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Proof:

• mathematical

• in propositional logic

• formal
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Complexity:

• How hard it is to verify the proof?

• Who is the verifier?
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Verifier:

• no creative input

• modelled by a Turing machine Q

• inputs: α (the formula) and π (the proof)

• output Q(α, π): 1 (accept) or 0 (reject)
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The complexity of π:

• the time Q needs to compute V (α, π)

• mathematical set-up:

formulas, proofs, ... are all represented by

strings over a finite alphabet

- {0,1}∗: the set of finite binary strings

- |α| = the size of α = the length of the

string representing α

- atom pn represented e.g. by string p1 . . .1
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A useful technical shift:

• demand that Q runs in polynomial time

(i.e. the number of steps is poly(|α|, |π|))

• if the original Q runs in time t then we can

pad the original proof π to

π′ := π b . . . b

b is t-times, and define new p-time Q′ op-

erating as follows:

read from π′ just π and then work as Q

I.e.: time becomes proof length.

6



Definition: [Cook-Reckhow]

A propositional proof system
is a binary relation Q(x, y) such that:

• Q is p-time decidable

• ∀α ∈ TAUT ∃π Q(α, π) = 1

[the completeness]

• ∀α, π Q(α, π) = 1 → α ∈ TAUT

[the soundness]
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Example: a Frege system

- the language: {¬,→}

- one inference rule: modus ponens

- three axiom schemes:

• p → (q → p),

• [p → (q → r)] → [(p → q) → (p → r)],

• (¬p → ¬q) → [(¬p → q) → p].
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Main problem:

Is there a proof system in which all tautologies

have polynomial size proofs?

• p-size: |π| ≤ poly(|α|)

• a p-bounded proof system
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Complexity classes:

P : p-time decidable problems

Ex.: Is α a formula?

NP : properties easy to prove (in p-size)

Ex.: Is α satisfiable?

coNP : properties easy to refute

Ex.: Is α a tautology?
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Fundamental problem:

P = NP ?

Hilbert’s Entscheidungsproblem:

Can the logical validity of a first-order formula

be decided by an algorithm?

[Church and Turing : NO]

Replacing first-order by propositional and ask-

ing for p-time algorithm the problem becomes

equivalent to the P =? NP problem.
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Theorem [Cook-Reckhow]

There exists a p-bounded proof system iff the

class NP is closed under complementation.

Corollary

If no p-bounded proof system exists then

P 6= NP.

Hence we want to show that no p-bounded

proof system exists.
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• a literal: p or ¬p

• a clause: a disjunction of literals

C : ℓ1 ∧ . . . ∧ ℓw

• a term: a conjunction of literals

D : ℓ1 ∧ . . . ∧ ℓw

CNF formulas: C1 ∧ . . . ∧ Ct

limited extension: a way how to attach to a

formula β a CNF formula CNF(β) such that:

β ∈ SAT ⇔ CNF(β) ∈ SAT
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Observation: α ∈ TAUT ⇔ ¬α /∈ SAT

A technical maneuver:

• instead of proving that α is a tautology we

shall prove that ¬α is not satisfiable, and

• for that we shall refute the set of clauses

C1, . . . , Ct forming CNF(¬α).

We look at the system

Ci = true , for all i ≤ t

as a system of logical equations and we want

to show it has no solution.
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Algebraic proof systems:

• atom pi is though of as a variable pi,

• literal ¬pi by 1− pi,

• replace logical equation

C : ℓ1 ∨ . . . ∨ ℓw = true

by polynomial equation

f : (1− ℓ1) · . . . · (1− ℓw) = 0
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axioms:

- Boolean: x2i − xi = 0, for all i ≤ n

- initial equations from clauses:

fi = 0 , for all i ≤ t

rules:

g1 g2
g1 + g2

g

gh
, h any polynomial
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Hilbert’s Nullstellensatz:

The system fi = 0, i ≤ t, has no 0-1 solution

iff one can derive the constant 1.

A technical issue:

how to represent polynomials so that their

equality can be feasibly recognized?
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Geometric proof systems:

represent the logical equation

C : ℓ1 ∨ . . . ∨ ℓw = true

by integer linear inequality

L : ℓ1 + . . .+ ℓw ≥ 1
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axioms:

- Boolean: xi ≥ 0 and −xi ≥ −1, for all i ≤ n

- initial inequalities from clauses:

Li ≥ 1 , for all i ≤ t

rules:
L1 ≥ a1 L2 ≥ a2
L1 + L2 ≥ a1 + a2

L ≥ b

cL ≥ cb
, c ≥ 1 integer

L ≥ b
L
c ≥ ⌈b/c⌉

c ≥ 1 integer dividing all coefficients in L
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This is the cutting planes proof system.

Completeness: Chvátal - Gomory cuts

Another algorithm for integer linear program-

ing is by Lovász - Schrijver.
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A logical refutation system: resolution

Only one rule:

E ∨ p F ∨ ¬p

E ∨ F

Theorem:

Resolution is sound and complete.

[It is the basis of many SAT solving algorithms.]
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A SAT solving algorithm M :

- input: a set of clauses

- output: either a satisfying assignment or the

declaration UNSAT

Interpret M is a proof system Q by:

Q(α, π) = 1 holds iff π is the run of M on

CNF(¬α) ending with UNSAT.
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Ex. hard formula: the pigeon-hole principle

- fix n ≥ 1 and the set [n] := {1, . . . , n}

- atoms pij, for i ∈ [n+1] and j ∈ [n]

- meaning: pij = 1 iff pigeon i sits in hole j

- ¬PHPn is the set of clauses:

•
∨
j pij, for all i

• ¬piu ∨ ¬piv, for all i and all u 6= v

• ¬paj ∨ ¬pbj, for all a 6= b and j
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Feasible interpolation:

• two sets of clauses Ai(p, q) and Bj(p, r)

together unsatisfiable

• p = (p1, . . . , pn) and the three tuples of

atoms are disjoint

Two subsets U, V ⊆ {0,1}n:

U := {a ∈ {0,1}n |
∧

i

Ai(a, q) ∈ SAT}

V := {a ∈ {0,1}n |
∧

j

Bj(a, r) ∈ SAT}
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Ai, Bj unsatisfiable

m

∧

i

Ai(p, q) → ¬
∧

j

Bj(p, r) ∈ TAUT(1)

m

U ∩ V = ∅

m

any interpolant I(p) of (1) defines a set

{a | I(a) = 1} separating U from V
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Definition

A proof system Q has feasible interpolation iff

whenever Ai, Bj can be refuted in Q in size s

then there is a Boolean circuit C(p) of size

≤ poly(s) separating U from V .

A Boolean circuit with inputs x1, . . . , xn is a

sequence of instructions:

y1, y2, . . . , yt

where each yk is computed from

0,1, x1, . . . , xn, y1, . . . , yk−1

by ¬,∨ or ∧.
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Applications:

If U/V are hard to separate then Ai, Bj are hard

to refute in Q.

Monotone version:

• U closed upwards

• C is monotone (no ¬)

We have no non-trivial lower bounds for gen-

eral circuits but for monotone circuits strong

lower bounds are known.

27



RSA pair

RSA encryption method

E : b ∈ {0,1}n → E(b) ∈ {0,1}n

U := {a ∈ {0,1}n | ∃b E(b) = a ∧ bn = 0}

V := {a ∈ {0,1}n | ∃b E(b) = a ∧ bn = 1}

Fact: If RSA is secure then U/V are hard to

separate.
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Clique - Color pair

Clique:
the set of graphs on [n] which have a clique of

size k

It is closed upwards: adding more edges does

not destroy a clique

Color:
the set of graphs on [n] which are (k − 1)-

colorable
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Win-win situation:

• If Q has feasible interpolation

then we got lower bounds (unconditional

or conditional).

• If Q does not have feasible interpolation

then it is possible to derive a time lower

bound for any algorithm searching for Q-

proofs.

Key word: automatizability.

30



Remark:

It is possible (but unlikely) that a Frege system

is p-bounded: we have only quadratic lower

bound at present.

But assuming that no p-bounded proof sys-

tem exists (i.e. that NP 6= coNP) we may ask

if there is an optimal proof system P :

• no other proof system Q has more than a

polynomial speed-up over P :

minsizeP (α) ≤ poly(minsizeQ(α))
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Quantitative Gödel’s theorem:

S: a finite consistent extension of Robinson’s

arithmetic

ConS(x): formalizes that ”there is no proof of

contradiction in S of size ≤ x”

dyadic numerals n:

0 := 0 and 1 := 1

2n := (1+ 1) · n and 2n+1 := 2n+1

Note: the size of ConS(n) is ≈ logn.
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Theorem [H.Friedman, P.Pudlák]

There are ǫ > 0 and c ≥ 1 such that:

• S 6⊢nǫ ConS(n).

• S ⊢nc ConS(n).

Problem:

Is there a fixed theory S0 such that for all S it

holds:

S0 ⊢nc ConS(n) ?
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Theorem [J.K. - P.Pudlák]

An optimal proof system exists iff there is a

theory S0 proving statements ConS(n) for all

S in size poly(n).

In order to use this to disprove the existence

of an optimal proof system we would need, it

seems, a new proof of Gödel’s theorem.

Problem:

Can we prove that Robinson’s arithmetic does

not prove ConGB by a proof that is signifi-

cantly different from the proof that GB does

not prove it?
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Hilbert’s canceled 24th problem:

The 24th problem in my Paris lecture was to

be:

Criteria of simplicity, or proof of the greatest

simplicity of certain proofs. Develop a theory

of the method of proof in mathematics in gen-

eral. Under a given set of conditions there can

be but one simplest proof. Quite generally, if

there are two proofs for a theorem, you must

keep going until you have derived each from

the other, or until it becomes quite evident

what variant conditions (and aids) have been

used in the two proofs. Given two routes, it

is not right to take either of these two or to

look for a third; it is necessary to investigate

the area lying between the two routes.
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Hilbert's Twenty-Fourth Problem 

Riidiger Thiele 

1. INTRODUCTION. For geometers, Hilbert's influential work on the foundations 
of geometry is important. For analysts, Hilbert's theory of integral equations is just as 
important. But the address "Mathematische Probleme" [37] that David Hilbert (1862- 
1943) delivered at the second International Congress of Mathematicians (ICM) in Paris 
has tremendous importance for all mathematicians. Moreover, a substantial part of 
Hilbert's fame rests on this address from 1900 (the year after the American Mathe- 
matical Society began to publish its Transactions). It was by the rapid publication of 
Hilbert's paper [37] that the importance of the problems became quite clear, and it 
was the American Mathematical Society that very quickly supplied English-language 
readers with both a report on and a translation of Hilbert's address. (In Paris, the 
United States and England were represented by seventeen and seven participants, re- 
spectively.) 

Indeed, this collection of twenty-three unsolved problems, in which Hilbert tried 
"to lift the veil behind which the future lies hidden" [37, p. 437] has occupied much 
attention since that time, with many mathematicians watching each contribution at- 
tentively and directing their research accordingly. Hermann Weyl (1885-1955) once 
remarked that "We mathematicians have often measured our progress by checking 
which of Hilbert's questions had been settled in the meantime" [110, p. 525]. (See 
also [31] and [115].) 

Hilbert and his twenty-three problems have become proverbial. As a matter of 
fact, however, because of time constraints Hilbert presented only ten of the prob- 
lems at the Congress. Charlotte Angas Scott (1858-1931) reported on the Congress 
and Hilbert's presentation of ten problems in the Bulletin of the American Mathemat- 
ical Society [91]. The complete list of twenty-three problems only appeared in the 
journal Gottinger Nachrichten in the fall of 1900 [37], and Mary Winston Newson 
(1869-1959) translated the paper into English for the Bulletin in 1901 [37]. Already 
by September 1900, George Bruce Halsted (1853-1922) had written in this MONTHLY 
that Hilbert's beautiful paper on the problems of mathematics "is epoch-making for the 
history of mathematics" [34, p. 188]. In his report on the International Congress, Hal- 
sted devoted about forty of the article's eighty lines to the problems. As to the actual 
speech, no manuscript was preserved, nor was the text itself ever published. 

Recently, Ivor Grattan-Guinness presented an interesting overview of Hilbert's 
problems in the Notices of the American Mathematical Society, discussing the form 
in which each of the twenty-three problems was published [30]. Yet, in dealing with 
the celebrated problems from this viewpoint, he failed to mention the most interesting 
problem of Hilbert's collection: the canceled twenty-fourth. Hilbert included it neither 
in his address nor in any printed version, nor did he communicate it to his friends 
Adolf Hurwitz (1859-1919) and Hermann Minkowski (1864-1909), who were proof- 
readers of the paper submitted to the Gottinger Nachrichten and, more significantly, 
were direct participants in the developments surrounding Hilbert's ICM lecture. 

So, for a century now, the twenty-fourth problem has been a Sleeping Beauty. This 
article will try to awaken it, thus giving the reader the chance to be the latter-day 
Prince (or Princess) Charming who can take it home and solve it. This paper also aims 
to convince the reader of the utility of the history of mathematics in the sense to which 
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