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Abstract

We prove that certain models of PV in which NP 6� P=poly have a

�

b

1

-elementary extension to a model of (PV and) NP 6� coNP=poly.

If S

2

proves a particular fact about bipartite graphs then, in fact, all

models of PV in which NP 6� P=poly have a �

b

1

-elementary extension to

a model of NP 6� coNP=poly.

Introduction

PV is a bounded arithmetic theory with function symbols for all polynomial time

algorithms, and axiomatized by a particular set of universal formulas, cf. [3].

Models of PV are a natural environment for notions of computational complexity

theory around deterministic and non-deterministic polynomial time. Major open

problems in this part of complexity theory have their counterparts in bounded

arithmetic and propositional logic. We are interested in proving some notorious

open conjectures for a model of bounded arithmetic, and not so much in showing

that some of these conjectures might be unprovable in bounded arithmetic. For

a general motivation (for this author, at least) for research in this area see the

preface to [4].

In a modelM of the theory PV the class P of the polynomial-time sets is the

class of subsets of M de�nable by an atomic PV -formula with parameters from

M (in S

1

2

this would be provably �

b

1

-formulas with parameters), equivalently:

recognizable by a standard DTM with an extra input (the parameter) which

may be non-standard, equivalently: recognizable by a DTM possibly with a

non-standard description but whose time is bounded by a standard degree poly-

nomial.

The class P=poly is de�ned in the same way except that the parameters

may vary with the length of the inputs, and the classes NP;NP=poly and

�

Partially supported by the US - Czechoslovak Science and Technology Program grant

# 93025, and by grant #A1019602 of the AV

�

CR.

1



coNP; coNP=poly are de�ned analogously using NDTM 's. In particular, NP -

subsets of M (resp. coNP ) are those de�nable by �

b

1

-formulas (resp. by �

b

1

-

formulas) with parameters, that may vary with the length in case of NP=poly

and coNP=poly.

It is not important whether we require that the length of parameters in the

non-uniform classes is polynomial in the length of the input. This is because

we are concerned with de�nability of sets of inputs of a �xed length. In general

one may restrict to those models of PV in which lengths are polynomial (with

a standard degree) in one �xed length.

The problem whether PV equals to S

1

2

is closely related to the circuit com-

plexity of NP -sets. In particular, PV 6= S

1

2

if NP 6� P=poly (by [8]) or if there

is a model of PV in which NP 6� coNP=poly (by [2, 9]).

1

Constructions of extensions of models of PV (or of S

1

2

) are also closely related

to length-of-proofs problems about the extended Frege systems, cf. [4, 5, 6].

In this paper we study the problem to construct a model of PV in which

NP 6� coNP=poly. We give three versions of a construction showing that certain

models of PV in which NP 6� P=poly have a �

b

1

-elementary extension to a model

of (PV and) NP 6� coNP=poly. An ultimate goal is to make the construction

work under weaker assumptions on models than those in Theorem 2.1.

A relevant background can be found in [4]. In particular, necessary facts

from all other references can be also found there.

1 Preliminaries

Given a length n = jyj of y 2M , SAT

n

(M ) denotes the set of satis�able formulas

in M of length n; this set is de�ned by a canonical �

b

1

-formula Sat

n

(x) with a

parameter of the same length as y. Log(M ) is the set of lengths of elements of

M .

For a formula a and a truth assignment w the relation w j= a denotes that w

satis�es a, and is de�nable by a �xed open formula. We shall assume that w j= a

implies (in PV ) that a is a formula from SAT

n

(M ) and w is a truth-assignment

to its atoms.

Let Circuit

M

denote the set of multi-output circuits in M and for C 2

Circuit

M

and a 2M of appropriate length, C(a) = b is a function de�nable by

a ternary PV -symbol stating that b is the output of the computation of circuit

C on input a (when numbers are identi�ed with their binary encodings).

The following lemma follows from the fact that PV can de�ne binary search.

1

We inessentially abuse the notation here; instead of PV , which is an equational theory as

de�ned in [3], we work with its �rst-order conservative extension PV

1

de�ned in [8, 4], and in

place of S

1

2

we should use its conservative extension S

1

2

(PV ) in the language of PV , cf. [4].
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Lemma 1.1 For any length n and any circuit C 2 Circuit

M

there exists an-

other circuit C

0

2 Circuit

M

such that if

M j= (8x; jxj = n); Sat

n

(x) � (C(x) = 1)

then

M j= (8x; jxj= n); Sat

n

(x)! (C

0

(x) j= x) :

In particular, the property that SAT

n

(M ) is recognized in a model M of PV by

a circuit is preserved to �

b

1

-elementary extensions of M .

This means that only M in which NP 6� P=poly can possibly have a co�nal

�

b

1

-elementary extension in which NP 6� coNP=poly.

De�nition 1.2 Let M be a model of PV and assume that for some length n 2

Log(M ) the set SAT

n

(M ) is not recognized in M by a circuit.

A counter-example function (for SAT

n

(M ) in M , tacitly) is a function �

that assigns to any circuit C 2 Circuit

M

with n inputs a pair

�(C) = (a;w)

such that

1. w j= a

2. C(a) 6j= a :

We say that � is in P=poly of M if for every length m 2 Log(M ) there is a

circuit D

m

2 Circuit

M

with m input bits and 2n output bits computing �(C) for

any C of size at most m.

Note that the statement that SAT

n

(M ) is not recognized by a circuit of size

at most m is �

b

1

(�), whenever � is a counter-example function. Hence we have

the following lemma.

Lemma 1.3 Let M be a model of PV in which the set SAT

n

(M ) is not recog-

nized by a circuit. Let � be a corresponding counter-example function. Then

SAT

n

(M

0

) is not recognized by a circuit in any �

b

1

(�)-elementary, co�nal exten-

sion (M

0

; �

0

) of (M; �).

In particular, ifM admits a counter-example function in P=poly then the set

SAT

n

(M

0

) is not recognized by a circuit in any �

b

1

-elementary, co�nal extension

M

0

of M , and M

0

admits a counter-example function in P=poly.

2 An ultrapower

Theorem 2.1 Let M be a countable model of PV and assume that for some

length n 2 Log(M ) the set SAT

n

(M ) is not recognized inM by a circuit. Assume

that M admits a counter-example function � in P=poly.

Then there is a �

b

1

-elementary, co�nal extension M

0

of M , a model of PV ,

such that the set SAT

n

(M

0

) is not recognized in M

0

by a co-non-deterministic

circuit.

3



Proof

For C 2 Circuit

M

let f

C

be the function from M to M computed by the

circuit C.

Take:

F

M

:= ff

C

: SAT

n

(M )!M j C 2 Circuit

M

g:

We shall construct an ultrapower of the form F

M

=U , with U � exp(SAT

n

(M ))

a particular ultra�lter. The following claim is obvious.

Claim 1 For any ultra�lter U , Lo�s's theorem holds for all open PV - formulas,

and F

M

=U is a �

b

1

-elementary, co�nal extension of M . In particular, F

M

=U is

a model of PV .

De�ne a particular element of F

M

:

a

U

= id

SAT

n

(M)

=U :

Claim 2 Let  (x) be a �

b

1

-formula with parameters from M such that:

M j=  (a)

for all a 2 SAT

n

(M ). Then:

F

M

=U j=  (a

U

):

Claim 2 follows by Lo�s's theorem for all open PV - formulas.

For a circuit D 2 Circuit

M

with n bits of input de�ne the set:

D

�

:= fa 2 SAT

n

(M ) j D(a) j= ag :

Claim 3 Assume that an ultra�lter U � exp(SAT

n

(M )) satis�es the condition:

8D 2 Circuit

M

;D

�

=2 U

Then :

F

M

=U j= :Sat

n

(a

U

) :

The claim follows from Lo�s's theorem again: an element f

D

=U satis�es the

formula a

U

in F

M

=U i� D

�

2 U .

Claim 4 SAT

n

(F

M

=U) is not recognized in F

M

=U by a circuit and F

M

=U admits

a counter-example function in P=poly.

Assume on the contrary that SAT

n

(F

M

=U) is recognized in F

M

=U by a

circuit, hence by Lemma 1.1 it holds in F

M

=U :

f

W

=U j= f

A

=U ) f

C

=U(f

A

=U) j= f

A

=U

4



for some f

C

=U 2 Circuit

F

M

=U

and all f

A

=U ; f

W

=U 2 F

M

.

For an arbitrary f

C

de�ne particular f

A

; f

W

by:

(f

A

(a); f

W

(a)) := �(C(a))

For those a 2 SAT

n

(M ) for which C(a) is a circuit with n inputs, f

W

(a) j= f

A

(a)

but C(a)(f

A

(a)) 6j= f

A

(a) by the de�nition of �. Hence f

C

=U cannot have the

property stated earlier.

Note that by Claim 1 the circuits D

m

computing � in M compute a counter-

example function in F

M

=U as well.

Let U

0

� exp(SAT

n

(M )) consist of all sets X containing some set of the

form:

SAT

n

(M ) nD

�

for some D 2 Circuit

M

. By the hypothesis that SAT

n

(M ) is not recognized in

M by a circuit, the class U

0

is closed under intersections and ; =2 U

0

, i.e., it is a

non-trivial �lter. Let U � U

0

be arbitrary ultra�lter.

De�ne M

1

to be the countable model F

M

=U . By Claims 2 and 3 no �

b

1

-

formula with parameters fromM de�nes the set SAT

n

(M

1

) in M

1

.

By Claim 4 the set SAT

n

(M

1

) is not recognized inM

1

by a circuit. We may

therefore repeat this construction countably many times to obtain a chain:

M � M

1

� M

2

� : : :

of �

b

1

-elementary, co�nal extensions (killing all potential �

b

1

-de�nitions of Sat

n

(x)

with all possible parameters from all M

t

) such that its union:

M

0

:=

[

t

M

t

is a �

b

1

-elementary, co�nal extension of M in which SAT

n

(M

0

) is not de�ned

by any �

b

1

-formula with parameters from M

0

, i.e., it is not recognized by a

co-non-deterministic circuit.

Q.E.D.

Note that the version of the theorem with P;NP; coNP in place of the non-

uniform classes is a simple corollary of Herbrand's theorem.

3 A compactness argument

In this section we give another proof of Theorem 2.1.

Let �(x) be a �

b

1

- formula with parameters from M . We want to �nd a �

b

1

-

elementary, co�nal extension of M in which 9x;:(�(x) � Sat

n

(x)) holds. Note

that we may assume w.l.o.g. that in PV + Th

8�

b

1

(M ) it holds that

�(c)! jcj = n

5



(otherwise just replace �(c) by �(c) ^ jcj = n).

If already

M j= 9x;:(�(x) � Sat

n

(x))

then this will be preserved in every �

b

1

-elementary extension. If

PV + Th

8�

b

1

(M ) ` 8x(�(x) � Sat

n

(x))

then by Herbrand's theorem there is a PV -symbol f(x; y) and b 2M such that:

PV + Th

8�

b

1

(M ) ` 8x(Sat

n

(x) � (f(x; b) j= x)) ;

so the set SAT

n

(M ) is recognized inM by a circuit, contradicting the hypothesis

of the theorem.

So the only case creating di�culties is when

M j= 8x (�(x) � Sat

n

(x))

but

PV + Th

8�

b

1

(M ) 6` 8x(�(x) � Sat

n

(x))

which implies:

PV + Th

8�

b

1

(M ) 6` 8x (�(x)! Sat

n

(x))

(as the opposite implication is in Th

8�

b

1

(M )).

Take a new constant c and a formula

�(c) ^:Sat

n

(c) :

Claim The theory

PV + Th

8�

b

1

(M ) + �(c) ^ :Sat

n

(c)

does not prove that Sat

n

(x) is recognized by a polynomial size circuit.

Assume on the contrary that

PV + Th

8�

b

1

(M ) + �(c) + :Sat

n

(c) ` 9D(8x; jxj = n); Sat

n

(x)! D(x) j= x

By the hypothesis PV + Th

8�

b

1

(M ) + �(c) + :Sat

n

(c) is consistent and hence

has a model N (that contains M as a submodel). Take N

�

to be the unique

substructure of N generated from elements ofM [fcg by PV -function symbols.

Thus N

�

j= PV + Th

8�

b

1

(M ) + �(c) + :Sat

n

(c) and hence

N

�

j= 9D(8x; jxj = n); Sat

n

(x)! D(x) j= x

Moreover, N

�

is a �

b

1

-elementary and co�nal (as jcj = n) extension of M .
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However, that is a contradiction with Lemma 1.3, as by the hypothesis of

the theorem M admits a counter-example function in P=poly.

By the claim we may take M

1

, a �

b

1

-elementary, co�nal extension of M that

is a model of �(c)^:Sat

n

(c), and such that there is no circuit inM

1

recognizing

SAT

n

(M

1

). Then we construct a countable chain M � M

1

� M

2

� : : : killing

all potential �

b

1

-de�nitions (with all possible parameters from allM

i

) of Sat

n

(x).

Thus M

0

:=

S

i

M

i

is the required extension.

Q.E.D.

4 A Boolean-valued extension

Boolean-valued extensions of S

1

2

were de�ned in [5], see also [4, Chpt. 9.4]. For

PV in place of S

1

2

the construction has a particular formulation.

Let M be a model of PV and let (p

1

; : : : ; p

n

) 2M be a sequence of proposi-

tional atoms. Let Circuit

M

(p) be all circuits with one output formed from atoms

p

i

, and let B(p) be the Boolean algebra obtained by factoring Circuit

M

(p) by

the equivalence relation C

1

� C

2

that holds for C

1

; C

2

i� there is an EF -proof

in M of C

1

� C

2

(see [5] for a formalization of this notion).

Given an ultra�lter G on B(p), let �

G

(C) be equal 1 if (C= �) 2 G and equal

to 0 otherwise.

De�ne the extension M [G] of M as follows. Let Names

M

(p) be the set of

sequences hC

1

; : : : ; C

`

i 2M of elements of Circuit

M

(p). The elements of M [G]

are tuples

h�

G

(C

1

); : : : ; �

G

(C

`

)i

one for each hC

1

; : : : ; C

`

i 2 Names

M

(p).

For f(x

1

; : : : ; x

k

) a PV -function and ` 2 Log(M ) a length, let D

t

f;`

(y

ij

)

(i � k and j � `) be a circuit in M computing (provably in PV ) the t

th

bit

of f(x

1

; : : : ; x

k

) for inputs x

i

of length at most ` with bits y

i1

; : : : ; y

i`

. De�ne

f(w

1

; : : : ; w

k

) for elements w

i

of M [G]

w

i

= h�

G

(C

i1

); : : : ; �

G

(C

i`

)i

to be

h�

G

(D

1

f;`

(y

ij

=C

ij

); �

G

(D

2

f;`

(y

ij

=C

ij

); : : :i

The following is a special case of [5, Thm. 5.1]. See also [7] or [5, Sec. 9.4] for

another treatment of the construction.

Theorem 4.1 Let M be a model of PV , (p

1

; : : : ; p

n

) 2M propositional atoms,

and let G be an ultra�lter on B(p). Assume that G is closed under EF -provability

in M , i.e., whenever there is an EF -proof in M of D from C

1

; : : : ; C

k

and

�

G

(C

i

) = 1 then �

G

(D) = 1 too.

Then M [G] is a co�nal extension of M and it is a model of PV .

Moreover, if �

G

(C) = 1 whenever C 2 Circuit

M

(p) computes the function con-

stantly 1 in M , then M [G] is a �

b

1

-elementary, co�nal extension of M .
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We give now another proof of Theorem 2.1.

Let M be a countable model of PV in which SAT

n

(M ) is not recognized by

a circuit, and that admits a counter-example function � in P=poly.

We shall denote by y j= x also the circuit in M that computes on two n-bit

inputs x; y whether they satisfy the relation y j= x. Let �(x) be a �

b

1

-formula

with parameters fromM of the form 8z; jzj � jxj

k

! �

0

(x; z), where �

0

is open.

Let p = (p

1

; : : : ; p

n

) be mutually di�erent propositional atoms in M . Con-

sider the set T of propositional formulas of the form

:(hW

1

; : : : ;W

n

i j= p)

and of the form

�

0

(p; hZ

1

; : : : ; Z

m

i)

where W = hW

1

; : : : ;W

n

i, Z = hZ

1

; : : : ; Z

m

i are all elements of Names

M

(p) of

the length n and m = n

k

respectively.

Claim 1 There is no EF -refutation of T in M .

Assume otherwise, i.e., there is an EF -proof of

_

W

W (p) j= p _

_

Z

:�

0

(p; Z)

for some W 's and Z's. As EF is sound in any model of PV , the W 's and Z 's

may be combined into a circuit in M recognizing the set SAT

n

(M ). That is a

contradiction.

Claim 2 There is an ultra�lter G on B(p) that is closed under EF -provability

in M and such that

1. �

G

(C) = 1, for all C 2 T .

2. �

G

(C) = 1, for all C 2 Circuit

M

(p) computing in M constantly 1.

Take S � Circuit

M

(p) the set of all circuits C

0

majorizing (as Boolean

functions) in M some C 2 T . By Claim 1 the subset of B(p) of �-classes of

all C

0

2 S is a non-trivial �lter. Any ultra�lter extending this set satis�es the

requirements of the claim.

Take M

1

:= M [G] for any G given by Claim 2. Then, by Theorem 4.1, M

1

is a model of PV in which the element

a

G

:= h�

G

(p

1

); : : : ; �

G

(p

n

)i

is not in SAT

n

(M

1

) but

M

1

j= �(a

G

)

Hence �(x) will not de�ne Sat

n

(x) in any �

b

1

-elementary extension of M

1

.

8



By the �

b

1

-elementarity and co�nality of M

1

over M and by Lemma 1.3, no

circuit in M

1

recognizes SAT

n

(M

1

) and M

1

admits a counter-example function

in P=poly. We may thus repeat the construction to produce a chainM � M

1

�

M

2

� : : : such thatM

0

:=

S

i

M

i

is the required model, identically as in sections

2 and 3.

Q.E.D.

5 A construction of a counter-example function

Let E � X � Y be a bipartite graph, dlog

2

jXje = n and dlog

2

jY je = m. If

8y

0

; : : : ; y

n

2 Y 9x 2 X;

^

j

:(xEy

j

)

then

9x

0

; : : : ; x

m

2 X8y 2 Y ;

_

i

:(x

i

Ey)

This is easily proved by a pigeon-hole argument. For the purpose of bounded

arithmetic we shall relax the statement a bit, removing explicit bounds on the

number of x

i

's and y

j

's.

De�nition 5.1 Let �(x; y) be a binary predicate. CE(u; �) is an 9�

b

1

(�)- for-

mula formalizing that either there is a sequence (x

0

; : : : ; x

k

) of elements smaller

than u such that

8y � u;

_

i

:�(x

i

; y)

or there is a sequence (y

0

; : : : ; y

`

) of elements smaller than u such that

8x � u;

_

j

�(x; y

j

)

Lemma 5.2 Assume that M is a model of PV in which SAT

n

(M ) is not re-

cognized by a circuit. Assume also that M satis�es for all open PV -formulas

�(x; y) the statement 8u;CE(u; �) with bounds k; ` � jt(u)j, t a term.

Then M admits a counter-example function in P=poly.

Proof

Let �(x; y) formalizes that y is a circuit C of size at most m with n inputs,

x is a pair (a;w) of a 2 SAT

n

(M ) and w j= a, and C(a) j= a.

Take the principleCE(u; �) for u := max(2

2n

; 2

m

). The principle provides us

either with circuits C

0

; : : : ; C

`

of size at mostm such that for every a 2 SAT

n

(M )

_

j

C

j

(a) j= a

9



or with pairs (a

0

; w

0

); : : : ; (a

k

; w

k

) of a

i

2 SAT

n

(M ) and w

i

j= a

i

such that for

every circuit C of size at most m

_

i

C(a

i

) 6j= a

i

The former option is, however, impossible as otherwise we could combine C

j

's

into one circuit recognizing SAT

n

(M ). Hence we have the pairs (a

i

; w

i

) and we

de�ne the circuit D

m

as follows. Given as an input a circuit C, D

m

tries C

on all a

i

and outputs the �rst pair (a

i

; w

i

) such that C(a

i

) 6j= a

i

. Clearly D

m

computes a counter-example function for circuits of size at most m.

Q.E.D.

It is open whether the combinatorial principle is provable in PV or even in

S

2

. A corollary of the principle, namely the tournament principle (see [4, Sec.

12.1]), is also not known to be provable in bounded arithmetic.

Theorem 5.3 Assume that S

2

proves the formula

8u;CE(u; �)

for the �

b

1

-formula �(x; y) de�ned at the beginning of the proof of Lemma 5.2.

Assume also that PV has a countable model in which NP 6� P=poly.

Then PV 6= S

1

2

.

Proof

Take M a countable model of PV in which SAT

n

(M ) is not recognized by a

circuit. If M 6j= S

1

2

then we are done. So assume that M j= S

1

2

.

Consider the theory T formed by

PV + Th

�

b

1

(M )

together with all formulas

8y9x;Sat

n

(x) 6� �(x; y)

one for each �

b

1

-formula � without parameters.

If T were consistent then any of its models is a �

b

1

-elementary extension of

M in which NP 6� coNP=poly and thus by [2, 9] PV 6= S

1

2

.

On the other hand, if T is inconsistent then PV + Th

�

b

1

(M ) proves a

disjunction of formulas of the form

9y8x;Sat

n

(x) � �(x; y)

� �

b

1

-formulas without parameters. This means that in M every bounded for-

mula is equivalent to a �

b

1

-formula and, in particular, the PIND scheme for all

bounded formulas holds in M as M j= S

1

2

. Hence M j= S

2

and consequently

M j= 8u;CE(u; �).

By Lemma 5.2 and Theorem 2.1 M has an extension M

0

in which NP 6�

coNP=poly. So, by [2, 9] again, PV 6= S

1

2

.
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