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Abstrat

We investigate the proof omplexity, in (extensions of) resolution and

in bounded arithmeti, of the weak pigeonhole priniple and of Ramsey

theorem.

In partiular, we link the proof omplexity of these two priniples.

Further we give lower bounds to the width of resolution proofs and to the

size of (extensions of) tree-like resolution proofs of Ramsey theorem.

We establish a onnetion between provability of WPHP in fragments

of bounded arithmeti and ryptographi assumptions (the existene of

one-way funtions).

In partiular, we show that funtions violating WPHP

2n

n

are one-way

and, on the other hand, that one-way permutations give rise to funtions

violating PHP

n+1

n

, and that strongly ollision-free families of hash fun-

tions give rise to funtions violating WPHP

2n

n

(all in suitable models of

bounded arithmeti).

Further we formulate few problems and onjetures; in partiular, on

the strutured PHP (introdued here) and on the unrelativised WPHP.

The symbol WPHP

m

n

(with any n < m � 1) will denote both propositional

and arithmeti formalizations of the weak pigeonhole priniple; in the latter ase

I write WPHP

m

n

(R), where R is a binary relation symbol. The quali�ation weak

meansm � 2n and that is the ase studied here. The propositional formalization

is a set of lauses in atoms p

i;j

for i < m and j < n:

fp

i;0

; : : : ; p

i;n�1

g (1)

for eah i < m, and

f:p

i;k

;:p

j;k

g (2)

for eah i < j < m and k < n, and

f:p

i;`

;:p

i;k

g (3)

�
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for eah i < m and ` < k < n. If m = 1 we take in�nitely many suh lauses

for i; j < !. The arithmeti version WPHP

m

n

(R) is the formula

(9i < j < m9k < n;R(i; k) ^ R(j; k)) _ (9i < m8j < n;:R(i; j))_

(9i < m9` < k < n;R(i; `) ^ R(i; k))

(The parameter m is omitted in the formula when m =1.)

Haken [7℄ proved that any resolution refutation of PHP

n+1

n

requires at least

exp(
(n)) steps. His method was adapted by Buss and Tur�an [3℄ to a lower

bound exp(
(

n

2

m

)) for WPHP

m

n

. When m � n

2

this yields no lower bound at

all, and it remains open what are the lengths of resolution proofs for these m.

Another line of researh onerns systems of bounded arithmeti introdued

by Buss [1℄. In partiular, it is known that the systems T

i

2

(�) are di�erent

and there are some non-onservativity results (see Chiari and Kraj���ek [4℄ for

an overview). The simplest open onservativity relation is whether T

2

(�) (or

T

3

2

(�), in partiular) is �

b

2

(�)-onservative over T

2

2

(�), and various bounded

formulas that ould witness the onjetured non-onservativity were put forward

in Chiari and Kraj���ek [4, 5℄, WPHP

2n

n

(R) and Ramsey theorem among them.

The proof of the weak pigeonhole priniple in theory T

2

(R) by Paris, Wilkie

and Woods [19℄ formalizes in T

3

2

(R) (see Kraj���ek [10, Thm.11.2.4℄ for this

alulation

1

) while it is shown in [4℄ that WPHP

2n

n

(R) is not provable in T

1

2

(R).

Hene the provability of WPHP

2n

n

(R) in T

2

2

(R) is the only open question (see

footnote to L.6.4.). Moreover, the proof from [19℄ also shows that either all or

none of WPHP

2n

n

(R), WPHP

n

2

n

(R), WPHP

1

n

(R) are provable in T

2

2

(R).

It has been little notied that these two open problems are, in fat, quite

related. This is beause in the well known orrespondene between propositional

proof systems and bounded arithmeti theories (in the translation of Paris and

Wilkie [18℄, see [10, Se.9.1℄ for details) the resolution proof system orresponds

to a theory stritly stronger than T

1

2

(R) but inluded in T

2

2

(R), and T

2

2

(R) itself

orresponds to an extension R(log) of R (see Setion 1 for the de�nition).

The present paper gives several results on resolution and bounded arithmeti,

on proof omplexity of the WPHP and of Ramsey theorem. In partiular, we

link the proof omplexity of these two priniples. Further we give lower bounds

to the width of resolution proofs and to the size of (extensions of) tree-like

resolution proofs of Ramsey theorem.

Although these results are new they are, in my view, in near viinity of results

and methods that are (or ought to be) known. To remedy this I also present

several known results and methods, speialized to resolution and T

2

2

(�). For

example, I give an in�nitary riterion for R

�

(log) lower bounds - an extension

of tree-like R - that is an immediate orollary of a known statement about searh

trees from Kraj���ek [10℄.

1

Note that PHP(R) is de�ned as the onto-version in that alulation.
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I also show that funtions violating WPHP

2n

n

are one-way and, on the other

hand, that one-way permutations give rise to funtions violating PHP

n+1

n

, and

that strongly ollision-free families of hash funtions give rise to funtions vio-

lating WPHP

2n

n

(all in suitable models of bounded arithmeti). These results

are not diÆult but they are perhaps a part of the paper pointing most towards

new diretions promising for further researh.

I also formulate few problems and onjetures; in partiular, on the stru-

tured PHP (introdued here) and on the unrelativised WPHP.

For bakground I refer the reader to monograph [10℄; I often aompany

original referenes by a referene to a plae in [10℄. The onservativity problem

was previously studied in Chiari - Kraj���ek [4, 5℄, and I use few fats from there.

A onvention: The phrase exponential size means size exp(n


(1)

).

1 Resolution and its extensions

Resolution R is naturally a subsystem of sequent alulus LK, allowing no

onnetives exept the negation. The following de�nition augments R so as to

orrespond to LK-proofs of the �-depth 0 (as de�ned in [8℄ or [10, Def. 12.2.3℄).

(We sometimes use the union and disjuntion signs interhangeably.)

De�nition 1.1 (a) R

+

is a refutation proof system working with lauses C

formed by onjuntions D

i

of literals `

i;j

:

C =

_

i

D

i

; D

i

=

^

j

`

i;j

The inferene rules are:

C

1

[ f

V

j

`

j

g C

2

[ f:`

0

1

; : : : ;:`

0

k

g

C

1

[ C

2

provided `

0

1

; : : : ; `

0

k

are among `

j

's and k � 1, and

C

1

[ f

V

j<u

`

j

g C

2

[ f

V

j<v

`

u+j

g

C

1

[ C

2

[ f

V

j<u+v

`

j

g

(b) Let f : N ! N be a funtion. The R(f)-size of an R

+

-proof is the

minimum S suh that the proof has at most S lauses and eah onjuntion

of literals ourring in lauses has size at most f(S).

We shall abuse the terminology and use a phrase R(f)-proofs of size S rather

than R

+

-proofs of R(f)-size S.

Obviously, size of R(1)-proofs is just the size of R-proofs, while R(log) is the

�-depth 0 subsystem of LK.

As on various previous oasions I shall denote by the supersript star the

tree-like versions of proof systems: R

�

, R(f)

�

.
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2 Bounded formulas and sets of lauses

The �rst-order formulation of WPHP

m

n

(R) is a

W

9

V

8 - formula. In general,

negations of formulas that are built from basi formulas (atomi or their nega-

tions) in a relational language L by �rst applying

V

's and 8's and then

W

's and

9's will translate, as :WPHP

m

n

(R) does, to a CNF-formula, a set of lauses.

Let us all suh formulas shortly DNF

1

-formulas.

Other DNF-like formulas an be obtained from partiular seond order for-

malizations of ombinatorial properties. To illustrate this I reall de�nitions of

two priniples, Ramsey theorem and Tournament priniple (f. [10, p.233℄).

De�nition 2.1 (a) RAM

n

(�) is a �

b

1

(�) - formula

[9i < j < n; �(i; j) 6� �(j; i)℄ _ 9X � f0; : : : ; n� 1g; jX j = b

logn

2



^ [(8x; y 2 X ;x 6= y ! �(x; y)) _ (8x; y 2 X ;x 6= y ! :�(x; y))℄

formalizing Ramsey's statement n �! (b

log n

2

)

2

2

, i.e. that the undireted

graph with verties n = f0; 1; : : : ; n � 1g and edges ffi; jg j �(i; j)g has

a homogeneous subset X (a lique or an independent set) of size at least

b

logn

2

.

The propositional version RAM

n

has variables x

e

for all possible edges

e 2 [n℄

2

, and the lauses

_

e2[X℄

2

x

e

and

_

e2[X℄

2

:x

e

for all possible X � n of size b

logn

2

.

(b) TOUR

n

(�) is a �

b

1

(�) - formula

[8i < j < n; �(i; j) 6� �(j; i)℄ �!

9X � f0; : : : ; n� 1g; jX j = 2 logn ^ [(8x 2 n nX9y 2 X ;�(y; x))

formalizing Tournament priniple: a tournament of size n has a dominat-

ing set of size � 2 log(n).

The propositional version TOUR

n

has variables x

i;j

for all possible di-

reted (i; j), i 6= j, and the lauses

x

i;j

_ x

j;i

and :x

i;j

_ :x

j;i

for all i 6= j, and

_

i2nnX

^

j2X

:x

j;i

for all possible X � n of size 2 logn.
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The 2 logn bound in TOUR

n

is somewhat arbitrary and obviously not op-

timal. However, it is unknown even if TOUR

n

is provable in full bounded

arithmeti T

2

(�), even with logn replaed by (log n)

O(1)

(suh a hange may be

important for provability).

Both these formulas have a form extending the DNF

1

-form by allowing

also seond order existential quanti�er 9

(2)

X(jX j � f(n)) ranging over subsets

X of the universe of size � f(n) (usually f(n) = (logn)

O(1)

), and universal

quanti�ation 8i 2 X bounded to elements of X 's. We shall all them DNF

2

-

formulas for short.

The propositional versions onsist, in general (like for TOUR

n

), of R(log)-

lauses, i.e. lauses formed by onjuntions of literals, the onjuntions having

size � f(n). The size of the set of assoiated lauses is n

O(f(n))

, if the seond

order quanti�er is restrited to sets of size � f(n). In ase of RAM

n

and

TOUR

n

this is O(log n). Note that the relation A j= �, for � a DNF

1

- or

a DNF

2

- formula in a general language L, is de�nable by a �

b

2

(L)-formula,

provided f(n) = log(n)

O(1)

.

3 Resolution and arithmeti

There are several relations between subsystems of bounded arithmeti and ex-

tensions of resolution. I shall formulate these fats for theories with the smash

funtion #, relating them to quasi-polynomial size propositional proofs. This

is beause the theories with the smash funtion are the ones most ommonly

used. However, similar relations hold with theories without the smash funtion

and polynomial size propositional proofs.

Theorem 3.1 (Kraj���ek [8, 1.2 and 2.2℄, [11, Cor.6.2℄) Let a DNF

1

- or

a DNF

2

- formula � in a relational language L disjoint from the language of T

2

be provable in (a) T

1

2

(L), or (b) T

2

2

(L), respetively.

Then the assoiated sets of lauses �

n

have quasi-polynomial size refutations

in systems (a) in R

�

(log) and in R, or (b) in R(log), respetively.

Proof :

Case (b) was proved in [8, 1.2 and 2.2℄ (or see [10, L. 12.2.1℄). Case (a) is

a orollary of that proof and was given in [11, Cor.6.2℄. To explain this let me

reall now the main steps of the proof of (b).

An arithmeti proof in T

2

2

(L) translates (after suitable ut-elimination) into

an LK-proof that is tree-like, the number of formulas per sequent is bounded by

a onstant, it has quasi-polynomial size, and every formula has depth � 3 with

the depth 3 formulas being onjuntions of disjuntions of poly-logarithmi size

onjuntions.

First, the �rst two properties are used to eliminate the depth 3 onnetives;

the resulting proof is polynomially longer and still tree-like. The tree-likeness is
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then used to redue the next level of onnetives, again with a polynomial in-

rease only, resulting in an LK-proof in whih all formulas are poly-logarithmi

size onjuntions. That is the required R(log) proof.

In ase (a), starting with a T

1

2

(L) proof, everything has one less depth. In

partiular, the �rst step yields a quasi-polynomial size R

�

(log) proof. Applying

the redution of the depth via tree-likeness one more yields an R-proof (see

[11, Cor.6.2℄).

q.e.d.

The link between arithmeti and proof systems also allows to lift indepen-

dene results to lower bounds and, more importantly, methods of independene

proofs to lower bound proofs. As an example, I shall state a riterion for lower

bounds for R

�

(log). The �rst one is a weaker version of [10, L.9.5.2℄ (that lemma

talks about searh trees

2

).

Theorem 3.2 (Kraj���ek [10, L.9.5.2℄) Let � be a DNF

1

-formula in a rela-

tional language L that an be violated in an in�nite struture.

Then the orresponding sets of lauses �

n

require exponential size R

�

(log)-

proofs.

Similarly as [10, L. 9.5.2℄ generalized (by a di�erent proof) Riis's indepen-

dene riterion for S

2

2

(�) (f. Riis [21℄ or [10, Se.11.3℄) the following fat extends

analogously his [21, Thm.11℄ (or see [10, Thm.11.3.4℄

Theorem 3.3 Let � = 9X(jX j = log

k

(n)); �(X;n) be a DNF

2

-formula in a

relational language L. Assume that there is an in�nite struture in whih 9X;�

is not witnessed by a �nite X.

Then �

n

require exponential size R

�

(log)-proofs.

While Theorem 3.2 is, in fat, a riterion valid in the i�-form (if :� has no

in�nite model then � is provable in the prediate logi alone from the assumption

that the universe has �  points some  � 1 - and use Theorem 3.1) Theorem 3.3

is not. An example is given by Ramsey theorem; Theorem 5.2 yields exponential

lower bound for R

�

(log)-proofs of RAM

n

while the hypothesis of the theorem

obviously fails.

Let us remark that another proof of Theorems 3.2 and 3.3 is possible: redue

the statements diretly to related statements about bounded arithmeti S

2

2

(�).

Namely, it is suÆient to prove in the theory the soundness of R

�

(log)-proofs.

For this one needs to augment the data de�ning the proof by a log-depth tree

struture simulating a Spira-type searh through the tree.

It would be very interesting if an in�nitary riterion like these existed also

for R. The only other proof system for whih something analogous is known is

2

S. Riis informed me that he is preparing a manusript on Theorem 3.2 and related issues.
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the onstant-degree polynomial alulus (or Nullstellensatz); the role of in�nite

strutures is played by Euler strutures (see Kraj���ek [12℄).

Remark: A reent paper by Kullmann [16℄ ontains extensive information on

R

�

.

4 Non-standard models and lower bounds

Let M be an arbitrary ountable model of true arithmeti in the language of

T

2

, and n 2 M any non-standard element. Denote by M

n

the struture with

the universe

\

�

fu 2M j u < 2

n

�

g =

[

�

fu 2M j u < 2

n

�

g

with �'s ranging over all positive standard rationals and �'s over in�nitesimal

rationals. The struture of M

n

onsists of the redut of M to the universe,

together with a unary prediate symbol R

X

for every bounded subset X �M

n

that is oded in M . (Instead of R

X

(u) I write u 2 X .)

Let L

n

denotes the language of M

n

. Note that M

n

satis�es indution for all

bounded L

n

-formulas.

Let 8

�b

1

V

denote the set of L

n

[L-formulas built from basi formulas by on-

juntions and bounded universal quanti�ation. L� 8

�b

1

V

is the least number

priniple for suh formulas.

Theorem 4.1 Let T , P be one of the following pairs of a theory and a proof

system: T

2

2

(L

n

; L) and R(log), T

1

2

(L

n

; L) + L� 8

�b

1

V

and R.

For arbitrary strutureM

n

of the form as above the following two statements

are equivalent:

1. There is an expansion of M

n

to a model (M

n

; L) of T in whih �

n

fails.

2. �

n

requires exponential-size P -proofs.

Proof :

This is a standard argument (going bak to Paris and Wilkie) that I repeat

here for reader's bene�t; the novel part is the exat orrespondene for the pairs

T , P . We also use non-standard models in Setion 5.

Assume that the lower bound is not true. By ompatness there is a non-

standard model of true arithmeti, non-standard n 2 M , and a P -proof repre-

sented by a bounded oded subset � of M

n

, suh that � is a P -refutation of �

n

in M (and hene in M

n

).

Take some expansion (M

n

; L) provided by the �rst statement. This de�nes

an evaluation of atoms of �

n

that satis�es all initial lauses in �. However, �

is sound in M

n

as the soundness is provable in T . That is a ontradition.
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The opposite impliation follows by a model theoreti argument. Let Cl be

the set of all lauses in M formed from literals ourring in the set of lauses

�

n

orresponding to �. Let H := Cl [ f:C j C 2 Clg. We shall onstrut set

G � H suh that

1. All lauses of �

n

are in G.

2. C or :C is in G, for any C 2 Cl.

3. If C 2 G then f`g 2 G for some ` 2 C.

4. If :C 2 G, f:`g 2 G for all ` 2 C.

5. If the sequene of lauses hC

0

; : : : ; C

t

i from Cl is de�ned by an L

n

-relation

symbol, t 2 M

n

, then either there is minimal i

0

� t suh that :C

i

0

2 G,

or fC

0

; : : : ; C

t

g � G.

6. There are no � and X in L

n

suh that X � G and � is an P -refutation of

X .

(We use the name G as, in fat, it is a generi set in an appropriately de�ned

foring - see [9℄ or [10, Se.12.7℄.)

G is built in ountable many steps, arranging in M onseutively the ondi-

tions for all C and all sequenes hC

0

; : : : ; C

t

i from M

n

. The indutive proess

an start as the set of lauses of �

n

has no P -refutation in M

n

, by the hypoth-

esis. The details are as in the ase of V

1

1

and EF in [9℄; or see [10, Se.9.4℄.

Note that we ould not arrange the last but one ondition with tree-like proofs.

G de�nes, by onditions 2. - 4., an interpretation of L in M

n

. �

n

fails by

the �rst ondition, while the last but one ondition implies that the expansion

is a model of the least number priniple for 8

�b

1

V

formulas.

This proves the statement for T

1

2

(L) + L� 8

�b

1

V

and R; the ase of T

2

2

(L)

and R(log) is analogous.

q.e.d.

Remark: The foring method used for onstrutions of model of L9

1

and T

1

2

annot be used to onstrut suitable expansions. Namely, let P be the set of

all injetive maps p : dom(p) �! n oded in M , partially ordered by inlusion.

One uses as foring notions suitable sublasses Q � P. A generi set G � Q

then de�nes a generi map f :=

S

G.

If one fores with the sublass onsisting of p's of standard size then the

generi map f is a bijetion between M

n

and n, and (M

n

; f) satis�es the mini-

mization priniple for the existential L

n

(f)-formulas. This was proved by Paris

and Wilkie [18℄, or see [10, Thm.12.7.1℄. It is notied in [10, Se.12.7,pp.273-4℄

that taking instead maps p of size bounded above by some n

�

, � positive in-

�nitesimal rational, yields a bijetion f :M

n

 ! n satisfying the minimization
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priniple for �

b

1

(L

n

; f)-formulas (and hene T

1

2

(L

n

; f)). On the other hand,

suh generi f will never satisfy T

2

2

(f) as, for example, the formula

9u

1

< u

2

< n;u

1

+ x = u

2

^ (8u

1

� v

1

< v

2

� u

2

; f(v

1

) � f(v

2

) (mod 2))

will be satis�ed in the generi extension by any x smaller than some n

�

, � positive

in�nitesimal rational, but not by any bigger one, and hene �

b

2

(f)- indution

fails.

5 Ramsey theorem

Pudl�ak [20℄ showed that RAM

n

(�) is provable in T

2

(�) (in fat, in T

5

2

(�) as

omputed in [10, Thm. 12.1.3℄) by reduing it to the weak pigeonhole priniple

for a map de�nable from �. On the other hand, Chiari - Kraj���ek [5℄ proved

that RAM

n

(�) is independent of T

1

2

(�) and they put it forward as a andidate

for a formula independent from T

2

2

(�) as well. We derive this onjeture from

a hypothesis about the lengths of proofs of WPHP

n

4

n

.

Theorem 5.1 Let g : N ! N n f0g be a funtion. Assume that WPHP

n

4

n

requires exponential size R(2g)-proofs.

Then RAM

n

requires exponential size R(g)-proofs.

Proof :

First onsider the ase g = log(n), so that we an use Theorem 4.1; the

general ase is explained at the end of the proof.

LetM be, as before, a nonstandard model of true arithmeti, and let n 2M

be a non-standard number of the form 2

s

. Take M

n

of the form as earlier, and

(M

n

; f) the expansion provided by Theorem 4.1, assuming the hypothesis of the

theorem. That is, (M

n

; f) is a model of T

2

2

(L

n

; f) in whih f maps injetively

n

4

into n.

By Erd�os [6℄ there is a graph G 2M , G = (n;E) ontaining no homogeneous

set of size 2s = 2 logn. We shall use E also as the name for the prediate for E

in L

n

.

De�ne in (M

n

; f) graph G

0

= (n

4

; E

0

) by

xE

0

y �

def

f(x)Ef(y)

E

0

is �

b

1

(R;E) - de�nable, so (M

n

; f) satis�es T

2

2

(E

0

). If RAM

n

(�) were prov-

able in T

2

2

(�), or even just RAM

n

had an R(log)-proof in M

n

, there would be

X

0

� n

4

, X

0

2M

n

, of size 2 logn and homogeneous in G

0

.

Clearly then X := f(X

0

) is homogeneous in G. Moreover, as X

0

as well as

f restrited to X

0

are oded in M

n

so is X and we have jX

0

j = jX j = 2 logn.

All sets of O(log n) size are oded in a model of S

1

2

(L

n

; f), so X is de�nable

without f . This ontradits, in M , the hoie of G without a homogeneous set

so large.

9



Finally, note that the argument works equally well forR(g) in plae of R(log),

as the (non-)edge fx; yg in G

0

is de�ned as

W

(f(x) = i^ f(y) = j) with the dis-

juntion over all (non-)edges fi; jg in G, i.e. an R(g)-proof of RAM

n

translates

into R(2g)-proof of WPHP

n

4

n

.

q.e.d.

The proof of the following statement is a non-uniform version of the proof

that T

1

2

(R) does not prove RAM

n

(R) from Chiari-Kraj���ek [5℄. I shall give it

expliitly as we shall use a variant of the argument later on. (It also gives a

hint to a reader not familiar with [10℄ how Theorems 3.2 and 3.3 are proved

following [10, Se. 11.3℄.)

Theorem 5.2 Any R

�

(log)-proof of RAM

n

requires exponential size.

Proof :

Let the R

�

(log)-proof has size 2

t

and all onjuntions in it size � t. Turning

the proof upside down we an use it as a searh tree. Namely, given a graph H

we walk in the tree from the root (the empty lause) down to a leaf (an axiom)

on lauses false for H . This �nds a set of size at least

logn

2

homogeneous in

H . Moreover, we walk through the proof tree in the Spira-type fashion: from a

node determining a subtree T

0

we go to its node determining a subtree T

1

of T

0

of size

jT

0

j

3

� jT

1

j �

2jT

0

j

3

. Hene the resulting searh tree has depth O(t) only.

Let G be the Erd�os graph (as in the proof of Thm. 5.1) but on n

1=4

verties.

I.e., it has no homogeneous set of size �

logn

2

. Walking through the searh tree

we shall de�ne a part of graph H on n verties. After k steps we will have a

partial isomorphism  

k

between � k2t verties of H and G. In the (k + 1)st

step, querying an R(log)-lause C =

W

i

D

i

, D

i

=

V

j

`

i;j

,onsider two ases.

Either  

k

an be extended to make one of D

i

true, or not. In the former

ase answer the query YES and let  

k+1

be a minimal suh extension of  

k

.

Note that j 

k+1

n  

k

j � 2jD

i

j � 2t.

In the latter ase answer NO and take  

k+1

:=  

k

.

We may ontinue with this strategy as long as there is a room for the exten-

sions, i.e. as long as j 

k

j � n

1=4

, for all k.

At the end (i.e. at the leaf) we have a partial isomorphism  in whose

domain is a homogeneous set X of size �

logn

2

. That is impossible as its image

in  would be a homogeneous set in G but G has no so large homogeneous sets.

Hene t > (1=2)n

1=4

.

q.e.d.

Theorem 5.2 demonstrates that Theorem 3.3 is not a riterion but only a

suÆient ondition, as we annot use it to prove Theorem 5.2. On the other

hand, there obviously exists an in�nite tournament without a �nite dominating

set, hene Theorem 3.3 implies

10



Theorem 5.3 Any R

�

(log)-proof of TOUR

n

requires exponential size.

Perhaps I may remind the reader here of an

Open problem: Does TOUR

n

have polynomial-size (or even sub-exponential

size) onstant-depth Frege proofs?

The lauses of RAM

n

have size � (logn)

2

. The following result shows that

the width of any R-proof, i.e. the maximum size of a lause in a proof, must be

n

1=4

.

Theorem 5.4 Any R-proof of RAM

n

must have width at least (1=2)n

1=4

.

Proof :

The proof is similar to the proof of Theorem 5.2 but with some di�erenes.

Let � be an R-refutation of RAM

n

. Assume that the width is w. Turning �

upside down determines a branhing program solving the same searh problem

as in the proof of Theorem 5.2.

As before, we onstrut in steps partial isomorphisms  

k

from the n verties

of H into verties of Erd�os graph G on n

1=4

verties. They are onstruted

di�erently, however.

Let C

0

= ;; C

1

; : : : ; C

k

be the path in � that we walked through so far in k

steps. Let supp(C) be the set of all verties ourring in edges orresponding

to literals in C. Put  

0

:= ;. It holds that dom( 

i

) = supp(C

i

).

Assume that C

k

= C

0

[ C

00

was inferred in � by the inferene:

C

0

[ fp

e

g C

00

[ f:p

e

g

C

k

with e = fi; jg. Put � :=  

k

# (supp(C

0

)). If � an be extended to i; j so

that p

e

is false in G, take for  

k+1

one suh extension. Otherwise take for  

k+1

any extension of  

k

# (supp(C

00

)) to i; j making p

e

true. In the former ase

C

k+1

:= C

0

[ fp

e

g, in the latter C

k+1

:= C

00

[ f:p

e

g.

As j 

k

j � 2jC

0

[ C

00

j � 2w, this an be done as long as 2w � n

1=4

.

q.e.d.

Remark: Krishnamurthy and Moll [15℄ onsider ritial Ramsey formulas: For

a given r � 3 take minimal m satisfying the Ramsey relation m ! (r)

2

2

, and

let �

r

be the Ramsey formula like RAM

m

but with X 's ranging over sets of

verties of size r. They proved ([15, Cor.4.1.9℄) that the width of R-proofs of

�

r

must be at least m=2� 1. They also proved an exponential lower bound for

Davis-Putnam Proedure (essentially R

�

) proofs of the formulas.

The minimal m satis�es 2

r=2

� m � 2

2r

and for r :=

logn

2

it may be that

m << n. Hene our lower bounds for RAM

n

are stronger statements.

11



6 WPHP in T

2

2

(R)

Let us denote by ontoPHP the onto version of PHP speaking about bijetions

rather than injetions. The following is well known.

Theorem 6.1 (Paris, Wilkie and Woods [19℄) Let m = 2n or n

2

or 1.

1. T

3

2

(R) proves any WPHP

m

n

(R).

2. T

2

2

(R) proves any ontoWPHP

m

n

(R).

3. There are g and h, �

b

1

(R)-de�nable in S

1

2

(R) suh that S

1

2

(R) proves the

impliations

:WPHP

2n

n

(R) �! :WPHP

n

2

n

(g)

and

:WPHP

n

2

n

(R) �! :WPHP

1

n

(h)

Same statements hold for the onto version.

By Theorem 3.1 we get

Corollary 6.2 The ontoWPHP

m

n

, for m = 2n; n

2

;1, has quasi-polynomial

R(log)-proofs.

In fat, as the proof in [8℄ shows, the onjuntions in the R(log)-proofs have

size only O(log n) rather than generi (logn)

O(1)

.

An immediate orollary of Theorems 6.1 and 3.1 points to a possible ap-

proah to proving resolution lower bounds for WPHP

n

2

n

and WPHP

1

n

. Namely,

instead of trying to improve the urrent methods to m = n

2

, improve the lower

bound for m = 2n from R to R(log).

Corollary 6.3 Assume that WPHP

2n

n

requires exponential size R(log)-proofs.

Then both WPHP

n

2

n

and WPHP

1

n

require exponential size R(log)-proofs as well.

By Chiari - Kraj���ek [4℄ S

2

2

(f) does not prove ontoWPHP

m

n

(f). Thus the

remaining open problem is whether T

2

2

(f) proves (the non-onto) WPHP

m

n

(f).

In this onnetion it is perhaps interesting to note that Buss - Pitassi [2℄ proved

that minimum sizes of R-proofs of WPHP

m

n

and ontoWPHP

m

n

are polynomially

related.

Analysing what makes the inrease of quanti�er omplexity in the proofs of

the non-onto version we observe that a funtion in a model of T

2

2

(f) violating

the priniple WPHP

n

2

n

(f) must be one-way.

3

3

After this paper irulated for some time, [17℄ showed that T

2

2

(f) proves WPHP

n

2

n

(f)

(see http://www.math.as.z/~krajiek/mpw.ps for a short presentation of their proof via

bounded arithmeti). I keep L.6.4 as the same onstrution works for subtheories of T

2

2

(f)

orresponding to weaker subsystems of R(log n).

12



Lemma 6.4 Let M be a model of T

2

2

(f) + :WPHP

m

n

(f), for m = 2n; n

2

;1.

Then f is one-way in the following sense: the inverse funtion f

(�1)

(de�ned

arbitrarily outside rng(f)) is not �

b

1

(f) de�nable in the model, i.e. it is not

omputable by a polynomial-time Turing mahine with orale f even with a

polynomial advie. In partiular, rng(f) is also not �

b

1

(f) de�nable.

To explain this I shall refer to the proof of Theorem 6.1 as given in [10,

Thm.11.2.3,pp.213-4℄.

The formula A

g

(r) is �

b

3

; however, if the map violating the WPHP were not

onto, then the same onstrution gives only �

b

4

-formula as the funtion `(i; x) is

not �

b

1

(f) anymore (beause one needs to ondition upon whether or not `(i; x)

is in the range of the map). But assuming that the inverse map f

(�1)

is �

b

1

(f)

de�nable, the funtion `(i; x) is also �

b

1

(f) de�nable as the numbers v; w in the

seond lause of the de�nition of `(i; x) (on [10, p.214℄) are just projetions of

f

(�1)

(u). Hene the assumption that f is not one-way implies that the proof

goes through in S

3

2

(f) and hene also in T

2

2

(f), ontraditing the hypothesis

that f violates WPHP

n

2

n

(f) in a model of T

2

2

(f).

A simple example of this situation (for a reader not familiar with [10℄) is

this: Let f : n � n ! n. Consider the property �(u) := 9j < n; f(0; j) = u.

Then � is �

b

1

(f) for all f , but when f is onto n it is, in fat, �

b

1

(f) as it is

equivalent also to 8i; j < n; f(i; j) = u! i = 0.

We an omplement Lemma 6.4 in a sense.

Theorem 6.5 Let f be a length preserving, injetive polynomial-time funtion.

Assume that f is one-way in the sense of Lemma 6.4, i.e. f

(�1)

is not om-

putable by polynomial size iruits.

Then there is a model M of S

1

2

and an in�nite n in it suh that f is an

injetive map from n into a proper subset of n. In partiular, adding one value

to f , f violates PHP

n+1

n

.

In fat, if the hypothesis is satis�ed only in a model N of S

1

2

then M an be

a �

b

1

-elementary extension of N .

Proof :

If no suh model exists S

1

2

proves for some k � 1:

a � k ! [(9x < a; jf(x)j 6= jxj) _ (9x < y < a; f(x) = f(y)) _

(8y < a9x < a; f(x) = y)℄

By Buss's witnessing theorem (see [1℄ or [10, Chpt.7℄) there is a polynomial-time

funtion g(a; y) that on input (a; y) 2 N �N, a � k and y < a, witnesses the

above impliation. As the �rst two disjuntions in the suedent are false in N,

it atually always �nds f

(�1)

(y). That is a ontradition with the assumption

that f is one way.

The last part follows after applying the witnessing theorem to S

1

2

+Th

�

b

1

(N).
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q.e.d.

A family h

y

(x) of funtions from f0; 1g

`(jyj)

into f0; 1g

`(jyj)�1

is a strongly

ollision-free family of hash funtions if there is no polynomial-time funtion f

that on y omputes x

1

< x

2

2 f0; 1g

`(jyj)

with h

y

(x

1

) = h

y

(x

2

) (f. [22℄).

Theorem 6.6 Let h

y

(x) be a strongly ollision-free family of hash funtions.

Then there is a model M of S

1

2

and an in�nite n = 2

`�1

in it suh that for

some a 2M , h

a

: f0; 1g

`

! f0; 1g

`�1

violates WPHP

2n

n

.

In fat, if the hypothesis is satis�ed only in a model N of S

1

2

then M an be

a �

b

1

-elementary extension of N .

Proof :

The non-existene of suhM implies that S

1

2

(or S

1

2

+Th

�

b

1

(N) respetively)

proves

8y9x

1

; x

2

;x

1

< x

2

^ h

y

(x

1

) = h

y

(x

2

)

Buss's witnessing theorem gives a funtion f �nding in polynomial time from y

a ollision x

1

< x

2

for h

y

.

q.e.d.

An example of a family of funtions onjetured to be strongly ollision-free

(unless the disrete logarithm is tratable) is the Cham - van Heijst - P�tzman

family, see [22, Chpt.7℄.

7 Open problems

Surely there are theorems analogous to Theorem 5.1 for other ombinatorial

priniples. For example, the ontoPHP similarly relates to Tournament prin-

iple: a small dominating set is pulled bak by the bijetion from a smaller

tournament to a bigger one where no suh small dominating set exists. One

may also turn the argument around and try to prove WPHP by proving (with-

out WPHP) a suitable ombinatorial priniple, or by reduing general WPHP

to the ontoWPHP in this way. I shall try now to formalize this type of potential

new proof of WPHP by the informal notion of strutured PHP.

For the rest of the disussion let L be a relational language disjoint from the

language of T

2

. We shall need a suitable lass of formulas. Class A onsists of

all 2nd order formulas �(n) that have the form:

�(n) := 9X ; jX j � F (n) ^ �(X)

where � is a DNF

2

-formula (see Setion 2) with 2nd order quanti�ers ranging

over sets of size (logn)

O(1)

, with all 8 restrited to 2nd order variables, and suh

that:

14



1. F (n) = (logn)

O(1)

and F (n) is de�nable in S

1

2

.

2. There is k � 1 suh that for arbitrarily large n there is an L-struture A

with n points suh that A 6j= �(n

k

).

The proof of the following lemma is analogous to the proof of Theorem 5.1.

Lemma 7.1 Let a theory T : S

1

2

(L) � T � T

2

(L) and a proof system P be a

pair for whih Theorem 4.1 holds.

Assume that T proves that all L-strutures A satisfy �(jAj). Then P admits

subexponential size proofs of WPHP

n

k

n

.

If, moreover, T proves ondition 2. above, it proves also WPHP

n

k

n

(f).

In the version of the lemma for ontoWPHP

m

n

the formula � an be more

general: � an be any 2nd order formula (with 2nd order quanti�ers still ranging

over sets of size (logn)

O(1)

), subformula jX j � F (n) an be replaed by jX j �

F (n), and ondition 2. an be hanged to

2'. There is k � 1 suh that for arbitrarily large n there is an L-struture A

with n

k

points suh that A 6j= �(n).

A more generally aimed question is: Is it easier to prove that f : m !

n annot be injetive assuming that n (or m) is equipped with a struture

having some partiular property? Even more generally, let '(x; y) be a bounded

formula in the language of T

2

(L). Denote by S

'

PHP

m

n

(f) the strutured PHP:

If '(m;n) holds then f : m! n annot be injetive.

Problem 7.2 Is there '(x; y) suh that

1. There are arbitrarily large n and m � 2n satisfying '(m;n).

2. S

'

PHP

m

n

(f) is provable in T

2

2

(L; f)?

Known methods give negative answer for m = n + 1 and T

2

(L; f), and for

S

2

2

(L; f).

There are few more problems that I �nd interesting and stimulating for

further work. The �rst one is aimed towards the remark before Corollary 6.3.

Problem 7.3 Prove an exponential lower bound on the size of R(2)-proofs of

WPHP

2n

n

.

Mentioning R(2) gives me an opportunity to state a onjeture about the

system. For the de�nition of (monotone) e�etive interpolation see [11℄. The

only onstant-depth subsystem of LK for whih is the status of monotone e�e-

tive interpolation unknown is the depth 1 subsystem (depth 0 is resolution that

admits monotone e�etive interpolation, while depth � 2 subsystems do not -

see [11, Thms. 6.1 and 9.3℄).
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Conjeture 7.4 R(2) has no (monotone) e�etive interpolation.

This is related to our main theme by

Theorem 7.5 ([11, Thm.9.4℄) Either R(id) (i.e. depth 1 LK) does not admit

monotone e�etive interpolation or, for any k, WPHP

n

k

n

requires exponential

size R-proofs.

To onlude the paper I turn for a moment to unrelativised WPHP. A very

important open problem (next to the �nite axiomatisability) about (unrela-

tivised) bounded arithmeti, formulated by A. Maintyre some twenty years

ago, onerns the provability of (various version of) PHP for funtions de�n-

able in the theory by bounded formulas. Few onditional results are known:

PHP

n+1

n

(f) is not provable in any one T

i

2

for all suh f unless the polynomial-

time hierarhy ollapses (by [14℄, as it would hold that T

i

2

= T

2

), and further

WPHP

2n

n

(f) is not provable in S

1

2

for some polynomial-time funtions (e.g. ex-

ponentiation in �nite �elds) unless the RSA ryptosystem is not seure (f. [13℄).

However, no unonditional results are known.

De�nition 7.6 Denote by WPHP

n

2n

the statement that f : n ! 2n annot be

onto.

BT is the theory S

1

2

extended by instanes of WPHP

n

2n

for all polynomial-

time funtions f .

BT , a subtheory of T

2

, is a suitable theory in our ontext. For example,

T

2

2

(f) an be replaed by BT (f) in Lemma 6.4.

Problem 7.7 Is the theory BT 8�

b

1

-onservative over S

1

2

?

By a theorem of A. Wilkie (proved in [10, Thm. 7.3.7℄

4

) the funtions

�

b

1

-de�nable in BT are omputable in random polynomial time . Thus, as-

suming the existene of strong pseudo-random number generators, they are all

polynomial-time. Hene witnessing will not distinguish the theories. So, in

e�et, the question asks if there are 8�

b

1

-onsequenes of BT unprovable in S

1

2

.

In this onnetion it may be interesting to

Problem 7.8 Find a natural extension of EF that would orrespond to BT.

The witnessing theorem for BT also implies that a possible redution of

general WPHP to ontoWPHP (looked for via strutured PHP) annot be en-

tirely trivial. This is an observation pointed out to me by N. Thapen. It was

proved in [13℄ that S

1

2

does not prove WPHP

2n

n

for a partiular polynomial-time

funtion (modular exponentiation) unless the ryptosystem RSA is not seure.

4

See http://www.math.as.z/~krajiek/upravy.html for a orretion relevant to this

itation.
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The same proof ombined with the witnessing theorem for BT shows that even

BT does not prove it, using the average ase omplexity de�nition of seurity

of RSA. Hene, assuming suh seurity of RSA, one annot redue WPHP

2n

n

to

WPHP

n

2n

, and hene to ontoWPHP

2n

n

, in S

1

2

.

The following onjeture suggests how a model not satisfying BT may our.

Let G : f0; 1g

�

! f0; 1g

�

be a pseudo-random number generator that strethes

the inputs by one bit and has exponential hardness. Denote byG

`

the restrition

of G to inputs of length ` (and similarly f

`

for any funtion f).

Conjeture 7.9 Any model M

n

of the form as earlier, n = 2

`

in M , has a �

b

1

-

elementary extension to a model N of S

1

2

in whih there is a map f : f0; 1g

`

!

f0; 1g

`+1

that is �

b

1

-de�nable from G

`

and that violates WPHP

n

2n

(f).

In partiular, if strong pseudo-random number generators exists then S

1

2

6=

BT .

As G is a polynomial-time funtion and hene itself �

b

1

-de�nable, the on-

dition on f just means that f is also �

b

1

-de�nable. A referene to G thus seems

redundant. However, I believe that there is a onstrution of f from G uniform

in G and that there are even G for whih one an take f := G.

Note that the onjeture has also impliation for the Extended Frege system

EF. In partiular, none of the formulas ky =2 Rng(f)k

`+1

(b), b 2 f0; 1g

`+1

, has

an EF-proof in the model M

n

and hene a standard ompatness argument

yields the next orollary.

Corollary 7.10 Assume that G is a strong pseudo-random generator and f is

a funtion with properties guaranteed by the onjeture.

Then tautologies ky =2 Rng(f

n

)k

n+1

(b) for b 2 f0; 1g

n+1

n Rng(f

n

), n =

1; 2; : : :, require superpolynomial EF-proofs.
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