudodifferential operator on the Hilbert bundle
VM on a compact manifold M with fibre a Hilbert space V. Let pajqjPN Ď
C8pM,V q bǫ V

˚ be a sequence such that the series
ř8
j“1

aj converges with

respect to the Fréchet topology on C8pM,V qpbǫV
˚. Then

pDǫ

˜
8ÿ

j“1

aj

¸
“

8ÿ

j“1

Dǫaj

with respect to the Fréchet topology.

Proof. The series
ř8
j“1

aj converges in the Fréchet topology by the assump-

tion. Since pDǫ is a pseudodifferential operator (Theorem 9), we have for the

Fréchet norms |
řk
j“1

pDǫaj ´ pDǫ
ř8
j“1

aj |
F
l ď || pDǫ||Fl,l´d|

řk
j“1

aj ´
ř8
j“1

aj |
F
l ,

where d denotes the order of D and || ||Fl,l´d denotes the operator norm of con-

tinuous linear maps between the normed vector spaces pC8pM,CV q, | |Fl q and

pC8pM,CV q, | |Fl´dq. Therefore
ř8
j“1

pDǫaj converges in the Fréchet topology to

pDǫ
´ř8

j“1
aj

¯
. l

4.2 Closed images of elliptic operators on Hilbert bundles

Let p1 : V 1 Ñ M and p2 : V2 Ñ M be infinite rank Hilbert fibre bundles on
a compact manifold M with fibres the separable Hilbert spaces pV 1, h1q and
pV 2, h2q, respectively. Let D : Γ8pV 1q Ñ Γ8pV2q be a pseudodifferential oper-
ator. We consider the pseudodifferential operator D in a global smooth trivi-
alization as described in the Section 3, part Trivializing construction. Thus we
have a map rD : C8pM,V 1q Ñ C8pM,V 2q defined by rD “ α2 ˝D ˝α1´1

, where
α1 and α2 are defined in the Trivializing construction. For our purpose, we may
identify D with rD and consider that D : C8pM,V 1q Ñ C8pM,V 2q. Let us
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notice that in the case of the pre-Hilbert topologies on the spaces of smooth
maps, neither D nor rD have to be continuous. Since we shall investigate elliptic
operators, we suppose that pV 1, h1q and pV 2, h2q are linearly homeomorphic. By
polar decomposition for continuous linear maps of Hilbert spaces, the Hilbert
spaces pV 1, h1q and pV 2, h2q are also unitarilly isomorphic. We identify these
spaces and denote them by pV, hq. We keep denoting the differential operator
by the same symbol, i.e., we consider D : C8pM,V q Ñ C8pM,V q.

Let us recall that we have the operator Dǫ “ Db IdV ˚ : C8pM,V q bV ˚ Ñ
C8pM,V q b V ˚ and its continuous extension

pDǫ : C8pM,V qpbǫV
˚ Ñ C8pM,V qpbǫV

˚

to the injectively completed tensor product at our disposal. This operator is
continuous as a map on C8pM,CV q considered with the Fréchet topology. Op-

erator pDǫ is CV -linear by Lemma 8, CV -pseudodifferential, CV -elliptic and its
image is closed in the pre-Hilbert topology (Theorem 9).

For each l ě 0, the space pC8pM,CV q, | |Fl q is a normed abelian group with
respect to the point-wise addition of vector-valued maps and thus, by Antosik
[1], it satisfies the so-called “FLYUS” convergence conditions of [1], p. 369.
Consequently, the Theorem 2 in [1] can be used for this space, which is a normed
abelian group with a convergence structure from the point of view of [1].

Scholium 3 (limit and sum interchange): Let us consider a double sequence
of smooth maps pφijqi,jPN Ď C8pM,V q, and suppose that for each i P N the
series Li “

ř8
j“1

φij bǫ ǫ
j converges, and that the limit L “ limi Li of the

sequence pLiqiPN exists in C8pM,V qpbǫV
˚p– C8pM,CV qq with respect to the

Fréchet topology. Then
ř8
j“1

limi φij bǫ ǫ
j exists with respect to this topology

and it is equal to L.

Proof. For determining the topology on smooth sections of CV -valued maps
on M, let g be a Riemannian metric on M and ∇1 be a covariant derivative on
the product bundle VM “ M ˆ V Ñ M, e.g., the one defined by the Carte-
sian product structure of this bundle. For each vector field X on M, let us
consider the operator ∇X on Γ8pCVM q – C8pM,CV q – C8pM,V qpbǫV

˚

defined by ∇X “ ∇1
X

pbǫIdV ˚ . It is easy to see that ∇ is a covariant deriva-
tive on CVM . We suppose that g and ∇ determine the Fréchet norms on
C8pM,CV q – C8pM,V qpbǫV

˚, described in the Section 3.
Let l be an arbitrary non-negative integer. By Theorem 2 in [1], the seriesř8

j“1
limi φij b ǫj converges with respect to the norm | |Fl and equals to L if

a) limi φij b ǫj exists for all j, b) limj φij b ǫj exists for all i, and c) the series
Li “

ř8
j“1

φij b ǫj is subseries convergent in pC8pM,CV q, | |Fl q for all i. We
verify the conditions a), b) and c).

a) Recall that pevvfqpmq “ pfpmqqpvq, where m P M and v P V. As realized
in the item b) of the proof of the Lemma 10, evv : C

8pM,CV q Ñ C8pM,V q is
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continuous with respect to the Fréchet topologies for each v P V . Thus we have

evejL “ evej

˜
lim
i

8ÿ

k“1

φik b ǫk

¸
“ lim

i

8ÿ

k“1

evej pφik b ǫkq

“ lim
i

8ÿ

k“1

φikevej pǫkq “ lim
i

8ÿ

k“1

φikδkj “ lim
i
φij .

Consequently, limipφij b ǫjq “ plimi φijq b ǫj “ pevejLq b ǫj exists for all j.
b) For the limit with respect to j, it is sufficient to realize that φij b ǫj “řj

k“1
φik b ǫk ´

řj´1

k“1
φik b ǫk and that if j Ñ 8, both of the sums at the

right-hand side converge by the assumption. Thus the limit of φij b ǫj with
respect to j is zero.

c) In the rest of the proof, we verify the condition on the subseries con-
vergence. Let us consider an increasing sequence of positive integers ν : N Ñ
N, with help we choose a subseries. For each i P N, let us set Lνi pk, rq “řr
j“k φiνpjq b ǫνpjq and Lipk, rq “ LId

i pk, rq “
řr
j“k φij b ǫj , where Id denotes

the identity sequence Idpjq “ j, j P N, and 1 ď k ă r are arbitrary integers. We
prove that for each l P N0, |Lνi pk, rq|Fl ď |Lipk, r

1q|Fl for an integer r1 ě k that
may depend on l.

c.i) First, let us suppose that l “ 0. For a fixed i P N, we define Ψνpm, k, rq “řr
j“k φiνpjqpmq b ǫνpjq and Ψpm, k, rq “ ΨIdpm, k, rq, where m P M. Let

us set P νpm, k, rq “
řr
j“k eνpjq b ǫνpjq, which is a map on M whose values

are orthogonal-projections in V. For each m P M, P νpm, k, rq is of finite
rank, thus it is an element of CV. It is easy to verify that

Ψνpm, k, rq “ Ψpm, k, νprqq ˝ P νpm, k, rq.

Since | |CV is submultiplicative and |P νpm, k, rq|CV “ 1 for each m P M,

we have |Ψνpm, k, rq|CV ď |Ψpm, k, νprqq|CV . Taking the supremum over
m P M of both the sides of this inequality, we get for each i P N that

|Lνi pk, rq|F0 ď |Lipk, νprqq|F0 (3)

c.ii) Let l ě 1 and let us consider local unit length tangent vector fields Xi

on subsets of M, gpXi, Xiq “ 1, i “ 1, . . . , l. For deriving the appropriate
estimates, we replace the CV -valued maps φij b ǫj in the item c.i) above
by the CV -valued maps ∇X1

. . .∇Xl
pφij b ǫjq “ p∇1

X1
. . .∇1

Xl
φijq b ǫj .

The inequality (3) transforms into

|Lνi pk, rq|Fl ď |Lipk, νprqq|Fl (4)

because P νp´, k, rq is constant for each fixed k and r P N, i.e., with respect
to M . Thus we see that it is sufficient to consider r1 “ νprq.
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Using the derived inequalities (3) and (4), we show routinely that Li is
subseries convergent for each i P N. Let us recall that C8pM,CV q with the
Fréchet topology is Cauchy complete. Since for each i, the original series Li is
convergent in C8pM,CV q by the assumption, it is Cauchy with respect to | |Fl1
for each l1 ě 0. Thus for each ǫ, there is k0 ě 0 (dependent possibly on i and l1)

such that for all k ě k0 and all p1 ě 0 we have |Lipk, k ` p1q|Fl1 “ |
řk`p1

j“k φij b

ǫj |Fl1 ă ǫ. Let k ě k0 and let us consider an arbitrary p ě 0. By inequalities (3)
and (4), we obtain |Lνi pk, k ` pq|Fl1 ď |Lipk, k ` pνpk ` pq ´ kqq|Fl1 . Thus taking
p1 “ νpk`pq ´k in the inequality |Lipk, k`p1q|Fl1 ă ǫ, we get |Lνi pk, k`pq|Fl1 ă ǫ

for all p ě 0. This shows that for each increasing ν, the sequence pLνi qiPN is
Cauchy with respect to | |Fl1 for all l1. This means that pLνi qiPN is Cauchy in the
space C8pM,CV q equipped with the Fréchet topology, and thus convergent.
Consequently pLνi qiPN is convergent in the chosen pC8pM,CV q, | |Fl q, and thus
pLiqiPN is subseries convergent in this normed space.

In particular the assumptions of the Theorem 2 in Antosik [1] are satisfied
and

ř8
j“1

limi φij b ǫj Ñ L in pC8pM,CV q, | |Fl q if i Ñ 8. Since l is arbitrary,
the sequence pLiqiPN converges to L with respect to the Fréchet topology on
C8pM,CV q as well. l

Remark: 1) Theorem 2 of [1] used in the above proof is a generalization
of a theorem on a sum and limit interchange of Schur. See Pap et al. [41]. It
relies on the so-called Antosik–Mikusiński basic matrix theorem. See [2]. Let us
remark that pages 371 and 372 should be swapped and renumbered in Antosik
[1].

2) It is not difficult to see that each of the series Li “
ř8
j“1

ei
ij

b ǫj “
ei
i

b
ř8
j“1

ǫj

j
P CV, i ě 1, is subseries convergent and that limi

ei
ij

b ǫj “ 0
for each j. Thus limi Li “ 0 by the above Scholium. In this case, we cannot
apply dominant convergence criteria since the series are even not absolutely
convergent.

Now we prove the main result, i.e., the closed image property of elliptic
operators on Hilbert bundles on compact manifolds. We derive it from the
closed image property of pDǫ proved in Theorem 9. Although fibres are supposed
to be separable Hilbert spaces in our article (Preamble, item d)), we recall this
assumption in the theorem.

Theorem 11: Let D : Γ8pV 1q Ñ Γ8pV2q be an elliptic operator on sections
of infinite rank separable Hilbert bundles V 1 and V2 on a compact manifold
M . Then the image of D is closed in Γ8pV2q with respect to the pre-Hilbert
topology. Moreover, we have the orthogonal decompositions Γ8pV2q “ KerD˚‘
ImD and Γ8pV 1q “ KerD ‘ ImD˚ with respect to the pre-Hilbert topology.

Proof. Since the symbol of D is a linear homeomorphism for any non-zero
cotangent vector on M, we identify the fibre V 1 of V 1 with the fibre V 2 of V2

and denote them by V. The operator D is considered as a map of C8pM,V q
into C8pM,V q as explained at the beginning of this section.
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1) Let pgiqiPN Ď C8pM,V q be a sequence in the image of D that converges to
an element g P C8pM,V q with respect to the pre-Hilbert topology, induced by
an appropriate measure denoted by µ. Let fi be an element in the D-preimage
of gi, i.e., for each i P N, Dfi “ gi. Since pDǫpfi b ǫ1q “ Dfi b ǫ1 “ gi b ǫ1, the

sequence pgib ǫ1qi is in Im pDǫ. By the definition of the Bochner integral by step
functions, we get that

ş
M

pgib ǫ1 ´gb ǫ1qdµ “
`ş
M

pgi ´ gqdµ
˘

b ǫ1 which tends
to 0 if i Ñ 8 since gi Ñ g in the pre-Hilbert topology. Consequently gi b ǫ1

converges to g b ǫ1.

Since the image of pDǫ is closed in C8pM,CV q with respect to the pre-Hilbert

topology (Theorem 9), g b ǫ1 P Im pDǫ. Let us choose a pDǫ-preimage of g b ǫ1

and denote it by pf 1. Thus

pDǫ pf 1 “ g b ǫ1 (5)

As an equivalence class in C8pM,V qpbǫV
˚, the element pf 1 is represented by a

Cauchy sequence pf 1
iqiPN Ď C8pM,V q bǫ V

˚, where C8pM,V q is considered
with the Fréchet topology. By Lemma 10, for each i P N there exists a family
of smooth functions pφijqjPN Ď C8pM,V q such that f 1

i “
ř8
j“1

φij b ǫj with
respect to the Fréchet topology on C8pM,CV q.

Using the continuity of pDǫ with respect to the Fréchet topology, we have
pDǫ pf 1 “ pDǫrpf 1

iqis “ rpDǫf 1
iqis “ rpDǫp

ř8
j“1

φij b ǫjqqis “ rp
ř8
j“1

Dφij b ǫjqis,
where the last equality follows from Scholium 2. Comparing this result with
(5), we obtain that the sequence p

ř8
j“1

Dφij b ǫjqiPN differs from the constant

sequence pg b ǫ1qi by a null-sequence in the Fréchet topology, i.e., g b ǫ1 “

limi

´ř8
j“1

Dφij b ǫj
¯
. By Scholium 3 on the sum and limit interchange, we

get that g b ǫ1 “
ř8
j“1

plimiDφijq b ǫj . Since pǫiqi is a Hilbert basis of V ˚, we
obtain from the last equality that limiDφij “ 0 for all j P Nzt1u. The existence
of limi φi1 is due to the Lemma 10. Setting φ “ limi φi1, we get

g b ǫ1 “
8ÿ

j“1

plim
i
Dφijq b ǫj “ lim

i
pDφi1q b ǫ1

“ pD lim
i
φi1q b ǫ1 “ Dφb ǫ1

by the continuity of D with respect to the Fréchet topology on C8pM,V q.
Consequently, we have g “ Dφ and especially g P ImD. Thus we find that
the limit point of a sequence in the image of D converging in the pre-Hilbert
topology on C8pM,V q belongs to ImD, which means that the image of D is
closed in C8pM,V q with respect to the pre-Hilbert topology.

2) We prove the part of the assertion on the complementability of the images.

a) For Corollary 3, we consider that A is the C˚-algebra of complex numbers
C, X “ H2dpM,V q, Y “ H0pM,V q, Z “ C8pM,V q, X 1 “ H2dpM,V q,
Y 1 “ H0pM,V q, and Z 1 “ C8pM,V q, where d denotes the order of D.
Since D : Z Ñ Z 1 is a C-pseudodifferential operator, it is adjointable by
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the Lemma 5 and thus we have the morphisms ∆ “ D˚D : Z Ñ Z and
∆1 “ DD˚ : Z 1 Ñ Z 1 of the pre-Hilbert C-modules of smooth sections of
the appropriate bundles, both of which are self-adjoint as maps of these
inner product spaces. Let U be a non-empty open subset of Im∆2d where
d is the order of D. Since ∆2d : H

2dpM,V q Ñ H0pM,V q is continuous, the
non-empty set ∆´1

2d pUq is an open subset ofH2dpM,V q. Since C8pM,V q is
dense in H0pM,V q, the set ∆´1

2d pUq XC8pM,V q ‰ H. Taking an element
g in this intersection, we get that ∆2dg “ ∆g P U X ImD, and thus
U X Im∆ ‰ H. Consequently Im∆ is dense in Im∆2d.

b) Let pfiqiPN is an arbitrary sequence in Im∆2d converging to the element
f in H0pM,V q. Thus for any ǫ ą 0 there is an integer i0, such that
|fi ´ f | ă ǫ for all i ě i0. Since Im∆ is dense in Im∆2d, for each i ě 1
there exists a sequence pf ji qjPN Ď ImD and an integer j0piq P N such that

|f ji ´ fi|
S
0 ă ǫ{2i for all j ě j0piq. Setting rfi “ f

j0piq
i for i ě 1, we obtain

a sequence p rfiqiPN in Im∆. For all i ě i0 we have | rfi ´ f |S0 “ | rfi ´ fi `

fi ´ f |S0 ď | rfi ´ fi|
S
0 ` |fi ´ f |S0 “ |f

j0piq
i ´ fi|

S
0 ` |fi ´ f |S0 ď ǫ{2i ` ǫ ď 2ǫ.

Consequently p rfiqiPN converges to f in the pre-Hilbert topology. Since

p rfiqiPN Ď Im∆ and Im∆ is closed in C8pM,V q by the item 1) of this
proof, f belongs to Im∆ and we may write f “ ∆g for an element g in
C8pM,V q. Therefore f “ ∆2dg and thus f is in the image of ∆2d proving
that the image of ∆2d is closed. Similarly, we proceed in the case of ∆1.

c) Operators ∆ and ∆1 are self-adjoint. They are elliptic since the symbol of
the composition is the composition of the symbols by [56] and since D˚

is elliptic by Lemma 5. By the Theorem 6, they are regular. Moreover,
p∆2dq˚

|C8pM,V q “ ∆ by the same arguments as in the proof of the Theo-
rem 9 which we use for the self-dual fibre V and A “ C. Similarly we get
p∆1

2dq˚
|C8pM,V q “ ∆1. Since ∆ and ∆1 are regular, p∆2dq˚ and p∆1

2dq˚ are

regular as well. Therefore the assumptions of the Corollary 3 are satisfied.
Using the Corollary, ΓpV 1q “ KerD‘ ImD˚ and ΓpV2q “ KerD˚ ‘ ImD.

l

Question: We ask whether the statement of the Theorem 11 on the closed
image property of elliptic operators holds for Hilbert bundles that have non-
separable fibres. Let us notice that the separability is not assumed in the results
on a smooth trivialization of infinite rank Hilbert bundles of Burghelea and
Kuiper [6] and Moulis [40]. However, the basic matrix theorem from Antosik
and Swartz [2] is formulated for sequences and not for arbitrary nets.

Future aim: It is seems interesting to study consequences of the closed image
property for elliptic complexes on Hilbert bundles.
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