Mathematics for Economists I
 Problems 7
 Derivatives

Find the derivative of the given function and the domain where both the function and its derivative are defined.

1. $x^{4}+5 x^{3}-2 x^{2}-6 x+3$
2. $\frac{1}{3 x+2}$
3. $\frac{x^{2}+3 x-2}{x+1}$
4. $\left(x^{2}+1\right) \ln x$
5. $e^{4 x-2}$
6. $e^{x^{2}-x+1}$
7. 5^{x}
8. $\ln \sqrt{2 x+3}$
9. $\sqrt{x^{2}-4}$
10. $\log _{10}\left(x^{2}-1\right)$
11. $\ln \left(\frac{4-2 x}{x+2}\right)$
12. $\frac{x+2}{\sqrt{x^{2}+1}}$
13. $\frac{e^{1+2 x}}{x^{2}+3 x+4}$
14. $\frac{\ln (3-x)}{x^{2}+4}$
15. $\sqrt{x^{2}+\frac{8}{x}}$
16. $\frac{\sqrt{2+x}}{4 x-2}$
17. $\frac{1}{x}$
18. $\left(x^{2}+1\right)^{4}$

Solutions:

1. $4 x^{3}+15 x^{2}-4 x-6, x \in \mathbb{R}$
2. $\frac{-3}{(3 x+2)^{2}}, x \neq-\frac{2}{3}$
3. $\frac{x^{2}+2 x+5}{(x+1)^{2}}, x \neq-1$
4. $2 x \ln x+\frac{x^{2}+1}{x}, x \in \mathbb{R}_{+}$
5. $4 e^{4 x-2}, x \in \mathbb{R}$
6. $(2 x-1) e^{x^{2}-x+1}, x \in \mathbb{R}$
7. $(\ln 5) 5^{x}, x \in \mathbb{R}$; since $5^{x}=e^{(\ln 5) x}$, therefore chain rule
8. $\frac{1}{2 x+3}, x>-\frac{3}{2}$; is possible to differentiate as a superposition of three functions $(\ln z, \sqrt{y}, 2 x+3)$ or to realize that $\ln \sqrt{y}=\frac{1}{2} \ln y$
9. $\frac{x}{\sqrt{x^{2}-4}}, x \in(-\infty,-2) \cup(2,+\infty)$
10. $\frac{1}{\ln 10} \frac{2 x}{x^{2}-1}, x \in(-\infty,-1) \cup(1,+\infty)$; since $\log _{10} y=\frac{\ln y}{\ln 10}$
11. $\frac{4}{x^{2}-4}, x \in(-2,2)$; is possible to differentiate as a superposition of two functions $\left(\ln y, \frac{4-2 x}{x+2}\right)$ or to realize that $\ln \left(\frac{4-2 x}{x+2}\right)=\ln (4-2 x)-\ln (x+2)$
12. $\frac{1-2 x}{\left(x^{2}+1\right)^{\frac{3}{2}}}, x \in \mathbb{R}$; we differentiate this as a fraction, and the complicated fraction which results there can be expanded by $\sqrt{x^{2}+1}$, so we get rid of square roots in the numerator
13. $\frac{e^{1+2 x}\left(2 x^{2}+4 x+5\right)}{\left(x^{2}+3 x+4\right)^{2}}, x \in \mathbb{R}$
14. $\frac{-\frac{x^{2}+4}{3-x}-2 x \ln (3-x)}{\left(x^{2}+4\right)^{2}}=\frac{x^{2}+4-2 x(x-3) \ln (x-3)}{\left(x^{2}+4\right)^{2}(x-3)}, x \in(-\infty, 3)$
15. $\frac{x^{3}-4}{x^{2} \sqrt{\frac{x^{3}+8}{x}}}, x \in(-\infty,-2) \cup(0,+\infty)$
16. $\frac{-2 x-9}{4(2 x-1)^{2} \sqrt{x+2}}, x \in\left(-2, \frac{1}{2}\right) \cup\left(\frac{1}{2},+\infty\right)$
17. $\frac{-1}{x^{2}}, x \in \mathbb{R}_{-} \cup \mathbb{R}_{+}$; there are two ways: either as a derivative of a fraction or as a derivative of x^{-1}, try both of them
18. $8 x\left(x^{2}+1\right)^{3}, x \in \mathbb{R}$; there are two ways: either as a superposition (inner function is $x^{2}+1$, outer function is the fourth power) or by expanding the expression and differentiate term by term (which way is faster?)
