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Abstract

Random resolution, defined by Buss, Kolodziejczyk and Thapen (JSL,
2014), is a sound propositional proof system that extends the resolution
proof system by the possibility to augment any set of initial clauses by a set
of randomly chosen clauses (modulo a technical condition). We show how
to apply the general feasible interpolation theorem for semantic deriva-
tions of Kraj́ıček (JSL, 1997) to random resolution. As a consequence we
get a lower bound for random resolution refutations of the clique-coloring
formulas.

Assume A1, . . . , Am, B1, . . . , Bℓ is an unsatisfiable set of clauses in variables
partitioned into three disjoint sets p, q and r, with clauses Ai containing only
variables from p and q while clauses Bj contain only variables from p or r.

Feasible interpolation for resolution [6, Thm.6.1] says that if the set has
a resolution refutation with k clauses then there is a circuit of size1 knO(1),
where n is the number of variables p, with inputs p that outputs 1 on all
p := a ∈ {0, 1}n for which

∧

iAi(a,q) is satisfiable and 0 on all a for which
∧

j Bj(a, r) is satisfiable. Moreover, if variables p occur only positively in clauses
Ai then the interpolating circuit can be required to be monotone.

The monotone version can then be applied to the clique-coloring clauses
[6, Def.7.1] where there are

(

n
2

)

variables p indexed by unordered pairs i, j of
different elements from [n] := {1, . . . , n}, ω ·n variables q indexed by elements of
[ω]× [n] and n ·ξ variables r indexed by elements of [n]× [ξ], with n ≥ ω > ξ ≥ 1:

1. {qu1, . . . , qun}, for each u ∈ [ω]

2. {¬qui,¬qvi}, for u 6= v ∈ [ω] and i ∈ [n]

3. {¬qui,¬qvj , pij}, for u 6= v ∈ [ω] and i 6= j ∈ [n]

4. {ri1, . . . , riξ}, for each i ∈ [n]

5. {¬riu,¬riv}, for each u 6= v ∈ [ξ] and i ∈ [n]

1The bound knO(1) is derived from a general interpolation theorem for semantic derivations
whose framework we also use below; a bit better bound (proportional to the size of the
refutation and hence O(kn)) can be proved by resolution specific arguments.
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6. {¬riv ,¬rjv ,¬pij}, for v ∈ [ξ] and i 6= j ∈ [n]

The clauses in the first three items comprise the set Cliquen,ω and the clauses
in the last three items comprise the set Colorn,ξ, They have only variables p in
common and these occur only positively in Cliquen,ω. The assignments a to p
for which Cliquen, ω(a,q) is satisfiable can be identified with undirected graphs
on [n] without loops and having a clique of size at least ω while those a for which
Colorn,ξ(a, r) is satisfiable are ξ-colorable graphs. Hence Cliquen,ω ∪ Colorn,ξ
is unsatisfiable as ξ < ω and the monotone feasible interpolation combined with
the Alon-Boppana [1] exponential lower for monotone circuits separating the
two classes of graphs implies that all resolution refutations of the set must have
an exponential number of clauses, cf.[6, Sec.7].

Buss, Kolodziejczyk and Thapen [3, Sec.5.2] defined the notion of δ-random
resolution (the definition is attributed in [3] to S. Dantchev). The motivation for
introducing the proof system came from bounded arithmetic; the proof system
simulates an interesting theory. A δ-random resolution refutation distribution

of a set of clauses Ψ ([3] considers only narrow clauses because of the specific
problem studied there) is a random distribution (πs,∆s)s such that πs is a
resolution refutation of Ψ ∪∆s, and where the following technical condition is
satisfied:

• any fixed truth assignment to all variables satisfies the set of clauses ∆s

with probability at least 1− δ.

The number of clauses in such a random refutation is the maximal number of
clauses among all πs. Note that it is a sound proof system in the sense that any
refutable set Ψ is indeed unsatisfiable: if a would be a satisfying assignment
for Ψ then, by the condition above, a would satisfy also some ∆s and hence πs

would be a resolution refutation of a satisfiable set of clauses which is impossible.
Variants of the definition of this proof system and its properties are studied in
[10].

The presence of the clauses ∆s spoils the separation of the q and r variables
in initial clauses and this seems to prohibit any application of the feasible inter-
polation method. The point of this note is to show that, in fact, the construction
behind the general feasible interpolation theorem [6] for semantic derivations
based on communication complexity does apply here fairly straightforwardly.

We recall some feasible interpolation preliminaries from [6] in Section 1. In
Section 2 we prove monotone feasible interpolation for random resolution and
this will yield the following lower bound for random resolution refutations of
the clique-coloring clauses.

Theorem 0.1 Let n ≥ ω > ξ ≥ 1 and ξ1/2ω ≤ 8n/ logn. Assume δ < 1 and let

(πs,∆s)s be a δ-random resolution refutation distribution of Cliquen,ω∪Colorn,ξ
with k clauses. Put d := maxs |∆s|.

Then:

1. If dδ < 1 then k ≥ (1− dδ1/2)nΩ(ξ1/2).
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2. k ≥ min(1/(2δ1/2), nΩ(ξ1/2)).

The proof of this theorem will be given at the end of Section 2. We only remark
that for tree-like refutations a feasible interpolation via ordinary randomized
Karchmer-Wigderson protocols follows from [6] immediately and it yields an
exponential lower bound for formulas formalizing Hall’s theorem as described
in [7, Sec.4].

We will give below a detailed formulation of constructions from [6] needed
here but we will not repeat the arguments from that paper. For more general
background on proof complexity the reader may consult [5, 9].

1 Feasible interpolation via protocols

We review the needed material from [6] just for the case of monotone interpo-
lation and the clique-coloring clauses (but it is quite representative). Identify

undirected graphs without loops on [n] with strings from {0, 1}(
n
2
). Note that

indices of p variables correspond to pairs of different vertices and hence the
truth value an assignment a gives to a particular p-variable indicates whether
or not the edge corresponding to the variable is in the graph a.

Let U ⊆ {0, 1}(
n
2) be the set of graphs having a clique of size at least ω and

let V ⊆ {0, 1}(
n
2) be the set of ξ-colorable graphs. Let the monotone Karchmer-

Wigderson function KWm(u, v) be a multi-function defined on U × V whose
valid value on a pair (u, v) ∈ U ×V is any edge (i.e. unordered pair i 6= j ∈ [n])
that is present in u but not in v.

The method in [6] extracts from a resolution refutation of Cliquen,ω ∪
Colorn,ξ a protocol for a communication between two players, one holding u
and the other one v, who want to find a valid value for KWm(u, v). The proto-
cols in [6] are, however, more complex than just binary trees as in the ordinary
communication complexity set-up of [4].

A monotone protocol for computing KWm in the sense of [6, Def.2.2] is a
4-tuple (G, lab, F, S) satisfying the following conditions:

1. G is a directed acyclic graph that has one root (the in-degree 0 node)
denoted ∅.

2. The nodes with the out-degree 0 are leaves and they are labelled by the
mapping lab. The mapping lab assigns an element of [

(

n
2

)

] (i.e., a potential
edge) to each leaf in G.

3. S(u, v, x) is a function (called the strategy) that assigns to a node x ∈ G
and a pair u ∈ U and v ∈ V a node S(u, v, x) reachable from the node x
by one edge.

4. For every u ∈ U and v ∈ V , F (u, v) ⊆ G is a set (called the consistency
condition) satisfying:

(a) ∅ ∈ F (u, v),
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(b) x ∈ F (u, v) −→ S(u, v, x) ∈ F (u, v),

(c) if x ∈ F (u, v) is a leaf and lab(x) = {i, j}, then ui,j = 1 ∧ vi,j = 0
holds.

The size of (G, lab, F, S) is the cardinality of G and its communication com-

plexity is the minimal t such that for every x ∈ G the communication com-
plexity for the players (one knowing u and x, the other one v and x) to decide
x ∈? F (u, v) or to compute S(u, v, x) is at most t.

Put s := n · ω and identify strings from {0, 1}s with assignments to q-
variables, and similarly put t := n · ξ and identify strings from {0, 1}t with
assignments to r-variables. For any u ∈ U fix qu ∈ {0, 1}s such that (u, qu)
satisfies all clauses from Cliquen,ω and for v ∈ V fix rv ∈ {0, 1}t such that
(v, rv) satisfies all clauses of Colorn,ξ.

The protocol (G, lab, F, S) forKWm constructed in [6, Thm.5.1 and Thm.6.1]
from a resolution refutation π of Cliquen,ω∪Colorn,ξ having k steps has k+

(

n
2

)

nodes: k nodes corresponding to the clauses of π are the inner nodes and
(

n
2

)

other nodes are the leaves and these are labelled by the
(

n
2

)

possible values of
the multi-function KWm. The consistency condition x ∈ F (u, v) for a node x
corresponding to a clause C of π is defined by the condition that the assignment
(v, qu, rv) falsifies C, and for a leaf by the condition that the label is a valid
value of KWm for the pair (u, v). The strategy S (whose exact definition we
do not need) navigates from the root (the end-clause of π) through π towards
the initial clauses and the construction shows that sooner or later it encounters
a situation that allows it to compute a valid value of KWm and move to the
leaf with the appropriate label. The construction is fairly general and we shall
formulate in Theorem 1.1 its one particular feature.

For a set ∆ of clauses in variables p,q and r define a multifunction F∆ on
U × V whose valid value on a pair (u, v) is any valid value of KWm(u, v) and
also a new value ⊥ provided that (v, qu, rv) falsifies some clause in ∆. Note the
similarity of the condition permitting the value ⊥ with the consistency condition
in the protocol just discussed.

Now we recall a particular fact about the existence of protocols provided by
the constructions in the proofs of [6, Thm.5.1 and Thm.6.1] (again we restrict
ourselves to the clique-coloring formulas and the monotone case).

Theorem 1.1 ([6])
Assume that ∆ is a set of clauses in variables p,q and r and that π is a

resolution refutation of the set Cliquen,ω ∪Colorn,ξ ∪∆ and that π has k steps.

Then there is a protocol (G, lab, F, S) for F∆ of size k +
(

n
2

)

whose strategy

has the communication complexity at most 2 + 2 logn and whose consistency

condition has the communication complexity 2.
Further, the existence of a protocol for KWm on U ′ × V ′ ⊆ U × V of size

k′ and monotone communication complexity O(log n) implies the existence of a

monotone circuit of size at most k′ · nO(1) separating U ′ from V ′.

The part about the existence of a circuit is in [6] proved using a result from
[11]; a stand alone proof can be found in [8, Sec.2.4].
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2 The lower bound

For (u, v) ∈ U ×V define w(u, v) := (v, qu, rv) and for X ⊆ U and Y ⊆ V define

W (X,Y ) ⊆ {0, 1}(
n
2
) × {0, 1}s × {0, 1}t to be the set of all tuples w(u, v) for

(u, v) ∈ X × Y .
Assume (πs,∆s)s is a δ-random resolution refutation distribution of clauses

Cliquen,ω∪Colorn,ξ having k steps. For a sample s define the set Bads ⊆ U×V
to be the set of all pairs (u, v) ∈ U ×V such that the assignment w(u, v) falsifies
some clause in ∆s. An averaging argument implies the following statement.

Lemma 2.1 There exists sample s such that |Bads| < δ|U × V |.

Fix for the rest of the paper one such s. Denote by (G, lab, F, S) the protocol
for F∆s

constructed from πs as described in Theorem 1.1. Put d := |∆s|.

Lemma 2.2 There exists U ′ ⊆ U and V ′ ⊆ V such that:

1. (U ′ × V ′) ∩Bads = ∅.

2. |U ′| ≥ (1− dδ1/2)|U | and |V ′| ≥ (1− dδ1/2)|V |.

Proof :

Claim 1: The set Bads is a union of at most d′ rectangles Ui × Vi ⊆ U × V ,

for 1 ≤ d′ ≤ d.

For a clause D let False(D) is the set of all (u, v) ∈ U ×V such that w(u, v)
falsifies D. We have that

Bads =
⋃

D∈∆s

False(D) .

But for each of at most d possible D the set False(D) is a combinatorial rect-
angle as it consists of all pairs (u, v) ∈ U ×V satisfying two separate conditions
for u and v: that qu makes all q-literals in D false and that v, rv makes all p-
and r-literals in D false.

Let µi be the measure of Ui × Vi in U × V (and so µi < δ). The following is
obvious.

Claim 2: For each i ≤ d′, either |Ui| ≤ µ
1/2
i |U | or |Vi| ≤ µ

1/2
i |V |.

We are now ready to prove the lemma. Consider the following process. For

i = 1, . . . , d′ delete from U all elements in Ui, if |Ui| ≤ µ
1/2
i |U |, otherwise

delete from V all elements of Vi. Let U ′ and V ′ be what remains of U and V ,
respectively. Because we deleted one side of every rectangle Ui×Vi, all of them
have the empty intersection with U ′ × V ′.

The measure of U \U ′ in U , as well as the measure of V \V ′ in V , is bounded

above by
∑

i≤d′ µ
1/2
i < dδ1/2.

q.e.d.
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Lemma 2.3 There exists a monotone protocol for KWm on U ′ × V ′ of size at

most k +
(

n
2

)

and of communication complexity at most O(log n).

Proof :
Take the protocol (G, lab, F, S) for F∆s

described before Lemma 2.2. By the
definition of the sets U ′ and V ′ the multifunction F∆s

restricted to U ′ × V ′ is
just KWm (the condition permitting the extra value ⊥ is never satisfied).

q.e.d.

Proof of Theorem 0.1:

The proof of the nΩ(ξ1/2) lower bound from [1] for monotone circuits sepa-
rating U from V culminates by comparing two quantities with the sizes of U
and V , respectively (see the elementary presentation in [2, Sec.4.3]). The same
argument applies also to separations of any U ′ ⊆ U from any V ′ ⊆ V and the
resulting lower bound just gets multiplied by the smaller of the two measures
|U ′|/|U | and |V ′|/|V |.

By Lemmas 2.2 and 2.3 we have two sets U ′, V ′ of relative measures at least
(1 − dδ1/2) and a monotone protocol for KWm on them of the size at most
k +

(

n
2

)

and communication complexity O(log n). By Theorem 1.1 this yields a

monotone circuit separating U ′ from V ′ of size knO(1). Hence it must hold:

knO(1) ≥ (1− dδ1/2)nΩ(ξ1/2)

which entails the first inequality in Theorem 0.1. The second follows from the
first one by estimating d ≤ k: if k ≤ 1/(2δ1/2) then the factor (1 − dδ1/2) is at

least 1/2 and the lower bound nΩ(ξ1/2) follows.

q.e.d.
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