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O. Introduction

In this article we study relations between various fragments of bounded
arithmetic. The fragments of interest bere are the theories S~ and T~ intro-
duced by Buss in [1]. The reader may recall that the principal axioms of S~ resp.
of T~ are !t-PIND resp. !t-IND axioms, where the former are instances of
polynomially bounded inducton for !t-formulas while the latter are instances of
ordinary induction for !t-formulas.

Indications of the significance of these theories for complexity theory are two
results due to Buss [1] and Krajíèek et al. [7]:
(1) In [Ir ít is shown that a function is computable in polynomial time by an

oracle machine quering a !r-l-oracle iff it is !t-definable in S~. In particu-
laT, polynomial-time functions are precisely those !~-definable in S~.

(2) In [7] it is shown that T~ = S~+l implies that the polynomial hierarchy

collapses to the i + 2 level.
These statements show that it is an important problem to establish a relation

between the fragments. It is easy to show that S~ ~ T~ ~ S~+l for i ~ 1, In [2] it is
proved that S~+l is V!t+l-conservative over T~, and by (2) above (as S~+l is
V!t+2-axiomatized) it is not V!t+2-conservative if !r+2 * nr+2.

In this paper we are interested in the relation of T~ to S~, whether they are
equal or different theories and, assuming that they are different, whether T~ is
at least somehow conservative over S~. This is a natural suspicion Dne gets after
several unsuccessful attempts to separate these fragments of bounded arith-
metic. It is possible that S~ * T~ and stilI that T~ is V!t-conservative over S~.
Note that this seems unlikely as it implies, in particular, that all functions
!~-definable in S2 are polynomial time computable, a rather powerful statement
with strong consequences for complexity theory, cf. [2].

The relation of S~ and T~ was also studied in [6]. It was shown there that the
set ofvnt-consequences of T~ is axiomatized over S~ by a single vnt-sentence,
namely Con(Gj) - consistency of propositional calculus Gj. Thus T~ is vnt-con-
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narnely Con(GJ - consistency of propositional calculus Gj. Thus T4 is 'v'IIf-con-
servative over S~ iff S~ proves Con(Gj).

If Dne tries to show that S~ does not prove Con(Gj) via sorne Godel type
argument the difficulty arises that the rnetanotion of provability (S~-provability)
is not the sarne as the notion referred to in the consistency staternent (Gj-prova-
bility). Here we show that this obstacle can to a large extent be rernoved.
Narnely: provability in Gj is equivalent (in S~) to a certain restricted provability
in Tf which in turn is equivalent to a restricted induction-free provability in
BASIC.

As a sirnple consequence we get - via known results - that T~+l is not
'v'IIf-conservative over T~ (i, k ~ 1) and S~+l is not 'v'IIf-conservative over S~
(i, k ~ 2).

In [6] the problern of conservativity of T4 over S~ was equivalently restated as
a polynornial sirnulation problern of Gj-l versus Gj. Here we show that this
question is also equivalent to a problern about lengthening of Gj-proofs after
putting thern into a tree-form. More specifically, consider the forrnula,
TREE(GJ:

"'v'd,A 3d', if d is an Gj-proof of A then d' is a Gj-proof of

A and d' is in a tree-forrn".
Then we have for i ~ 1 (proposition 4.1):

T4 ~I!' S~ iff S~ f- TREE(Gj).I

(A proof is in a tree-forrn iff each sequent in it is used at most once as a
hypothesis of an inference.)

Above we have used the notion of Gi-proof and other notions defined in [6].
Knowledge of these notions is not needed for a larger part of this paper and
therefore we shall not repeat the definitions bere. Otherwise we assume only
basic knowledge of bounded arithmetic, see [1].

Some ideas from [4,5,10] are also used but no specific familiarity with these
papers is assumed.

1. Preliminaries

The substitution rule:

r(b) -+L1(b)
r(t) -+J1(t) ,

allows to infer from a sequent its substitution instance obtained by substituting
term t for all occurrences of free variable b. It is, of course, a derived role of
LKB. We shall often use it in the construction of LKB-proofs. However, we
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need to show that it can be eliminated from proofs without superpolynomial
prolongation and without an increase of quantifier complexity, provided r or 11
contain a bounded existential quantifier (which will always be the case).

This is done as follows. Assume

r(b) ~11(b) (1)
is provable in LKB.

Derive:

b=t,r(t)~I1(t),r(b) (2)
and by cut with (1) set:

b=t, r(t)~I1(t), l1(b).
Derive also:

b=t,l1(b),r(t)~I1(t) (4)
and by cut with (3) set:

b=t,r(t)~I1(t). (5)
Prom (5) follows

(3x~t, x=t), r(t)~I1(t). (6)
As also:

(3)

--+ (3x ~ t, x = t) (7)

is provable, cut with (6) gives required:

r(t) --+11(t). (8)
Note that proofs of (2), (4), (7) are easily constrocted of length polynomial in the
length of r, 11, t, in a tree form and with the quantifier cornplexity that of r, 11.
Clearly the whole derivation can also be performed in S~. Thus we can freely
use the substitution rule as a role of LKB, even when working in S~.

To sirnplify proof-theoretic argurnents we shall use the rather technical class
of strictly !t-forrnulas (to be defined below) instead of !t-formulas. For this we
need to fix a #-free, !t-formula which is !t-universal in S~. Call such a fixed
forrnula UNIV(a). Hence for every !t-forrnula B(i) we have n < (1J such that
S~ I- Vi, B(i) = UNIV«~, i»).

DEFINITION 1.1
For i ~ 1, a forrnula A(a) is strictly !•-, s!• for short, iff it has the form:

3xl~tl(a)'v'x2~t2(a, Xl)...Qjxj~tj(a, Xl,...,Xj-l)...B(a, i),
where j = 1,. . . , 1 < i and Qj is 3 iff j is odd, and B(a, i) is UNIV( (a, i» if i
is odd, respectively -, UNIV( (a, i» if i is even. D

The followinl! lemma is obvious.
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LEMMA 1.2
Let X be the set of all #-free, sXr-formulas provable in Ti (i ~ 1). Then

S~ +X proves all VXr-consequences of Ti. O

We shall need a certain form of elimination of the function symbol # from
proofs. This is provided by the next lemma.

-+ A( a)

LEMMA 1.3
Let A(a) be a #-free, s.I'•-fomlula and assume:

T4f-A(a).
Then for some k < (J) the sequent:

2~co' laj ~ Icol, Icollcol ~ IcII,..., Icollck-ll ~ ICk

has #-free T4-proof consisting of s.I'•-fomlulas only and Co,...
variables not occurring in A(a).

, C k are new free

Proo!
The lemma follows by cut-elimination for T4, compactness argument and the

obselVation that for any term t(a) there is k < li) such that

2~co' laj ~ Icol, Icollcol ~ IcII,..., Icollck-ll ~ Ickl-+t(a)~ck

is provable in BASIC. O

The following probability notion was used in [4,5,10]. It defines a class of
T4-proofs with special properties.

DEFINITION 1.4
A triple D = (d, t, df) is i-regularproof of sequent:

r(ii) -+ L1(ii)

iff the following conditions are satisfied:
(i) d is a sequence of sequents correctly inferred from previous Dnes using

rules of LKB and 2't-IND and the end-sequent of d is r(ii) -+ L1(ii);

(ii) every formula in d is #-free and a subformula of a s2't -formula;
(iii) d is in a free variable normal form;
(iv) if ii are all parameter variables in d and b = (bo, . . . , bk) are all other

free variables in d then: if the elimination role of b is below the elimination
u

role of bv then u < v, and the elimination role of bu (u ~ k) is either:
(a) 2'~-IND:I

A(bu)' r-+L1, A(s(bu»)

A(O), r~.1, A(r(ho, ., bu-l' a))
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ar
(b) 3 ~ :left:

bu~r(bo' ,bu-l' ti), A(bu), r-+.o:1

3x:s;;r(bo,...,bu-l' a)A(x), r-+.1

or
(c) 'v' ~ :right:

bu~r(bo" ,bu-l' a:), r-+1!, A(bu)
r-J1, V'x~r(bo,...,bu-l' fi)A(x) ,

(v) t of D is a sequence of #-free terms containing terms tu(fi) (u ~ k); and it
holds:

bo ~ to(fi),..., bu-l ~ tu-l(fi) -
-r(bo,...,bu-l,fi)~tu(fi), (*)u

where r(bo,..., bu-l' fi) is the term from the elimination role of bu (cf. (iv));
(vi) d' is a sequence of proofs containing proofs d~(u ~ k) of (*)u which are

induction-free, quantifier-free and contains only variables bo,..., bu-l' fi. These
proofs are called supplementary. D

Note that we do not require d to be in a tree form, i.e. a sequent may be an
upper sequent of more than ODe inference.

DEFINITION 1.5
(a) i-Rpr(a, b) is a formalization of:

"there is i-regular proof D ~ a of b".
(b) i-RPr*(a, b) is a formalization of:

"there is i-regular proof D ~ a of b which is in a tree form".
(c) i-IFRpr(a, b) is a formalization of:

"there is i-regular, induction-free proof D ~ a of b".
(d) i-IFRPr*(a, b) is a formalization of:

"there is i-regular, induction-free proof D ~ a of b which is in a tree
form".

These formalizations are taken to be L1~ w.r.t. S~. We also assume that alt
formulas defined above are subformulas of UNIV - this requirement is easy to
meet (by possible enlarging of UNIV) - and it implies that alt these formulas
are s!~. O

Recall also the definition of dyadic numerals.

DEFINITION 1.6
A dyadic numeral a• n, denated ll, is inductively de•ined:

Q := O, ! := 1, ~ := (1 + 1), ~:= (~ . ll) and ~~ := S (~) .

The •armalizatian a• the dyadic numeral in 51 is denated q. D
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Finally we state a form of !t-completeness, a well-known observation, cf. [1
chapter 7] or [9, chapter 6].

LEMMA 1.7
For any #-free, s2'f-forrnula B(a) there is a term t(a) such that we have'

S~I-B(a)-+l-IFRPr*(t(a), rB(g)'). O

2. Induction-free proofs

The next proposition shows that induction caD be efficiently eliminated from
proofs of instance s of T~-provable formulas, The reader familiar with [6] caD
recognize it as an "arithmetic" version of the simulation of T~ by the proposi-
tions calculus Gj,

PROPOSITION 2.1
Let A(a) be a #-free, slf-formula and assume:

T4I-A(a).
Then for some term t we have:

si I- Vx, i-IFRPr(t(x), r A(~)').

Proo!
Let A(a) satisfy the hypothesis o• the proposition. By lemma 1.3 we have an

LKB proo• d o• sequent:

2~co' laj ~ Icol, Icollcol ~ Icll,..., Icollck-ll ~ Ickl-+A(a),

such that d is #-•ree and consists only o• s-l't-•ormulas.
By (meta)induction on the number o• steps in d we show that whenever a

sequent:

r(a, h, è) -+.1(a, h, è)
occurs in d (with all free variables shown) then for any n < w there is an i- IFR
proof of the sequent:

a ~!1, bo~!1,...,co~!1, r(a, b, c) -+11(a, b, c). (*)

As everything will be effective (in n, proof d is fixed) the argument can be

carried in S~.
To avoid excessive notation we make the following simplifications. We shall

not show explicitly the side formulas of the inference. AlI free variables other
than eigenvariables of the inference of a sequent will be denoted u; so these
consist of a, c and all b with the exception of bu, where bu is the eigenvariable
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of the rule, and bu itself will be denoted v (to avoid indices). The occurrences of
U in formulas will not be explicitly indicated. Thus, for example, the sequent ( * )
might be written as:

U, v ~~, r(v) -+~(v).

The only non-trivial cases in a step of the (meta)induction are the quantifier
role s and the IND-role. Let us consider these cases separately.

Case 1. Assume that the last inference was 3 ~ :right:
-+ B(t)

t ~ r -.,. (3x ~ rB(x»

By (meta}induction assumption we have i-IFR proof of:

U, v ~ll-+B(t).

An application of 3 ~ :right and a few exchanges gives:

U, v~!!,t~r~(3x~rB(x».
Case 2. Assume that the last inference was V ~ :right:

v ~ r ~B(v)
~ (Vx ~ rB(x» .

By (meta)induction assumption there is i-IFR proof of:

(1) u,v~m,v~r~B(v),
where m is minimal such that the sequent:

(2) U ~ ~ ~ r ~ m
has i-IFR proof (lemma 1.7). Such m exists of size ~ nconst, const depending on
term r only.

Using (2), derive from (1) sequent:

u ~~, v ~r~B(v)

and by V ~ :right the required sequent:

U ~!! ~ (Vx ~ rB(x)).

Case 3. Rules (3 ~ :left) and (V ~ :left) are dual to the right rules and are
treated analogically.

Case 4. Assume that the last inference was IND:

B(v) ~B(s(v))
B(O) -+ B(r) .

We may assume that term r does not contain variable v.
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By the (meta)induction assumption there is an i-IFR proof d:n of:

U, v ~m, B(v) -+B(s(v)), (*)

where m is again chosen to be minimal such that sequent:

u,v~ll-+r~m
has an i-IFR proof. Again m ~ nconst, i.e. lm 1 = O( 1 ni).

We show how to construct from d:n an i-IFR proof dn of the required
sequent:

u ~ll, B(O) -+B(r).

This will be done in several steps: for j = O, 1,..., I m I we successively construct
i-IFR proofs Dj of sequents:

u, v~m, e~~j, v+e~m, B(v)-+B(v+e). (*)j
Case j = O follows from d:n, i.e. (*), as there is an i-IFR proof ï of:

e~~o, B(v), B(s(v)) -+B(e+v).
As ï is constant for all n, it holds:

1 Do 1 = Id:n 1+ O( I ml),

where O( 1 ml) stands for a bound to the length of (*)0 - this will be similar
below as we are taking only j ~ I m I.

Assume we have constructed proof Dj of (*)j- Then we construct Dj+l as
follows.

(1) Using the substitution rule substitute (v + I) for v in (*)j (I is new
variable). This gives proof Dl of:

u~m, (v+/)~m, e~~j, (v+/)+e~m, B(v+1 -+B((v+f +e) ,
(* )j
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As before:

IDll=IDj21+0(lml).
(4) There is a short i-IFR proof (constant for all n) of sequent:

f+e=g, B«v+f)+e)-+B(v+g).
This proof together with proof Dl gives proof Dj4 of:

u ~m, v ~m, v + (f+e) ~m, e ~~, f~~, f+e =g, B(v) -+B(v +g

Again we have:

IDj41=IDll+O(lml).
(5) Obviously there is a proof of length O( I ml) of:

v+g~m,g~~-+
-+ (3x ~g3y ~g(y +x) =g & v + (y +x) ~m & x ~~ & y ~ 2j)),

which gives with Dj4 proof Dl of sequent:

u~m, v~m, v+g~m, g~~, B(v)-+B(v+g).
As before:

IDJI=IDj41+0(lml).
(6) Substituting e for g in the last sequent of (5) produces the required proof

Dj+1 of (*)/+1' Obviously:
IDj+11 = IDjl+O(lml)=ld:nl+j'O(lml).

This completes the construction of proofs Dj'
Now we describe the construction of i-IFR proof dn of the sequent:

U ~!!, B(O) -+B(r).

(i) For j = I ml, Dj is an i-IFR proof of sequent:

U, v~m, e~m, v+e~m, B(v)-+B(v+e)

of length I d:n I + O( I m 12), see (6) above.
(ii) By the choice of m, the following sequents obviously have i-IFR proofs:

U~!!-+u~m, u~!!-+r~m.
(iii) From (i) and the first sequent af (ii) derive, substituting O for v:

u ~!!, e ~m, B(O) -+B(e).
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(iv) Substituting now r for e in (iii) gives, together with (ii) and a few trivial
inferences, the required sequent:

Zl" ~ll, B(O) -+B(r).

By (meta)induction assumption i-IFR proofs can be found of length:

I 10(1)Id:nl. I ml.

m I = I n I 0(1) we get (cf. (i»:

I - I M I 0(1)

As I

I dn I - I" I

This proves case 4.
Now we are ready to plave the proposition; we use the original names for

variables from ( *) now.
Take the constructed i-IFR proof dn of:

a, è~~, 2~co' lal ~ Icol,..., Icollck-ll ~ Ickl-+A(a).

Substitute for a numeral ~ and for CI' I = O,..., k, numerals ni making the
antecedent trne and by lemrna 1.7 i-IFR-provable. As k is a fIXed, standard
number this caD be performed in S~.

It remains to show that the constrncted proof caD be augmented by additional
terms t and supplementary proofs d', as is required in definition 1.4. First
observe that the quantifier nesting (i.e. the number of quantifier inferences and
their order) is essentially the same as in the original (standard) proof of A(a).
Then define:

ti(a) = 'i(a, bo/to(a),..., bi-l/ti-l(a)),

where 'i(a, bo,..., bi-l) is the term in the elimination role as in definition 1.4,
clause (iv). The supplementary proofs are easily constructed.

Finally, the whole construction is effective (in n) with polynomial bounds so
the whole argument can be carried in S~. D

The significance of the proposition is that the constructed proofs have
bounded complexity. Without this requirement one can get short proofs of
instances A(~) e.g. by the methods of definable cuts, cf. [9].

The difference between T4 and S~ is that in the case of T4 proofs of
instance s A(~) are generally only sequence-like while in the case of S~ tree-like
proofs can be constructed. We state the following statement which is well-'known,
cf. [1, chapter 4].

PROPOSITION 2.2
Let A(a) be a #-free, s2't-fomlula and assume:

S~ I-A(a).
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Then there is a term t such that:

S~f-'v'x, i-IFRPr*(t(x), rA(:J)')

Proof
The proof goes as in the preceding proposition, the only difference being the

treatment of PIND which is rather straightforward: from

B ( ~
) -+B(b)

L2.J

we get (by repeating the proof I n I times) I n I proofs of:
B(!!j) -+ B(!!j+l)'

where nlnl := n and nj:= L nj+l/2.J' i.e. no = O. Joining these proofs by cuts we
get the required proof of:

B(O) -+ B(!!). O

3. Truth definition and witnessing function

We shall need certain partial truth definitions for #-free, s!t-formulas. This
material is rather familiar, see [8] or any of [3-5,10], and thus our exposition is
brief.

There is a term val(x, y) such that for any #-free term t(ti) and any
evaluation m of free variables ti we have:

t(ti/m)~val('t(ti)', (m»).
Here (m) is a code of sequence m and 't(a)' the Godel number of t(ti). (We
caD take for val(x, y) roughly y#x.) It follows that there is a 1!~ w.r.t. S~
definition of the value of a #-free term and thus there is also a 1!~ w.r.t. S~
partial truth definition for quantifier free formulas. Using such a partial truth
definition it is routine to write down a partial truth definition TRi, a !t-for-
mula, satisfying Tarski's conditions for #-free, s!t-formulas. In particular,

S~f-Vi, A(i)=TRi('A', (i»

holds for every #-free, s!t-formula A.

DEFINmON 3.1
For j ~ i, j-RFN(i-R) is the following forrnula:

"VA E sXYVx, ji(i-RPr(x, A(a)) -+ TRj(A, ji).

Formulas j-RFN(i-IFR), j-RFN(i-R*) and j-RFN(i-IFR*) are defined analog i-
cally using i-IFRPr resp. i-RPr* resp. i-IFRPr* instead of i-RPr in the above
definition. O
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The formulas defined above formalize the reflection principles for the i-regu-
laT provability notion with or without the requirement to be induction-free or in
a tree-form.

PROPOSITION 3.2
For i ~ 1 it holds:

T41- i-RFN(i-R).

Thus T~ also proves formulas: i-RFN(i-R *), i-RFN(i-IFR) and i-RFN(i-IFR *),

Proof
Work in T4 and assume D = (d, t, d') is an i-regular proof of formula A(ii)

which is s!r. Let d be the sequence of sequents Sl(ii, b),..., Sr(ii, b) where b
are al1 other free variables of d, like in definition 1.4. Thus Sr is ~ A(ii). By
induction on p ~ r show:

-,TRj(A, u) -+ 3;:; ~ w(u)3q ~ r,

"Sq(U, v) is not true") & (q ~ r - p or "Sq is initial")".

This formula is easily written using TRj and it is !t+l. Hence it is provable in
S~+l and thus also in T4, cf. the conservation result of [2]. The bounds w to v
are obtained from the additional terms t guaranteed by D and their correctness
is verified using the supplementary proofs J' (for details of such an argument
see [4,5,10]).

Taking p:= r - 1 and observing that each initial sequent must be trne
establishes the statement. O

In the following T~ Is a theory defined as Ti blit having function symbol #k
(and appropriate axioms in BASIC) instead of #.

Function #k is:

X#lY :=x 'Y,

X#k+lY:= 2Ixl~IYI.

Hence #2 is #.

COROLLARY 3.3 1

For i, k ~ 1 we have:
(a) T~+l is not VlI•-conservative over T~.(b) Si+l . VlI b . Si+lk+2 lS not l-conservat1ve over k+l"

This corollary was also obtained by P. Pudlák.
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Proof
(a) From proposition 3.2 it follows, in particular, that T4 proves a consistency

statement about Tf:
Vx, -, i-RPr(x, r ~ ').

On the other band Tf does not plave it, see [4].
For general k we apply an idea from [5]. Fix k > 1. Say that d is a restricted

Tk proof of a #-free s!r-formula A(a} iff d is an i-regular proof of a sequent of
the form:

2 ~ Icl(k), la I(k) 'Ial(k). ...' I a I(k) ~ Icl(k) -+A(a), (*)
where I a I (k) appears j times and j ~ I d I (k+1). (Here I a I (k) is a k times
iterated function I x I on a.) Although j grows slowly with d it can exceed every
standard number. Therefore similarly as in lemma 1.3 (by compactness): a
#-free s.};r-formula is provable in Tk iff it has a restricted Tk proof.

Given a and d, a number c of size about a#k+1d can be found to make the
antecedent of (*) trne. As T4 proves reflexiveness for i-regular proofs we
conclude that Tk+1 proves that every formula A with restricted Tk proof is
correct.

Now take for A(a) a diagonal, #-free sl1f-formula s.t.:

S~ f- Vx[A(x) = Vd ~x("d is not a restricted Tk proof of A(a)")].

Clearly Tk Ir- A(a), but by the argument above Tk+1 f- A(a).
(b) This follows from (a) and because for I ~ 2:

.+1 .
Si ~Vl1• Ti,

which is an easy consequence of the conservation result from [2]. o

Next we relate i-R provability to propositional provability in Gj:

ø-RFN(G),
COROLLARY 3.4

For 1 ~j ~ i the following formulas are equivalent in S~
RFN(i-R) and j-RFN(i-IFR).
Also formulas Con(GJ, Con(i-R):= 'v'x, -, i-RPrCx, r -+ ') and Con(i-IFR):=
'v'x, -, i-IFR(x, r -+ ') are equivalent in S~.

Remark
It follows that there are polynomial time functions f, g (definable in S~)

which assign to an i-R proof d an i-IFR proof J(d) of the same end-sequent
and a Gj proof g(d) of its propositional translation (and vice versa).

For the definition of Gj, j-RFN(G) and Con(Gj) the reader should consult
f61.



J. Krajíèek, G. Takeuti / /nduction-free provabi/ity120

Proof of corollary 3.4
We prove the case of the consistency statements; the argument for the

reflection principles is identical.
By [6] Con(Gj) is the strongest V'lIf-formula provable in T4 (over S~). By

proposition 3.2 (as i-RFN(i-R) implies trivially Con(i-R» formula Con(i-R) is
provable in T4. Obviously (in S~) Con(i-R) implies Con(i-IFR), we have:

S~ I- Con{Gj) -+ Con{i-R),

S~ I- Con(i-R) -+ Con(i-IFR).

Hence to close the argument it is sufficient to derive (in S~) Con(Gj) from
Con(i-IFR).

By proposition 2.1 we have:
S~ l-V'x, i-IFRpr(to(x), r ,PrfG;(-ž, r -+ ')'),

where PrfG. is a 11~-formalization of provability in Gj; PrfG. can be taken as a. .
subformula of UNIV. By lemrna 1.7 we have then loG:

S~ l-V'x, PrfG;(x, r -+ ') -+i-IFRPr(tl(x), rprfGÁ-ž, r -+ ')').

Putting this together gives (as i-IFR proofs are provably closed under cuts):
S~ l-V'x, PrfGÁx, r -+ ') -+i-IFRPr(t2(x), r -+ ').

This is required:

S~ I- Con(i-IFr) -+ Con(Gj). D

For obtaining the conservation result T4 ~};'!' S~ it would be enough to prove
the reflection principle i-RFN(i-IFR) in S~. We are not able to do this, neither
are we able to show the independence of this forrnula from S~. However, it
turned aut that the main obstacle is not the quantifier complexity but the
structure of the proof-figures: whether the proofs are or are not in a tree formo
We have the following statement.

I

PROPOSITION 3.5
For i ~ 1 it holds:

S~ f- i-RFN(i-IFR*).

Proof
The idea of the proof is the same as before; by induction on the number of

sequents in an i-IFR * proof show that all sequents in it are true. However, as
we now work in S~ instead of S~+l we must decrease the complexity of the
assertion that a sequent is trne. This is provided by formalizing the witnessing
theorem of [1] in S~.
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Using forrnula TRj-l we can construct a partial truth definition 'rR:j-l for
S!Ý-l U slIjb-l-forrnulas. 'rR:j-l is J:1~ w.r.t. si. With 'rR:j-i in hands we can
forrnalize the witness foTrnula of [1] for s!Ý-forrnulas in the following way:

Witness~ii( li, w

is the foTrnula:

"if A E sl'~ u sII~ then1-1 ,1-1

"TRj-1(A, (li»), and

if A is of the form 3x ~ t(li)B(li, x) and A E sl'•\Sl'•-1 then

"TRj-1(b ~ t(li) /\ B(li, b), (li, w) )."

For r = (A1,..., Aj) a cedent of sl'•-formulas, analogically with [1] define:

Witnessi'!:r(a, w)

is tbc formula:

Vj ~ I r I, Witness~a({3(j, w), "li),J

and

Witnessi~r(a, w)

is the foTrnula

3j ~ I r I, Witness~li({:J(j, u), ti)
1

Here {3 is the standard coding function, cf. [1]. Observe that all these witness
formulas are also L1~ w.r.t. S~.

Let us look now how witnessing functions for sequents in an i- IFR * proof
D = (d, t, (Ti) are constructed. By the definition of s!t-formulas, the only rules
which caD have as the principal formula an s!t-formula not in S!t-l are:
3 ~ rules, contractions, exchanges and cut-rule.

In 3 ~ :left a new witness function is obtained essentially by renaming a
variable in the witness function for the upper sequent.

In 3 ~ :right ODe computes a witness of the principal formula by evaluating a
#-free term.

In contraction :left two variables are given the same name.
In contraction :right no new values are computed but a sIIib_l oracle (the

kernel of the principal formula) is queried which witness is the correct ODe.
In exchange rules only variables or values are permuted.
Finally, in cut-rule first a witness for the succedent containing the cut formula

is computed and then substituted for variables in the computation of a witness
fOT the "uccedent of the other seauent.
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Thus if 77(S) is the number of #-free terms evaluated during the computation
(as above) of the witness for a sequent S we have:

77(S) ~ 1 + 77(So)'

in case of all rules above except cut-rule, So being the upper sequent, and:

77(S) ~ 77(So) + 77(Sl)

in case of cut-rule, So resp. Sl being the upper sequents.
Let I;(S) be the number of sequents in d above S. Then using in an essential

way the assumption that d is in a tree-form we have:

77(S)~I;(S)~ldl~IDI. (+)
Moreover, bounds in outermost 3-quantifiers in s2'f-formulas in the succe-

dent of a sequent give a priori bounds to values of terms used in the computa-
tion of the witness. Let r(ii, b) be the greatest of these bounds.

We shall be interested only in computing witnesses with non-parametrical
free variables b in d bounded by i of D, i.e.: bi ~ ti(ii), as in definition 1.4.
Then values o• r(ti, b) are bounded by:

r(ii, bj/tj(ii»). (+ +)
Using the fact that terms r and i are part of D and that for a #-free term s(ii)
it holds in general:

val(s(ii» ~ max(ii, 2)191,

I s I being the length of term s, we can replace bound (+ + ), by:

max(ti,2)IDI2. (+ + +)
Bounds (+) and (+ + +) imply that under the assumption b i ~ t i( ti) the

whole computation of a witness described above requires evaluation of at most
I D I #-free terms with values at most max(ii, 2)IDI2, and so the computation
itself can be coded below:

max(ti,2)O(IDI3). (*)
It is now routine to write down a 2'f-definition (J~ w.r.t. S~, in fact) of the
function

F(D, S, ii, b, w) = v

satisfying:
'v'bj ~ tj(ii), Witnessi~;(ii, b, w) ~ Witnessi~f(ii, b, v), (* *)

for S a sequent r ~ J in any i-I FR * proof D.
Function F is defined by induction on the number of sequents in D above S,

considering several clauses as in the above discussion. The explicit bounds ( *) to
the (code of) computations guarantees (by 2'f-PIND) that the computations are
defined and outnut some values.
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Formula (* *) is lIjb, it is obviously trne for S being an initial sequent and its
validity for the upper sequents of an inference implies its validity for the lower
sequent too. Thus by lIjb-PIND (* *) holds for the end-sequent of D as well.
The end-sequent Se has the form:

-+A(ti),
A E s2'•, and so it holds:

Witness~a( ti, F( D, Se' ti, O, O)). (* * *)

Now it is provable in S~, cf. [1, chapter 5], that:

Witness~a(ti, v) -+ TRj(A, (ti»).

Hence (* * *) yields:

i-IFR*(u, A) -+ TRj(A, ti),

that is:

i-RFN(i-IFR *).
This completes the proof of proposition 3.5, o

The crucial use of the assumption that the proof is in a tree-form is in the
derivation of bound (+). In general one gets only:

11{ S) ~ zg(S) ~ D,

which is not good enough as in the later bounds 11(S) occurs in an exponent.

4. Proofs in a tree-form

Proposition 3.5 shows that the !ý -conservativeness of T4 over S~ would
follow if we could (in Sp put i-IFR proofs (or Gj proofs) into a tree-foml and
enlarge their length only polynomially. The opposite implication is also trne.

PROPOSITION 4.1
For i ~ 1, T4 is V!t-conservative over S~ iff the following formulas are

provable in S~:
(a) Vx, sen tence y3z, i-IFRPrCx, y) -+ i-IFRPr*(z, y),
(b) TREE(Gi).
((a) and (b) are equivalent over S~.)

Proof
(a) The "if part" follows from proposition 3.5 as by corollary 3.4 and [6]

formula i-RFN(i-IFR) is the strongest (over S~) VI•-formula provable in T~,
and is obviously implied by (a).
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Now assume T4 ~ 1:i?S~ and thus:
I

S~ f- i-RFN(i-IFR).

In particular {y stands bere and below for an s!f-sentence):

(1) S~f-i-IFRPr(x, y) -+TRj(y, O).
By lemma 1.7 we have:

(2) S~f-i-IFRPr(x, y)-+I-IFRPr*(to(x, y), ri-IFRPr(.;!", Y)'),
for some term to.

Applying proposition 2.2 to (1) gives for some term tI:
(3) SJ I- i-IFRPr * ( t 1( x, y), r i-IFRPr( -Ž' !:) -.. TRi(!:, O),).

Clauses (2) and (3) readily give:

(4) SJl-i-IFRPr(x, y)-..i-IFRPr*(t2(x, y), rTRi(!:'O)'),
for some term t2.

Tarski's conditions for TRi are proved by the complexity of sentence y and
the proof is in a tree-form. Hence we have:

(5) S~f-i-IFRPr*(t3(x, y), rTRi(~, O)' -+y),

t3 a term.
Finally, (4) with (5) gives (for t4 a term):

(6) si l-i-IFR(x, y) -+i-IFR*(t4(x, y), y).
This proves the proposition.

The statement (b) for Gi follows as Gi-provability is equivalent to i-IFR
provability. Note that there is also a direct proof for Gi following the lines above
and using propositional versions of (2), (3) and (5). D

Similarly with [6] where the 2'Y-conservativeness of T~ over S~, j < i, was
characterized as essentially a combinatorial question concerning polynomial
simulations, proposition 4.1 offers a reformulation of 2'•-conservativity in terms
of the efficiency of the sequence-form versus the tree-form of Gi proofs (resp.
i-IFR proofs).

aur results also imply that Gi* - a propositional proof system defined as Gi
but with proofs only in a tree-form - has the same relation to S~ as Gi to T~, cf.

[6].
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