Mathematics for Economists I
 Problems 13
 Optimization problems - Lagrange multipliers

Find the extremes of the function $f(x, y)$ on the domain $M \subset \mathbb{R}^{2}$.

1. $f(x, y)=6 x-3 y$
2. $f(x, y)=x-y$
3. $f(x, y)=2 x-2 y+3$
4. $f(x, y)=2 x+y-5$
5. $f(x, y)=3 x+2 y$
6. $f(x, y)=7 x+y$
7. $f(x, y)=x^{2}+10 y$
8. $f(x, y)=x y+x^{3}$
9. $\quad f(x, y)=x^{2}+y^{2}+3 x-4 y \quad M=\left\{[x, y] \in \mathbb{R}^{2} ; x^{2}+y^{2} \leq 100 ; x \geq-2 y-10\right\}$
10. $f(x, y)=(x-1)^{2}+(y-2)^{2} \quad M=\left\{[x, y] \in \mathbb{R}^{2} ; x^{2}+y^{2} \leq 8 ; 0 \leq y \leq x\right\}$

Solutions (all candidates):

1. $f(-2,0)=-12 \mathrm{MIN}, f(2,0)=12, f(1,-3)=15 \mathrm{MAX}$
2. $f(0,0)=0, f(2,0)=2 \mathrm{MAX}, f\left(0, \frac{1}{e}\right)=-\frac{1}{e} \doteq-0,37, f(2, e)=2-e \doteq$ $-0,72 \mathrm{MIN}, f(1,1)=0$
3. $f(-1,1)=-1 \mathrm{MIN}, f(1,-1)=7 \mathrm{MAX}$
4. $f(-2,-1)=-10 \mathrm{MIN}, f(2,1)=0 \mathrm{MAX}$
5. $f(-\sqrt{13}, 0)=-3 \sqrt{13} \operatorname{MIN}, f(\sqrt{13}, 0)=3 \sqrt{13}, f(3,2)=13 \mathrm{MAX}$
6. $f(0,0)=0 \mathrm{MIN}, f(7,1)=50 \mathrm{MAX}, f(5,5)=40, f(\sqrt{50}, 0)=7 \sqrt{50}$
7. $f(-12,-5)=94, f(5,12)=145, f(-5,-12)=-95, f(0,-13)=$ $-130 \mathrm{MIN}, f(12,5)=194 \mathrm{MAX}, f(-5,2)=45$
8. $\quad f(-2 ; 0)=-8 \mathrm{MIN}, f(3 ;-10)=-3, f(0 ; 0)=0, f(2 ;-8)=-8$ MIN, $f(-2 / 3 ;-8 / 3)=24 / 27, f(1 ; 0)=1$ MAX
9. $f(-10,0)=70, f(6,-8)=150 \mathrm{MAX}, f(-3 / 2,2)=-6,25 \mathrm{MIN}$, $f(-4,-3)=25, f(-6,8)=50$
10. $f(3 / 2,3 / 2)=\frac{1}{2} \operatorname{MIN}, f(\sqrt{8}, 0)=(\sqrt{8}-1)^{2} \doteq 3,34, f(2,2)=1$, $f(-2,-2)=25 \mathrm{MAX}$
