
A Proof of the Independence of the Continuum Hypothesis 

by 

DANA SCOTT 1 

Stanford University 

1. Fo rmula t ing  the c o n t i n u u m  hypothes is .  2 T h e  conceptual  f rame-  
work requ i red  to fo rmula te  Cantor 's  con t inuum hypothesis is remarkably  
elementary.  T h e  hypothesis  is, o f  course,  the assertion: 

(CH) 2 ~° = I% 

Even as it stands (CH) is a reasonably simple statement,  but  r e fe rence  to 
the alephs can easily be avoided. In the first place, if we agree to assume 
the axiom of  choice, then  every cardinal  n u m b e r  is an aleph. T h u s  2 ~° must  
be equal to some aleph, and (CH) states that  it is the next  one  af terN. .  In 
o ther  words,  there is no cardinal strictly between I% and 2 R° . 

Next,  r emember ing  to stress the word  "cont inuum",  we recall that the 
hypothesis has to do with the real numbers ;  indeed,  the set o f  real num-  
bers is surely the most  natural  set of  cardinality 2 ~° . T h e r e f o r e ,  (CH) can 
be taken as asserting that every set of real numbers is either countable or of the 
same cardinality as the whole set of real numbers. 

Finally, again making use o f  the axiom of  choice, we recall that  a subset 
of  a set is o f  the same cardinality as the whole set if  and only if the subset 
can be m a p p e d  onto the whole set. Thus  (CH) is equivalent  to the s ta tement  
that given any set of reals, either the set of integers can be mapped onto the set, 
or the set can be mapped onto the whole set of reals. 

T o  unders t and  this s ta tement  we need  unde r s t and  only these familiar 
mathematical  concepts: integers, reals, arbi t rary subsets of  the reals, and 
arbi t rary mappings (functions) f rom reals to reals. T o  see this more  clearly, 
let us formula te  the s ta tement  in logical symbols. Let  lower case variables 
x, y range  over  reals; let the u p p e r  case variable X range  over  sets o f  reals; 
and let f ,  g range  over  real functions. T h e  symbol hl is reserved for  the set 
of  integers. T h e n ,  using the s tandard  notat ion for  set membersh ip  and 
funct ion value, we can state (CH) in the form:  

(CH')  v X [ 3 f v y ~ X 3 x ~ l q [ y = f ( x ) ] v 3 g v y ] x E X [ y = g ( x ) ] ] .  
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In the above V is to be read  as the universal quantifier,  3 as the existential 
quantifier; and V y ~ X is to be read as "for all y in the set X", and 3 x ~ 14 as 
"for some x in the set 14". T h e  symbol v stands for  "or". Note that for  sim- 
plicity we can assume without any loss o f  generali ty that the real functions 
have  as their  domain  o f  definit ion the whole set o f  real n u m b e r s - b e c a u s e  
the values of  the f outside 14 and the g outside X are i rrelevant  to the im- 
port  o f  the s ta tement  (CH').  

As a mat ter  o f  fact, if  we want to be very economical with ou r  concepts,  
the notion of  a set of  reals can be reduced  to the notion o f  a real function 
by using the idea of  a characteristic function. O f  course, the formula t ion  
(CH')  suffers some loss o f  beauty in that a phrase  such as 

v y E X [ . . . ]  

would have to be replaced by 

V y [X(y) = 0--* . . . ] ,  

where ---> stands for  "implies". Nevertheless, we shall imagine this reduct ion 
as having been carr ied out  for  the sake o f  the axiomatic system we wish 
to present  in the next  section. 

2. Axiomatizing the h ighe r -o rde r  theory  o f  real  numbers .  So far  we 
have only commit ted  ourselves to speaking about  reals (and possibly certain 
special numbers  like 0) and real functions (and certain special functions 
like the characteristic funct ion o f  the integers). T h e  statements we make 
about  these objects are formula ted  in a language which permits  (at least) 
equations, the use of  the function-value notation, the logical connectives 
and quantifiers. This bare  f ramework  is certainly sufficient for  the mere  
formulat ion of  an equivalent version of  the con t inuum hypothesis as we 
have seen. But  there  is much,  much more  that cannot  be stated in such 
restricted terms. 

For example,  it is necessary sometimes to speak of functionals- map- 
pings f rom functions to r e a l s - a n d  operators-mappings f rom functions 
to functions. We even think o f  functionals on opera tors  or  opera tors  on 
operators  on opera tors  f rom time to time. Could it not  be possible that 
very simple propert ies  of  these so-called higher-type functions, propert ies  
that mathematicians are willing to accept, could be used to give a proof of  
the cont inuum hypothesis? T h e  fact that ment ion  of  these objects is not  
required  in (CH')  is no argument .  

Consider  the case o f  ord inary  real algebra. We can give a (partial) 
axiomatization o f  this theory by stating the usual axioms for  an o r d e r e d  
field. Now it is well known that the Arch imedean  axiom does not  follow. 
T h e  s tatement  o f  the Arch imedean  axiom is quite simple, requir ing beyond 
elementary algebra only the idea of  an i terated multiple o f  an e lement  
(or equivalently the notion of  an integer). On the o ther  hand,  if we br ing  
in the concept  of  an arbi t rary subset o f  the field of  elements and invoke 
the obvious basic axioms about  existence of  subsets toge ther  with the 
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Dedekind completeness of the ordering, then the Archimedean axiom 
does follow. The connection is direct, but still it takes a moment's thought 
to see to which subset the completeness axiom should be applied assuming 
a counter-example to the Archimedean axiom. 

The example just cited involves only isolated axioms which we wish 
to assume for the reals in any case. However, G6del in his Incompleteness 
Theorem has shown that the situation is much worse: suppose we agree 
to assume all the standard axioms about reals together with the obvious 
axioms about functions, functionals, functionals on functionals, functionals 
on functionals on functionals, etc., say to 17 levels. Then by the method 
of G6del's Theorem we can show (assuming the consistency of the system) 
that an extension of  the system to allow for 18 levels permits a derivation 
of a statement about the integers which was not previously provable. There- 
fore the proof of a statement may very well involve notions not mentioned 
in its formulation. That situation is often met in mathematical practice 
when someone solves a difficult problem by introducing new notions and 
nearly as often someone later shows us how to avoid the new concepts by 
deriving the (now known to be true) fact along familiar lines. G6del shows 
us, however, that in certain cases the situation is unavoidable. To be sure, 
G6del's sentences of arithmetic are somewhat b izar re -  but no one proposes 
a change in the rules that would eliminate them from consideration. 

Nevertheless, in the case of the continuum hypothesis Cohen has 
finally established its unprovability no matter how many levels we would 
desire to allow. Even the axiom of choice is of no help. To understand this 
remarkable independence result, it will not be necessary to contemplate 
the transfinite levels employed in Cohen's original proof, nor to become 
involved in any ordinal inductions. We will be able to see the essence of 
the argument while operating on just two levels above the reals, that is, 
using only functions and functionals. 

To axiomatize this theory we will use in the first place the notation of 
ordinary real algebra: real variables x, y, z (possibly with subscripts) and 
the symbols 0, 1, +, -, ~,  and =. Besides these we will employ function 
variables f ,  g, h (possibly with subscripts) and functional variables F, G, H 
(possibly with subscripts), together with the ordinary functional notation 
in contexts such as f(x), and F(f). Equations between functions and be- 
tween functionals are also permitted. 

To be more precise, we can say that a term (generalized polynomial) 
is either a real variable, or one of the symbols 0 or 1, or the result of  apply- 
ing a functional variable to a function variable, or the result of applying 
a function variable to a previously obtained term, or the sum or product 
of previously obtained terms. An atomic formula is an equation or inequality 
between terms or an equation between function variables or between func- 
tional variables. A formula is either an atomic formula or is the result of 
applying the logical connectives or the quantifiers to previously obtained 
formulas. The symbols to be used for the logical connectives are- ,  (not), 
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v (or), ^ (and), -*  (implies), ~ (if and  only if). Round  paren theses  are  used 
for  g roup ing  te rms  and  square  brackets  for  formulas .  

Lower  case letters such as t, u, v will deno te  te rms  or  possibly funct ion 
or  funct ional  variables, while u p p e r  case letters such as A and  B will denote  
formulas .  An occurrence  of  a variable v in a f o rmu la  is said to be  bound if 
it occurs within a context '  o f  the f o r m  V v A or  3 v A, that  is, within the 
scope o f  a quantif ier;  o ther  occurrences  are called free. A fo rmu la  wi thout  
f ree  occurrences  o f  variables is somet imes  called a sentence, because we 
think of  it as be ing definitely t rue  or  false. On  the o the r  hand,  a f o rmu la  
with free variables (like [x ~ 0 v 1 ~ x]) in general  cannot  be reckoned  
t rue  or  false unless par t icular  values for  the f ree  variables are given. 
Nevertheless,  it is convenient  to use fo rmulas  with f ree  variables (like 
[x • y = x • z ~ [x = 0 v y =  z]]) ,  and  when we assert  t hem as axioms or  
t heo rems  we intend this as a sho r thand  for  universally quant i fy ing  the 
free variables (thus V x V y V z[x • y = x • z ~ [x = 0 v y = z] ] is a t rue  sen- 
tence of  real a lgebra  that  we want  to be provable  f r o m  o u r  axioms).  Some-  
times we will wish to indicate that  a fo rmula  has f ree  occurrences  o f  vari- 
ables, and  we will write expressions like A(x, y, z) o r  B(x0, x l , ' "  ", x,-1). 
T h e n  when  we write B(t0, t l , ' "  ", t,-1) we m e a n  to indicate the fo rmula  
that  results by substituting the indicated te rms  or  o the r  variables for  the 
original f ree  variables. This  nota t ion is not unambiguous ,  but  for  ou r  
purposes  a m o r e  precise notat ion would not  be wor th  the addi t ional  effort  
and  loss o f  readability. 

Well, jus t  what  are  the axioms? T o  have the whole system very clearly 
in mind  we will want  to go back to the beginning:  the first g r o u p  of  axioms 
are those of  propositional logic. We could take all instances o f  tautologies,  
or  we could select some s tandard  basic list such as: 

(PL) (1) [A ~ [B--~ A] ]  
(2) [ [A ~ [B ~ C] ]  --~ [ [A  ~ B] ~ [A---> C ] ] ]  
(3) [ [--, B ---~ --, a ]  ---~ [A --~ B] ] 
(4) [ [A ^ B] --> A] 
(5) [ [A  ^ B] ~ B] 
(6) [A---> [B ---> [ a  ^ B ] ] ]  
(7) [ a ~  [ a  v B]]  
(8) [B ~ [ a  v a ] ]  
(9) [ [A ~ C] ~ [ [B ~ C] ~ [ [A  v B] --+ C]]  

(10) [ [ A o B ] ~  [ A ~ B ] ]  
(11) [[A~---~B]--~ [ A - - ~ B ] ]  
(12) [ [ A ~ B ]  ~ [ [ B ~ A ]  ~ [ A ~ B ] ] ] ,  

where  A, B, and  C are arbitrary formulas .  (Some people  would call (PL)(1)- 
(PL)(12) ax iom schemata.)  Next  we have the axioms o f  quantifier logic: 

(QL) (1) [V v a (v)  ~ a ( t ) ]  
(2) [A(t) ~ 3 v A(v)], 

where  v is a variable and  if v is a real [respectively,  a funct ion,  funct ional]  
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variable, then t is a term [function variable, functional variable]. Follow- 
ing these we have the axioms of  equality logic: 

(EL) (1) t = t 
(2) t = u--* [A(t) ~ A(u)], 

where t and u are either both terms or both function or  both functional 
variables. These axiom schemata (PL), (QL), (EL) are, of  Course, common 
to all theories as are the rules of  logical inference: 

A 

(D) [A --~ B] 
.'. A 

[A ~ B(v)] 
(U) .'. [A --> V v B(v)] 

[B(v) ---> A] 
(E) 

.'. [:t v B(v) --> A] 

where in (U) and (E) the variable v is not free in the formula  A. Rule (D) 
is called the rule of  detachment (sometimes modus ponens), while (U) and  
(E) are the rules of  introduction of the universal and existential quantifiers. 

T u r n i n g  now to the axioms dealing with our  specific non-logical prim- 
itive notions, we cite first the axioms (OF) of  an ordered field- axioms so 
familiar that we need not repeat them in detail here. To  these we must  
adjoin the axiom of  a complete ordering whichcan be formula ted  in many 
ways. For our  system the principle asserting that a bounded  function has 
a least upper  bound  is probably the simplest: 

(CO) [3yVx[ f ( x )  ~y]  ~ 3 z V y [ z ~ y ~ - > V x [ f ( x )  ~ y] ] ] .  

The  formulat ion of  (CO) involves a function variable (the axioms (OF) 
do not), but since we have as yet no other  axioms about functions, the 
principle (CO) could never be applied to derive any useful consequences 
(such as the Archimedean axiom). What  is required are the following 
axioms: 

(EF) (1) [ f m g ~ , V x [ f ( x ) = g ( x ) ] ]  
(2) [F= G ~ v f [F( f )  = G(f)]]  

(AC) (1) [ V x ] y A ( x , y ) - - * 3 f v x A ( x , f ( x ) ) ]  
(2) [V f 3 y B(f, y) --~ :! F V f B(f,  F ( f ) ) ] .  

In the first group are the ax/oms of equality (sometimes, extensionality) 
for functions and functionals (actually the implication f rom right  to left is 
sufficient in view of  (EL)). Often these axioms are regarded  as definitions, 
but this economy is not particularly useful nor, in the author 's  opinion, 
even conceptually desirable. Equality is such a basic notion that its prop- 
erties are properly a part  o f  logic. Of  course, in a particular theory axioms 
are needed to give a characterization of  equality appropriate  to the notions 
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being axiomatized. Thus  among  the axioms (OF) we might  very well 
choose to state 

[x = y "-'- Ix ~ y , ,  y ~  x ] ] ,  

but  hardly any one wishes to elevate this s ta tement  to the status o f  a def- 
inition. 

In the second g roup  we find the axioms of choice. Very of ten  a special 
consequence o f  (AC) is singled out: namely,  the axioms of comprehension. 
T o  obtain these weaker axioms we s t rengthen the hypothesis  o f  (1), say, to 

V x 3 ! y A ( x , y )  

where  3 ! y is read " there  exists a unique y". In terms o f  the o ther  logical 
symbols this can also be written as 

V x ] y V  y , [ y =  yl ~ A(x, Yl)]- 

T h e n  the modif ied axioms simply state: every "rule" (that is, every func- 
tion-like condition) de termines  (comprehends)  an actual funct ion which 
follows the rule. We often say "a funct ion is a rule",  but  it is really the 
o ther  way a round:  we make up  rules in ou r  mathematical  language,  and 
each such de termines  a well-defined funct ion as an abstract mathematical  
object. It  is just  not  always recognized that it takes an axiom to pass f rom 
stating the rule to asserting the existence of  the function.  T h e  axiom of  
choice is s t ronger  than the axiom o f  comprehens ion ,  because the "rule" is 
not  assumed to de te rmine  uniquely the funct ion value. 

Some people  feel that these principles about  functions and functionals 
are so basic that they should be considered a par t  o f  logic. For  one  thing 
the axioms (EF) and (AC) would read  the same whether  we imagined the 
variables x, y, z as ranging  over  reals, or  points, or integers, or  what  have 
you. In some ways it is just  a mat ter  o f  taste. But  since there  can be differ- 
ence o f  opinion as to the inclusion o f  the axiom of  choice (or the con t inuum 
hypotheses!),  maybe it is bet ter  to draw the line separat ing logic f rom 
mathematics a little fu r the r  back. 

Some readers  may have noticed that the functions and functionals we 
use are just  o f  one argument .  This  is not  a serious restriction. Pairs o f  real 
numbers  could easily be identified with functions: for  example,  we could 
define (x, y) to be that funct ion f where  

i if z =  O, 
f(z) = if z = 1, 

otherwise. 

T h e n  functions o f  two arguments  could easily be identified with those 
functionals that  take the value 0 for  functions that  are not  pairs in the above 
sense. I f  that me thod  is felt to be artificial, then  a special (real-valued!) 
pair ing funct ion could be added  to the list o f  primitives toge ther  with 
the axiom 

(Xo, Yo) = (xl, Yl) ~ [Xo = x, ^ Yo = Yl]. 
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(Actually such a pairing function can be defined; it is a Borel function of  
two arguments  obtained f rom the process o f  merging decimal expansions. 
But that  is even more artificial than the previous suggestion.) Or  functions 
and functionals of  several arguments  could be taken as primitive by having 
special variables for  them. T h e n  the axioms (EF) and (AC) would have to 
be suitably extended in the obvious way. Such extensions (as well as the 
extensions to higher  types of  functionals on functionals on functionals) 
can safely be left to the imagination,  for no essentially new ideas about 
formulat ion or about the independence  proof  are required. 

In the formulat ion (CH') of  Section 1, the set of  (non-negative) integers 
was used as the typical denumerably  infinite set. The re  is definitely no 
need to take the notion of  integer as a primitive, because it is so easily 
defined: 

N(y) ~ V f [ f ( 0 )  = 0 ^ V x[0 <~ x "-->f(x) = f ( x  + 1)] --~f(y) = 0]. 

Read N(y) as "y is an integer" or simply consider N(y) as an abbreviation of  
the formula  on the r ight-hand side of  the biconditional. 

Bringing together  all our  conventions we can finally state the version 
of  the cont inuum hypothesis that  in the next sections will be shown in- 
dependent :  

(CH") 
V h [ 3 i V  y[h(y) = 0 ~ 3 x [N(x) ^ y =f (x) ]  ] v 3 g V y :l x [h(x) = 0 ^ y = g(x)] ]. 

3. Cons t ruc t ing  the model .  The  usual method  of  showing that  a certain 
statement is not derivable f rom given axioms is to exhibit a model in which 
the axioms are t rue but  the statement is false. We shall do jus t  t h a t -  except 
our  model will require the re-interpretation of  the logical as well as the 
non-logical primitives. The  re-interpretat ion is not really a drastic one, 
however, and it uses a quite familiar mathematical  notion: namely, the 
idea of  an event in a probability space. 

This is not too surprising. I f  we ask ourselves what mathematical  
structure is very much like the real numbers  but  still different enough  to 
be interesting, one answer is the random variables of a probability space. We 
use r andom variables as if they were ordinary n u m b e r s - e x c e p t  they are 
not quite precisely placed in the continuum. They  are just  a little r andom 
(or maybe very random!).  Still we can add and multiply them freely and 
can compare one to another.  Unfor tunate ly  they are only partially ordered,  
not totally ordered,  and as a ring they have zero divisors and do not form 
a field. So the analogy seems to break down. But it really does not break 
down, and this is just  the point where the re-interpretat ion of  the logical 
connectives is required. 

Let (f~, d ,  P) be a probability space in the usual sense: ~2 is the non- 
empty set of  sample points, d is the o--field of  subsets of  11 called thefield of 
events, and P is a countably additive measure on d taking on non-negative 
values and giving 1~ measure 1 and is called the probability measure. Let R be 
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the set of  ord inary  real numbers ,  and let ~ he the set o f  random real num- 
bers ( random variables). T h e  elements ~: E ~ are jus t  those functions 
~: f l  --> R such that for  all reals r ~ IR 

We make a slight abuse of  language and identify the ord inary  real numbers  
in R with the constant functions in ~. T h e n  0, 1, +, and • are in te rpre ted  
in the obvious way. It is in the interpreta t ion of  = and ~< that we must  
exercise some c a r e - b u t  the idea is not  unnatural .  

I f  s ~ and */are  two r a n d o m  reals, then the s tatement  

~ = ~  

should not be regarded  as having only two possible t ru th  values-true or  
false. With r a ndom phenomena ,  answers cannot  be set for th  in such black 
and white terms. For  example,  as functions ~: and a9 might  be equal almost 
everywhere,  and then the equality s ta tement  should be r ega rded  as true. 
In case the functions are equal on only 63% of  the sample points, the state- 
ment  must be rega rded  as partially false but  not totally false (57% false to 
be exact). This  idea can be made  precise by in t roducing the (reduced) algebra 
of events, that is, the Boolean algebra 

9 = d l [ P  = O] 
z 

which is the quotient  algebra o f  the tr-field d modulo  the o--ideal [P = O] 
o f  events in d of  P-measure  zero. We shall re fe r  to the elements o f  9 
simply as events f rom now on. 

By dividing out  the null sets we not only eliminate the distinction be- 
tween everywhere and almost everywhere but most importantly:  9 & a complete 
Boolean algebra. This  last r emark  is well known and is essential for  the suc- 
cess o f  ou r  method.  Clearly 9 is a Boolean o--algebra, but  since the measure  
P lifts to a strictly positive measure  on 9 ,  it follows that ~ satisfies the count- 
able chain condition (not more  than countably many pairwise disjoint ele- 
ments in 9) .  As a consequence,  f inding the sup of  a family of  elements o f  9 
can be r educed  to f inding the sup of  a suitable countable subfamily, and 
in fact the sup will exist. 

We shall use the symbols U, 71, - ,  ©, 1 for  the Boolean operat ions of  
union, intersection, and complement  in 9 and for  the zero and unit  ele- 
ment  o f  9 .  Thus  

o =  ~ / [P  = 0], 
l =  t l / [P  = 0 ] ,  

and if E0, El e d ,  then 

Eo/[P=O] 0 E J [ P = O ]  =Eo t3 E, /[P=O].  

We also use the symbols U and f"l for  the infinite sup and i n f o f  elements  
of  9 ,  but  in general  if E~ ~ d for  i E I, the equat ion 

[...J (EJ[P = 0]) = (I.3 E~)/[P = O] 
i~l i~l 
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is not t rue.  O f  course it is t rue  if the index set I is countable.  T h e  left side 
o f  the equat ion always makes sense, but  notice that on the r ight  side the 
union  o f  Ei does not  in general  belong to ~¢ since ~' is only a o--field. 

O u r  re- in terpre ta t ion  o f  the logical notions is based on the idea that  we 
can use ~ as a system of generalized truth values. I and v can be identified with 
absolute t ru th  and falsity, but  ~ permits  in addit ion many  o the r  t ru th  values 
in termedia te  betw.een v and 1. Every s ta tement  A will be given a t ru th  value 
in ~ which we will deno te  by [A'I. In part icular  the equility s ta tement  ~:----~ 
is given its obvious t ru th  value as follows: 

[~: = 7/] --- {co • ~1: ~:(co) = v/(co)}/[P = 0]. 

Similarly for  ~: ~ ~/we want 

[~ ~ v}] = {co • fl: ((co) ~< v/(co)}/[P = 0], 

and for  ~: + rt = ~ we want 

[~: + ~ ---- ~] = {co • f~: ~:(co) 4- v}(co) = ~(co)}/[P = 0],  

and so on for  any similar e lementary  equat ion or  inequality relat ing poly- 
nomial  combinations o f  r a n d o m  real numbers .  

Suppose  statements A and B already have wel l -determined Boolean 
t ru th  values. T h e n  we compute  the t ru th  values of  their  various proposi- 
tional combinations by these simple rules: 

I n  v B]  [ A ]  U [ B ] ,  
[A  ^ B]  = [ A ]  f) [ B ] ,  

[ --, A ]  = - [ A ] I ,  

[A  --> B]  = [ A ]  ~ [ B ] ,  
[A  ~ B]  = [ A ]  ~ [ B ] ,  

where  for  Eo, E1 e 

(E0 ~ E 1 ) = -  E0 U El, 
(E0 ~ El) = (E0 ~E1)  n (El ~E0).  

By way of  example  consider  the s ta tement  [ (  ~< "O v r/~< ~:]. In view of  
the above rules the t ru th  value o f  this s ta tement  is: 

{co c f~: ~(co) ~< v}(co)} U {co • 1~: v}(co) ~< ~:(co)}/[P ~ 0]. 

But  the union of  those sets is clearly f~, and we have shown 

[~< ~ v ~ ,~ ~ 1 = ~ .  

In o ther  words, even though  nei ther  o f  the statements ~: ~ T/nor ~7 ~ ~: need  
be absolutely true,  they each have to be sufficiently partially t rue  to make 
their  disjunction absolutely true. A similar result  holds for  any e lementa ry  
s ta tement  o f  real algebra involving r a n d o m  r e a l s - p r o v i d e d  the s ta tement  
has no quantifiers and provided  it is t rue  for  arbi t rary  ord inary  reals. This  
applies to all the axioms for  an o r d e r e d  semi-ring: the associative, com- 
mutative, and distributive laws for  4- a n d . ,  and the laws of  the neutra l  
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e l e m e n t s  0 a n d  1, a n d  the  ax ioms  o f  l inear  o r d e r i n g  fo r  ~< t o g e t h e r  wi th  
the  m o n o t o n i c  laws f o r  + a n d  • u n d e r  ~<. 

T u r n i n g  n o w  to quan t i f i ed  s t a t emen t s ,  we c o n s i d e r  first  h o w  state-  
m e n t s  with quan t i f i e r s  o v e r  real  var iables  shou ld  be  eva lua ted .  Since the  
un iversa l ly  quan t i f i ed  s t a t e m e n t  is ve ry  m u c h  like a conjunction o f  all its 
ins tances ,  a n d  the  exis tent ia l ly  quan t i f i ed  s t a t e m e n t  is like a d i s junc t ion ,  
t h e r e  is only  one  obv ious  way in which  B o o l e a n  values  can  be  ass igned:  

IV x A(x)]  = ~ [A(s~)], 

[3  x A(x)]  = U [A(sC)], 

a n d  s imilar ly  fo r  var iables  o t h e r  t h a n  the  symbo l  x. N o t i n g  tha t  an  i n f o f  
B o o l e a n  values  is I i f  a n d  on ly  if  each  o f  the  values  is 1, we see f r o m  o u r  
r e m a r k s  in the  last p a r a g r a p h  tha t  

IV  x V y [x  ~ y v  y ~ x ] ]  = 1 ,  

a n d  likewise 

[ V x V y V z [ x  ~ y - - - ~ x + z  ~ y + z ] ]  = 1 .  

A typical  s t a t e m e n t  invo lv ing  the  exis tent ia l  quan t i f i e r  is: 

V x  3 y [ x + y = O ] .  

N o w  a sup in a B o o l e a n  a lgeb ra  m a y  be  equa l  to 1 w i thou t  any  o f  the  t e r m s  
b e i n g  equa l  to 1; on  the  o t h e r  h a n d ,  if  o n e  o f  the  t e r m s  is 1, t h e n  so is the  
sup. T h u s ,  i f  f o r  each  ~: e ~ we can  f ind an  ",/e ~ w h e r e  

[~+~=01=1,  
t hen  the  va lue  o f  the  above  quan t i f i ed  s t a t e m e n t  will also be  1. Obvious ly ,  
we n e e d  only  take  ~ = --~. T h e  gene ra l  p r inc ip le  h e r e  is this: C o n s i d e r  a 
s en t ence  o f  the  f o r m  

(*) V Xo V xl • " " V x.-1 3 y A(xo, xl, " " " , xn-1, Y), 

w h e r e  the  A p a r t  involves  no  quant i f ie rs .  I f  t h e r e  is a Boret f u n c t i o n  ~ such 
tha t  fo r  any  n - tup le  (r0, rl, ' • •, rn-1) o f  ordinary real  n u m b e r s  the  s t a t e m e n t  

A(r0, rl," " , rn-1, ~o(ro, q , "  " " , rn-1)) 

is true, t h e n  the  Boo l ean  value  o f  the  quan t i f i ed  s t a t e m e n t  is 1. T h e  r e a s o n  
is tha t  a s s u m i n g  the  hypothes i s ,  we have  fo r  all s%, ~:~, " " ", s~n-1 e 

[A(s%, s~l, " " ' ,  ~n-~, ~P(S%, SC~, " ' "  , S%--~))] = 1. 

H e r e  ~ = 'P(~:0, s~, " • •, ~:,-~) is the  composition o f  the  r a n d o m  reals  C0, ~:1," " ", 
~:,_~ with the  Bore l  f unc t ion  ,p. (We n e e d  to a s s u m e  tha t  ¢ is Bore l  to k n o w  
tha t  ~/ actual ly  be longs  to ~ . )  T h u s  all the  a x i o m s  (OF) f o r  ordered fields 

ob ta in  the  va lue  1. 
(As a m a t t e r  o f  fact  m u c h  m o r e  obvious ly  holds .  T h e  sen tences  o f  the  

f o r m  (*) a re  cal led V3-sentences. I f  the  A p a r t  involves  on ly  0, 1, + , . ,  a n d  ~ ,  
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we call them algebraic V3-sentences. The  axioms for real-closedfields are jus t  
o f  this form. It follows f rom Tarski's decision method  for the theory o f  
real-closed fields that  for each algebraic V3-sentence true of  the reals, we 
can take the function ~0 that  gives the desired values to the existentially 
quantified variable to be not  only a Borel function but even to be piece- 
wise algebraic. Thus  all axioms for real-closed fields have Boolean value 1. 
But since any algebraic statement involving only 0, 1, +,  -, and ,~ and quan- 
tifiers only over real variables which is true of  the reals can be proved f rom 
these axioms by formal logical deduction,  we see that all such statements 
have Boolean value 1. However,  this conclusion is slightly premature ,  be- 
cause we have not  yet discussed the axioms of  logic.) 

Let us call a s tatement valid (maybe better: Boolean valid) if its Boolean 
value computed  according to our  rules is 1. So far we have seen that many 
statements that  we know to be true of  the ordinary reals are also valid. In 
o t h e r  words, the r andom reals do form a reasonable model for the theory 
of  real numbers  (at least as far  as the algebra goes) if we talk of  valid sen- 
tences. This point of  view resolves the problem of  zero divisors among the 
r andom reals. It may very well happen  that a product  ~: • "q is 0 almost 
everywhere, while nei ther  ~: nor  ~ is 0 almost everywhere. Thus  the r andom 
reals as a r ing (taken modulo  equality almost everywhere, say) are not a 
model even for the axioms of  an integral d o m a i n - i n  the usual sense of  
the word "model".  On the other  hand,  if  we assign to statements Boolean 
values ra ther  than just  simple t ruth  values, then there is a perfectly natural  
sense in which the r andom reals are a model for the theory of  ordered  
(even real-closed) fields. 

To  unders tand  how well this new idea of  a model works, we must dis- 
cuss in detail the axioms of  logic. I f  a s tatement is one of  the axioms in the 
group (PL), then it is quite clear that it is valid. Even Boole knew that any 
law of  propositional logic translates into an equation (some combination 
=1) that holds in all Boolean algebras. 

Next, for the discussion of  the axioms of  quantifier logic, we must at 
last face a slightly tiresome point about the use of  variables and constants 
and the distinction between an object and its name. Up to now we have 
been rather  free and easy in saying such things as: 

I f  V x A(x) is valid, then for all ~ ~ ~,  [A(~)] = 1. 

Strictly speaking, this mode of  expression is incorrect. In the first place, 
our  formal  language has no names for r andom reals. It does allow the for- 
mation of  names of  certain integers (viz. 0, 1, 1 + 1, (1 + 1 )+  1, and so on), 
but even for the negative integers there is no direct way of  naming  them. 
Of  course, the sentence 

A(-2) 

is equivalent to 

3 x[x + (1 + 1) = 0 ^ A ( x ) ] ,  
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but  that is indirect  reference.  Even allowing this, at most a countable 
n u m b e r  o f  reals can be serviced because there  are only countably many 
combinations o f  ou r  basic symbols. T h e  answer is (possibly only tempo-  
rarily) to ex tend  the language by the in t roduct ion o f  new constant  symbols 
to be used in formal  combinations as the names of  various objects. T h e r e  
is absolutely no difficulty in imagining such an extension. In particular,  
once we have de te rmined  that ou r  model  is going to use the specific ran- 
dom reals in 9~, then we can set about  in t roducing names for  them. 

Now the second difficulty lies in the anomaly of  the phrase 

I n ( !  )] = ~. 

For  A(x) is a fo rmula  which is only a string of  symbols. T h e  variable x is 
just  a symbol. T h e  r andom real ~ is a special kind of  function;  it is not a 

symbol. The r e fo r e ,  it does not  make good sense to ask to substitute a non-  
symbol ~ for  a symbol x. Well, that  problem, once faced, is not too serious. 
We need only have a way o f  construct ing arbitrarily many new symbols, 
and then to the r andom reals we associate in a one- to-one m a n n e r  these 
new symbols to be used as the names of  the elements of  ~.  T h e  exact way 
in which this construct ion is done  is not very important .  T h e r e f o r e ,  having 
realized that it is necessary, we simply refuse to ment ion  it. I f  someone  
questions us when we use A(~:), we answer: Oh, that wasn't what was actu- 
ally meant.  What  we really mean  here  is the result of  substituting the name 

of  ~: for  the free  occurrences o f  the variable. When  we ment ion the equa- 
tion s c = ~ we really mean  the result of  placing an equals sign between the 
names of  s c and "0, and so on. This has to be done  not only for  r an d o m  reals, 
but  also for  the objects whose names we will later on substitute for  the 
funct ion and functional  variables. 

Let us use the word sentence to re fe r  to formulas  without  f ree  variables 
and without any occurrences of  these new names. T h e  word statement will 
be used for  formulas  without free variables but  which may contain the 
names (call these names constants). T h e  axiomatic theory is only interested 
in the sentences. Investigation of  the model, however,  requires us to use 
these statements about  its elements (or some equivalent device) in deter-  
mining what is valid in the m o d e l - e v e n  if we only want to discuss the 
validity of  certain part icular  sentences (such as (CH"), for  example).  

Actually, we do employ some formulas  with free  variables in setting 
up  the axiomatic theory.  This  is not essential, however.  We can always 
imagine these formulas with pref ixed universal quantifiers on the free  
variables. Similarly, a fo rmula  with free  variables is valid in ou r  model  if 
and only if each instance result ing by substitution o f  constants for  the free  
variables in a valid statement.  With these conventions in mind,  we can 
re tu rn  to the discussion of  the axioms o f  quantif ier  logic. 

A typical example  of  (QL)(1) is 

[v x A(x) ~ A((y +f (z ) ) ) ] .  

T o  show that an implication is valid it is enough  to show that the Boolean 



A Proof of the Independence of the Continuum Hypothesis 101 

value of  its hypothesis is included in the Boolean value of  its conclusion. 
Since the formula  we have chosen has free variables (y, z, and f ,  at least), 
we imagine first that constants for specific objects have been substituted in 
for them. Now we have not  yet de te rmined  how we are to interpret  the 
notion of  function in this model (that will be taken care of  in the next  sec- 
tion), but, no mat ter  how it is done,  the term (y + f(z)) will have some 
specific value after the substitution of  the values for the variables. Say the 
value is ~:0. By the rule for the universal quantifier, the Boolean value of  
the hypothesis is 

N ]A(~:)] 

while the Boolean value of  the conclusion is 

[A(s%)]. 

Obviously, then, the first is included in the second. The  dual  a rgument  
establishes the validity of  (QL)(2). 

The  preservation of  validity by the rules (D), (U), (E) is as easily proved. 
In the case of  (D), if every instance of  A is valid, and every instance of  
[A ~ B] is valid, then the Boolean value of  A is always I and is always 
included in the Boolean value of  B, which is therefore valid. In the case 
of  (U), let us suppose by way of  example that [A ~ B(x)] is valid, where 
the variable x is not free in A. Thus  the choice of  an instance of  A does 
not force any particular substitution for x. Hence the Boolean value of  an 
instance of  A is always included in the corresponding instance of  B(~:), 
no matter  which ~: ~ ~ is used. Therefore ,  the Boolean value of  the instance 
of  A is included in the Boolean value of  the instance of  V x B(x), which 
establishes the validity of  the implication. The  dual  a rgument  applies to 
(E). Notice that  (QL)(1) and (U) correspond exactly to our  interpretat ion 
of  the universal quantifier as a Boolean infin the complete algebra ~ ,  and 
dually for (QL)(2) and (E). 

The  axioms of  equality (EL) could be partially checked at this time, 
but it will be more interesting to discuss them within the context of  our  
interpretat ion of  functions and functionals to which we now turn.  

4. Construction of  the model  continued: the concept of  random func- 
tions and functionals.  We have already seen that  many functions on the 
ordinary reals ~ naturally extend to functions on the r a n d o m reals ~ .  
In particular, all Borel functions extend in this simple way. Suppose 
~0: R--~ R is a Borel function of  one a rgument  and let us use the same nota- 
tion for its extension ~0: ~ ~ ~ .  (Remember ~0(~:) for ~: ~ ~ is actually the 
composition ~o o ~:, because the r andom reals are functions on the proba- 
bility space.) Thus  the extended ~0 is a function f r o m ~  t o ~  in the ordinary  
sense of  the word, but does it not  have some additional proper ty  that  is 
not too specifically connected with its Borel character? The  proper ty  we 
are seeking has to do with the behaviour of  ~0 in combination with our  
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interpretat ion of  equality. Given ~ and 0, the event [~  = ~q] can be quite 
arbitrary, but it is obvious that 

holds for all ~:, 0 E ~ .  In words: the mapping ~o cannot  make arguments  
less equal than they already are. Clearly there are many badly behaved 
functions f rom ~ into ~ that do not have the property (#). All Borel func- 
tions have this property. Suppose that tO: ~. x IR ~ R is a Borel function of  
two arguments.  Extend it to tO: ~ x ~ ~ ~ .  Let 00 ~ ~ be fixed. Define 
~0: N --* ~ by the equation 

¢(~) = tO(f, 00) 

for all ~: E ~ .  Very likely ~0 will not  be the extension of  any ordinary Borel 
function, but it is quite clear that the f so defined also has property  (#). 
We call arbitrary functions f rom ~ into ~ having property  (#) random 

functions and denote  the class of  all such fnnctions by ~ .  
Property (#) was discovered by considering that the axioms (EL) imply 

the formula 

[x = y "-> f ( x )  -- f (y)] .  

This is such a basic t ruth o f  logic that there is no question that its validity 
must be preserved in choosing our  interpretat ion of  the notion of  function. 
What  seems remarkable is that this minimal requirement  (namely, the 
property (#)) is sufficient to single out  the proper  class. But maybe it is 
not so remarkable: what else does one want o f  a function in general other  
than the fact that its values are uniquely de termined by its arguments? 

Before we can define what we mean by a random functional we must 
know the meaning of  equality applied to functions. Clearly axiom (EF) 
forces us to define 

= tO1 = n = 

for all ~0, qJE ~e.  Then  in strict analogy to (#) we call a mapping ~: t~ ~ --->~ 
a random functional if it satisfies 

(##) '  [~, = to~ C_ [~ (~ , )  = ~ ( 0 ) ]  

for all ~0, tO e N e . And  equality between functionals is defined by 

[ * = ' 1 =  n [ * ( e )  = * ( ¢ ) ]  

for all q~, • e ~ ~ ,  the class o f  all r andom functionals. We could now easily 
go on to define what we mean by r andom functionals on r andom func- 
tionals, etc. In any case, the interpretat ion o f  the quantifiers on the function 
and functional variables is now specified. 
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The axioms of group (EF) are valid by definition and the axioms of 
(EL) are dismissed almost as easily. From our definition it is immediate 
that I t  = t31 = 1 no matter what kind of term or constant t is. Thus (EL)(1) 
is valid. In our formulation of (EL)(2) we have used arbitrary formulas; 
however, it is enough to check only the cases of  atomic formulas. In fact, 
the following particular cases are sufficient: 

[ x = y  ~ [x=z'~"~y=z]],  
[ x = y  ~ [ z = x ~ z = y ] ] ,  
[ x = y  ~ [x~;z'~"~y~z]], 
[ x - y  ~ [ z , ~ x ~ z ' ~ y ] ] ,  
[ x = y  ~ [ x + z = y + z ] ] ,  
[ x = y  ~ [ z + x = z + y ] ] ,  
[ x = y  ~ [ x ' z = y ' z ] ] ,  
[ x = y  ~ [ z ' x = z ' y ] ] ,  
[x = y --~ [f(x) = f ( y ) ] ] ,  
[ f =  g --~ [f(z) -" g(z)]], 
[ f - -  g ~ [F(f) =- F(g)] ], 
[ F  - -  G ~ I F ( f )  ---- G ( f ) ] ] .  

Now the first eight of these formulas we already knew to be valid from the 
previous section's work, while the remaining four are valid by definition. 
Any other case of this principle of replacement of equals by equals can be built 
up by using various substitution instances of these and by combining them 
with the other laws of  logic. 

All of  the checking up to this point has been rather trivial because we 
made everything work out more or less by definition; however, the proof 
of validity of  (OC) and (AC) requires somewhat more labor. To check 
(AC)(1) let A'(x, y) be the formula 

[V x, zl y, A(x,, y,) --~ A(xl y)], 

where A(x, y) is the given formula. Note that by logic alone the formula 

V x :1 y A' (x, y) 

is valid and that the formula 

:1 f v  x A'(x, f(x)) 

is equivalent to (AC)(1). Hence we can drop the prime and be content with 
checking (AC)(1) in the case where the hypothesis of  the implication is 
valid. 

Le t  {~:~: a < p} be a well-ordering of  the set ~ .  (We are invoking the 
axiom of choice in the ordinary sense to validate the axiom of choice in 
the model. There is nothing wrong with doing this. Our job here is not to 
prove the consistency of the axiom of  choice; G6del has already done that. 
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Hence,  we can feel f ree  to employ the axiom.) Since we are assuming that 
V x 3 y A(x, y) is valid, we have for  each a < p: 

~Up [I'A(~:~, ~:~)]] = I1. 

Let E~e ~ ~ be def ined by the equation 

Clearly for  fixed ct, the family 

{E.~: fl < p} 

is a partition o f  11 into pair-wise disjoint events. T o  be able to define the re- 
quired function,  we shall prove  a 

LEMMA. For each a < p, there exists an ~?. e gt such that f o r  all fl < p, 

Proof  Since at most countably many o f  the events E ~  are non-zero,  we 
can find a part i t ion o f  the space 1~ by a family 

{A.e: fl < p} 

where  for  each fl < p, 

E.e = A . d [ P  = 0 ] .  

Define ~.: Ft --+ R so that for  all fl < p, 

n~ I A~e = ~ I A.~. 

T h e  desired conclusion now follows. 
Let  ~: ~ -+ ~ be that funct ion such that ~p(~:~) = ~ for  all a < p. T h e  

p roo f  that ~p ~ ~ reduces  to showing 

for all a0, cq < p. Now by the definit ion o f  the events E.~ it is clear that 

I[~:.o = ~ .1 ]  C (E.o ,  * ~  E . ,~ ) .  

(The  validity o f  (EL)(2) is used here!) 
The r e f o r e ,  by ou r  lemma: 

E~.o = ~.,~ n E.0 a C [~?.o = ~:,'N n on., = ~:2~. 

and so 

Taking  the sup over  fl gives us the result  we need.  Finally we note  that the 
lemma also implies that 

E.z C_ [A(~. ,  n.)'0, 
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so again taking the sup over/3 we have A(~:, ~0(s¢)) valid for all ~: ~ ~ .  In par- 
ticular, ] f v  x A(x, f(x)) must also be valid. 

The  proof  of  (AC)(2) is exactly the same. In fact, we could use the 
method  to show that  for any statement o f  the form :! y B(y), there exists a 
particular a9 s ~ such that  

11"3 y B(y)] = [B(*])]. 

The same is true for statements of the forms ] g C(g) and ] G D(G). 

Finally we must check (CO). It is left to the reader  to verify that it is 
sufficient to consider only those ~0 e ~ such that  the statement 

: l y V x  [ ~ ( x ) ~ y ]  

is valid. Assuming this, let "q0 ~ ~ be chosen so that 

v x[¢(x) ~ ~o] 

is valid. For each rational number  q e Q, the set of  all rational numbers,  
define 

Eq = [I'v x[~0(x) ~ q]']. 

I f  we can show that there is a ~ ~ ~ such that for all q z Q 

Eq = r ~ ~ qL 

then it rather  easily follows that 

V Y[~ ~ Y ~--~ V x[~o(x) ~ y]]  

is valid, and (CO) is thereby verified. This last step is possible in view of  
the equation 

n [[.~q"-->~q'n, 

which is obvious f rom the definition o f  the Boolean value of  an inequality. 
Checking these details is a simple exercise. 

To complete the work and  find the required ~, we shall show that the 
Eq form a Boolean-valued analogue of  a Dedekind cut in the rationals 
and that  every such cut (uniquely) determines a r andom real (indeed this 
would be another  way of  defining r andom reals). First notice that 

[~90 ~ q]] C Eq C [I'~,(O) ~ q'n 

for all q e Q. It follows that 

(i) n Eq = o ,  
qel[~ 

(ii) U Eq = I .  
qeQ 

From the definition it also follows that 

(iii) Eq = n Er 
r > q  
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for  all q e Q. Any system o f  Boolean values satisfying (i)- (iii) may be called 
a Boolean-valued cut. (The  reader  may check the sense o f  this by considera- 
tion o f  the ex t r eme  case where  Eq = © or  1, and an ord inary  cut is deter-  
mined.)  

Given (i)-(iii) for  Eq e ~ we want to choose Aq ~ d such that 

Eq = Aq/[P = 0] 

and  to have the Aq satisfy (i)-(iii) in ~¢. First make an arbi t rary  choice o f  
Aq in the equivalence class Eq. By subtracting a set o f  measure  0 f rom all 
Aq for  q < 0 (namely, the set f"l Aq), and by adding  a set o f  measure  0 

qeQ 

to all Aq for  q I> 0 (namely, the set l't - U Aq), we can assure (i) and (ii). 
qe<tt 

But note  that in view of  (iii) for  Eq, 

Eq = ( N  A r ) / [ P =  0].  
r ) q  

Thus  by replacing the set Aq by the set f'l A, all th ree  o f  (i)-(iii) are o b -  
,>q 

tained; hence we can assume (i)-(iii) for  the Aq. 

We may now define ~: f~ --> R by the equat ion 

~(oJ) = inf  {q e O: co e Aq}. 

By (i)-(iii) for  the Aq, we see that 

{to e ~ :  ~(oJ) < q} = Aq 

holds for  all q e Q. The re fo r e ,  for  q e Q, 

Eq = [ ~ ~ q3l, 

as was to be proved.  This  completes the checking o f  the validity o f  the 
axioms in the model.  

5. The  fa i lure  o f  the c o n t i n u u m  hypothes i s  in a sui table model .  Up to 
this point  we have made  no special assumptions on the probabili ty space 
(~, d ,  P). Thus  fl  could have been a one-point  space; the Boolean algebra 

would then have degenera ted  to the two-element  algebra with just  © 
and ll; and  the model  cons t ructed  would have been the standard model, 
because ~ would be simply R and  the functions and functionals would be 
arbitrary.  But  at least the previous sections show that any probability space 
leads to a model  o f  the axioms in this Boolean-valued sense. 

We want now to construct  somehow a space where  the r a n d o m  reals 
will fail to satisfy the con t inuum hypothesis. This  would seem to be possible 
if we could only find a space with a very large n u m b e r  o f  r a n d o m  reals. 
Now a p roduc t  space has a large n u m b e r  o f  r a n d o m  reals: the projections 
onto  the coordinate  spaces, and these are generally fairly i n d ep en d en t  
functions. So this is ou r  plan: let 

= [0 ,  1 ] ' ,  
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where  [0, 1] is the unit  interval, and I is an index set o f  cardinali ty strictly 
greater than 2 ~". We use o rd ina ry  Lebsegue measure  on  [0, 1], and let P 
be the p r oduc t  measure  which is def ined on  the o--field o f  Baire subsets 
o f  11. For  each i e I, we let ~:i: 11 --+ [0, 1 ] be project ion on  the ith coordinate .  
The se  are r a n d o m  reals because they are measureable  functions.  For  i, 
j e I we have 

[.~ = ~ ]  = {toe ~:  toi = toj}/[P = 0]. 

I f  i # j, this diagonal  set has measure  0; thus 

T h e  reason that the con t inuum hypothesis will fail in this model  is 
roughly  that,  in view of  the large n u m b e r  o f  r a n d o m  reals available, it is 
possible to select a por t ion  o f  them to fo rm a set that is ne i ther  countable  
no r  in a one- to-one  co r re spondence  with all o f  them. This  may seem at 
first sight self-contradictory.  T o  resolve the seeming contradict ion,  re- 
m e m b e r  that  two notions o f  cardinality must  be kept  in mind:  the o rd inary  
one  and the not ion in te rp re ted  in the model.  F rom the outside o u r  model  
has more  than a con t inuum n u m b e r  o f  r a n d o m  reals (in the o rd ina ry  sense 
o f  the word  continuum), but  inside the model  the word continuum simply 
refers  to all the r a n d o m  reals. By allowing our  t ruth-value space to expand  
f rom {©, 11} to 8 ,  we allow the not ion o f  real n u m b e r  to u n d e r g o  a corre-  
sponding  expansion.  By control l ing this expansion ( th rough  the use o f  
the p roduc t  space construct ion which gives a large Boolean algebra which 
nevertheless satisfies the countable  chain condit ion) we find that  even the 
co r re spond ing  e x p a n d e d  not ion o f  funct ion will not  pe rmi t  us to avoid 
in termedia te  sets. 

T h e  in termedia te  set is going to be the set o f  zeros o f  a certain r a n d o m  
funct ion X: ~ ~ ~-  T o  construct  this funct ion,  let J C_C_ I be a subset o f  I 
which is uncountable but  still not of  the same cardinali ty as I. (Recall that 
I is chosen to have more  than a con t i nuum n u m b e r  o f  elements.) We want 
X to have the p rope r ty  that  

X(~j)= { O if j e J" 
i f j ~ J .  

This  can be done  in the following way: For  each e e l ,  let Ae C_ 11 be such 
that  

0 [1"~: = ~:j]l = Ae/[P = 0]. 
Jq 

We let 

{01/f to Ae, ×(~) (to) = / f  to ~ &. 
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It is easy to check that X is a r andom function. Also X has the fu r the r  
p roper ty  that for  ~: • ~ ,  

[x(~:)  = o~ = U I[~ = ~:JI. 
H 

We will show first that 

[[~ g v  y 3 x[x(x) = 0 ^ y =  g(x)]]l = 0 .  

Assume the contrary.  Choose a r andom funct ion tO: ~ ~ ~ such that 

IV Y 3 x[x(x) = 0 ^ y = tO(x)]] = E # ©. 

For  each i • I, we have 

E C [[] x[x(x ) = 0 h  ~:i = tO(X)] = LJ LI fl'~: = 6 ^  ~:i = tO(()] = 

O [~:, = tO(@]. 
j~J 

Thus  for  each i • I, there  is a j~ e J where  E rq [ ~  = tO(~:~i)] # o. Inasmuch 
as the set J has smaller cardinality than I and I is uncountable ,  there  must  
be a fixed k • J such that the set K = {i • I: j~ = k} is uncountable. Now the 
events 

Di = E N [~:i = tO(~k)'~ 

for  i • K, are all non-zero,  pair-wise disjoint, and uncountable  in number .  
(They are pair-wise disjoint because for i # i' we have n'~i = ~:~,] = ©.) We 
have thus contradicted the countable chain condit ion on 8,  and the re fo re  
g = o .  

I [ 3 f v  Y[X(Y)= 0 ----> ] x [N(x )^  y = f ( x ) ] ] ]  = e  

is very similar. One must  check first that 

EY(~:)]= U [ ~ = n ] ,  
held 

where  N(x) is the fo rmula  that gives the formal  definit ion o f  being an in- 
teger  and IN is the set o f  o rd inary  (non-negative) integers. In this par t  o f  
the a rgumen t  the assumption that J is uncountable  will be used. T h e r e -  
fore,  the Boolean value o f  (CH')  is indeed ©, and our  independence  p r o o f  
is complete.  

6. Discussion of  the proof and historical remarks. T o  those readers  
familiar with Cohen's  original p r o o f  [1],  [2] and [3],  ou r  approach  may 
seem at first very different.  Actually it is not. It was R. M. Solovay who 
first pointed out  to the au thor  [private communicat ion,  Sep tember  1965] 
that Cohen's  definit ion of  forcing could be viewed as a way o f  assigning 
Boolean vaIues to formulas.  (He had discovered this idea in a part icular  
case by using Borel  sets of  positive measure  as forcing conditions.) Indeed  
by associating with a fo rmula  the pair of  sets consisting first o f  those con- 
ditions (weakly) forcing the formula  and secondly, o f  those (weakly) forcing 
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the negation of  the formula, Solovay noticed in general that these pairs 
formed a complete Boolean algebra. More important, the well-known prop- 
erties of  Boolean algebras, like distributive laws and the countable chain 
condition, could be shown to be responsible for the desirable properties 
of  the models being constructed. 

The author then suggested turning the tables and using the simple 
conditions on the assignment of  the Boolean values as a way of  avoiding 
the forcing definition. From this point of  view it became very clear how an 
arbitrary complete Boolean algebra could be used for the values of  for- 
mulas. This was already known to Solovay, because an abstract construc- 
tion of  forcing conditions could lead to any desired Boolean algebra as the 
algebra of  pairs of  sets of  conditions. Of  course, all in all, this is nothing 
more than a reformulation of Cohen's original method. It did have the ad- 
vantage, however, that the use of  the countable models of  set-theory could 
be avoided if one was willing to work with Boolean values of formulas. 
This same advantage was also noticed by Vop6nka in his reformulation 
of  Cohen's method in [10] and [11]. (Vop6nka's idea did not work as 
smoothly as Solovay's because he used strong forcing which requires the 
values of formulas to lie in a certain complete lattice which is not a Boolean 
algebra. The more useful Boolean algebra is simply a sublattice of Vo- 
p6nka's lattice.) 

Then on January 1, 1966, it occurred to the author that once one ac- 
cepts the idea of Boolean values there is really no need to make the effort 
of  constructing a model for full transfinite set theory. In particular, the 
use of  G6del's method of constructible sets, which seemed so necessary 
for the transfinite recursive definition of forcing, could be completely 
avoided. In other words, Cohen's original method as re-interpreted by 
Solovay could be looked at as the construction of  some very special Boolean- 
valued extensions of  ordinary notions. But then when their simplest 
properties were recognized, we could take all the objects with those prop- 
erties to form just as good a model as Cohen's (as we have done in defining 
random functions). It seems that by November 1965 Solovay had himself 
noticed that a Boolean-valued version of the power-set construction would 
lead to models for type theory and set theory; and, as he later pointed 
out, when Easton's version [4] of  Cohen's method is used, the objects 
constructed by transfinite recursion will essentially give all the objects of  
the Boolean model. Still, it may just be possible that the use of  G6del's 
notion of constructibility in Cohen's style ismecessary for some of the more 
delicate independence proofs, but most of  the outstanding results seem 
to be adequately handled by the simpler construction. (In particular, the 
author found that the symmetry arguments needed for the independence 
proofs for the axiom of choice could be translated into automorphism 
arguments in the Boolean model. Thus the older idea of  the Fraenkel- 
Mostowski proof  could be reinstated almost intact. Cf. also [ 12] and [ 13] .) 
A detailed report with a full demonstration of  the connection with forcing 
is planned for [8]. 
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The  reader  will have no doubt  noticed that very little use was made of  
the probability measure P. Mainly, its role was to produce complete Boolean 
algebras as the quotient of  a o'-field modulo  the o'-ideal [P = 0]. This is a 
convenient device because it is so familiar, particularly in the construction 
of  the product  measure on [0, 1] I. On the other  hand,  given any com- 
plete Boolean algebra ~ one can find a space 12 (the Stone space of  ~) ,  
a o--field of  sets d (the o--field generated by the clopen subsets of  f~), and 
an ideal J (the meager  sets in d )  such that ~ is isomorphic to ~¢/o¢ (cf. 
Halmos [5] for all facts about Boolean algebras needed in this paper). 
This means that an arbitrary complete Boolean algebra ~' can be used to 
construct a model in the way we have illustrated with the measure algebras. 
Indeed,  the model obtained f rom the or-field of  Borel subsets of  [0, 1] I 
modulo  the ideal of  meager  sets gives a p roof  that is essentially Cohen's 
original method as will be explained in detail in [8]. The  idea of  using 
measure instead of  category is due to Solovay [9] and has also been ex- 
ploited by Sacks [7]. (Solovay's notion of  random real ment ioned in [9] is 
somewhat different f rom the author 's  since it was to be analogous to Cohen's 
generic reals. The  comparison will be discussed in [8].) 

Another  point that may have troubled the reader  is that we have not 
constructed a model for full set theory. He need not worry, however, for 
our  model is just  the initial segment of  a model for set theory. In other  
words, the adjunction of  r andom functionals of  functionals of  func- 
t i o n a l s . . ,  o f  functionals (iterated into the transfinite!) will lead to a model 
of  set theory. This construction of  the higher-type objects does not require, 
however, the introduction of  new r andom reals or functions or func- 
tionals. Hence, the results we obtained regarding the cont inuum hypothesis 
will be in no way affected by the extension of  the model. In particular, we 
can have models with classes (in the sense of  von Neumann)  which satisfy 
the full comprehension axiom without the cost of  additional labor. This 
extension is not so easy with the original Cohen method.  Vop~nka has a 
partial result in [ 11 ] in this direction. 

Another  confusing matter  is our  avoidance of  countable models which 
Cohen in [2] thought  were essential for his method.  The  answer is that 
our  models are Boolean-valued and not {o, 1}-valued (i.e., ordinary) 
models. Cohen is quite right that if you want well-founded ordinary models 
you must keep everything countable. By working with forcing alone with- 
out going over to a model, he could have avoided countable models. This 
is the same as working with Boolean values and not demand ing  o-1 values. 
On the other  hand,  if we want ordinary models, we can apply a homomor-  
phism to the Boolean algebra to get them (Vop~nka does this in [10] and 
[ 11 ].) But an arbitrary homomorphism will give non-s tandard (non-well- 
founded)  models. What  one must do is first apply the L6wenheim-Skolem 
theorem to the Boolean model to obtain a suitable countable submodel 
(this is possible because in our  Boolean model the value of  every existential 
statement is equal to one of  its instances). Then  one applies the Rasiowa- 
Sikorski Lemma to obtain a homomorphism of  the Boolean algebra onto 
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{©, 1} which preserves enough sups to map the countable submodel onto a 
standard model. (Cohen's complete set of  conditions does just this in the 
forcing framework.) To summarize, Cohen performs his homomorphism 
first, we do it l a s t - i f  at all. But it amounts to the same thing. 

Logicians may be irritated that the author chose in this paper to dis- 
cuss the theory of  real numbers rather than the formally simpler higher- 
order theory of  the arithmetic of  the integers. The main reason for the 
choice is notational. For readers not too familiar with logic, the author 
thought it would be easier for them to be able to stick to the primitive 
notation. That was also the reason for our choice of functions over sets. (By 
the way, the author is indebted to Professor G6del who suggested that 
(CH') is simpler to check than the version (CH) that uses countable ordi- 
nals (i.e., the construction of  t~l) which the author earlier employed.) 
Of  course, we had to pay for this choice by our having to check (CO) 
which would have been avoided in the theory of  the integers. However, 
now that the idea !s exhibited, the reader ought to be able to carry through 
for himself the proof for the simple theory of  types over the integers. On 
the other hand, the real numbers are always of  mathematical interest, 
their construction from the integers is tiresome, so possibly it is better to 
see at once how they look in the model by our device of  using the measur- 
able functions. In particular, the author hopes that these Boolean models 
of  real number theory may eventually be of  interest in themselves apart 

f r o m  their role in the independence proofs. 
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