Mathematics for Economists I

Problems 11

Course of the function II (convexity/concavity, asymptotes)
Examine the course of the function, i.e. find its domain, intercepts with axes, limits at the endpoints of D_{f}, the derivative of the function and its zero points, local and global extrema, intervals of monotony, intervals of convexity/concavity, asymptotes, draw the graph. Justify everything properly.

Problems 1. -15 . are the same as in the sheet "Problems 10 ", just the questions of asymptotes and convexity/concavity are added (unless stated otherwise: solve problems with an asterisk ($*$) without convexity/concavity).

1. $x^{3}+3 x^{2}-9 x-11$
2. $e^{2} e^{-x^{2}}$
3. $(3-x) e^{x}$
4. $x^{4}-4 x^{3}$
7*. $x \sqrt{1-x^{2}}$
5. $x^{3}+2 x^{2}-15 x$
6. $\frac{1-2 x}{3 x^{2}}$
7. $\frac{x^{2}-x-2}{x-3}$
8. $\sqrt{x^{2}+6 x-16}$
9. $\frac{3 x-1}{1-x}$
9*. $\frac{1}{x^{2}-x-2}$
10. $\frac{x^{2}-5 x+4}{x+1}$
11. $\frac{1}{1+e^{-x}}$
12. $\frac{\ln \left(3+2 x-x^{2}\right)}{\ln 3}$
13. $\ln \left(1-x^{2}\right)$
14. $\frac{5+4 x-x^{2}}{x+3}$
15. $\frac{x^{2}}{2 x-8}+1$
16. $\frac{9-x^{2}}{2 x-10}$

Solutions:

1. $D_{f}=\mathbb{R}$, roots: $-1,-1 \pm 2 \sqrt{3}, \lim _{x \rightarrow \pm \infty}= \pm \infty$, increases in $(-\infty,-3\rangle,\langle 1,+\infty)$, decreases in $\langle-3,1\rangle$, convex in $\langle-1,+\infty)$, concave in $(-\infty,-1\rangle$, no asymptotes.
2. $\quad D_{f}=\mathbb{R}$, roots: 0 (triple), $4, \lim _{x \rightarrow \pm \infty}=+\infty$, decreases in $(-\infty, 3\rangle$, increases in $\langle 3,+\infty)$, convex in $(-\infty, 0\rangle,\langle 2,+\infty)$, concave in $\langle 0,2\rangle$, no asymptotes.
3.

2.

3. $D_{f}=\mathbb{R}_{-} \cup \mathbb{R}_{+}$, root: $\frac{1}{2}, \lim _{x \rightarrow 0 \pm}=+\infty, \lim _{x \rightarrow \pm \infty}=0$, increases in $(-\infty, 0),\langle 1,+\infty)$, decreases in $(0,1\rangle$, convex in $(-\infty, 0),\left(0, \frac{3}{2}\right\rangle$, concave in $\left\langle\frac{3}{2},+\infty\right)$, asymptotes $x=0$, at $\pm \infty: y=0$.
4. $\quad D_{f}=(-\infty, 1) \cup(1,+\infty)$, root: $\frac{1}{3}, \lim _{x \rightarrow 1 \pm}=\mp \infty, \lim _{x \rightarrow \pm \infty}=-3$, increases in $(-\infty, 1),(1,+\infty)$, convex in $(-\infty, 1)$, concave in $(1,+\infty)$, asymptotes $x=1$, at $\pm \infty: y=-3$.

4.

5. $\quad D_{f}=\mathbb{R}, f(0)=\frac{1}{2}, f(x)>0 \vee \mathbb{R}, \lim _{x \rightarrow-\infty}=0, \lim _{x \rightarrow+\infty}=1$, increases in \mathbb{R}, convex in \mathbb{R}_{-}, concave in \mathbb{R}_{+}, asymptote at $-\infty: y=0$, at $+\infty: y=1$.
6. $\quad D_{f}=\mathbb{R}, f(0)=e^{2}, f(x)>0 \mathrm{v} \mathbb{R}, \lim _{x \rightarrow \pm \infty}=0$, increases in \mathbb{R}_{-}, decreases in \mathbb{R}_{+}, convex in $\left(-\infty,-\frac{1}{\sqrt{2}}\right\rangle,\left\langle\frac{1}{\sqrt{2}},+\infty\right)$, concave in $\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$, asymptote at $\pm \infty$: $y=0$.
5.

6.

7. $D_{f}=\langle-1,1\rangle, f(-1)=f(0)=f(1)=0$, decreases in $\left\langle-1,-\frac{1}{\sqrt{2}}\right\rangle,\left\langle\frac{1}{\sqrt{2}}, 1\right\rangle$, increases in $\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$, no asymptotes.
8. $\quad D_{f}=(-\infty, 3) \cup(3,+\infty), f(0)=\frac{2}{3}$, roots: $-1,2, \lim _{x \rightarrow 3 \pm}= \pm \infty, \lim _{x \rightarrow \pm \infty}= \pm \infty$, increases in $(-\infty, 1),(5,+\infty)$, decreases in $(1,3),(3,5)$, concave in $(-\infty, 3)$, convex in $(3,+\infty)$, asymptote at $\pm \infty: y=x+2$.
7.

8.

9. $\quad D_{f}=(-\infty,-1) \cup(1,2) \cup(2,+\infty), f(0)=-\frac{1}{2}, f(x) \neq 0$ v $\mathbb{R}, \lim _{x \rightarrow-1 \pm}=$ $\mp \infty, \lim _{x \rightarrow 2 \pm}= \pm \infty, \lim _{x \rightarrow \pm \infty}=0$, increases in $(-\infty,-1),\left(-1, \frac{1}{2}\right)$, decreases in $\left(\frac{1}{2}, 2\right),(2,+\infty)$, asymptote at $\pm \infty: y=0$.
10. $D_{f}=(-1,3), f(0)=1$, roots $1 \pm \sqrt{3}, \lim _{x \rightarrow-1+}=-\infty, \lim _{x \rightarrow 3-}=-\infty$, increases in $(-1,1)$, decreases in $(1,3)$, concave in the whole D_{f}, asymptotes $x=-1, x=3$.
9.

10.

11. $D_{f}=\mathbb{R}$, root: $3, \lim _{x \rightarrow-\infty}=0, \lim _{x \rightarrow+\infty}=-\infty$, increases in $(-\infty, 2\rangle$, decreases in $\langle 2,+\infty\rangle$, convex in $(-\infty, 1\rangle$, concave in $\langle 1,+\infty)$, asymptote $y=0$ at $-\infty$, no asymptote at $+\infty$.
12. $D_{f}=\mathbb{R}$, roots: $-5,0,3, \lim _{x \rightarrow \pm \infty}= \pm \infty$, increases in $(-\infty,-3\rangle,\left\langle\frac{5}{3},+\infty\right)$, decreases in $\left\langle-3, \frac{5}{3}\right\rangle$, convex in $\left\langle-\frac{2}{3},+\infty\right)$, concave in $\left(-\infty,-\frac{2}{3}\right\rangle$, no asymptotes.
11.

12.

13. $D_{f}=(-\infty,-8\rangle \cup\langle 2,+\infty)$, roots: $-8,2, \lim _{x \rightarrow \pm \infty}=+\infty$, increases in $\langle 2,+\infty)$, decreases in $\langle-\infty,-8\rangle$, concave in $\langle 2,+\infty$), concave in $\langle-\infty,-8\rangle$, asymptotes $y=$ $-x-3$ at $-\infty, y=x+3$ at $+\infty$.
14. $D_{f}=(-\infty,-1) \cup(-1,+\infty)$, roots: $1,4, \lim _{x \rightarrow \pm \infty}= \pm \infty, \lim _{x \rightarrow-1 \pm}= \pm \infty$, increases in $(-\infty,-1-\sqrt{10}\rangle$ and in $\langle-1+\sqrt{10},+\infty)$, decreases in $\langle-1-\sqrt{10},-1)$ and in $(-1,-1+\sqrt{10}\rangle$, concave in $(-\infty,-1)$, convex in $(-1,+\infty)$, asymptote $y=x-6$ at $\pm \infty$.

13.

15. $D_{f}=(-1,1)$, root: $0, \lim _{x \rightarrow \pm 1}=-\infty$, increases in $(-\infty, 0\rangle$, decreases in $\langle 0, \infty)$, concave in $(-1,1)$, asymptotes $x=-1, x=1$.
16. locmin $[-7,18]$, locmax $[1,2]$, convex in $(-\infty,-3)$, concave in $(-3,+\infty)$, asymptotes $x=-3, y=-x+7$.
15.

16.

17. locmin $[8,9]$, locmax $[0,1]$, concave in $(-\infty, 4)$, convex in $(4,+\infty)$, asymptotes $x=4, y=\frac{x}{2}+3$.
18. locmin $[1,-1]$, locmax $[9,-9]$, convex in $(-\infty, 5)$, concave in $(5,+\infty)$, asymptotes $x=5, y=\frac{-x-5}{2}$.
17.

18.

