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Abstract

We prove that the image of each elliptic operator on a smooth separable
Hilbert fibre bundle on a compact manifold is closed with respect to the
topology generated by a natural inner product. We consider the completed
injective tensor product of the elliptic operator with the identity operator
on the typical fibre of the bundle and compare its image with the image
of the original operator. Further we show that the operators image is
orthogonally complemented.
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1 Introduction

Thanks to the Hodge theory it is known that kernels and cokernels of elliptic
operators on finite rank hermitian vector bundles on a compact manifold M
are finite dimensional vector spaces and that the images of these operators are
closed with respect to the topology generated by a natural inner product on the
space of smooth sections of the vector bundle. The closed image property of the
images is tightly related to the known fact that continuous extensions of elliptic
operators to Sobolev spaces are Fredholm. See, e.g., Palais [42] and Wells [62].
In the paper, we prove that images of elliptic operators on smooth sections of
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separable infinite rank Hilbert bundles on compact manifolds are closed and that
they are orthogonally complemented with respect to the topology generated by
the natural inner product on the space of smooth sections of the bundle, that
we shall call the pre-Hilbert topology (Theorem 11). Notice that in the infinite
rank case the kernel of an elliptic operator needn’t be a finite dimensional vector
space. Indeed, let us consider the product bundle of the unit circle with an
infinite dimensional real or complex Hilbert space V and the operator of the
directional derivative with respect to an angle coordinate on the circle that acts
on smooth V-valued maps. It is easy to compute the symbol of this operator and
to realize that the operator is elliptic, i.e., that its symbol is an isomorphism
outside of the zero section of the cotangent bundle of the circle. Since the
kernel of the directional derivative is the infinite dimensional space of constant
V-valued maps, any extension of the operator to a Banach space is not Fredholm.
Obviously, this does not mean that the image of the operator is not closed.

Context and Applications. The closed image property of elliptic operators on
finite rank bundles plays an important role in the Hodge theory of elliptic com-
plexes (Wells [62] and Hodge [19]) and in the representation theory of Lie groups
concerning the Borel-Weil theorem and cohomological induction (Knapp, Vo-
gan [24], Schmid [52] and Wong [64]). Regarding the infinite rank bundles
there are articles devoted to consequences of the topological complementabil-
ity of kernels of elliptic operators with respect to the natural Fréchet topology
that is related to the so-called Schwartz kernel theorem. See, e.g., Tréves [58]
and [59] (Grothendieck’s theorem in Appendix C.1), Poly [44], and Vogt [60].
We refer to Illusie [20] and Rohrl [47] for treatises on topological complexes on
Banach and Fréchet bundles. For holomorphic Banach bundles, see Lempert
[34] and Kim [23]. Notice that there is an example of a holomorphic Banach
fibre bundle on the two dimensional sphere whose first sheaf cohomology is
non-Hausdorff, i.e., the image of the zeroth codifferential is not closed in the
space of 1-cochains. See Erat [10]. Regarding the analysis on Banach fibre bun-
dles related to non-commutative geometry, quantization, and global analysis on
infinite rank bundles, let us mention, e.g., Higson and Roe [I7], Maeda and
Rosenberg [36], Freed and Lott [I5], Larrain-Hubach [33], Krysl [30] and [29],
Fathizadeh and Gabriel [11], and Habermann, Habermann [I8]. This reference
list shall not be considered as complete.

Methods for finite rank bundles. In the case of a finite rank vector bundle
on a compact manifold, the compact embedding theorem of Rellich and Kon-
drachov for the Sobolev spaces is usually applied for proving that continuous
extensions of elliptic operators to the Sobolev spaces are Fredholm and that
consequently, the images of these extensions are closed. See, e.g., Seeley [50]
or Palais [42]. However, it is not difficult to see that a straight-forward gener-
alization of this compact embedding theorem does not hold for Sobolev spaces
H®2(M, V) of V-valued functions on M if V is infinite dimensional. By such a
generalization we mean the assertion that the inclusion Jy, 1 : H*+12(M, V) —
H®2(M,V) is a compact map for a separable Hilbert space V. Indeed, let us
consider the inclusion map J2,, : H**%2(M) — H"2(M) of the scalar Sobolev
spaces for a smooth compact manifold M. By Wloka [63], there is a unitary



isomorphism ®; : H*2(M,V) — H*?(M)®psV of Hilbert spaces, where
®mus denotes the so-called Hilbert-Schmidt tensor product. The inclusion map
Jes1 + HFY2(M,V) — HR2(M,V) is equal to @' o (J2, ,®usldy) o ®pr.
Since in this case Idy is a non-compact operator and ®; and ®;,; are unitary,
Jr+1 cannot be compact. As follows by our main result, this does not show that
images of elliptic operators on infinite rank Hilbert bundles can not be closed
though. If F is a Banach space, we denote the Sobolev-type space of F-valued
maps on M by H¥(M, E) because we use the Sobolev spaces H*!(M, E) for
I = 2 only. We give a definition of these spaces based on [56] in our paper if E
is the so-called Hilbert A-module.

C*-elliptic theory of Fomenko and Mishchenko. We apply parts of the theory
of Fomenko and Mishchenko developed in [39] for so-called C*-elliptic operators
on Hilbert C*-bundles whose fibres are finitely generated and projective Hilbert
C*-modules. From the point of view of topological vector spaces, Hilbert C*-
modules are specific Banach spaces that are generalizations of Hilbert spaces as
well as of C*-algebras. From the algebraic point of view, they are modules over
a C*-algebra. These modules are considered with the topology generated by the
so-called induced C*-norm. Let us notice that they are introduced together with
pre-Hilbert C*-modules in Paschke [43] and Rieffel [46]. Since the terminology
concerning Hilbert C*-modules is non-unique (cf., e.g., Lance [31], Wegge-Olsen
[61] and Blackadar [5]), we fix a terminology which we use in our paper (Chapter
2). The space of smooth sections of a smooth Hilbert C*-bundle is a pre-Hilbert
C*-module in a natural way and its Sobolev-type completions form Hilbert C*-
modules. We call the topology on the smooth sections generated by the induced
C*-norm the pre-Hilbert topology though it need not be generated by an inner
product. In the theory of Hilbert C*-modules, generalizations of compact and
Fredholm operators are defined, which are called C*-compact and C*-Fredholm,
respectively. Let us notice that continuous extensions of C*-elliptic operators
to Sobolev-type completions are proved to be C*-Fredholm in [39] if the fibres
of the bundle are topologically finitely generated and projective Hilbert C*-
modules. We cannot use this result since the fibres of the bundles considered in
our paper are not topologically finitely generated. Proofs of several theorems in
[39] and [56] are only sketched foremost if they are parallel to the proofs for the
finite rank bundles. When we need a generalization of a result from [39] or [56],
but we find its proof too brief there, we dare to add some details in our article.

For completeness, let us notice that compact perturbations of pseudodiftf-
erential operators are handled regarding their Fredholm property also without
the assumption on the C*-linearity of these operators. See, e.g., Luke [35] and
citations therein. However, we do not get topological properties of the image if
we allow perturbations though by compact operators only.

Now we describe the procedure which leads to the proof of the closed image
property of elliptic operators on Hilbert bundles. By Burghelea and Kuiper [6]
and Moulis [40], an infinite rank Hilbert bundle with fibre the Hilbert space V
is C*-diffeomorphic to the product Hilbert bundle M x V — M. It is straight-
forward to realize that the space I'°(M, V) of smooth sections of V is linearly
homeomorphic to the space C* (M, V) of smooth V-valued functions if both of



these spaces are equipped with Fréchet topologies or if both are equipped with
the natural pre-Hilbert topologies.

Transfer to compact CV -bundles. The first step we undertake is a transfer
to Hilbert C*-bundles and C*-elliptic pseudodifferential operators for the C*-
algebra C'V of compact operators of a Hilbert space V. The vector space of
compact operators carries a natural structure of a Hilbert C'V-module with
the C*-product (,)cv given by (A4, B)oy = A*B, A, B € CV, whose induced
C*-norm equals to the operator norm. We call the Hilbert C'V-module CV
the compact CV -module, and any Hilbert C*-bundle isomorphic to the product
Hilbert C*-bundle M x CV — M the compact CV -bundle. For the transfer
procedure we consider the completed injective tensor product of the Fréchet
space C* (M, V) with the continuous dual V* of V. The resulting Fréchet space
is denoted by C® (M, V)®.V*. (See Grothendieck [16] or Tréves [58].) By Tréves
58], C®(M,V)®.V* and C*(M,CV) are linearly homeomorphic when both
of them are equipped with Fréchet topologies. We consider the tensor product
of an elliptic operator D with the identity on V* and extend it continuously to
C*(M,V)®V* = C*(M,CV), denoting the resulting operator D& Idy+ by
D¢. We show that D¢ is C'V-linear (Lemma 8) and elliptic (Theorem 9). We
prove that its image is closed in the Fréchet topology.

Properties of continuous extensions of C'V -elliptic operators to Sobolev spaces.
The compact C'V-module is not topologically finitely generated and thus the
appropriate results of Fomenko and Mishchenko in [39] on the C*-compact
embedding of the Sobolev-type completions of smooth sections of Hilbert C*-
bundles cannot be used. Let us notice that the compact C'V-module is well
known to be projective as a consequence of the results of Magajna [37] and
Schweitzer [53]. (See Frank and Paulsen [14].) We derive a C*-compact em-
bedding for compact C'V-bundles on tori using a theorem of Baki¢ and Guljas
in [4]. We adapt a classical procedure (Palais [42] or Solovyov and Troitsky
[56]) to prove a C'V-compact embedding for compact CV-Hilbert bundles on
a compact manifold M (Theorem 7, part a)), i.e., that the inclusion map
HY(M,CV) — H*(M,CV) is CV-compact. Then we show that the con-
tinuous extension Dy, to the Sobolev-type completions H*(M, CV) of an elliptic
operator D : C*(M,CV) — C®(M,CV) are CV-Fredholm (Theorem 7 b)).
By Lemma 1 the image of the extension is closed in H*~¢(M,CV) with respect
to the topology generated by the induced C*-norm where d denotes the order of
D. Let us notice that an operator with a closed image need not be C*-Fredholm
for trivial reasons and that on the other hand, an C*-Fredholm operator need
not have a closed image (e.g., [26]). However, by [], for the C*-algebra of
compact operators it is known that the C*-Fredholm property implies that the
image is closed. R

Properties of D¢. Since D¢ = D®JIdy« is CV-elliptic (Theorem 9), its
continuous extension (D)), to H* (M,CV) is CV-Fredholm for any k € Z by
the mentioned Theorem 7 b) and regular by Theorem 6. We want to prove
that the image of D¢ : C®(M,CV) — C®(M,CV) is closed using Theorem 2
and Corollary 3, which contain assumptions on the regularity not only of the



operator but also of the operator’s adjoint. In the Hilbert bundle case, the
adjoint operators are usually constructed by considering transposed operators
defined on the topological duals of the Sobolev-type spaces using the self-duality
of Hilbert spaces forming the fibres of the considered bundle. See, e.g., Palais
[42] and a parallel construction in Solovyov, Troitsky [56] for Hilbert C*-bundles
with the so-called C*-self-dual fibres. However, it is known that the compact
CV-module is not C*-self-dual if V is infinite dimensional. The C*-dual of the
compact CV-module, i.e., the space of all operators of the Hilbert C*-module
CV into the C*-algebra C'V contains all bounded operators on V' which forms
a strict superset of the set of compact operators. We thus have to analyse
the adjoints of C'V-pseudodifferential operators of type D®(Idy+ on compact
CV-bundles. This is done carefully in part 2) of the proof of Theorem 9.

Properties of D and complementability. At the end of the paper, we return
our attention to the investigation of the image of D. We prove that the image
of D is closed in the inner product space of the smooth sections of the Hilbert
bundle. This is done in Theorem 11, in whose proof we use a lemma on a pre-
sentation of elements in C* (M, V)®.V* (Lemma 10). In the proof of Theorem
11, we make a use of a theorem on the interchange of the limiting and summa-
tion processes for vector-valued double series (Scholium 3), based on a result of
Antosik in [1]. In Pap et al. [41], there are further results on the convergence
of vector-valued double series. Nevertheless, it looks like that no theorems are
available that could be used for the purpose of our paper directly. After proving
the closed image of D we show that it is complemented in the inner product
space of the smooth sections by proving the closed image for Dy in the appro-
priate Hilbert space-valued Sobolev space and by using the Corollary 3 for the
C*-algebra of complex numbers. Notice that this inner product space is not
complete if the dimension of the base manifold M is at least 1.

Organization of the paper. In the second section, we summarize the ter-
minology on Hilbert A-modules and their morphisms and prove two assertions
(Theorem 2, and Corollary 3) on pre-Hilbert module morphisms whose con-
tinuous extensions are specific Hilbert A-module operators with closed images.
At the beginning of the third section, we give a definition of a smooth Hilbert
C*-bundle based on the notion of the one-point Hilbert C*-module. We prove
a lemma in which the pre-Hilbert topology is compared with the Fréchet topol-
ogy (Lemma 4) and a lemma on adjoints of pseudodifferential operators on
Hilbert bundles (Lemma 5). In the main part of the third section, we deal with
morphisms of Hilbert C'V-modules. We prove the regularity for C'V-elliptic op-
erators on compact manifolds (Theorem 6), an assertion on the C'V-compact
embedding for Sobolev-type spaces on tori (Scholium 1) and on general compact
manifolds (Theorem 7). The fourth chapter is devoted to the main theme of the
paper, namely to the images of elliptic operators on Hilbert bundles themselves.
We recall the completed injective tensor products, prove that continuous ex-
tensions to completed injective tensor products of pseudodifferential operators
multiplied by the appropriate identity operator are C'V-linear and that they
inherit the ellipticity property (Lemma 8 and Theorem 9). We also prove a



lemma on a representation of smooth CV-valued maps (Lemma 10). In this

part,

the theorem is proved on the closed image property of elliptic operators

and the complementability of the image with respect to the pre-Hilbert topology
(Theorem 11).

The next preamble concerns the notation and conventions used in the pa-
per foremost, regarding the notions of smoothness of maps, smooth Banach
manifolds and bundle atlases and their charts. Its parts can be read when the
appropriate notions appear in the text.

1.1
a)

Preamble

We denote the composition of mapsa:Y — Zandb: X — Y byaob
as well as by ab. The value of a map D : X — Y on an element x € X is
denoted by D(z) or by Dx.

We suppose that a Fréchet topological vector space structure on a vector
space F is defined by an ordered countable family of separating seminorms.
We equip F with the canonical translation invariant metric induced by this
ordered family. The space is complete with respect to this metric.

For topological vector spaces W’ and W’ the symbol Hom(W', W") de-
notes the vector space of continuous linear maps of W' into W”, End(W)
denotes the set of all linear continuous maps of W into W, and Aut(W) is
the subset of End(WW) consisting of all continuously invertible maps of W
onto W. The continuous dual of any topological vector space W is denoted
by W*.

The field R of real numbers is considered as the image in the field C of
the injection 7 € R — r + 02 € C. Inner product spaces are considered
over real or complex numbers. The inner product is complex anti-linear
in the first variable and complex linear in the second variable (physicist’s
convention). For pre-Hilbert C*-modules, we suppose the same behaviour
of the C*-product. The topology of inner product spaces and Hilbert C*-
modules is generated by the metric induced by the inner and C*-products,
respectively.

Continuous maps of topological vector spaces are called C*-differentiable
briefly if their /th order Fréchet differential is continuous for [ = 0,... k.
We call them C*-differentiable (or smooth) if they are C*-differentiable
for all k € Ng = N u {0}. A map is called a C*-diffeomorphism if it is
smooth, bijective and its inverse is smooth.

Any manifold is considered to be a C®-differentiable Banach manifold
without boundary, i.e., a Hausdorff second countable topological space lo-
cally homeomorphic to a fixed Banach space E and equipped with a max-
imal C*-differentiable manifold atlas. Elements of a C®-differentiable



atlas, called manifold charts, have to be homeomorphisms of open sub-
sets of the manifold into open subsets in E. Transition maps of a C'%-
differentiable manifold atlas are demanded to be C*-diffeomorphisms of
subsets of E. For simplicity, we do not consider manifolds as equivalence
classes of maximal smooth atlases with respect to C*-diffeomorphisms.
Therefore a manifold in our sense is what is usually called a
C*-differentiable structure.

g) Let W be a manifold, M be a finite dimensional manifold, and W be a
Banach space. A Banach fibre bundle p : W — M with a fibre the Banach
space W is a smooth submersion of manifolds such that for each m € M,
the fibre p~1(m) is a Banach space whose normed topology is equal to
the subset topology induced by the inclusion p~!(m) € W. The manifold
W is called the total space and the manifold M is called the base space
of p. Further, a Banach fibre bundle has to be equipped with a maximal
C*-differentiable bundle atlas. By our convention, elements of the bundle
atlas, called bundle charts, have to be C*-diffeomorphisms of U x W, U <
M open, onto the open subset p~1(U) of the C*-differentiable manifold
W, such that its restriction to {m} x W is a linear homeomorphism of
Banach spaces onto p~!(m) for each point m € M. A subatlas of an atlas
A is a subset of A such that the union of the domains of its charts is
M x W, i.e., it is still an atlas. Let us notice that by the chain rule for
Banach spaces, transition maps of a bundle atlas are smooth maps into
the vector space End(W) considered with the strong operator topology.

Comparison to different concepts. We do not consider Banach fibre bun-
dles as equivalence classes of maximal C*®-differentiable atlases with re-
spect to C*-diffeomorphisms of bundles that cover the identity on the
base space. The fibre bundles, which we consider, are smooth analogues
of the so-called coordinate G-bundles as defined, e.g., in Steenrod [57],
where G = Aut(W) with the strong operator topology. (For details, see
the Remark below the Definition 2 in the Section 3.)

h) Pseudodifferential operators on a fibre bundle are, in particular, real or
complex linear maps defined on the vector space of smooth sections of the
fibre bundle.

2 Images of pre-Hilbert C'V-module morphisms

Let (A,-,||a,*) be a C*-algebra and let us denote the closed half-cone of pos-
itive elements in A by AT. The spectrum of a positive element in A has to
be contained in the set of non-negative real numbers. (See, e.g., [8].) A right
pre-Hilbert A-module is a complex vector space W on which A acts from the
right compatibly with the multiplication by scalars, and that is equipped with
a hermitian-symmetric map (, )w : W x W — A that is



i) sesquilinear with respect to the action of the field C and to the right action
of the C*-algebra A; and

ii) positive definite in the sense that for each w € W, the element (w,w)w
belongs to A™ and (w,w)w = 0 only if w = 0.

Such a pre-Hilbert A-module is denoted by (W, (, )w ). The hermitian-symmetric
map (, )w is called the C*-product or the A-product when the C*-algebra is A.
Since we shall consider only right pre-Hilbert A-modules, we omit the word
‘right’ and call any right Hilbert A-module a Hilbert A-module only. Let ¢ € C,
a € A, and v,w € W. The compatibility of the C*-algebra action with the
multiplication by scalars means that v - (ca) = (cv) - a = ¢(v - a). The C*-
product (,) is hermitian-symmetric, i.e., (v, w) = (w,v)*. By the sesquilinearity
we mean that the C*-product (, )y satisfies (v-a, w)w = a*(v, w)w and that a
similar rule holds for the multiplication by complex numbers. The equivariance
in the second entry follows from the hermitian-symmetry. The induced C*-norm
[lw : W — R (called also the induced A-norm if the C*-algebra is A) is defined
by |wlw = A/[(w,w)w|a, where w € W. Tt satisfies |(v,w)w|a < |v|lw|w|w
(Cauchy—Schwartz-type inequality) for all v, w € W. We consider any pre-Hilbert
A-module as an A-module and as a topological vector space with the topology
generated by the metric d(v,w) = |v — wlw, v,w € W. (See [3I].) Let us
notice that a pre-Hilbert C*-module for the C*-algebra of complex numbers is
an inner product space. (We shall not use the term ‘pre-Hilbert space’ for the
inner product spaces in the text.)

Objects in the category of pre-Hilbert A-modules are pre-Hilbert A-modules.
Let (W, (,)w) and (W', (,)w) be pre-Hilbert A-modules and L : W — W' be
a map. It is called adjointable if there exists a map L* : W/ — W such that
(Lw,w )y = (w, L*w")w for all w € W and w’ € W’. By the non-degeneracy
of (,)w and (,)w, the map L* (called the adjoint of L) is unique if it exists. It
is easy to see that an adjointable map is complex- and A-linear, i.e., L(w-a) =
L(w)-a and L(cw) = cL(w) for all for all ce C, a € A and w € W. Morphisms of
pre-Hilbert A-modules W and W' are all maps of W into W’ having the adjoint.
We often call a morphism an operator. The composition of morphisms is the
composition of maps. This establishes the category of pre-Hilbert A-modules
for a C*-algebra A since the adjoint of the composition of two operators is the
composition of the adjoints of the operators in the reversed order. We denote
the set of all adjointable A-linear maps of pre-Hilbert A-modules W and W' by
Hom™ (W, W') and by End’ (W) if W = W’. The set of all bijections onto W in
End’ (W) is denoted by Aut’ (W) and called the group of pre-Hilbert A-module
automorphisms of W.

We call an adjointable map L self-adjoint if L = L* and we call it unitary
if L*L = Idw and LL* = Idw-. A pre-Hilbert A-submodule of (W, (,)w) is
any algebraic A-submodule Wj of W equipped with the restriction to Wy x Wy
of (,)w. A pre-Hilbert A-submodule need not be closed in W. The orthogonal
complement of a subset Wy € W is denoted by Wi+ = {w e W : (w,w;) =
0 for all wy € Wi}. The direct sum W = Wy @ W5 of pre-Hilbert A-modules Wy
and W5 is the direct sum of A-modules together with the A-product defined by



(w1 + we, w) + wh)w = (w1, w))w, + (wa, wWh)w, for w;, w; € W;, i =1,2. It is
immediate to see that for any pre-Hilbert A-modules W7 and W5, W7 and Wy
are closed in the pre-Hilbert A-module direct sum W; @ Ws. A pre-Hilbert A-
submodule W7 of a pre-Hilbert module W is called orthogonally complemented
if there exists a pre-Hilbert A-submodule W5 of W such that W is isomorphic
to W1 @ W,. By isomorphic, we mean that there is a pre-Hilbert A-module
morphism of W onto W;@Ws which has an inverse in the category of pre-Hilbert
A-modules. In particular, we do not demand the morphism to be unitary. Let us
mention that pre-Hilbert A-submodules need not be orthogonally complemented
even if they are closed. See Lance [31].

A pre-Hilbert A-module (E, (,)g) is called a Hilbert A-module if it is a com-
plete normed space with respect to the induced C*-norm ||g on E, i.e., it is
a Banach space. By the category of Hilbert A-modules we mean the full sub-
category of the category of pre-Hilbert A-modules whose objects are Hilbert
A-modules. We denote the set of all Hilbert A-module morphisms of Hilbert
A-modules E and E’' by Hom* (E, E’) and by End% (E) if E = E’ as in the pre-
Hilbert A-module case. Let us remark that each Hilbert A-module morphism
is continuous and consequently, the elements in Aut® (E) are homeomorphisms.
Notice that if A is the C*-algebra of complex numbers, a Hilbert A-module is
a complex Hilbert space. A Hilbert A-submodule E; of a Hilbert A-module
(E,(,)E) is a pre-Hilbert A-submodule of E such that (E1,(,)p g, «p,) s &
Hilbert A-module, i.e., it is a complete normed space. In particular, a Hilbert
A-submodule E; is closed in E as a normed space. Hilbert A-submodules need
not be orthogonally complemented as well. (See [3I].) For definiteness, we fix
the following definitions. A Hilbert A-module F is called finitely generated if £
is algebraically generated over A (i.e., by finite A-linear combinations) by a fixed
finite subset of E. We call it topologically finitely generated if there exists a dense
subspace of E which is finitely generated. For a positive integer ¢, let us consider
the Hilbert A-module A7 = A® ... ® A with the diagonal right action of A and

m
the Euclidean-type A-product given by ((a1,...,aq), (b1,...,bg)) = 21, a¥b,,
where a;,b; € A for i = 1,...,q. See Solovyov, Troitsky [56].

Projectivity and self-duality. Let us denote the set of all continuous complex-
and A-linear maps of Hilbert A-modules (E, (,)g) and (F, (,)r) by Homu (E, F).
We do not demand the elements of Hom 4 (E, F') to be adjointable. A Hilbert A-
module F is called projective if for each Hilbert A-modules B and C and for every
surjective b € Hom 4 (B, E) and every ¢ € Hom4(C, E) there exists an element
d € Hom4 (C, B) such that ¢ = bo d. See, e.g., Frank and Paulsen [14] for more
details. One calls a Hilbert A-module finitely generated projective if it is finitely
generated and projective. A Hilbert A-module F is called C*-self-dual (or A-
self-dual) if it is canonically isomorphic to the A-module E* = Hom4(F, A),
that we call the continuous A-dual of E. See Frank [I3]. By the canonical
map we mean the map ¢ : E — E* given by ¢(e)(¢') = (e,e')g, e,¢/ € E. We
consider the action of A on the A-dual given by (f - a)(e) = f(e) - a, where



f€eHomug(E,A), a€ A and e € E. Let us notice, that in the C*-self-dual case,
Homy (E, A) can be equipped with a canonical structure of a Hilbert A-module
using the map ¢. (See Frank [I3] or Mishchenko [38] for details.) Notice that if
E is A-self-dual, E* = Hom*%(E, A). If T : E' — E" is a morphism of Hilbert
A-modules, its transpose Tt : (E”)* — (E')* is defined by T*(f)(e’") = f(T(€'))
for any f € (E”)* and ¢’ € E'.

C*-algebras of compact operators and C*-compact operators. For a complex
Hilbert space (V, h), let us consider the C*-algebra consisting of all compact lin-
ear operators on V, which is equipped with the usual addition, the multiplication
by scalars, composition of operators, the adjoint of operators and the operator
norm. This algebra is called the C*-algebra of compact operators and we denote
it by CV. Let us recall that a C*-algebra A is called a C*-algebra of compact
operators if it is a C*-subalgebra of the C*-algebra CV of compact operators
on the complex Hilbert space V. If A is a C*-algebra, and E and E’ are Hilbert
A-modules, an A-compact operator of E into E' is the limit in the operator norm
topology on Hom? (E, E’) of the so-called A-finite rank (or elementary) opera-
tors of Hilbert A-modules E into E’. See Lance [31] or Kasparov [22], p. 789.
Let E, E’ and E” be Hilbert A-modules. If K € Hom® (F, E’) is an A-compact
operator and T € Hom® (E’, E"), the operator T o K is an A-compact operator
and similarly for the composition of K with a Hilbert A-module morphism from
the right. (See [31], (1.6).) We refer to this property as to the ideal property
of A-compact operators. It is easy to see that the adjoint of an A-compact
operator is A-compact as well.

Definition 1: A morphism D : X — Y of Hilbert A-modules is called an
A-Fredholm operator if there is a Hilbert A-module morphism D : Y — X such
that K; = DQ —Idx and Ky = DD — Idy are A-compact operators. We call
any operator D fulfilling this feature a partial inverse of D.

Thus an A-Fredholm operator has a left and right inverse up to an A-compact
operator.

It is well known that there exist C*-Fredholm operators whose images are not
closed. (See, e.g., Krysl [27].) The next lemma is a straightforward generaliza-
tion of a theorem of Baki¢ and Guljas in [4] (p. 268) on images of C*-Fredholm
endomorphisms are closed if the C*-algebra is a C*-algebra of compact opera-
tors.

Lemma 1: Let A be a C*-algebra of compact operators and X and Y be
Hilbert A-modules. If D is an A-Fredholm operator of X into Y, then its image
is closed in F.

Proof. Let D : X — Y be A-Fredholm and b, K1, and K5 be an appropriate

partial inverse and A-compact operators, respectively. Thus DD =1d x + K
and DD = Idy + K. Let us consider the following block-wise anti-diagonal
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clement ® = (9 0% ) € End’y (X @ Y). We have

0
D

0 D\/0 D*\ (ldx + K, 0
D o)\D 0] 0 Idy + K3

_(ldx 0, (K@ 0
o Idy 0 Ki)

Since the last written matrix is an A-compact operator in End* (X®Y), operator
® has a left inverse up to an A-compact on X@®Y. The invertibility from the right
of ® up to an A-compact operator is proved similarly. Consequently © has a
partial inverse and thus it is an A-Fredholm endomorphism on X @Y. According
to [4], the image of © is closed. This implies that D has a closed image as well
because Im®D = Im D*@Im D and X and Y are mutually orthogonal in X @Y.
O

Remark: 1) Let A be a C*-algebra of compact operators. A Hilbert A-
module morphism D : X — Y is A-Fredholm if and only if the image of D
is closed and the so-called A-dimensions dimKer D and dim4[(Im D)*] are
finite (Corollary 5 in Krysl [28]). The A-dimension is defined in [4], where its
correctness is proved.

2) Let us notice that the result from [4] used in the above proof is based on the
Theorem 2.22 in [3], where the so-called H*-modules are investigated regarding
their relation to Hilbert—Schmidt and to compact operators on a Hilbert space
V. Let us remind the reader that the vector space of Hilbert—Schmidt operators
HS(V) on a Hilbert space V is dense in CV and when it is equipped with the
so-called Hilbert—Schmidt norm, HS(V) is unitarilly isomorphic to the Hilbert
space V.

Let X,Y be Hilbert A-modules, Z be a pre-Hilbert A-module, which is a
vector subspace of X, and let A : Z — Z be a pre-Hilbert A-module morphism.
If A has an adjointable extension A : X — Y, we denote the adjoint (A)* by
A*,

In the next theorem we generalize a procedure, which is used to derive the
closed image property of an elliptic operator on smooth sections of a finite rank
hermitian vector bundle on a compact manifold from the closed image property
of the continuous extensions of this operator to Sobolev completions of the
smooth sections. See, e.g., Wells [62]. We use it in the proof of Theorems 9 and
11 below. The condition b) in the next theorem is connected to the so-called
reqularity of elliptic operators, that we treat in Section 3. We notice that the
second condition in b) below means in the bundle context that the adjoint of
the extension is regular in the sense that whenever A* f = g for a smooth map
g, the map f is smooth as well. In particular, Z plays a role of the space of
smooth sections and X and Y of the Sobolev-type spaces.

Theorem 2 (partial inverse on pre-Hilbert modules): Let A be a C*-algebra,
(X,(,)x) and (Y, (,)y) be Hilbert A-modules, and (Z, (,)z) be a pre-Hilbert A-
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submodule of Y and a vector subspace of X. Let us consider a self-adjoint map
A € End%(Z) that has a continuous adjointable extension A € Hom?%(X,Y)
which satisfies

a) the image of A is closed in Y and

b) AY(2),A*1(Z) c Z.

Then the image of A is closed in Z and Z = Ker A @ Im A. Moreover, there
are self-adjoint pre-Hilbert A-module morphisms A : Z7 - Z and K : Z — Z
such that

AA = AA = K —1dy and AK =0 (parametriz equations).

Proof. Assumptions in b) imply that Ker A, Ker A* c Z.

1) By the kernel-image theorem of Mishchenko (Theorem 3.2, [31])), the image
of A* : Y — X is closed as well, and the following decompositions

2)

hold.

i

ii)

iii)

X =Ker A@®ImA* and Y = Ker A* ® Im A

If 2 € Ker A* C Y, it is an element of Z by b). Thus for each
2 € Z, we have (Az,2'); = (2,A%)z = (2,A%)y = (2,AZ)y =
(A*z,2')x = 0. This implies that Az = 0. Therefore Ker A* <
Ker A.

Now we show that Z = Ker A + (ImA n Z). For z € Z € Y there
are elements z; € Ker A* and z9 € Im A such that z = z1 + 22 by
the direct sum decomposition of Y given in the item 1. The element
z1 is in Ker A since Ker A* < Ker A by the previous paragraph.
Since z,z1 € Z, the element zo = z — z; € Z. Consequently Z <
Ker A + (Im& N Z). The opposite inclusion is trivial.

Let us take an element in Im A A Z which is in the kernel of A, ie.,
z = Az € Z for an element 2/ € X and Az = 0. Thus 2/ € Z by
the assumption b) and we have (z,2)z = (2,Az')z = (Az,2")z = 0.
Consequently z = 0 and the sum Ker A + (Im A n Z) is orthogonal.
We conclude that Z = Ker A@® (Im A n Z).

We prove that ImA N Z = ImA. Let us suppose that z = A ez
for an element 2’ € X. Then 2/ € Z by b). Thus z = Az’ and
ImA A Z C ImA. The opposite inclusion is obvious. Using the item
iii), we obtain Z = Ker A @ Im A. Since the sum is orthogonal, the
image of A is closed.

3) Using the orthogonal decomposition Z = Ker A@Im A derived above, we
define K : Z — Z as the projection onto the kernel of A along Im A. In
particular, K is a self-adjoint morphism of pre-Hilbert A-modules.

12



4) Let us define A:Z > Zby

X _ (AumA)_l on Im A
10 on Ker A.

Using this definition, A satisfies AA = AA = Idz — K. Obviously, Aisa
self-adjoint pre-Hilbert A-module morphism of Z since A is self-adjoint.

O

Remark: If A is a C*-algebra of compact operators and Ais A-Fredholm,
its image is closed by Lemma 1 and thus the condition a) of Theorem 2 is
satisfied.

To avoid misunderstanding let us recall that if W is a real or complex topo-
logical vector space, the symbol W’ denotes neither the dual vector space, nor
the topological dual of W. The topological dual is denoted by W* (Preamble
a)). The next corollary is a consequence of Theorem 2.

Corollary 3: Let A be a C*-algebra and let two triples of A-modules X,Y
and Z and X', Y’ and Z’ satisfy the assumptions of the Theorem 2. Further
let D : Z — Z' be a pre-Hilbert A-module morphism such that A = D*D :
Z — Z and A" = DD* : Z' — Z' have continuous adjointable extensions
A € Hom* (X,Y) and A’ € Hom* (X', Y”), respectively. If A and A’ satisfy the
assumptions a) and b) of Theorem 2, the images of D and D* are closed in Z’
and Z, respectively.

Proof. Since A and A’ are self-adjoint and since they satisfy assumptions
a) and b) of Theorem 2, the decompositions Z = Ker A @ Im A and Z' =
Ker A’ @ Im A’ hold. By Theorem 2, we have also the pre-Hilbert A-module
morphisms A, K and A/, K’ at our disposal. If a € Ker A, then (Da, Da)z =
(a,D*Da)z = (a,Aa)z = 0 which implies that Da = 0, i.e., Ker A € Ker D.
The opposite inclusion Ker D < Ker A is obvious. Thus Ker D = Ker A. We
obtain similarly that Ker D* = Ker A'.

Now we prove identities concerning the images of D and D* using the
parametrix equations from the Theorem 2. For b € Im D¥*, there is an ele-
ment a € Z’ such that b = D*a. For @' = A’a € Z', we set b/ = D*ad' and
claim that b’ is in the A-preimage of b. Indeed AV’ = AD*a’ = D*DD*a’ =
D*DD*A’a = D*A' A’la = D*(Idz — K')a by Theorem 2. This expression
equals to D*¥*a — D*K'a = D*a = b because by Theorem 2, K’ maps into
Ker A’ which is equal to Ker D* due to the previous paragraph. Consequently,
Im D* < ImA. Since also ImA < Im D*, we conclude that Im D* = ImA.
Similarly, we prove that Im D = Im A'.

Consequently, we have the orthogonal sums Z = Ker A@ImA = KerD @
Im D* and similarly Z’ = Ker D* @ Im D. In particular, Im D and Im D* are
closed with respect to the topology generated by the C*-norm on Z’ and Z,
respectively. O
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3 Images of CV-elliptic operators on compact
CV-bundles

Let p: W — M™ be a Banach fibre bundle on an n-dimensional manifold M
with (typical) fibre a Banach space (W,]||w) and a maximal C'*°-differentiable
bundle atlas A. In particular, for any m € M

- the fibre W,, = p~1({m}) is a Banach space equipped with a norm, de-
noted by | |, and

- the topology on W,,, generated by ||, is equal to the subset topology on
Wi € W.

The space of C®-differentiable sections of p is denoted by ' (M, W) or by
I'° (W) when the manifold is known from the context. See the Preamble e), f)
and g). Let us recall that a bundle chart of a Banach fibre bundle is in particular
a homeomorphism of U x W onto p~1(U) € W for an open subset U of M such
that its restriction to {m} x W is a homeomorphism onto p~!({m}) for each
m € U which is linear with respect to the vector space structures on W and on
pL({m}).

Let g be a Riemannian metric tensor on a compact manifold M and let V»Y
be a covariant derivative on a Banach fibre bundle p : W — M. Notice that the
existence of a covariant derivative is proven by a choice of a partition of unity
on M using the same formula as in the finite rank case. We set for any [ > 0
and s € I°(W)

[sli” = sup{|(VX, ... VR, sip)(m)],, + X; € T(U, TU), g(X;, X;) =1,
i=1,...,k,meU,Uopenin M,0<k<I}

which is easily seen to be a norm on I'?(W), usually called the Fréchet (semi-
Jnorm. For k = 0, the expression |[V¥ ... VY sy(m)|, means |s(m)|n,. We
call the topology on I'° (W) generated by the family of these norms the Fréchet
topology. By the compactness of M the space ' (W) is complete, i.e., a Fréchet
space.

For a Banach fibre bundle p : W — M, let W xyy W = {(w,w') € W x
W] p(w) = p(w’)} € W x W be the fibred product of W with itself. We consider
it with the subset topology of the product topology on W x W. (See, e.g., [25]
for details concerning fibred products.)

A Banach fibre bundle is called a Hilbert fibre bundle if there is a smooth
map (,)n : W xy W — C on the fibred product which is an inner product in
each fibre and such that the induced norm +/(w, w);, equals to the Banach norm
|w|m, for any w € W, and m € M.

We introduce Hilbert C*-bundles with the help of the next technical notion.
Cf., e.g., Schick [5I] or Fomenko and Mishchenko [39].

One-point Hilbert A-module. Let A be a C*-algebra, (F,(,)r) a Hilbert A-
module, M a finite dimensional manifold, and U € M an embedded submanifold

14



of M. We consider E;; = U x E with the product topology, bundle projection
p(m,e) = m, norm |(m,e€)|m = |e|g, fibre-wise addition (m,e€’) + (m,e”) =
(m,e’ + ¢€”), and multiplication by scalars ¢(m,e) = (m,ce), where m € U,
e,e, e’ € E, ae A, and ¢ € C. Obviously the resulting structure is a Banach
fibre bundle on U when it is additionally equipped with a maximal smooth
atlas. We shall always consider the maximal atlas that contains the identity
chart U x E — E;;. Notice that such a bundle atlas exists since the identity
chart is global on Ey;, i.e., defined on U x E. Further, we define the fibre-wise C*-
product by ((m,e€’), (m,e")), = (¢/,€”) g and the right action of A by (m,e)-a =
(m, e - a), where at the right-hand side the action of A on F is considered. The
space of smooth sections I'°(E;;) of E; is linearly isomorphically identified
with C*(U, E).

If U = {m} < M is a singleton, the structures on Ey,,, introduced above
make E,,, a Hilbert A-module, which we call the one-point Hilbert A-module.
In this case, Ey,,; is both a Hilbert A-module and a Banach fibre bundle on the
singleton {m}.

Definition 2: Let (E,(,)g) be a Hilbert A-module and p : € — M be a
Banach fibre bundle with fibre the Banach space (E,||g). We call p together
with a subatlas A of the atlas of p a Hilbert A-bundle with fibre a Hilbert A-
module (E, (,)g) if in addition an action -¢ : £ x A — £ of A and a mapping
(,)e : € xp € — A are given that are smooth with respect to A and such that
for each point m e M

i) the action -g¢ and the map (,)g restricted to &, x A and to &, x En,
respectively, make the fibre &, a Hilbert A-module;

ii) for any chart ¢ : U x E — p~}(U) in A such that m € U, the restriction
p(m,—) : {m}x E — &, is a Hilbert A-module morphism of the one-point
Hilbert A-module Ey,,, = {m} x E onto the Hilbert A-module &,; and

iii) A is maximal with the properties i) and ii).

It is immediate to realize that a complex Hilbert bundle is a Hilbert A-bundle
if the C*-algebra A is the C*-algebra of complex numbers.

Remark: 1) By the chain rule for maps of open subsets of R” into normed
spaces, transition maps of charts in the atlas of a Hilbert A-bundle considered as
maps of open subsets of M into the group G = Aut’ (E) are smooth if Aut’ (F)
is considered with the subset topology given by the inclusion
Aut’ (E) < End’j(E), where the space End’j(E) is equipped with the strong
operator topology. Since the operator norm topology is coarser than the strong
operator topology, the transition maps are smooth also when the space of the
Hilbert A-module endomorphisms End’ (E) is equipped with the operator norm
topology. We consider the bundle Ey; as the Hilbert A-bundle with the maximal
smooth atlas containing the identity chart Idyxg : U x E — Ey; such that the
Definition 2 is fulfilled.
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2) To avoid misunderstanding let us mention that there is a notion of a
‘bundle of C*-algebras’ (e.g., Dixmier [], Fell [I2] and Dupré [9]) which is
different from the notion of a Hilbert C*-bundle also in the case when the fibre
of the bundle is the Hilbert C*-module A, i.e., the C*-algebra A with the action
given by the multiplication form the right and the Euclidean-type A-product as
defined above. Nevertheless, we notice that any Hilbert A-bundle on a manifold
M with a fibre the Hilbert C*-module A! is a ‘bundle of C*-algebras’ on M.

By an isomorphism of Hilbert C*-bundles p’ : &' — M and p” : &" — M a
C*-diffeomorphism T : £’ — £” of Banach fibre bundles is meant such that the
restriction Tjg; is an isomorphism of the Hilbert C*-modules &}, and &), for
each m € M. In particular, an isomorphism of Hilbert C*-bundles covers the
identity on the base manifold, i.e., p”" o T = p'.

For a Hilbert A-bundle £ — M, we define a right action of A on the complex
vector space I'?(&) of smooth sections of € by the formula (f-a)(m) = f(m)-ca,
where f € T®(€), a € A and m € M. The action of A restricts to the set
I'® (&) of compactly supported elements of I'°(E). Further, we define a map
()~ :T®(E)xT*P(E) —> C*®(M, A) by the formula (f, h)~(m) = (f(m), h(m))e
where f,h € T°(€) and m € M. For a Riemannian metric tensor g on M, we
consider its density-form and take the induced Radon measure y on the Borel
o-algebra of M. Having done these choices, we define an A-valued A-sesquilinear
map on 'Y (&) by

(f.h) = fM(f, hy~du

for each f,h € T® (&), where we consider the Bochner integral of A-valued pu-
measurable maps on M for convenience. (See, e.g., Ryan [49].) It is immediate
to realize that the pair (T®X(€), (,)) is a pre-Hilbert A-module. We denote the
induced C*-norm by ||, and we call the topology on I'*(£) induced by this
norm the pre-Hilbert topology. Let us notice that, in general, this topology is
not induced by an inner product.

Let us recall that a Hilbert A-bundle is called (topologically) finitely gener-
ated, finitely generated projective and C*-self-dual if its fibre is (topologically)
finitely generated, finitely generated projective and C*-self-dual as a Hilbert
A-module, respectively.

Let us summarize our notation regarding Hilbert A-modules and Hilbert
A-bundles briefly.

1) The norm on a C*-algebra A is denoted by ||4. The C*-product on a
(pre-)Hilbert A-module W is denoted by (, )w and the induced C*-norm
is denoted by | |w.

2) The norm on a fibre of a Banach bundle has the base point of the fibre
as its lower index. Thus ||,, denotes the norm on the fibre p~!(m). The
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Fréchet norms on sections of a Banach fibre bundle on a compact manifold
are indexed by non-negative integers and denoted by | |F.

3) The action of a C*-algebra A on the total space £ of a Hilbert A-bundle
is denoted by -¢ and the appropriate A-valued map (Definition 2) on the
fibred product & xy; € is denoted by (,)s. The right action of A, the
A-product given by the Bochner integral, and the induced C*-norm on
I'® (&) have no indices and they are denoted by -, (,), and ||, respectively.

In the next lemma, the Fréchet and the pre-Hilbert topologies are compared.

Lemma 4: Let M be a compact manifold and p : £ — M be a Hilbert
C*-bundle. Then the pre-Hilbert topology on I'°(€) is finer than the Fréchet
topology.

Proof. Since both of the considered topologies are metrisable, they are se-
quential (see e.g. [48]). Let us consider a sequence (fp)nen S I'*(E) that
converges in the Fréchet topology (i.e., in all Fréchet norms) to the zero section.
By the definition of | |£, it is obvious that the sequence converges also uniformly
to the zero section on M. Especially for any € > 0 there is a positive integer
ng such that for each n > ng and all m € M we have |f,(m)|, < e. The con-
stant function e defined on M has a finite Lebesgue integral over the compact
manifold M. Consequently, if n approaches infinity, SM( frs frn)~dp — 0 by the
dominant convergence of the Bochner integral. Thus (f,)nen converges to the
zero section in the pre-Hilbert topology as well. O

Sobolev-type spaces for Hilbert C*-bundles

We generalize the definition of Sobolev-type spaces from Solovyov and Troit-
sky [56] and Fomenko and Mishchenko [39], in which topologically finitely gen-
erated projective Hilbert C*-modules over a unital C*-algebra are considered.
Let A be a C*-algebra and £ — M be a Hilbert A-bundle on a compact manifold
M with fibre a Hilbert A-module (E, (,)g). In particular, (E,||g) is a Banach
space. We consider the Euclidean space R™ with the standard scalar product
(, )r» and the Schwartz space S(R", E) of rapidly decreasing smooth maps on
R™ with values in the Banach space E. See Schwartz [54]. It is well known
that S(R", E) = S(R™,C)®.E as Fréchet spaces. (See, e.g., [58].) Denoting
the Lebesgue measure on R™ by A\, we consider that the direct and the inverse
Fourier transforms of the scalar-valued function f € S(R",C) are defined by

FNE) = FEN@ = [ fwemeneane),

In both cases, the second lower index in F, , points to the variable over which
we integrate. The Fourier transforms (F¥)*! on S(R", E) are defined as the
completed injective tensor product FX'® Idg of the Fourier transforms F£! on
S(R™,C) with the identity on E. See, e.g., Schwartz [54]. The map (FZ)*! is
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denoted by F¥ as usual. The inverse Fourier transform (F)~1 is the both-sided
inverse of FE.
For k € Z and f € S(R™, E), the so-called kth Sobolev-type norm is defined

by
1/2
115 - ( )
A

where we consider the Bochner integral (i.e., the strong integral) of A-valued
maps with respect to the Lebesgue measure.

| (FPD0.FENw) 0+ ) e )

Remark: Note that the Schwartz space S(R",C) is a nuclear space and
thus, its completed injective tensor product with E' is linearly homeomorphic
to the completed projective tensor product with E. See [58]. Let us denote the
completed projective tensor product by ®,. Since S(R™, E) < (Ll(R")@)EE) N
(LY(R")®;E) the Bochner and the Pettis integral exist on S(R", E) and more-
over they are equal. See Ryan [49]. The Fourier transform on S(R"™, E') can be
introduced also by the above formula for the Fouerier transform of scalar-valued
functions in which the Pettis or, equivalently, the Bochner integral is used.

The Sobolev-type space H*(R", E) is defined as the completion of S(R"™, E)
with respect to the norm ||7. For f,g € H*(R™, E), we set

(f.9) = f (FEH W) (FP9) W) p (1 + lylzn) dAen (y) € A.

yeR™

This sets up a well defined map of H*(R", E) x H*(R", E) into A by the domi-
nant convergence of the Bochner integral and the Cauchy—Schwarz-type inequal-
ity for |(,) |4 mentioned in Section 2. By the Gelfand-Naimark theorem, (,)?
is positive definite. Immediately, we get that it is an A-product. The induced
C*-norm for this C*-product is the continuous extension of ||¥. We denote it
by | |¢ as well. Let us notice that (,)5 is an extension to H*(R", E) x H*(R", E)
of the C*-product (,) on I'?(R™, E) introduced above.

For a manifold atlas on a compact manifold M™, a compatible bundle atlas
on & — M, and a subordinated partition of unity on M™, we define the Sobolev-
type spaces (H*(M, €), (,)3) by a classical procedure using the partition of unity
and the Sobolev-type spaces H¥(R", E) on R" defined above. See, e.g., [56].
We denote them by H¥(&) if the manifold is known. The Sobolev-type spaces
depend on the atlases and on the partition of unity. Let us remark, that for
different choices the resulting spaces are isomorphic as Hilbert C*-modules that
is proved as in the finite rank case. See, e.g., Palais [42]. If the product bundle
E,; = M xE — M is considered with the canonical Hilbert A-bundle structure,
we denote the space H* (M, E,,;) by H*(M, E).

Conventions concerning C*-pseudodifferential operators
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Let p’ : & — M and p” : £ — M be Hilbert A-bundles on a compact
manifold M"™ with fibres £’ and E”, respectively. We choose a partition of
unity on M subordinated to the manifold atlas and to the both bundle atlases.
A symbol is a map of T*M that assigns to each cotangent vector £ € T.% M,
m € M, a morphism o(§) € Hom%(&/,,&/) =~ Hom* (E’,E”) of Hilbert A-
modules that satisfies specific growth conditions defined with help of the bundle
charts and the partition of the unity. We consider the growth conditions given in
[56]. They are generalizations to Hilbert A-bundles of the estimates given, e.g.,
in Seeley [50], Palais [42] and Wells [62], and formulated for smooth complex-
valued functions or for smooth sections of finite rank hermitian vector bundles.
In particular, symbols are point-wise adjointable Hilbert A-module morphisms.
The set of symbols forms a Z-filtered vector space, which induces the order of
symbols and an associated Z-grading.

For simplicity let us assume that the atlas of M contains a global chart, and
denote the image in R™ of the domain of this chart by U. Notice that we have
the induced trivialization of T*M =~ U x (R™)* =~ U x R™ at our disposal. We
denote corresponding coordinates on T*M by the couples (z,n), where x € U
and 77 € R™. Let ¢ be a symbol and oV be its coordinate expression with respect
to the manifold chart, induced cotangent bundle chart, and to the bundle charts.
For each (z,7) € U x R", the map oY (x,7n) : E' — E” is an adjointable map of
Hilbert A-modules. With respect to the chosen charts, the A-pseudodifferential
operator generated by o is defined in coordinates by

(Ds)(@) = (F&,) " o0 (z,m) 0 F,)(s)

where (z,1) € U x R™ and y € U. Below we do not label the Fourier transfor-
mation by the lower indices and understand that the order of integrations is
set by this formula. In Solovyov, Troitsky [56], p. 104, there is a coordinate
expression for an A-pseudodifferential operator for the case the manifold or the
bundle atlases do not contain a global chart. We apply it in the proof of Thm.
9. Compared to the formula above, it contains a partition of unity on M. If
A = C, we call an A-pseudodifferential operator a pseudodifferential operator.

The order of a C*-pseudodifferential operator is defined as the order of the
symbol by which the operator is generated. Let d be the order of D. We denote
the continuous extension of the A-pseudodifferential operator D : I'*(M,&’) —
(M, ") to H*(M,&") by Dy. It is a map into the space H*~4(M,E").

If the Hilbert C*-bundles £ and £” are C*-self-dual, D is adjointable as
a morphism of the pre-Hilbert A-modules I'°(M, ") and T'°(M,E"). This is
proved by considering the transposed operators (see Section 1) of the continuous
extensions of D to elements in the chain (H*(M,&"))xez of Hilbert A-modules.
The construction of the adjoint of D is based on the fact that H*(M,&)* =~
H*(M,£) if € is an A-self-dual bundle. See [56] or Palais [42] in which the
case of Hilbert bundles is treated.

Definition 3: An A-pseudodifferential operator of order d on Hilbert A-
bundles p’ : & — M and p” : £&” — M on a manifold M of dimension n >
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1 is called A-elliptic if its symbol o(§) in & € T*M is a Hilbert A-module
isomorphism of (£/ ,||,,) onto (€7, ||”.) for any non-zero element & € T.% M and
any m e M.

Remark: 1) If we allow null dimensional base manifolds, i.e., countable sets
with the discrete topology, in the definition above, the set of non-zero cotan-
gent vectors is empty, and therefore any A-pseudodifferential operator would be
A-elliptic in this “trivial” case. We exclude the case of zero dimensional man-
ifolds from the definition of the C*-ellipticity. See the remark on C*-compact
embeddings for null dimensional manifolds below the Scholium 1.

2) If A = C, an A-elliptic operator is called elliptic.

Smooth trivializations of Hilbert bundles

Let p: V — M be an infinite rank Hilbert bundle on a manifold M™ with a
complex Hilbert space (V, h) as the fibre and with a maximal C*-differentiable
atlas. If the dimension of V is infinite, the unitary group of V equipped with
the strong operator topology is continuously contractible. See Dixmier, Douady
[7]. Consequently, an infinite rank Hilbert bundle is continuously trivializable,
i.e., there is a homeomorphism of V onto the product Hilbert bundle V,, =
M xV — M that covers the identity on M. See, e.g., [45] for a cohomology
approach to a proof of this fact. See also Schottenloher [55] for a treatise on the
norm and strong operator topologies on the unitary group of a Hilbert space
and on continuous Hilbert fibre bundles.

Nevertheless, the fact that the unitary group of the infinite dimensional
Hilbert space is continuously contractible is not sufficient for our purpose since
we shall consider pseudodifferential operators on Hilbert bundles. By results of
Burghelea, Kuiper [6] and Moulis in [40], it is possible to approximate a triv-
ializing bundle homeomorphism by a fibre bundle C*-diffeomorphism. Conse-
quently, p is also smoothly trivializable.

Trivializing construction. Let M be compact anda:V — V,;;, = M xV be a
trivializing C*-diffeomeorphism. It induces a linear isomorphism « : I°(V) —
I'°(V,,) by a(s) = a o s, where s € (V). whose inverse is given by a similar
formula where a™! is used instead of a. Recall that (V) is already linearly
homeomorphically identified with C* (M, V).

We want to show that « is a homeomorphism of topological vector spaces
for both the introduced topologies on the section spaces. For each m € M,
U, 2 Vi — V is defined by a,,(v) = a(v) for any v € V,,. It is the restriction
of a to the singleton {m}. Let us denote the operator norm of continuous linear
maps of the Hilbert space V,, into the Hilbert space V by || ||:. In the case of the
pre-Hilbert topology, we use the dominant convergence of the Bochner integral,
similarly as in the proof of Lemma 4, and the fact that m € M — ||a;||m and
m — ||(a;) Y| are continuous functions defined on the compact set M, and
thus bounded by a constant that we denote by c. Indeed, let f,, — 0 in the

20



pre-Hilbert topology on T'*°(V) if n tends to infinity. Then

lo(fa)? = | h(a(fn(m)), a(fn(m))) du(m)]

meM

[ len(G ) dntm) < | Yl g () o)
meM

meM

<[ intmldum)

that converges to null by the assumption on (f,,)n, proving that « is continuous.
The continuity of a1 is proved by using the formula (a~!s)(m) = a=!(s(m))
and similar estimates as above. In the case of the Fréchet topology, we assume
w.lo.g. that the Fréchet topology on I'°(V) is given by the pull-back VY
by the bundle map a of the connection V on V,, that is used to define a
Fréchet topology on I'°(V ;). Let X be a local unit-length vector field on M.
Since a is C*-differentiable, its covariant derivatives with respect to the induced
connection VE°™ on the homomorphism bundle Hom(V,V ) are bounded on
M with respect to the operator norm topology by the compactness of M. The
Fréchet norms on I'?(V) are bounded from above by the Fréchet norms on
(V) using the formula V%s = a™! o ((VE™a)(s)) —a™' o (Vx(aos)),
where X is a local vector field on M and s is a smooth section of V. This proves
that o' is continuous. The continuity of « is derived by the open map theorem
for Fréchet spaces or using a similar formula as above but expressing Vx with
help of V.

If D:T*®(V) — I'°(V") is a pseudodifferential operator on Hilbert bun-
dles V' and V", we define the pseudodifferential operator D : C*(M, V') -
C®(M,V") by D=a"0Do o', where o' is the induced complex linear
homeomorphism of I'°(M,V’) with the Fréchet and the pre-Hilbert topology
onto C*®(M,V’) with the Fréchet and the pre-Hilbert topology, respectively,
and similarly for o”/. We often consider D instead of D without mentioning it
explicitly. The image of D is closed if and only if the image is closed D with
respect to the corresponding topologies. Notice that already for finite rank
bundles, D need not be continuous with respect to the pre-Hilbert topology.

Eaxtensions. For a C*-algebra A, let A° denote the unitalization of A. In
particular, A* = A®C as a complex vector space. Any (pre-)Hilbert A-module
W is turned into a (pre-)Hilbert A°-module by setting w - (B,¢) = w - B + cw,
where B € A, w € W and ¢ € C, and by keeping the A-product unchanged.
We call the resulting (pre-)Hilbert A®-module the extended (pre-)Hilbert A-
module. Tt is easy to see that any morphism of (pre-)Hilbert A-modules is also a
morphism of the corresponding extended pre-Hilbert A°-modules. Note that a
(pre-)Hilbert A-module and its extension are equal as topological vector spaces.

We use the assertion on the so-called smooth embedding of Sobolev-type

spaces for Hilbert A-bundles on compact manifolds, derived as Lemma 5 in
Krysl [26]. The assumption on the unitality on A is not used in the proof of
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this lemma. The assumption can also be removed using the extended modules
described above. Namely, we consider the bundles as A°-bundles and embed the
Sobolev-type spaces into the smooth sections spaces by the mentioned Lemma
5 in [26]. The embedding is a morphism of pre-Hilbert A®-modules. Since the
considered pre-Hilbert A¢-modules are pre-Hilbert A-modules as well (i.e., the
induced C*-products maps into A), the embedding is a morphism of pre-Hilbert
A-modules as well. Let us notice that a smooth embedding for Sobolev-type
spaces is proved in Fomenko and Mishchenko [39] for unital C*-algebras and
topologically finitely generated projective Hilbert C*-bundles. Nevertheless, in
that proof neither the unitality of A, nor the assumptions are used that the
fibres are topologically finitely generated and projective.

Lemma 5: Let p’ : V' — M and p” : V' — M be Hilbert bundles (i.e.,
Hilbert C-bundles) on a compact manifold M. Then any C-pseudodifferential
operator D : T°(M,V’) - I'°(M, V") has an adjoint as a linear map of inner
product spaces. For each £ € T*M if o(£) is the symbol of D in &, the adjoint
operator o(£)* is the symbol of D* evaluated in £. Moreover, if D is elliptic,
D* is elliptic as well.

Proof. Let V' and V" be the fibres of p’ and p”, respectively. By Wloka [63],
HF(M,V) = H*(M)®usV, where ®ps denotes the Hilbert-Schmidt tensor
product and V is a Hilbert space. Consequently, H*(M, V') are Hilbert spaces.
In particular, they are C-self-dual by the Riesz representation theorem. Let
us consider the pseudodifferential operator D, its continuous extensions Dy :
H¥(M, V") — H*=4(M,V") for k € Z, and suppose that d is the order of D.
Since any continuous linear map of Hilbert spaces is adjointable, we have the

operator
(Dp)* - H*=4(M, V") — H*(M, V")

and its restriction to C*(M, V") at our disposal. By the mentioned Sobolev-
type smooth embedding (Lemma 5, [26]), (Dk)* ¢ (p,y) maps into C* (M, V).
By the uniqueness of adjoints, we get that D* = (Da)* cw s,y as in the
finite rank case, i.e., if we identify H'(M, V') with H='(M, V") and similarly for
HY(M,V"). See Palais [42].

Since any continuous linear map of Hilbert spaces has an adjoint, the adjoint
o§)* V" > V' of 0(§) : V! - V" exists for all £ € T*M. The facts that
& — o(&)* satisfies the correct growth conditions and that it is a symbol of the
adjoint D* follow by the same lines as in the finite rank case. See, e.g., the
proof of Theorem 3.16 in Wells [62].

If D is elliptic, its symbol o(§) is a linear homeomorphism for any 0 # £ €
T*M. It is immediate to check that the inverse of the adjoint o(£)* is (o/(£) ™) *
Consequently for each £ # 0, the symbol o(£)* of D* is a linear homeomorphism
and thus D* is elliptic. O

Remark: In the above proof, Theorem 3.16 from [62] is used that relies on
the Theorem 3.10 of the ibid citation on so-called generalized symbols. In its
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proof the mean value theorem is applied to scalar components of the symbols on
finite rank vector bundles. If the fibres V' and V” of V' and V", respectively, are
Hilbert spaces, we use Thm. 4.2 in Lang [32], where a generalization to Banach
spaces is given of the mean value theorem. We use it for the space Hom(V’', V")
equipped with the operator norm topology.

Let us suppose that A is a unital C*-algebra, p’ : &’ - M and p” : &" — M
are topologically finitely generated projective Hilbert A-bundles on a compact
manifold M, and D : T®(£’) — I'°(£”) is an A-elliptic operator. It is known
that if s € H¥(E') satisfies the equation Dys = f for a smooth section f €
I'®(&”), then s is smooth. This property of D is called the elliptic regularity.
See Mishchenko and Fomenko [39] where the regularity is treated for this case.
We prove the elliptic regularity for Hilbert C'V-bundles, the fibres of which need
not be topologically finitely generated projective. We use the Lemma 5 from
[26] on the smooth embedding of Sobolev-type spaces mentioned above.

Recall that an A-pseudodifferential operator is called a smoothing operator
if its continuous extension to H*(£’) is a map into the space H**+1(£") for all
sufficiently big integers k.

Theorem 6 (elliptic regularity): Let A be a C*-algebra, p’ : & — M and
p” : £" — M be Hilbert A-bundles on a compact manifold M, and D : T'*(&’) —
I'°(£”) be an A-elliptic operator of order d. If f = Dys € T®(£”) for a map
se H* (&), then s € T®(&").

Proof. Since D is A-elliptic, we may construct a partial inverse lv)k_d :
HF=4(&") — H*(E') of Dy, : H*(E') — H*=4(£") as in [39], i.e., by taking the
Fourier transform of the inverse of the symbol of D (out of the zero section) mul-
tiplied by a cut-off function and extending the resulting A-pseudodifferential op-
erator to the appropriate Sobolev-type completion. It follows by this construc-
tion, that the operator Ny = Dy_qDy — Idgn ey maps H¥(E') into HF1(E").
For any map s satisfying the assumptions of the theorem, we get s = lv)k,des—
(Bk,de —Ide(g/))S = bk,df — Nks € Hk+1(5l) because bk,df eI (5') By
mathematical induction s € (0,2, H'(£’) which equals to I'°(£’) by the Lemma
5 in Krysl [26]. O

Remark: 1) For details on the construction of ﬁk,d sketched above, see,
e.g., the proof of Thm. 3.4 in [39]. Notice, that the assumption is not used in
the proof in [39] that the Hilbert C*-bundle is topologically finitely generated
and projective and that the C*-algebra is unital. - -

2) Using the notation in the proof of the Theorem 6, let us set D = (Dg)|p(e7)-
Since N is the continuous extension to H*(&') of N = DD — Idp(gy and Ny,
maps into H¥*1(€’), N is smoothing.
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3.1 Compact C'V-modules and compact C'V-bundles

The complex vector space C'V of compact operators on the Hilbert space (V, h)
is a right CV-module with respect to the action CV x CV 3 (B,C)— B-C =
Bo(C e CV. Setting (B,C)cy = B¥oC for B,C € CV, we get a C*-product on
CV. Since CV is a C*-algebra, the induced C*-norm is equal to the operator
norm on C'V. The right action of CV and the C*-product define a structure of
a Hilbert C'V-module on the space of compact operators. We call this Hilbert
module the compact C'V -module. It is isomorphic to the Hilbert C*-module CV'!
defined above. The compact C'V-module is not topologically finitely generated
if the dimension of V is infinite. See, e.g., Wegge-Olsen [6I]. (In [61], the term
‘finitely generated’ means ‘topologically finitely generated’ in our sense.)

We mention the following definition from [4].

Definition 4: Let (E,(,)r) be a Hilbert A-module. We call a subset
(vj)jes € E an orthonormal basis of (E, (,)g) if

i) the set (v;),cs generates (by taking finite right A-linear combinations) a
dense A-submodule of the Hilbert A-module F;

ii) (vj,vj)p = 0 whenever j # j';

ili) for each j € J, the element §; = (vj,v;)g € A is an orthogonal projection,
i.e., a non-zero hermitian-symmetric idempotent in A; and

iv) AL = CE; for all j € J (minimality).

Let us consider a Hilbert basis (e;);en of a separable Hilbert space (V,h),
and denote the dual basis by (¢)jeny € V*. For each i € N, we set

v, =6, eCV

where for v € V and « € V*, the elementary tensor v®« is defined by the formula
(v®a)(w) = alw)v, w e V. It is easy to see that (v;)en is an orthonormal basis
of the compact Hilbert C'V-module. See also Baki¢, Guljas [4].

Musical isomorphisms b and t: Let (V, h) be a Hilbert space. We define the
map b : V — V* by [b(v)](w) = h(v,w), where v,w € V. On the continuous
dual V*, we consider the action of complex scalars given by (ca)(v) = ca(v)
for each a € V* v e V and ¢ € C. Also we have the map £ : V* — V defined
by h(f(a),v) = a(v) for all v € V. The element #(«) exists by the Riesz repre-
sentation theorem for Hilbert spaces. This makes us able to set h*(«a, 8) =
h(#(B),8(c)), where o, 8 € V*. It is immediate to see that the hermitian-
symmetric sesquilinear form h* is an inner product on V* and (V* h*) is a
Hilbert space. Since # and b are mutually inverse, b is onto V* and thus (V| h) is
C-self-dual. Notice also that b and £ are complex anti-linear homeomorphisms.
We use the convenient notation of = f(a) and v* = b(v).
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Let V' an V” be Hilbert spaces and T : V' — V” be a continuous linear
map. We remark that using the introduced notation, the adjoint of T can be
computed by the transposed map Tt : V"* — V'* as T*(v") = [T*(v"")]¢,
where v” € V” and § and b are defined with respect to the inner products on
V' and V”, respectively. See Section 1 for the transposed maps of morphisms
of Hilbert A-modules. Notice that in the theory of pseudodifferential operators,
T* us usually called the transposed operator. However, in this case, we follow
conventions used in pre-Hilbert C*-modules and in inner product spaces.

We shall prove a C*-compact embedding for Hilbert C*-bundles that satisfy
the following definition.

Definition 5: Let M be a smooth manifold and V' be a Hilbert space. A
Hilbert C'V-bundle on M is called a compact C'V -bundle on M if it is isomorphic
as a Hilbert C*-bundle to the product Hilbert CV-bundle CV,, = M x CV —
M equipped with the Hilbert C'V-bundle structure introduced below the Defi-
nition 2, in which we set U = M.

Construction of embeddings for tori. Because C'V is not topologically finitely
generated over the C*-algebra C'V, we shall give a construction which replaces
the formally similar construction in the proof of the Lemma 3.3 in Fomenko,
Mishchenko [39] done for topologically finitely generated Hilbert A-modules
over a unital C*-algebra A. Let us consider the n-dimensional torus 7" as
the quotient R™/(27Z)™ of the standard manifold structures on R™ and (27Z)",
equip it with the flat Riemannian metric induced by the Euclidean inner product
(, )r» on R™ and denote the corresponding norm on R™ by | |gn. Further let prn
be the Radon measure on 7" induced by the volume density-form for the chosen
Riemannian metric. For 4,5 € N, m € Z™ and 6 € R™, we define the C'V-valued

maps on the torus ¢m§ :T" — CV by
IO = " e @

where [6] denotes the equivalence class of § € R” in the quotient R™/(27Z)",
(€:)ien is a Hilbert basis of V, and (e%);eny  V* is the dual Hilbert basis.

Let us consider the (positive semi-definite) Laplace operator A = — " | 631.
defined on smooth functions on the Euclidean space (R™, (, )g»), and the appro-
priate differential operator ACY that acts on smooth C'V-valued functions de-
fined on R™ as well. (The partial derivative dp: denotes the Gateaux derivative
in the direction of the i-th vector of the standard basis of R™.) By its transla-
tional invariance, the operator A¢Y descends to a differential operator on the
smooth C'V-valued functions on the torus. Due to the smoothness of the action
of CV on the total space of the compact C'V-bundle, the resulting operator
is right C'V-linear. We denote it by AZY : C*®(T™,CV) — C®(T™,CV). 1t
is convenient to use the C'V-products defined by the powers of the Laplacian
operator, that are equal to the C*-products (, )f up to a constant multiple. See
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Palais [42]. We denote them by (,)3 as well. For 17,12 € Z" and i, j,1,p € N,
we have

nd ! AN g
(6™, ¢ Qp)f = J ’ <¢ Z) o ((IdCOO(T".CV) +A8Y) ¢ 2p) dpgn
= (1 + |m’2|l%&’n)k6"?1”rr?25ipej ® Gl

where 8™ = ( or 1 iff m) # miy or M) = M, respectively; the Kronecker
symbol §;;, has its classical meaning; the kth power of the operator means the
k-fold composition of the operator with itself; and the integral is the Bochner
integral of maps defined on the torus that have values in the Banach space CV.

The above computation is based on the observations that Sgﬂ e™dAg(y) =
bdon for each n € Z and —03, (el(ﬁl’g)R" ep ®e) = m?el(m*g)m"ep ® €', where
m = (mi,...,my) € Z" and j = 1,...,n. For k € Z, let us set wm’kf =
1+ |T7l|]%§n)_k/2¢mz. Due to the above computation, (¢m’k;)ieN’m€Zn is an or-
thonormal basis of the Hilbert CV-module (H*(T™ CV), (,)3).

Let us consider the canonical inclusion
Iyy - HEPY (T, OV) — H*(T™,CV)

and compute the limit

. = 1 . Y 1
lim |Ik+1(7f’m’k+1i)|f = lim |¢m’k+1i|£
(m,1)—00 (m,3)—> 0
. — _k+1 o1
= im0+ MlE)" 7 0™ 1R
. N _1 N _k mlg
= (mlg’iw'(l + |7[Ga) T2 (1 + |[Fa) T2 ™[R
. — _1 > 11
= w1+ 2a) T2k
— lim (1+|m2.)"2 =0
(m,i)—0

ifn>1.
Scholium 1: If n > 1, the map I, is C'V-compact.

Proof. Since lim(z ;) |Ik+1(z/ﬂﬁ*k“;)|f = 0 as computed above, I is
CV-compact by [4] (Theorem 9 (ii)). O

Remark: For n = 0, T° = R%/(27Z)" is just the singleton {0}. In this case
each Iy is identified with the identity map on C'V. In particular, it is not a com-
pact map. By the above computation for n = 0, lim; ;) \Ik+1(wmvk+1:)|f =
1 because |mi|g» = 0. Thus the map Iy is even not C'V-compact as follows

from the mentioned Theorem 9 in [4].
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3.2 Closed images of C'V-elliptic operators on compact
C'V-bundles

For k € Z, unital C*-algebra A, compact manifold M, Hilbert A-bundle &€ — M
with fibre a Hilbert A-module (FE, (,)g), each subordinated partition of unity
on M, and for a convenient integer [, the surjective Hilbert A-module mor-
phism P : @2:1 HF(T™,CV) — H*(M,CV) is defined in Solovyov, Troitsky
(Construction 2.1.76, [56]). The construction is parallel to the finite rank case
([42]). It is easy to realize that it may be applied at least for any Hilbert
C*-module E which is orthogonally complemented in A? for a suitable ¢, re-
gardless whether A is unital or not. Let us notice that the compact C'V-module
E = CV is orthogonally complemented in C'V for trivial reasons. Thus we
may define P for a compact C'V-bundle on M by the same formula as in
[56], getting a Hilbert C'V-module morphism as well. Let us notice that for
k' < k, Py is the continuous extension of Py since all of the maps Py are
defined as the continuous extensions to the Sobolev-type spaces of a single map
P @2:1 C*(T", E) — I'”(M,E), whose domain is dense in the direct sum
C‘Dli=1 H*(T™, E) of the Sobolev-type completions for each k € Z.

The existence of a right inverse ;) to Py is stated in Theorem 2.1.77 in
[56] without a precise reference to a proof. However the proof may proceed in
the same way as in Palais [42] (Theorem 2 in Paragraph 4, Chapter X). The
appropriate Hilbert A-bundle analogue of ;) is A-linear since it is constructed
by scalar-valued functions derived from the partition of unity on M and Hilbert
A-bundle charts, which are fibre-wise Hilbert A-module morphisms by Definition
2. Consequently, v is a Hilbert A-module morphism. Further for k& > k', the
map [ is the continuous extension of the map ~y[x). We remark that the proof
of this statement proceeds as in the Corollary 1 of Theorem 2, Paragraph 4,
Chapter X in Palais [42].

Let us mention (cf., e.g., 2.1.28 in [56]) that a Rellich A-chain is a descending
chain of Hilbert A-modules (X )kez such that the inclusion maps X411 — X
are A-compact for each integer k.

Below we prove a theorem whose second part is targeted to the images of
the continuous extensions to Sobolev-type spaces of C'V-elliptic operators. For
simplicity, we suppose that the finite orthogonal sum 6—)2:1 H*(T™, E) contains
one element only, i.e., [ = 1. In the proof of the first part, we proceed similarly
as in the proof of the Thm. 3, Paragraph 4, Chapter X in [42].

Theorem 7: Let M be a compact manifold of dimension n and
D:C*(M,CV)— C®(M,CV)

be an adjointable C'V-elliptic operator of order d on the compact C'V-bundle
CV,r=M xCV on M. Then

a) the inclusion map Jyy; : H**Y(M,CV) — H*(M,CV) is C'V-compact
and
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b) the continuous extension Dy of D to H*(M,CV) is CV-Fredholm and its
image is closed in H*~4(M,CV) with respect to the topology given by
the Sobolev-type norm | |¢_,.

Proof. 1) We have sequences (H¥(T™ CV))kez and (H*(M,CV))kez of
Hilbert A-modules at our disposal. The sequence (H*(T™,CV))ez is a Rel-
lich C'V-chain because the inclusions

Iiyr : HMYY(T,CV) - H*(T™,CV)

are C'V-compact by Scholium 1. Let us consider the inclusion map Jgi1 :
HE*Y(M,CV) — H*(M,CV). The diagram

HA (T, ov) 22 gh T, oV

’Y[kH]T \LPUC]

HM (M, o) 2 gh ML, ov)

is commutative since Prjlr+1Vk+118 = Prvr+11s = Prywys = 8 = Jry1s
for all s € H*1(M,CV). Since I}, is CV-compact (Scholium 1), Jy 41 is CV-
compact by the ideal property of C*-compact operators (see the Remark above
the Definition 1). Consequently (H*(M,CV))kez is a Rellich C'V-chain as well
and the corresponding inclusions are C'V-compact homomorphisms. Thus a) is
proved.

2) Let k € Z. Since D is CV-elliptic, there exists a partial inverse of Dy,
denoted by ﬁk_d, such that the operator N, = Y\jk_dl)k — Id g (u,0v) maps
HE(M,CV) into H*+1(M,CV) € H¥(M,CV), i.e., it is smoothing. Recall that
1\5;€_d is constructed by inverting the symbol of D out of the image of the zero
section of T* M, using the already mentioned construction. Since Ny = Ji; 10N
and Ji,1 is CV-compact by a), N is C'V-compact as a map of H*(M,CV)
into H*(M, C'V') by the ideal property for C*-compact operators. Similarly, we
proceed for the opposite composition, i.e., of Dy with 15k,d in this order.

Consequently Dy, is C'V-Fredholm. By Lemma 1, the image of Dy is closed
in H*=4(M,CV) and thus b) follows. O

4 Images of elliptic operators

In this chapter, we investigate topological properties of images of elliptic oper-
ators defined on smooth sections of Hilbert bundles on compact manifolds, not
assuming additionally the invariance of these operators with respect to a C*-
algebra of compact operators other than the C*-algebra of complex numbers.
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4.1 Injective completion of tensor products

Let X be the unique completion of a metric space X up to isometry. We suppose
that it is defined by taking Cauchy sequences in X and by considering two of
such sequences equivalent if they differ by a sequence converging to zero in X
that is usually called the null-sequence. The completion X is equipped with a
metric induced canonically by the metric on X. The element in X determined
by a Cauchy sequence (a;)ieny S X is denoted by [(a;);] or by lim; a;. We
always consider X to be isometrically embedded into X by the map that takes
an element a € X to the equivalence class containing the constant sequence

(a)ieN~

Let X; and X» be both real or both complex vector spaces. We denote their
(algebraic) tensor product over the ring of real or complex numbers, respectively,
by X1 ® X5. If X7 and X5 are vector spaces equipped with countable families
of seminorms, we denote the tensor product X; ® X by X; ® X2, when we
consider it with the so-called injective family of seminorms (see Tréves [58])
which is induced by the seminorms on X; and Xs. We denote the completion
of the tensor product X; ®. Xo with respect to the metric generated by the
injective family of seminorms by X1®. X5 and call it the completed injective
tensor product or simply the injective completion. If X; and X5 are Fréchet
topological vector spaces, it is well known that the completion is a Fréchet
topological vector space as well. See [5§].

Let Z be a Fréchet topological vector space and (V,h) be a Hilbert space.
For a homogeneous element C = f@ a € Z® V* and an element B € CV, we
consider the right action of B on C defined by C'- B = f® («o B), and extend it
linearly to the tensor product X ® V*. We can think of the action on Z®V* by
a fixed element B € CV as of the map Idz ® Pp, where Pg(a) = a o B for each
a € V*. The action by B on elements of the completed injective tensor product
Z®6V* is defined as the unique continuous extension of the map Idz; ® Pp
to Z@)EV* denoted by IdZC;)EPB. It is easy to see that the resulting action is
continuous as a map (Z@EV*) x OV — Z&.V* if CV is considered with the
operator norm topology and also if it is considered with the strong operator
topology. The continuity is verified for each of the Fréchet norms defining the
metric on Z separately.

For any continuous map D : X — Y of Fréchet spaces X and Y, we consider
the continuous map D¢ = D @ ldys : X ®. V* - Y ® V* and its unique
continuous extension D€ : X ®€V* — Y@eV* to the completed injective tensor
product X®,V*. See Tréves [58].

Lemma 8: Let D : X — Y be a continuous linear map of Fréchet topological
vector spaces X and Y. Then D¢ is C'V-linear from the right.

Proof.
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Each element ¢ € X ® V* can be written as ¢ = Zézl fi ® a;, where [ is
an integer, f; € X and «; € V* for each i = 1,...,l. For B € CV, we have
c-B= ZLI fi®(a; o B) and consequently (D¢(c))-B = ((D ® Idy«)(c)) -
B = ((D@Tdy+) Y, i®a:)-B = (Li_(Dfi ®a))-B = ¥i_, Dfi®
(;oB) = (D®Idy«)(c- B) = D(c- B). Thus D€ is CV-linear from the
right.

For ¢ € X®.V*, let us consider a Cauchy sequence (¢;)ien in X ® V* that
converges to ¢ in the completed injective tensor product X®.V*. Using
the fact that Pg and D®.Idy« are continuous, the C'V-linearity from the
right of D¢ = D ® Idys on X ® V* proved in the paragraph 1) above,
and the continuity of Pg again, we obtain ﬁe(c -B) = De ((lim; ¢;) - B) =
D¢ (limy(¢; - B)) =

= lim (D*(ci - B)) = lim (D(c:)) - B) = (tim (D"(c2))) - B =
- (f)f(nlmci)) B = (f)e(c)) . B.

Consequently, De is right C'V-linear as a map of X®.V* into Y®.V*.

Let V and V' be Banach spaces and let us consider the operator norm

topology on the continuous dual V* of V. The following isometric isomorphism
of Fréchet topological vector spaces

CP(M,VRV* = C°(M,V'QV*)

is proved in [58] (Theorem 44.1). Moreover, if V and V' are unitarilly isomorphic

Hilbert spaces, we have C® (M, V'®.V*) =~ C®(M,CV), where the space C'V

of compact operators on V' is considered with the operator norm topology. See,
e.g., [68], Theorem 48.3.

Remark: Let us denote the C-product on C*(M, V) induced by the inner

product A on V by (,), the CV-product on C*(M,CV) by (,)’, and the measure
induced by the volume density-form of a Riemannian metric tensor on M by pu.
For f,ge C®(M,V) and a, 8 € V*, we thus have

(f®a,g®p) = f M(f(y) ®a,g(y) ® B)cvdu(y)
- LM (F) ®a)* o (9(y) ® B)) dpu(y)
| (@) o) @8)
- ( | h(f(y),g(y))du(y)> Y
yeM
= (f7 g)O‘j:1 ® B
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where f ® « is defined by (f ® a)(y) = f(y) ® a for y € M and similarly for g
and (.

We denote the Sobolev-type product on the Hilbert C'V-module H*(M,CV)
by (,) f in order to distinguish it from the Sobolev-type product ()7 on the
Hilbert C-module H*(M,V). Note that the same multiplicative factor (1 +
ly|3.)* appears in the local coordinate expressions for (,); as well as for (,)’ f
Substituting FV f and FVg for f and g, respectively, in the above integral
formulas for (,)’ considered in local coordinates, i.e., on R", and adding the
multiplicative factor (1 + |y|2.)* under all integral signs, we get that for f,g €
HF(M,V)®V* and o, B V*

(f®a,g®p); = (f,9)8 a* @ (1)

In the next theorem, we analyse the C*-ellipticity of the C'V-linear operator

~

D¢ = D®Idyx if D is elliptic.

Theorem 9: Let D be an elliptic operator on the product Hilbert bundle
p:Vy =MxV — M"™on the compact manifold M with fibre a Hilbert space
V. Then the operator De: C®(M,CV) — C®(M,CV) is a CV-elliptic operator
on the compact C'V-bundle CV,, = M x CV — M whose image is closed in
the pre-Hilbert topology on C*(M,CV).

Proof. 1) Let o denote the symbol of D and let us consider the map ¢’ =
o®cIdy« of T*M by which we mean that ¢’(¢) = 5¢(€) = 0(£)®cIdy« for each
€ e T*M and m € M. In particular, o'(£) : V®.V* — V®.V*. By Lemma
8 used for o’(§), o’(§) is CV-linear. In particular, o’(§) € Endcy (CV). This
map satisfies the growth conditions for symbols of the same order because Idy
does not depend on £ and thus it does not change the defining growth estimates
for symbols as given in [56]. The operator ¢’(§) is adjointable with the adjoint
o (€)*®cIdy+. Consequently, o’ is a symbol.

Since M is compact, there is a finite set K and a partition of unity (Uj, x;)jex
subordinated to the manifold and to the bundle atlases. Let ¢ : U; — R™ be
a chart in the atlas of M, j € K, and let us denote the coordinate expression
of o restricted to T*U; by o;. It maps an open subset in R?*" into End(V).
The coordinate expression of o restricted to 7*U; is denoted by 7. It maps

an open set in R?" into Endg, (C'V). We have ai(§) =0 (6)®cIdy %, where the
cotangent vector ¢ is considered as an element of (R?")*. For a manifold chart
(Uj,%;), we denote the push-forward yx; o wj_l of x; by X;b, jeK.

Using the associativity of the tensor product and the equation Idgy =
Idy®Jdy s, we get FCV = FRJIdoy = FRc(Idy®cldys) = FV®Idy«. In
the next computation, D¢ denotes the coordinate expression of the correspond-
ing operator with respect to the chosen charts and to the chosen partition of
unity. We use the equations Idyx = Idyx ® Idys = Id‘_,}k o Idy % and the bi-
functoriality of the tensor product with respect to composition of maps. We
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thus have
Df = D®Jdyx = 3 [(IV)—l oxVajo ]—"V] &cldy=
jeK
= Z _((]-"V)*1 o X?’JJ) o fv] ®c(Idy+ o Idy+)

jeK

jeK

((F‘”)‘1 o x}”aj) (Q)EIdv*] o (FV®dy+)

:((.7:‘/)_1 o X}ba]) ®6(Id‘7,£< ) Idv*)] o (]—"V(Q)eldv*)

&
=

((F) '@yt o (o, @ddye) | 0 FOV

=
=

(FV®Idy+) ' o (X;?oj&)eldv*)] o FCV

=
=

= (]:CV)fl o X?’a} o FCV

€

=

ie., De is generated by the symbol o/ = 0®.Idy«. In particular, Deisa CV-
pseudodifferential operator.

Since D is elliptic, o(§) is a linear homeomorphism for any £ # 0. It is
immediate to realize that the continuous C'V-linear map o (&)~ '®.Idy« of C'V
is the inverse of o/(¢). Thus ¢'(€) = (€)@ Idy+ is a Hilbert CV-module
automorphism for any £ # 0 and consequently, the operator Deis CV-elliptic.

2) Notice that D is adjointable by the Lemma 5. It can be easily realized
from the definition of the adjoint, that the adjoint of D¢ as a morphism of
the pre-Hilbert C*-module C*(M,CV) is D*®.Idy . For proving the closed
image property of D¢ with respect to the pre-Hilbert topology on C*(M,CV)
we use the Corollary 3. We set A = CV, X = X' = H?*{(M,CV), Y =
Y' = H(M,CV), Z = Z' = C*(M,CV), A = (D)*D° : Z — Z, and
A = ﬁe(ﬁf)* 1 Z — Z, where d is the order of D. We verify the assumptions
of the corollary below.

i) The CV-pseudodifferential operators A and A’ have continuous extensions
A = Ay, and A = (A'),, to X that map the space X into the space Y.
These extensions are adjointable since any continuous C'V-linear map of
Hilbert CV-modules is adjointable. See Remark 5 (b) in [4].

ii) Further conditions in Corollary 3 are the assumptions a) and b) of Theo-
rem 2. Let usset D = D*D : C*(M,V) — C*(M,V). Since D is elliptic,
D* is elliptic by the Lemma 5. By the Theorem 2.1.116 [56] on the symbol
of the composition and Lemma 5 used once more, the symbol o(D)(§) of
the composition D*D in £ equals to o(D*)(§) o o(D)(§) = o(D)(&)* o
o(D)(&) which is easy to see to be an isomorphism of V' for each £ # 0. By

32



the paragraph 1) above used for 256, De is CV-pseudodifferential and its
symbol in & € T*M is (D) (£)®cIdy « which is an automorphism of C'V for
€ # 0. Thus A = (D*®JIdy+) o (D®Idy+) = D*DRJIdy+ = DRcIdy «
is C'V-elliptic. The operator A’~ is elliptic by interchanging the roles of
D and D*. By the Theorem 7, A and A’ are CV-Fredholm and thus by
Lemma 1, their images are closed, i.e., the condition a) of Theorem 2 is
satisfied.

iii) Since A and A’ are C'V-elliptic, they are regular by Theorem 6, and thus
the first part of the condition b) of Thm. 2 is satisfied. We verify the

second part of b), i.e., the regularity for A* and A By Wloka [63],
the spaces H*(M,V) are Hilbert spaces. In particular they are self-dual
by the Riesz representation theorem. In this case the adjoint (Da2g)* :
HO(M,V) — H?*{(M,V) is identified with (D*)q = Dy : H*(M,V) —
H=24(M,V) by the standard procedure based on the Sobolev smooth
embedding and the uniqueness of adjoints. See Palais [42] or Solovyov,
Troitsky [56], p. 84. Denoting I' = C*(M, V'), we thus have

D = (Da)* 2)

Let us return to the regularity question of A¥ = (Agq)*. Using the equa-
tions (II) and (@), we get for f,g € C*(M,V) and «, 8 € V* that

(f®a, AL(g®8)) 5y = (M2a(f ®0a).g® )y = (A(f®a).g®B)y
— (Pf®a,g®B)s = (Daaf ®,g® By = (Daaf,9)at ®

= (f,(D2a)*9)5:08 ® B = (f,Dg)5:0* ® 8 = (f ® 0, Dg ® B) 5

= (f®a,A(g®p)) s

where (,)’ f denotes the Sobolev-type product on H*(M,CV). Denot-
ing I = C®(M,V) ® V* and comparing the first and the last term of
the equalities above, we get (Agq)* = Ajp. Since C*(M,V) @ V*
is dense in C®(M,V)®.V* with respect to the Fréchet topology and
C*(M,V)®V* =~ C®(M,CV) both considered in the Fréchet topol-
ogy, A and (A2d)*|cw(M,cv) are equal. Since A is CV-elliptic by ii),
(AQd)*|CVv(M,CV) is C'V-elliptic as well. By Theorem 6, A* s regular
and therefore the condition b) of Theorem 2 is satisfied for the opera-
tor (ﬁ*)‘cm(M’C‘/). For the operator A" the condition b) is verified by
interchanging the roles of D and D* in the composition defining D.

By Corollary 3, the images of D¢ and (lA)E)* are closed with respect to the
pre-Hilbert topology on C®(M,CV). O

Remark: 1) Let V be an infinite dimensional Hilbert space. In the part 2)
of the above proof, we do not construct the adjoints of the extensions A and A},
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using the transposed operators since H*(M,CV) are not a C'V-self-dual Hilbert
CV-modules in general. Note that even if M is a single point, H*(M,CV) is
isomorphic C'V that is not C'V-self-dual. Its C'V-dual is the space of all linear
bounded operators on V. (See Jensen, Thomsen [2I] (E 1.1.4) and Frank [I3]
for more information.) Moreover and for different reasons, H*(M,CV) is not
linearly homeomorphic to H*(M,V)®.V* if the dimension of M is at least 1
and V is infinite dimensional. (Private communication with D. Vogt.)

2) The previous lemma has an appropriate generalization for an elliptic oper-
ator D on smooth sections of Hilbert bundles p’ : V', » M and p” : V", - M
with fibres the Hilbert spaces V' and V", respectively. For a Hilbert space
V, we consider the CV-linear operator D¢ = DR.JIdy« : C®(M,V'®.V*) —
C*(M,V"®.V*) whose symbol in ¢ is o(¢)®Idy %, where ¢ denotes the symbol
of D. The inverse of the symbol of D¢ is 0(6) '@ Idy+ for any non-zero . Thus
Deis CV-elliptic as well. The growth condition for symbols are satisfied since
the identity does not change the appropriate estimates.

3) The adjontability of o/(¢) = 0(£)®cIdy+ from the proof of the above
theorem follows from the assertion in Remark 5 (b) of [4] as well since o’(€) is
continuous.

Next we prove a lemma on a representation of smooth sections of the compact
Hilbert C'V-bundle C'V;, on a compact M. Let us recall that we consider only
separable Hilbert spaces (Preamble, item d)). Nevertheless, it is easy to see that
the next lemma holds for non-separable Hilbert spaces as well, that is proved
by taking nets instead of sequences.

Lemma 10: For an arbitrary element f’ in C* (M, V)®.V* and all positive
integers 7, j € N, there exists a smooth V-valued function ¢;; € C* (M, V) such
that f’ is the equivalence class of the Cauchy sequence in C*(M,V) ® V*
with elements f! = 230:1 $ij ®€, i €N, ie., f’ = lim,; f! with respect to the
Fréchet topology on C®(M,V)®V* = C*(M,CV). The equality fA” = lim; f]
also holds with respect to the pre-Hilbert topology on C*(M,CV). Moreover,
for each j € N the limit lim; ¢;; exists in both of these topologies.

Proof. Let (f!)ien € C®(M,V)®. V* be a Cauchy sequence representing
f’ , L.e., jA” = lim; f/. By the definition of the algebraic tensor product of vector
spaces, we have that for each i € N there is a positive integer m; € N, and
for each k = 1,...,m;, there is a function f; € C*(M,V) and a continuous
functional oy € V* such that f/ = >, fir ® ay. For any j € N, there exist
complex numbers 0y;, k = 1,...,m;, such that ay, = Z;O=1 Or;e’, where (€7)jen
is a Hilbert basis of the separable Hilbert space (V,h). Consequently, f/ =
Sty fik ® X0, Oy for each i € N. Thus f] = 37, 3", fir ® Ose! =
Z;ozl $ij @ €/, where ¢;; = >, Ok fir for each 4,7 € N. By the isomorphism
C*(M,V)®V* = C®(M,CV) of Fréchet topological vector spaces mentioned
above, we consider f] = Z;O=1 $i; ® € as an element of C®(M,CV) by fl/(m) =
2,21 ¢ij(m) ® € € CV, m e M. Since the pre-Hilbert topology on C*(M,CV')
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is finer than the Fréchet topology (Lemma 4), the equality f' = lim; f/ holds
also in the pre-Hilbert topology on C*(M,CV).

For v € V, let us consider the map ev,, : C®(M,CV) — C* (M, V) defined by
(evypf)(m) = (f(m))(v), where f e C®(M,CV) and m € M. It is easy to realize
that this map is continuous for any v € V' with respect to the Fréchet topologies.
Namely for I > 0 the operator norm ||| of ev, with respect to the Ith Fréchet
seminorm on C*(M,CV) and the [th seminorm on C*(M,V) is bounded by
the constant |v|y as is easily seen by the inequality |A(v)|v < |A|ov|v]v where
A e CV. Due to f] = 23021 $i; ® € and the mentioned continuity of ev,, we
have ¢;; = eve,(f;). Taking the limit of the expression with respect to i, we
get lim; ¢s; = eve, lim;(f]) = eve, f’ . In particular, lim; ¢;; exists. Since the
pre-Hilbert topology is finer than the Fréchet topology (Lemma 4), the limit
lim; ¢;; exists for each j also with respect to the pre-Hilbert topology. O

We derive the following scholium.

Scholium 2: Let D be a pseudodifferential operator on the Hilbert bundle
V,; on a compact manifold M with fibre a Hilbert space V. Let (aj)jen S
C®(M,V)®. V* be a sequence such that the series Z;czl a; converges with

respect to the Fréchet topology on C® (M, V)®.V*. Then

with respect to the Fréchet topology.

Proof. The series 220:1 a; converges in the Fréchet topology by the assump-
tion. Since D¢ is a pseudodifferential operator (Theorem 9), we have for the
‘ k o A [oe) o k [*e)
Fréchet norms |33,y Da; — D35~ ajli” < |ID°If;-4l D=1 — 21 a;l{,
where d denotes the order of D and ||||f,_, denotes the operator norm of con-
tinuous linear maps between the normed vector spaces (C*(M,CV),||F) and
(C®(M,CV),||f ;). Therefore Z;O=1 D¢a; converges in the Fréchet topology to

De (Z;O=1 aj) : ]

4.2 Closed images of elliptic operators on Hilbert bundles

Let p’ : V' — M and p” : V' — M be infinite rank Hilbert fibre bundles on
a compact manifold M with fibres the separable Hilbert spaces (V’/,h’) and
(V”,h"), respectively. Let D : T® (V") — T'®(V”) be a pseudodifferential oper-
ator. We consider the pseudodifferential operator D in a global smooth trivi-
alization as described in the Section 3, part Trivializing construction. Thus we
have a map D : C®(M, V') — C®(M, V") defined by D = o/ o Doa’™", where
o' and o are defined in the Trivializing construction. For our purpose, we may
identify D with D and consider that D : C®(M,V’') — C®(M,V"). Let us
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notice that in the case of the pre-Hilbert topologies on the spaces of smooth
maps, neither D nor D have to be continuous. Since we shall investigate elliptic
operators, we suppose that (V' h') and (V" k") are linearly homeomorphic. By
polar decomposition for continuous linear maps of Hilbert spaces, the Hilbert
spaces (V',h') and (V" k") are also unitarilly isomorphic. We identify these
spaces and denote them by (V,h). We keep denoting the differential operator
by the same symbol, i.e., we consider D : C*(M,V) — C*(M,V).

Let us recall that we have the operator D¢ = D®Idyx : C*(M,V)QV* —
C®(M,V)® V* and its continuous extension

DS : CP (M, V)RV* — CF(M,V)®V*

to the injectively completed tensor product at our disposal. This operator is
continuous as a map on C* (M, CV') considered with the Fréchet topology. Op-
erator D¢ is C'V-linear by Lemma 8, C'V-pseudodifferential, C'V-elliptic and its
image is closed in the pre-Hilbert topology (Theorem 9).

For each [ > 0, the space (C*(M,CV),||F) is a normed abelian group with
respect to the point-wise addition of vector-valued maps and thus, by Antosik
[1], it satisfies the so-called “FLYUS” convergence conditions of [I], p. 369.
Consequently, the Theorem 2 in [I] can be used for this space, which is a normed
abelian group with a convergence structure from the point of view of [I].

Scholium 3 (limit and sum interchange): Let us consider a double sequence
of smooth maps (¢;;)ijen S C*(M,V), and suppose that for each ¢ € N the
series L; = Z;O:l Dij e €/ converges, and that the limit L = lim; L; of the
sequence (L;)ien exists in C© (M, V)®V*(= C®(M,CV)) with respect to the
Fréchet topology. Then Z;ozl lim; ¢;; ®. € exists with respect to this topology
and it is equal to L.

Proof. For determining the topology on smooth sections of C'V-valued maps
on M, let g be a Riemannian metric on M and V' be a covariant derivative on
the product bundle V,, = M x V — M, e.g., the one defined by the Carte-
sian product structure of this bundle. For each vector field X on M, let us
consider the operator Vx on I'°(CV,,) = C®(M,CV) = C®°(M,V)®.V*
defined by Vx = V’X@)Eldv*. It is easy to see that V is a covariant deriva-
tive on CV,,. We suppose that g and V determine the Fréchet norms on
C*(M,CV) = C®(M,V)®.V*, described in the Section 3.

Let I be an arbitrary non-negative integer. By Theorem 2 in [I], the series
chzl lim; ¢;; ® €/ converges with respect to the norm ||/" and equals to L if
a) lim; ¢;; ® €/ exists for all j, b) lim; ¢;; ® €/ exists for all 4, and c) the series
L; = 22021 $ij ® € is subseries convergent in (C*(M,CV),||F) for all i. We
verify the conditions a), b) and c).

a) Recall that (ev, f)(m) = (f(m))(v), where m € M and v € V. As realized
in the item b) of the proof of the Lemma 10, ev, : C*(M,CV) - C*(M,V) is
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continuous with respect to the Fréchet topologies for each v € V. Thus we have
[e@] [e@]
eve, L = eve, (hm Z oik ® ek> = lim Z eve, (dix ® ek)
Ry Ry
0 [ee]
= lim D pineve, (€F) = lim > bikbij = lim ;.
k=1 k=1

Consequently, lim;(¢;; ® ¢/) = (lim; ¢i;) @ €/ = (eve, L) ® €l exists for all j.

b) For the limit with respect to j, it is sufficient to realize that ¢;; ® €/ =
S bk ® e — 311 ¢ ® ¢ and that if j — oo, both of the sums at the
right-hand side converge by the assumption. Thus the limit of ¢;; ® ¢/ with
respect to j is zero.

c¢) In the rest of the proof, we verify the condition on the subseries con-
vergence. Let us consider an increasing sequence of positive integers v : N —
N, with help we choose a subseries. For each ¢ € N, let us set LY(k,r) =
ik i) ® W) and L;(k,r) = LM(k,r) = Yk ®ij ® €, where Id denotes
the identity sequence Id(j) = 7, j € N, and 1 < k < r are arbitrary integers. We
prove that for each | € No, |LY (k,7)|F" < |L;(k,r’)|l" for an integer v’ > k that
may depend on [.

c.i) First, let us suppose that [ = 0. For a fixed i € N, we define U”(m, k,r) =
ik bivi)(m) ® ) and \P(m,k,f) = Uld(m, k,r), where m € M. Let
us set PY(m, k,r) = Z;Zk eu(s) ®¢e”U), which is a map on M whose values
are orthogonal-projections in V. For each m € M, P¥(m,k,r) is of finite
rank, thus it is an element of C'V. It is easy to verify that

U (m,k,r) =U(m,k,v(r)) o P"(m,k,r).

Since | |cv is submultiplicative and |PY(m, k,r)|cy = 1 for each m € M,
we have |U”(m, k,7)|cv < |¥(m,k,v(r))|cy. Taking the supremum over
m € M of both the sides of this inequality, we get for each i € N that

L (ky g < | Lk, v(r)[E (3)

c.ii) Let I > 1 and let us consider local unit length tangent vector fields X;
on subsets of M, g(X;,X;) =1,i=1,...,l. For deriving the appropriate
estimates, we replace the CV-valued maps ¢;; ® ¢/ in the item c.i) above
by the CV-valued maps Vx, ...Vx,(¢ij ® ¢) = (Vi ...V, ¢ij) @ €.
The inequality (@) transforms into

|y (k)| < Lk, v(r)IT (4)

because P¥(—, k, r) is constant for each fixed k and r € N, i.e., with respect
to M. Thus we see that it is sufficient to consider r' = v(r).
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Using the derived inequalities ([B) and (), we show routinely that L; is
subseries convergent for each i € N. Let us recall that C*(M,CV) with the
Fréchet topology is Cauchy complete. Since for each i, the original series L; is
convergent in C* (M, C'V') by the assumption, it is Cauchy with respect to | [
for each I’ = 0. Thus for each ¢, there is kg = 0 (dependent possibly on 7 and ')

such that for all k > ko and all p’ > 0 we have |L;(k, k + p/)|} = |Z;€:£l ¢ij ®
€| ﬁ < e. Let k = ko and let us consider an arbitrary p > 0. By inequalities (B])
and (@), we obtain |LY(k,k + p)|i < |Li(k,k + (v(k + p) — k))|F'. Thus taking
p' = v(k+p)—k in the inequality |L;(k, k +p')|5 <€, we get |LY (k,k+p)|F <€
for all p > 0. This shows that for each increasing v, the sequence (LY);en is
Cauchy with respect to ||/ for all I’. This means that (LY );ey is Cauchy in the
space C*(M,CV) equipped with the Fréchet topology, and thus convergent.
Consequently (LY);en is convergent in the chosen (C®(M,CV),||f'), and thus
(L;)ien is subseries convergent in this normed space.

In particular the assumptions of the Theorem 2 in Antosik [I] are satisfied
and ), lim; ¢ ® € — L in (C*(M,CV),||[) if i — o0. Since [ is arbitrary,
the sequence (L;);en converges to L with respect to the Fréchet topology on
C*®(M,CV) as well. O

Remark: 1) Theorem 2 of [I] used in the above proof is a generalization
of a theorem on a sum and limit interchange of Schur. See Pap et al. [4I]. It
relies on the so-called Antosik-Mikusiniski basic matrix theorem. See [2]. Let us
remark that pages 371 and 372 should be swapped and renumbered in Antosik
.

2) It is not difficult to see that each of the series L; = 220:1 T ® e =
% ® Z;O=1 € e CV, i = 1, is subseries convergent and that lim; f—; ®e =0
for each j. Thus lim; L; = 0 by the above Scholium. In this case, we cannot
apply dominant convergence criteria since the series are even not absolutely
convergent.

Now we prove the main result, i.e., the closed image property of elliptic
operators on Hilbert bundles on compact manifolds. We derive it from the
closed image property of D¢ proved in Theorem 9. Although fibres are supposed
to be separable Hilbert spaces in our article (Preamble, item d)), we recall this
assumption in the theorem.

Theorem 11: Let D : I'° (V') — I'°(V”) be an elliptic operator on sections
of infinite rank separable Hilbert bundles V' and V" on a compact manifold
M. Then the image of D is closed in I'*(V") with respect to the pre-Hilbert
topology. Moreover, we have the orthogonal decompositions I'* (V") = Ker D*@®
Im D and T (V') = Ker D @ Im D* with respect to the pre-Hilbert topology.

Proof. Since the symbol of D is a linear homeomorphism for any non-zero
cotangent vector on M, we identify the fibre V’ of V' with the fibre V" of V"
and denote them by V. The operator D is considered as a map of C*(M,V)
into C%®(M,V) as explained at the beginning of this section.
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1) Let (g;)ien € C*(M, V) be a sequence in the image of D that converges to
an element g € C®(M, V) with respect to the pre-Hilbert topology, induced by
an appropriate measure denoted by u. Let f; be an element in the D-preimage
of g;, i.e., for each i € N, Df; = g;. Since D*(fi®¢€!) = Dfi® ¢! = g; ® €', the
sequence (g; ®e€l); is in Im De. By the definition of the Bochner integral by step
functions, we get that §,, (9, @€' —g®e')dp = (§,,(g9: — 9)dp) @€' which tends
to 0 if i — oo since g; — g in the pre-Hilbert topology. Consequently g; ® €'
converges to g ® el. ~

Since the image of D¢ is closed in C* (M, C'V') with respect to the pre-Hilbert
topology (Theorem 9), g ® ¢! € Im D¢. Let us choose a ﬁe—preimage of g® et
and denote it by f’ Thus

Dff = g®¢ (5)

As an equivalence class in C* (M, V)(Q)eV*, the element f’ is represented by a
Cauchy sequence (f!)ien € C®(M,V) ® V*, where C*(M,V) is considered
with the Fréchet topology. By Lemma 10, for each ¢ € N there exists a family
of smooth functions (¢;;)jen € C*(M,V) such that f] = 220:1 $ij ® € with
respect to the Fréchet topology on C*(M,CV).

_ Using the continuity of D¢ with respect to the Fréchet topology, we have
Def' = D[(f)il = [(Df)i] = [(D(X7%, dij ® €))i] = (X2, Doy ® )],
where the last equality follows from Scholium 2. Comparing this result with
(@), we obtain that the sequence (Z;il D¢i; ® € )ien differs from the constant
sequence (g ® e'); by a null-sequence in the Fréchet topology, i.e., ¢ ® ¢! =
lim; (Z;O=1 Do ® el ) . By Scholium 3 on the sum and limit interchange, we
get that g® ! = Z;C;l(limi Dé¢;;) ® €. Since (¢'); is a Hilbert basis of V*, we
obtain from the last equality that lim; D¢;; = 0 for all j € N\{1}. The existence
of lim; ¢;; is due to the Lemma 10. Setting ¢ = lim; ¢;1, we get

9@ = ) (lim Do) © ¢ = (Do) ©

j=1

= (Dlim ;1) ® €' = Dp® €'

by the continuity of D with respect to the Fréchet topology on C*(M,V).
Consequently, we have ¢ = D¢ and especially g € Im D. Thus we find that
the limit point of a sequence in the image of D converging in the pre-Hilbert
topology on C®(M, V) belongs to Im D, which means that the image of D is
closed in C* (M, V') with respect to the pre-Hilbert topology.

2) We prove the part of the assertion on the complementability of the images.

a) For Corollary 3, we consider that A is the C*-algebra of complex numbers
C, X = H>*(M,V),Y = H'(M,V), Z = C*(M,V), X' = H?*(M,V),
Y’ = HY(M,V), and Z' = C*(M,V), where d denotes the order of D.
Since D : Z — Z' is a C-pseudodifferential operator, it is adjointable by
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the Lemma 5 and thus we have the morphisms A = D*D : Z — Z and
A’ = DD* : Z' — 7' of the pre-Hilbert C-modules of smooth sections of
the appropriate bundles, both of which are self-adjoint as maps of these
inner product spaces. Let U be a non-empty open subset of Im Ay; where
d is the order of D. Since Ay : H?*4(M,V) — H°(M, V) is continuous, the
non-empty set A, (U) is an open subset of H?4(M, V). Since C*(M, V) is
dense in H(M, V), the set A, (U) nC*®(M,V) # . Taking an element
g in this intersection, we get that Asyg = Ag € U n Im D, and thus
UnImA # . Consequently Im A is dense in Im Agyy.

b) Let (fi)ien is an arbitrary sequence in Im Ayy converging to the element
fin H°(M,V). Thus for any ¢ > 0 there is an integer ig, such that
|fi — f| < e for all i > iy. Since Im A is dense in Im Agg, for each i > 1
there exists a sequence (f7)jen © Im D and an integer jo(4) € N such that
|fij — fil§ < €/2% for all j > jo(i). Setting f, = fijo(i) for i > 1, we obtain
a sequence (ﬁ-)ieN in Im A. For all ¢ > ig we have \ﬁ —fl§ = |ﬁ — fi +
Fi= D18 <Ifi= fil§ + 1= 11§ = 1P = fil§ + £ = SI§ < /2 + e <2e.
Consequently (f;);en converges to f in the pre-Hilbert topology. Since
(f)ien < ImA and Im A is closed in C®(M, V) by the item 1) of this
proof, f belongs to Im A and we may write f = Ag for an element g in
C*®(M,V). Therefore f = Asyg and thus f is in the image of Ay proving
that the image of Ayy is closed. Similarly, we proceed in the case of A’.

c¢) Operators A and A’ are self-adjoint. They are elliptic since the symbol of
the composition is the composition of the symbols by [56] and since D*
is elliptic by Lemma 5. By the Theorem 6, they are regular. Moreover,
(Azd)*|C°C(M,V) = A by the same arguments as in the proof of the Theo-
rem 9 which we use for the self-dual fibre V' and A = C. Similarly we get
(A/Qd)*ww(M,V) = A’. Since A and A’ are regular, (Asq)* and (A},)* are
regular as well. Therefore the assumptions of the Corollary 3 are satisfied.
Using the Corollary, I'(V') = Ker D@®Im D* and I'(V”) = Ker D*®@Im D.

O

Question: We ask whether the statement of the Theorem 11 on the closed
image property of elliptic operators holds for Hilbert bundles that have non-
separable fibres. Let us notice that the separability is not assumed in the results
on a smooth trivialization of infinite rank Hilbert bundles of Burghelea and
Kuiper [6] and Moulis [40]. However, the basic matrix theorem from Antosik
and Swartz [2] is formulated for sequences and not for arbitrary nets.

Future aim: It is seems interesting to study consequences of the closed image
property for elliptic complexes on Hilbert bundles.
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