Mathematics for Economists I Problems 11

Course of the function II (convexity/concavity, asymptotes)

Examine the course of the function, i.e. find its domain, intercepts with axes, limits at the endpoints of D_f , the derivative of the function and its zero points, local and global extrema, intervals of monotony, intervals of convexity/concavity, asymptotes, draw the graph. Justify everything properly.

Problems 1.–15. are the same as in the sheet "Problems 10", just the questions of asymptotes and convexity/concavity are added (unless stated otherwise: solve problems with an asterisk (*) without convexity/concavity).

1.
$$x^3 + 3x^2 - 9x - 11$$

6.
$$e^2 e^{-x^2}$$

11.
$$(3-x)e^{x}$$

2.
$$x^4 - 4x^3$$

7*.
$$x\sqrt{1-x^2}$$

12.
$$x^3 + 2x^2 - 15x$$

3.
$$\frac{1-2x}{3x^2}$$

8.
$$\frac{x^2-x-2}{x-3}$$

13.
$$\sqrt{x} + 0$$

4.
$$\frac{3x-1}{1-x}$$

1.
$$x^3 + 3x^2 - 9x - 11$$
 6. $e^2 e^{-x^2}$ 11. $(3 - x)e^x$
2. $x^4 - 4x^3$ 7*. $x\sqrt{1 - x^2}$ 12. $x^3 + 2x^2 - 15x$
3. $\frac{1-2x}{3x^2}$ 8. $\frac{x^2 - x - 2}{x - 3}$ 13. $\sqrt{x^2 + 6x - 16}$
4. $\frac{3x - 1}{1 - x}$ 9*. $\frac{1}{x^2 - x - 2}$ 14. $\frac{x^2 - 5x + 4}{x + 1}$
5. $\frac{1}{1 + e^{-x}}$ 10. $\frac{\ln(3 + 2x - x^2)}{\ln 3}$ 15. $\ln(1 - x^2)$

15.
$$\ln(1-x^2)$$

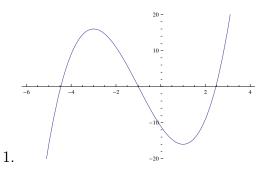
16.
$$\frac{5+4x-x^2}{x^2}$$

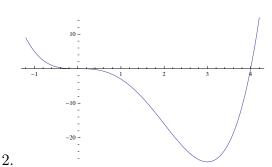
16.
$$\frac{5+4x-x^2}{x+3}$$
 17. $\frac{x^2}{2x-8}+1$ **18.** $\frac{9-x^2}{2x-10}$

Solutions:

1. $D_f = \mathbb{R}$, roots: $-1, -1 \pm 2\sqrt{3}$, $\lim_{x \to \pm \infty} = \pm \infty$, increases in $(-\infty, -3)$, $(1, +\infty)$, decreases in $\langle -3, 1 \rangle$, convex in $\langle -1, +\infty \rangle$, concave in $(-\infty, -1)$, no asymptotes.

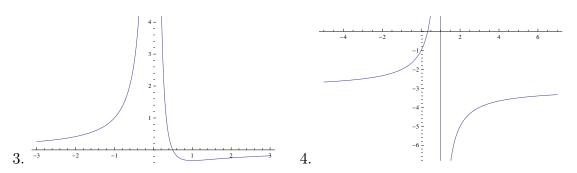
 $D_f = \mathbb{R}$, roots: 0 (triple), 4, $\lim_{x \to \pm \infty} = +\infty$, decreases in $(-\infty, 3)$, increases in $\langle 3, +\infty \rangle$, convex in $(-\infty, 0)$, $\langle 2, +\infty \rangle$, concave in $\langle 0, 2 \rangle$, no asymptotes.





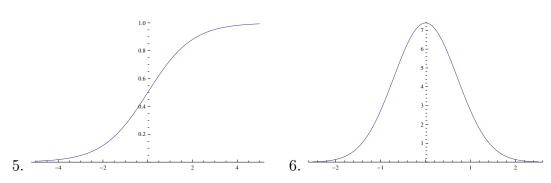
3. $D_f = \mathbb{R}_- \cup \mathbb{R}_+$, root: $\frac{1}{2}$, $\lim_{x \to 0\pm} = +\infty$, $\lim_{x \to \pm \infty} = 0$, increases in $(-\infty, 0)$, $\langle 1, +\infty \rangle$, decreases in (0, 1), convex in $(-\infty, 0)$, $(0, \frac{3}{2})$, concave in $(\frac{3}{2}, +\infty)$, asymptotes x = 0, at $\pm \infty$: y = 0.

4. $D_f = (-\infty, 1) \cup (1, +\infty)$, root: $\frac{1}{3}$, $\lim_{x \to 1\pm} = \mp \infty$, $\lim_{x \to \pm \infty} = -3$, increases in $(-\infty, 1)$, $(1, +\infty)$, convex in $(-\infty, 1)$, concave in $(1, +\infty)$, asymptotes x = 1, at $\pm \infty$: y = -3.



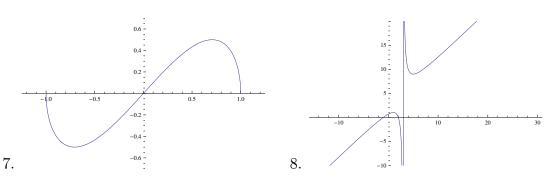
5. $D_f = \mathbb{R}, \ f(0) = \frac{1}{2}, \ f(x) > 0 \ \text{v} \ \mathbb{R}, \ \lim_{x \to -\infty} = 0, \ \lim_{x \to +\infty} = 1, \text{ increases in } \mathbb{R},$ convex in \mathbb{R}_- , concave in \mathbb{R}_+ , asymptote at $-\infty$: y = 0, at $+\infty$: y = 1.

6. $D_f = \mathbb{R}, \ f(0) = e^2, \ f(x) > 0 \ \text{v} \ \mathbb{R}, \ \lim_{x \to \pm \infty} = 0, \text{ increases in } \mathbb{R}_-, \text{ decreases in } \mathbb{R}_+, \text{ convex in } (-\infty, -\frac{1}{\sqrt{2}}), \langle \frac{1}{\sqrt{2}}, +\infty \rangle, \text{ concave in } \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle, \text{ asymptote at } \pm \infty: y = 0.$



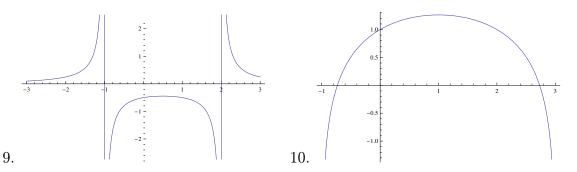
7. $D_f = \langle -1, 1 \rangle$, f(-1) = f(0) = f(1) = 0, decreases in $\langle -1, -\frac{1}{\sqrt{2}} \rangle$, $\langle \frac{1}{\sqrt{2}}, 1 \rangle$, increases in $\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$, no asymptotes.

8. $D_f = (-\infty, 3) \cup (3, +\infty), f(0) = \frac{2}{3}$, roots: -1, 2, $\lim_{x \to 3\pm} = \pm \infty$, $\lim_{x \to \pm \infty} = \pm \infty$, increases in $(-\infty, 1), (5, +\infty)$, decreases in (1, 3), (3, 5), concave in $(-\infty, 3)$, convex in $(3, +\infty)$, asymptote at $\pm \infty$: y = x + 2.



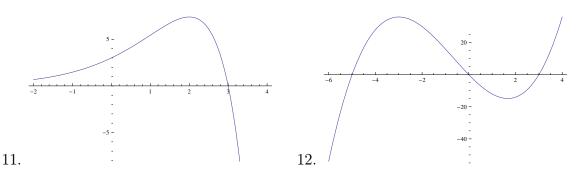
9. $D_f = (-\infty, -1) \cup (1, 2) \cup (2, +\infty), \ f(0) = -\frac{1}{2}, \ f(x) \neq 0 \ \text{v} \ \mathbb{R}, \ \lim_{x \to -1 \pm} = \pm \infty, \lim_{x \to 2 \pm} = \pm \infty, \lim_{x \to \pm \infty} = 0, \text{ increases in } (-\infty, -1), (-1, \frac{1}{2}), \text{ decreases in } (\frac{1}{2}, 2), (2, +\infty), \text{ asymptote at } \pm \infty: \ y = 0.$

10. $D_f = (-1,3), f(0) = 1$, roots $1 \pm \sqrt{3}, \lim_{x \to -1+} = -\infty, \lim_{x \to 3-} = -\infty$, increases in (-1,1), decreases in (1,3), concave in the whole D_f , asymptotes x = -1, x = 3.



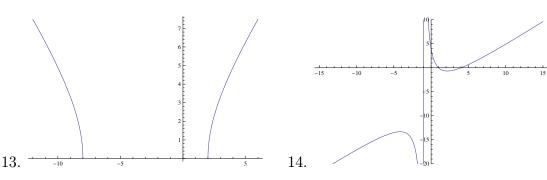
11. $D_f = \mathbb{R}$, root: 3, $\lim_{x \to -\infty} = 0$, $\lim_{x \to +\infty} = -\infty$, increases in $(-\infty, 2)$, decreases in $\langle 2, +\infty \rangle$, convex in $(-\infty, 1)$, concave in $\langle 1, +\infty \rangle$, asymptote y = 0 at $-\infty$, no asymptote at $+\infty$.

12. $D_f = \mathbb{R}$, roots: -5, 0, 3, $\lim_{x \to \pm \infty} = \pm \infty$, increases in $(-\infty, -3)$, $\langle \frac{5}{3}, +\infty \rangle$, decreases in $\langle -3, \frac{5}{3} \rangle$, convex in $\langle -\frac{2}{3}, +\infty \rangle$, concave in $(-\infty, -\frac{2}{3})$, no asymptotes.

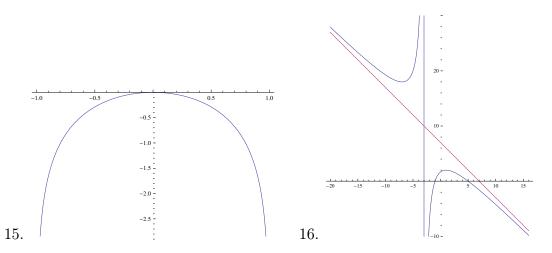


13. $D_f = (-\infty, -8) \cup \langle 2, +\infty \rangle$, roots: -8, 2, $\lim_{x \to \pm \infty} = +\infty$, increases in $\langle 2, +\infty \rangle$, decreases in $\langle -\infty, -8 \rangle$, concave in $\langle 2, +\infty \rangle$, concave in $\langle -\infty, -8 \rangle$, asymptotes y = -x - 3 at $-\infty$, y = x + 3 at $+\infty$.

14. $D_f = (-\infty, -1) \cup (-1, +\infty)$, roots: 1, 4, $\lim_{x \to \pm \infty} = \pm \infty$, $\lim_{x \to -1\pm} = \pm \infty$, increases in $(-\infty, -1 - \sqrt{10})$ and in $(-1 + \sqrt{10}, +\infty)$, decreases in $(-1 - \sqrt{10}, -1)$ and in $(-1, -1 + \sqrt{10})$, concave in $(-\infty, -1)$, convex in $(-1, +\infty)$, asymptote y = x - 6 at $\pm \infty$.



- **15.** $D_f = (-1,1)$, root: 0, $\lim_{x\to\pm 1} = -\infty$, increases in $(-\infty,0)$, decreases in $(0,\infty)$, concave in (-1,1), asymptotes $x=-1,\ x=1$.
- **16.** locmin [-7, 18], locmax [1, 2], convex in $(-\infty, -3)$, concave in $(-3, +\infty)$, asymptotes x = -3, y = -x + 7.



- 17. locmin [8, 9], locmax [0, 1], concave in $(-\infty, 4)$, convex in $(4, +\infty)$, asymptotes $x = 4, \ y = \frac{x}{2} + 3$.
- 18. locmin [1,-1], locmax [9,-9], convex in $(-\infty,5)$, concave in $(5,+\infty)$, asymptotes $x=5,\ y=\frac{-x-5}{2}$.

