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Abstract

Any valid Ramsey statement n −→ (k)22 can be encoded into a
DNF formula RAM(n, k) of size O(nk) and with terms of size

(k
2

)

.
Let rk be the minimal n for which the statement holds. We prove

that RAM(rk, k) requires exponential size constant depth Frege sys-
tems, answering a problem of Krishnamurthy and Moll [15].

As a consequence of Pudlák’s work in bounded arithmetic [19] it
is known that there are quasi-polynomial size constant depth Frege
proofs of RAM(4k, k), but the proof complexity of these formulas in
resolution R or in its extension R(log) is unknown. We define two rel-
ativizations of the Ramsey statement that still have quasi-polynomial
size constant depth Frege proofs but for which we establish exponen-
tial lower bound for R.

The complexity of proving various Ramsey-type combinatorial statements
is well studied in connection with Peano arithmetic or systems of second order
arithmetic, or even with set theory. The foremost example is the Paris-
Harrington extension of finite Ramsey theorem, see [17].

However, even sooner Krishnamurthy and Moll [15] proposed Ramsey
theorem as a source of hard propositional tautologies (we discuss this more
below). In this paper we continue the study of propositional complexity of
Ramsey theorem, motivated by the following problem:
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• Find a sequence of formulas in DNF (preferably with narrow terms)
that have short constant depth Frege proofs (in DeMorgan language)
but require long proofs in R(log).

Proof system R(log), introduced in [11], operates with clauses (i.e. disjunc-
tions) formed not only of literals but also of terms (i.e. conjunctions of
literals) via natural inference rules. The size1 of an R(log) proof is the min-
imal s such that the proof has at most s symbols and all terms have size at
most log(s).

The problem has several facets and interesting consequences. We do not
require the sequence of formulas to be uniform in any way: the existence of
any sequence of formulas with the required properties implies (via a known
technique using the relation of reflection principles to simulations among
proof systems, cf.[10]) the existence of a first-order principle that translates
into a sequence of DNF formulas with the same properties. The existence
of such DNF formulas implies also a non-conservativity result for bounded
arithmetic T2(α) over T 2

2 (α), either a non-∀Σb
2(α) conservativity or even a

non-∀Σb
1(α) conservativity, if the terms in the formulas are narrow. Further-

more, several of the so called no-gaps theorems [3, 20] would then yield the
same non-conservativity of even T 3

2 (α) over T 2
2 (α), and that R(log) does not

simulate the next higher fragment of constant depth Frege systems (of the so
called Σ-depth 1 of [9, 10]). Finally, such a proof complexity separation can
be usually turned into a non-reducibility result for corresponding NP search
problems, cf.[4, 7, 8, 14].

For these consequences of the solution of the problem to hold we need
to interpret the qualifications narrow, short and long as follows: narrow
term should mean poly-logarithmic in the size of the formula, short proof
in constant depth Frege systems should mean quasi-polynomial in the size
of the formula, and long R(log)-proof should mean not quasi-polynomially
bounded. In fact, one may expect that there should be such formulas with
terms of constant size, having polynomial size constant depth Frege proofs
and requiring exponential size R(log)-proofs.

The DNF formulas that were proposed in [3] (in the language of bounded
arithmetic) as suitable candidates for the problem formalize a Ramsey state-
ment. Consider a valid Ramsey statement

n −→ (k)2
2

1Some later authors have used a more naive definition, see the end of the introduction.
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expressing that every graph (tacitly undirected) with vertices [n] = {1, . . . , n}
contains a homogeneous subgraph, a clique or an independent set, of size at
least k. This can be encoded into a propositional tautology RAM(n, k) in a
DNF form as follows. The formula is built from atoms xe, one for each of
potential

(

n
2

)

edges e ∈ [n](2) (the set of unordered pairs of different elements

of [n]), and for each subset A ⊆ [n] of size k contains two terms

Cli(A) :=
∧

e⊆A

xe

and
Ind(A) :=

∧

e⊆A

¬xe

as disjuncts. Hence RAM(n, k) has 2
(

n
k

)

disjuncts each of size
(

k
2

)

.
Denote by rk the minimal n for which the statement is valid. It is known

that 2k/2 < rk < 4k, cf.[6]. These critical formulas RAM(rk, k) were first
considered as candidate hard formulas for resolution in [15], where the au-
thors established an rk/2 width lower bound and an exponential lower bound
for the Davis-Putnam procedure. We note in Section 1 that the method
from [11], relating proof complexity of Ramsey statements to that of the so
called (weak) pigeonhole principle (PHP), can be straightforwardly modified
to show that these formulas are too hard for our purposes: they require ex-
ponential size constant depth Frege proofs. No bounds were known for the
formulas previously2.

Fortunately if we replace the optimal parameter rk by 4k the proof com-
plexity decreases dramatically: by [19] it is known that RAM(4k, k) have

quasi-polynomial size (i.e. 2kO(1)
) constant-depth Frege proofs (the estimate

to the depth resulting from the argument in [19] has been optimally counted
in [1]). In the direction of lower bounds we know that RAM(4k, k) requires
width of resolution proofs at least 1

2
4k/4 and that R∗(log)-proofs (i.e. tree-like

R(log)-proofs) require exponential size, cf. [11]. Moreover, it is known that
a lower bound for resolution proofs of RAM(4k, k) would follow from a lower
bound for R(2)-proofs of the weak PHP with n4 pigeons and n holes, cf.[11].

Thus our original problem can be reduced to:

• Show that formulas RAM(4k, k) require long (at least more than of a
quasi-polynomial size) R(log)-proofs.

2I pointed out this lower bound in various talks but never wrote it up. I use this
occasion to give a finitary version of the original model-theoretic argument of [11].
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No lower bound is known for R either. In this paper we do not prove the lower
bound for R(log) but we make nevertheless a progress: We shall define two
relativizations of the formulas, to be denoted RAM

U(n, k) and RAM
f (n, k),

and we show that while they are still easy for constant depth Frege systems,
they both require exponential size R-proofs.

Let us remark on other combinatorial principles sometimes mentioned in
the connection with the problem. First, the reader may wonder why we base
the tautologies on the simplest case of finite Ramsey theorem rather than
on some enhanced version unprovable even in strong theories. The reason is
that these statements have a Π0

2 form ∀x∃yA(x, y) and their unprovability is
deduced from an enormous growth of a bound Nn to y in terms of the instance
x := n. But the propositional formula encoding the n-th instance will have
the length at least Nn and hence even a simple proof system (often R or
R(log)) can prove the tautology in polynomial size because the qualification
polynomial means ”polynomial in Nn”.

The second remark concerns forms of the weak pigeonhole principle (with
various settings of the parameters) that may seem simpler to work with than
with Ramsey statement. Unfortunately the instances provable shortly in
constant depth Frege systems do actually also have short proofs in R(log),
cf.[16].

We use only standard concepts of proof complexity; the reader may find
any relevant background in [10, 11]. Resolution is denoted R, its tree-like
version R∗, and similarly for R(log). An R-proof means a proof in R, similarly
for other proof systems. More details on the link to conservativity problems
in bounded arithmetic can be found in [20]. Here we only remark on the
definition of R(log). In [11] a system R+ was defined, operating with clauses
of terms via natural rules, and for a function f on N one defined the R(f)-size
of an R+-proof: the minimal s such that the proof has at most s symbols and
uses terms of size at most f(s). Some later authors interpreted the definition
as saying that terms have size at most f(n), where n is some canonical
parameter of the formula, e.g. its number of variables. In this sense one
can have an exponential lower bound for R(log)-proofs while they use only
terms of size log(n). Such a result says nothing about bounded arithmetic
independence from T 2

2 (α); to maintain the correspondence between proof
systems and bounded arithmetic one has to use the original definition.
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1 A lower bound for the critical parameter

Recall that the size of formulas RAM(n, k) is O(nk). In particular, the size
of RAM(rk, k) is at most O(4k2

) due to the bound rk ≤ 4k.

Theorem 1.1 For every d ≥ 2 there is ǫ > 0 such that for k ≥ 1 every
depth d Frege proof of RAM(4k, k) must have the size at least 2rk

ǫ
.

Proof :
We shall use the idea of an argument from [11]. Put n := rk − 1, and let

pi,j, i ∈ [n + 1], j ∈ [n] be (n + 1)n atoms of the usual pigeonhole principle
formula PHPn:

∨

i

∧

j

¬pi,j ∨
∨

i1 6=i2,j

pi1,j ∧ pi2,j ∨
∨

i,j1 6=j2

pi,j1 ∧ pi,j2

where i, i1, i2 ∈ [n + 1] and j, j1, j2 ∈ [n].
Let π be a depth d size s Frege proof of RAM(rk, k) and let the variables

of this formula be xe, e ∈ [rk]
(2). By the definition of rk there exists a graph

G = ([n], E) that has no homogeneous subgraph of size k. Use it to define
the following substitution for variables xe in terms of the variables of the
PHP formula:

σ(x{u,v}) :=
∨

{i,j}∈E

pu,i ∧ pv,j .

The following claim is established by induction on t.

Claim 1: For any t such that 1 ≤ t ≤ n and any size t subset A ⊆ [rk] there
are constant depth Frege proofs of size nO(t) of both formulas

σ(Cli(A)) ∧ ¬PHPn −→
∨

B⊆[n],|B|=t

∧

{i,j}⊆B

E(i, j)

and
σ(Ind(A)) ∧ ¬PHPn −→

∨

B⊆[n],|B|=t

∧

{i,j}⊆B

¬E(i, j)

Because G has no homogeneous subset of size k, both conjunctions

∧

{i,j}⊆B

E(i, j) and
∧

{i,j}⊆B

¬E(i, j)
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have value 0 for |B| = k. This entails the next claim.

Claim 2: For each A ⊆ [rk] there are constant depth Frege proofs of size
nO(k) of both formulas

σ(Cli(A)) −→ PHPn

and
σ(Ind(A)) −→ PHPn .

Combining the proof σ(π) of σ(RAM(rk, k)) with the proofs from Claim 2,
we get a constant depth proof of PHPn of size at most

O(sn2) + 2

(

rk

k

)

nO(k) ≤ O(sn2) + nO(log(n)) .

It is known ([2, 13, 18]) that PHPn requires constant depth Frege proofs of
size 2nδ

, δ depending on the depth. This entails the lower bound.

q.e.d.

2 Relativizations and constant depth Frege

upper bounds

In this and the next section we concentrate on formula RAM(n, k) with the
non-optimal parameter n := 4k. From now on n is fixed to denote this value.

We define two relativizations of formula RAM and show that they are still
shortly provable in constant depth Frege systems. This will be complemented
in the next section by exponential resolution lower bounds for both of them.

The first relativizations RAM
U is simpler to define but it appears less

flexible for the hopeful attack on R(log) than the second relativization RAM
f .

The latter formula has also a trivial upper bound proof for constant depth
Frege systems while for the former one has to check that the proof of the
upper bound for RAM in [19] will work here as well.

Relativization in proof complexity appeared in [12] in connection with
model-theoretic methods and lead to the question how relativization of first-
order principles influences the proof complexity of their propositional trans-
lations. For resolution this was answered by a beautiful theorem of Dantchev
and Riis [5]. Ramsey principle does not fall under the scope of this theorem
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but we shall be able to use the random restriction method from [5] on our
formulas RAM

U and RAM
f nevertheless.

The first relativization RAM
U(n, k) formalizes the following principle:

• Let n = 4k, let G = ([n], E) be any graph and let U ⊆ [n] be arbitrary.
Then either the induced subgraph with vertices U or the induced sub-
graph with vertices Ū := [n] \ U contains a homogeneous subgraph of
size k − 1.

At east one of the subgraphs has size m ≥ n/2 and the validity of RAM
U(n, k)

thus follows from the validity of the Ramsey relation m −→ (⌊ log(m)
2

⌋)2
2 as

k = log(n)
2

.

Definition 2.1 Let k ≥ 2, n = 4k, and let xe and ui be atoms, where
e ∈ [n](2) and i ∈ [n]. Formula RAM

U(n, k) is the disjunction of the following

4
(

n
k−1

)

formulas:
∧

i∈A

ui ∧ Cli(A)

∧

i∈A

¬ui ∧ Cli(A)

∧

i∈A

ui ∧ Ind(A)

∧

i∈A

¬ui ∧ Ind(A)

where A ranges over subsets of [n] of size k − 1.

The size of formula RAM
U(n, k) is O(k2nk), its terms are narrow of size

k − 1 +
(

k−1
2

)

≤ k2.

The second formalization RAM
f(n, k) formalizes the following principle:

• Let n = 4k, G = ([n], E) be any graph and let f : [n/4] → [n] be an
arbitrary injective function. Then the induced subgraph whose vertex
set is the range Rng(f) of f contains a homogeneous subgraph of size
k − 1.

This is valid as the induced subgraph has 4k−1 vertices.
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Definition 2.2 Let k ≥ 2, n = 4k, and let xe and fi,j be atoms, where
e ∈ [n](2), i ∈ [n/4], and j ∈ [n]. Formula RAM

f(n, k) is the disjunction of
the following formulas:

1.
∧

j ¬fi,j, any i,

2. fi,j1 ∧ fi,j2, any i and j1 6= j2,

3. fi1,j ∧ fi2,j, any i1 6= i2 and j,

4. fi1,j1 ∧ . . . ∧ fik,jk
∧ Cli({j1, . . . , jk}), any ordered k-tuples of different

elements i1, . . . , ik ∈ [n/4] and j1, . . . , jk ∈ [n],

5. fi1,j1 ∧ . . . ∧ fik,jk
∧ Ind({j1, . . . , jk}), any ordered k-tuples of different

elements i1, . . . , ik ∈ [n/4] and j1, . . . , jk ∈ [n],

where i, i1, i2 ∈ [n/4] and j, j1, j2 ∈ [n].

Note that RAM
f(n, k) has nO(k) terms which, due to item 1., are not narrow

anymore, and total size nO(k) too.

Theorem 2.3 Let k ≥ 2 and n = 4k. Formulas RAM
U(n, k) and RAM

f (n, k)

have both quasi-polynomial size (i.e. size 2kO(1)
) constant depth Frege proofs.

Proof :
We start with the upper bound for RAM

f . Assume for the sake of contra-
diction ¬RAM

f(n, k). Define a graph H with vertices [n/4] by pulling back
the edges of G via map f . As f is injective H is well-defined. As we assume
¬RAM

f(n, k), graph H has no homogeneous subgraph of size k−1. But this
can be brought to a contradiction in a constant depth Frege system: take a
short proof of RAM(n/4, k−1) in the system (it exists by [19]) and substitute
in it for the edge variables the definition of the edges of H . This will increase
the depth by a constant and the size by a factor of O(n2).

For RAM
U(n, k) there does not seem to be such a simple proof by sub-

stitution into a known proof of RAM but it suffices to look how RAM(n, k)
is proved in [19]. The argument there rests on the following construction.
Given a graph with vertex set V which has no homogeneous subgraph of size
ℓ, a mapping F : V → {0, 1}ℓ is defined (by short constant depth formulas)
that is injective. This is then brought into a contradiction with the weak
PHP if ℓ is too small (i.e. 2ℓ ≤ |V |/2).
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In our case we apply this construction to both induced subgraphs of G
with the vertex sets U and Ū respectively, getting two injective maps

F1 : U → {0, 1}k−1 and F0 : Ū → {0, 1}k−1 .

They combine to an injective map from [n] into {0, 1}k which is then brought
to a contradiction with the weak PHP as before.

q.e.d.

3 Resolution lower bounds

The strategy of the lower bound argument is analogous to that of [5]: we
show, employing a random restriction, that if either relativization RAM

U(n, k)
or RAM

f(n, k) had a short R-proof then the unrelativized RAM(n, k − 1)
would have a narrow R-proof, contradicting the width lower bound from
[11]. We start by recalling the latter, stating it in the form we need later.

Theorem 3.1 ([11]) Any R-proof of RAM(m, ℓ) must have the width at least

1

2
2ℓ/2 .

Lemma 3.2 Let k ≥ 2 and n = 4k. Assume that there is an R-proof of
RAM

U(n, k) of size s ≤ 2n1/11
. Then RAM(n, k − 1) has an R-proof of width

at most n1/5.

Proof :
Let π be a size s R-proof of RAM

U(n, k). Substitute for all atoms ui a
random value σ(ui) ∈ {0, 1}, independently and with probability 1/2 of each
value. Put U := {i ∈ [n] | σ(ui) = 1}.

After σ is chosen define a partial evaluation of variables xe as follows:

• If e ⊆ U or e ⊆ Ū leave xe unassigned.

• Otherwise give xe randomly value 0 or 1, independently and with equal
probability 1/2.
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Denote ρ ⊇ σ the substitution thus defined.
A clause C in π has the form

v1 ∨ . . . ∨ vs ∨ ℓe1 ∨ . . . ∨ ℓet

where v1, . . . , vs are literals ui or ¬ui and ℓe is literal xe or ¬xe.

Claim 1: Let C be a clause as above. In the random process defining ρ the
probability that ρ(C) 6= 1 is at most (3/4)

√
t/2.

Consider the first edge e1. Decide randomly the membership of its end-
points in U . The probability that ρ(ℓe1) ∈ {0, 1} is 1/2 and that it is not
equal to 1 is 1/4. Hence 3/4 bounds the probability that ρ(ℓe1) 6= 1. In a
general step take e ∈ {e1, . . . , et} such that the membership in U has not
been decided for at least one end-point of e. Then again ρ(ℓe) 6= 1 with
probability at most 3/4. In each step we decide about at most two points

their membership in U and p points can cover up to
(

p
2

)

≤ p2 edges. Hence

this process can go on for at least
√

t/2 steps. This proves the claim.

Claim 2: The probability that all clauses in π not given value 1 by ρ have
the width less than n1/5 is positive.

The probability to fail to make true all clauses of width at least n1/5 is
bounded above by Claim 1 by

s · (3/4)
1
2
n1/10 ≤ 2n1/11 · (3/4)

1
2
n1/10

which goes to 0.

By Claim 2 we can take a ρ not leaving in ρ(π) any clause wider than
n1/5. Let |U | = m. Assume without a loss of generality that m ≤ n/2. The
restricted proof ρ(π) is a proof of a disjunction of two formulas

RAM(m, k − 1) ∨ RAM(n − m, k − 1)

written in disjoint sets of variables. Identify [m] with a subset of [n − m]
of size m, and consequently also the variables of RAM(m, k − 1) with some
variables of RAM(n−m, k−1), turning ρ(π) into a proof of RAM(n−m, k−1),
i.e. of RAM(n, k − 1) too.

q.e.d.

Now we prove an analogous statement for the other relativization.
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Lemma 3.3 Let k ≥ 2 and n = 4k. Assume that there is an R-proof of
RAM

f(n, k) of size s ≤ 2n1/11
. Then RAM(n, k − 1) has an R-proof of width

at most n1/5.

Proof :
Let π be a size s R-proof of RAM

f(n, k). Assign first to each i ∈ [n] a
random value σ(i) ∈ {0, 1}, independently and with equal probability 1/2 of
the values. Put V = {i ∈ [n] | σ(i) = 1}. Chernoff’s bound implies that
n
4
≤ |V | ≤ 3n

4
with probability of failing at most e−n2/16.

Assuming |V | ≥ n/4 proceed as follows. Take for f an injective function
from [n/4] into V , selected from the set of all such functions in some canonical
way, and evaluate variable fi,j := ρ(fi,j) ∈ {0, 1} accordingly.

Then extend ρ to η ⊇ ρ by randomly restricting some of the edge variables
xe as follows:

• If e ⊆ V leave xe unassigned.

• If e 6⊆ V , assign xe value η(xe) ∈ {0, 1}, independently and uniformly
at random.

A clause D in π has the form

g1 ∨ . . . ∨ gs ∨ ℓe1 ∨ . . . ∨ ℓet

where g1, . . . , gs are literals fi,j or ¬fi,j and ℓe is literal xe or ¬xe.

Claim 1: Assume |V | ≤ 3n/4. Let D be a clause as above. In the random

process defining η the probability that η(D) 6= 1 is at most (7/8)
√

t/2.

The claim is proved analogously to Claim 1 in the proof of Lemma 3.2,
noting that the assumption |V | ≤ 3n/4 implies that xe is not assigned a value
is at most 3/4.

This yields the next claim as before.

Claim 2: The probability that n/4 ≤ |V | ≤ 3n/4 and that all clauses in π
not given value 1 by η have the width less than n1/5 is positive.

Take a restriction η not leaving in η(π) any clause wider than n1/5. The
proof is concluded by noting that η(π) is a proof of RAM(m, k − 1) where
m = |V |, i.e. of RAM(n, k − 1) as well.

q.e.d.
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Theorem 3.1 imply together with Lemmas 3.2 and 3.3 the lower bound.

Theorem 3.4 Let k ≥ 2 and n = 4k. Then every R-proof of RAM
U(n, k) or

of RAM
f (n, k) must have the size at least Ω(2n1/11

).
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