Extensions of models of $P V$

Jan Krajíček*
Mathematical Institute and Institute of Computer Science Academy of Sciences of the Czech Republic

Abstract

We prove that certain models of $P V$ in which $N P \not \subset P /$ poly have a Π_{1}^{b}-elementary extension to a model of ($P V$ and) $N P \not \subset$ coN $P /$ poly.

If S_{2} proves a particular fact about bipartite graphs then, in fact, all models of $P V$ in which $N P \mathbb{Q} /$ poly have a Π_{1}^{b}-elementary extension to a model of $N P \not \subset \operatorname{coN} P /$ poly.

Introduction

$P V$ is a bounded arithmetic theory with function symbols for all polynomial time algorithms, and axiomatized by a particular set of universal formulas, cf. [3]. Models of $P V$ are a natural environment for notions of computational complexity theory around deterministic and non-deterministic polynomial time. Major open problems in this part of complexity theory have their counterparts in bounded arithmetic and propositional logic. We are interested in proving some notorious open conjectures for a model of bounded arithmetic, and not so much in showing that some of these conjectures might be unprovable in bounded arithmetic. For a general motivation (for this author, at least) for research in this area see the preface to [4].

In a model M of the theory $P V$ the class P of the polynomial-time sets is the class of subsets of M definable by an atomic $P V$-formula with parameters from M (in S_{2}^{1} this would be provably Δ_{1}^{b}-formulas with parameters), equivalently: recognizable by a standard $D T M$ with an extra input (the parameter) which may be non-standard, equivalently: recognizable by a $D T M$ possibly with a non-standard description but whose time is bounded by a standard degree polynomial.

The class $P / p o l y$ is defined in the same way except that the parameters may vary with the length of the inputs, and the classes $N P, N P /$ poly and

[^0]$c o N P, c o N P / p o l y$ are defined analogously using $N D T M$'s. In particular, $N P-$ subsets of M (resp. coNP) are those definable by Σ_{1}^{b}-formulas (resp. by Π_{1}^{b} formulas) with parameters, that may vary with the length in case of $N P /$ poly and coNP/poly.

It is not important whether we require that the length of parameters in the non-uniform classes is polynomial in the length of the input. This is because we are concerned with definability of sets of inputs of a fixed length. In general one may restrict to those models of $P V$ in which lengths are polynomial (with a standard degree) in one fixed length.

The problem whether $P V$ equals to S_{2}^{1} is closely related to the circuit complexity of $N P$-sets. In particular, $P V \neq S_{2}^{1}$ if $N P \not \subset P /$ poly (by [8]) or if there is a model of $P V$ in which $N P \nsubseteq \operatorname{coNP/poly}$ (by $[2,9]) .{ }^{1}$

Constructions of extensions of models of $P V$ (or of S_{2}^{1}) are also closely related to length-of-proofs problems about the extended Frege systems, cf. $[4,5,6]$.

In this paper we study the problem to construct a model of $P V$ in which $N P \not \subset c o N P / p o l y$. We give three versions of a construction showing that certain models of $P V$ in which $N P \nsubseteq P /$ poly have a Π_{1}^{b}-elementary extension to a model of ($P V$ and) $N P \nsubseteq$ coNP/poly. An ultimate goal is to make the construction work under weaker assumptions on models than those in Theorem 2.1.

A relevant background can be found in [4]. In particular, necessary facts from all other references can be also found there.

1 Preliminaries

Given a length $n=|y|$ of $y \in M, S A T_{n}(M)$ denotes the set of satisfiable formulas in M of length n; this set is defined by a canonical Σ_{1}^{b}-formula $\operatorname{Sat}_{n}(x)$ with a parameter of the same length as $y . \log (M)$ is the set of lengths of elements of M.

For a formula a and a truth assignment w the relation $w \models a$ denotes that w satisfies a, and is definable by a fixed open formula. We shall assume that $w \models a$ implies (in $P V$) that a is a formula from $S A T_{n}(M)$ and w is a truth-assignment to its atoms.

Let Circuit $_{M}$ denote the set of multi-output circuits in M and for $C \in$ Circuit $_{M}$ and $a \in M$ of appropriate length, $C(a)=b$ is a function definable by a ternary $P V$-symbol stating that b is the output of the computation of circuit C on input a (when numbers are identified with their binary encodings).

The following lemma follows from the fact that $P V$ can define binary search.

[^1]Lemma 1.1 For any length n and any circuit $C \in$ Circuit $_{M}$ there exists another circuit $C^{\prime} \in$ Circuit $_{M}$ such that if

$$
M \models(\forall x,|x|=n), S_{a t_{n}}(x) \equiv(C(x)=1)
$$

then

$$
M \models(\forall x,|x|=n), \operatorname{Sat}_{n}(x) \rightarrow\left(C^{\prime}(x) \models x\right)
$$

In particular, the property that $S A T_{n}(M)$ is recognized in a model M of $P V$ by a circuit is preserved to Π_{1}^{b}-elementary extensions of M.

This means that only M in which $N P \not \subset P / p o l y$ can possibly have a cofinal Π_{1}^{b}-elementary extension in which $N P \nsubseteq$ coNP/poly.

Definition 1.2 Let M be a model of $P V$ and assume that for some length $n \in$ $\log (M)$ the set $S A T_{n}(M)$ is not recognized in M by a circuit.

A counter-example function (for $S A T_{n}(M)$ in M, tacitly) is a function ξ that assigns to any circuit $C \in$ Circuit $_{M}$ with n inputs a pair

$$
\xi(C)=(a, w)
$$

such that

1. $w \models a$
2. $C(a) \not \vDash a$.

We say that ξ is in $P /$ poly of M if for every length $m \in \log (M)$ there is a circuit $D_{m} \in$ Circuit $_{M}$ with m input bits and $2 n$ output bits computing $\xi(C)$ for any C of size at most m.

Note that the statement that $S A T_{n}(M)$ is not recognized by a circuit of size at most m is $\Pi_{1}^{b}(\xi)$, whenever ξ is a counter-example function. Hence we have the following lemma.

Lemma 1.3 Let M be a model of $P V$ in which the set $S A T_{n}(M)$ is not recognized by a circuit. Let ξ be a corresponding counter-example function. Then $S A T_{n}\left(M^{\prime}\right)$ is not recognized by a circuit in any $\Pi_{1}^{b}(\xi)$-elementary, cofinal exten$\operatorname{sion}\left(M^{\prime}, \xi^{\prime}\right)$ of (M, ξ).

In particular, if M admits a counter-example function in $P /$ poly then the set $S A T_{n}\left(M^{\prime}\right)$ is not recognized by a circuit in any Π_{1}^{b}-elementary, cofinal extension M^{\prime} of M, and M^{\prime} admits a counter-example function in $P /$ poly.

2 An ultrapower

Theorem 2.1 Let M be a countable model of $P V$ and assume that for some length $n \in \log (M)$ the set $S A T_{n}(M)$ is not recognized in M by a circuit. Assume that M admits a counter-example function ξ in $P /$ poly.

Then there is a Π_{1}^{b}-elementary, cofinal extension M^{\prime} of M, a model of $P V$, such that the set $S A T_{n}\left(M^{\prime}\right)$ is not recognized in M^{\prime} by a co-non-deterministic circuit.

Proof

For $C \in$ Circuit $_{M}$ let f_{C} be the function from M to M computed by the circuit C.

Take:

$$
\mathcal{F}_{M}:=\left\{f_{C}: S A T_{n}(M) \rightarrow M \mid C \in \operatorname{Circuit}_{M}\right\} .
$$

We shall construct an ultrapower of the form $\mathcal{F}_{M} / \mathcal{U}$, with $\mathcal{U} \subseteq \exp \left(S A T_{n}(M)\right)$ a particular ultrafilter. The following claim is obvious.

Claim 1 For any ultrafilter \mathcal{U}, Los̆'s theorem holds for all open $P V$ - formulas, and $\mathcal{F}_{M} / \mathcal{U}$ is a Π_{1}^{b}-elementary, cofinal extension of M. In particular, $\mathcal{F}_{M} / \mathcal{U}$ is a model of PV.
Define a particular element of \mathcal{F}_{M} :

$$
a_{\mathcal{U}}=i d_{S A T_{n}(M)} / \mathcal{U} .
$$

Claim 2 Let $\psi(x)$ be a Π_{1}^{b}-formula with parameters from M such that:

$$
M \models \psi(a)
$$

for all $a \in S A T_{n}(M)$. Then:

$$
\mathcal{F}_{M} / \mathcal{U} \models \psi\left(a_{\mathcal{U}}\right) .
$$

Claim 2 follows by Los̆'s theorem for all open PV-formulas.
For a circuit $D \in$ Circuit $_{M}$ with n bits of input define the set:

$$
D^{*}:=\left\{a \in S A T_{n}(M) \mid D(a) \models a\right\} .
$$

Claim 3 Assume that an ultrafilter $\mathcal{U} \subseteq \exp \left(S A T_{n}(M)\right)$ satisfies the condition:

$$
\forall D \in \text { Circuit }_{M} ; D^{*} \notin \mathcal{U}
$$

Then :

$$
\mathcal{F}_{M} / \mathcal{U} \models \neg S a t_{n}\left(a_{\mathcal{U}}\right)
$$

The claim follows from Loš's theorem again: an element f_{D} / \mathcal{U} satisfies the formula $a_{\mathcal{U}}$ in $\mathcal{F}_{M} / \mathcal{U}$ iff $D^{*} \in \mathcal{U}$.

Claim $4 S A T_{n}\left(\mathcal{F}_{M} / \mathcal{U}\right)$ is not recognized in $\mathcal{F}_{M} / \mathcal{U}$ by a circuit and $\mathcal{F}_{M} / \mathcal{U}$ admits a counter-example function in $P /$ poly.

Assume on the contrary that $S A T_{n}\left(\mathcal{F}_{M} / \mathcal{U}\right)$ is recognized in $\mathcal{F}_{M} / \mathcal{U}$ by a circuit, hence by Lemma 1.1 it holds in $\mathcal{F}_{M} / \mathcal{U}$:

$$
f_{W} / \mathcal{U} \models f_{A} / \mathcal{U} \Rightarrow f_{C} / \mathcal{U}\left(f_{A} / \mathcal{U}\right) \models f_{A} / \mathcal{U}
$$

for some $f_{C} / \mathcal{U} \in \operatorname{Circuit}_{\mathcal{F}_{M}} / \mathcal{U}$ and all $f_{A} / \mathcal{U}, f_{W} / \mathcal{U} \in \mathcal{F}_{M}$.
For an arbitrary f_{C} define particular f_{A}, f_{W} by:

$$
\left(f_{A}(a), f_{W}(a)\right):=\xi(C(a))
$$

For those $a \in S A T_{n}(M)$ for which $C(a)$ is a circuit with n inputs, $f_{W}(a) \models f_{A}(a)$ but $C(a)\left(f_{A}(a)\right) \notin f_{A}(a)$ by the definition of ξ. Hence f_{C} / \mathcal{U} cannot have the property stated earlier.

Note that by Claim 1 the circuits D_{m} computing ξ in M compute a counterexample function in $\mathcal{F}_{M} / \mathcal{U}$ as well.

Let $\mathcal{U}_{0} \subseteq \exp \left(S A T_{n}(M)\right)$ consist of all sets X containing some set of the form:

$$
S A T_{n}(M) \backslash D^{*}
$$

for some $D \in$ Circuit $_{M}$. By the hypothesis that $S A T_{n}(M)$ is not recognized in M by a circuit, the class \mathcal{U}_{0} is closed under intersections and $\emptyset \notin \mathcal{U}_{0}$, i.e., it is a non-trivial filter. Let $\mathcal{U} \supseteq \mathcal{U}_{0}$ be arbitrary ultrafilter.

Define M^{1} to be the countable model $\mathcal{F}_{M} / \mathcal{U}$. By Claims 2 and 3 no Π_{1-}^{b} formula with parameters from M defines the set $S A T_{n}\left(M^{1}\right)$ in M^{1}.

By Claim 4 the set $S A T_{n}\left(M^{1}\right)$ is not recognized in M^{1} by a circuit. We may therefore repeat this construction countably many times to obtain a chain:

$$
M \subseteq M^{1} \subseteq M^{2} \subseteq \ldots
$$

of Π_{1}^{b}-elementary, cofinal extensions (killing all potential Π_{1}^{b}-definitions of $S a t_{n}(x)$ with all possible parameters from all M^{t}) such that its union:

$$
M^{\prime}:=\bigcup_{t} M^{t}
$$

is a Π_{1}^{b}-elementary, cofinal extension of M in which $S A T_{n}\left(M^{\prime}\right)$ is not defined by any Π_{1}^{b}-formula with parameters from M^{\prime}, i.e., it is not recognized by a co-non-deterministic circuit.
Q.E.D.

Note that the version of the theorem with $P, N P, c o N P$ in place of the nonuniform classes is a simple corollary of Herbrand's theorem.

3 A compactness argument

In this section we give another proof of Theorem 2.1.
Let $\pi(x)$ be a Π_{1}^{b} - formula with parameters from M. We want to find a $\Pi_{1}^{b}-$ elementary, cofinal extension of M in which $\exists x ; \neg\left(\pi(x) \equiv S a t_{n}(x)\right)$ holds. Note that we may assume w.l.o.g. that in $P V+T h_{\forall \Pi_{1}^{b}}(M)$ it holds that

$$
\pi(c) \rightarrow|c|=n
$$

(otherwise just replace $\pi(c)$ by $\pi(c) \wedge|c|=n$).
If already

$$
M \models \exists x ; \neg\left(\pi(x) \equiv \operatorname{Sat}_{n}(x)\right)
$$

then this will be preserved in every Π_{1}^{b}-elementary extension. If

$$
P V+T h_{\forall \Pi_{1}^{b}}(M) \vdash \forall x\left(\pi(x) \equiv \operatorname{Sat}_{n}(x)\right)
$$

then by Herbrand's theorem there is a $P V$-symbol $f(x, y)$ and $b \in M$ such that:

$$
P V+T h_{\forall \Pi_{1}^{b}}(M) \vdash \forall x\left(S_{a} t_{n}(x) \equiv(f(x, b) \models x)\right),
$$

so the set $S A T_{n}(M)$ is recognized in M by a circuit, contradicting the hypothesis of the theorem.

So the only case creating difficulties is when

$$
M \models \forall x\left(\pi(x) \equiv \operatorname{Sat}_{n}(x)\right)
$$

but

$$
P V+T h_{\forall \Pi_{1}^{b}}(M) \nvdash \forall x\left(\pi(x) \equiv \operatorname{Sat}_{n}(x)\right)
$$

which implies:

$$
P V+T h_{\forall \Pi_{1}^{b}}(M) \nvdash \forall x\left(\pi(x) \rightarrow S a t_{n}(x)\right)
$$

(as the opposite implication is in $T h_{\forall \Pi_{1}^{b}}(M)$).
Take a new constant c and a formula

$$
\pi(c) \wedge \neg S a t_{n}(c)
$$

Claim The theory

$$
P V+T h_{\forall \Pi_{1}^{b}}(M)+\pi(c) \wedge \neg S a t_{n}(c)
$$

does not prove that $S_{n}(x)$ is recognized by a polynomial size circuit.
Assume on the contrary that

$$
P V+T h_{\forall \Pi_{1}^{b}}(M)+\pi(c)+\neg S a t_{n}(c) \vdash \exists D(\forall x,|x|=n) ; \operatorname{Sat}_{n}(x) \rightarrow D(x) \models x
$$

By the hypothesis $P V+T h_{\forall \Pi_{1}^{b}}(M)+\pi(c)+\neg S a t_{n}(c)$ is consistent and hence has a model N (that contains M as a submodel). Take N^{*} to be the unique substructure of N generated from elements of $M \cup\{c\}$ by $P V$-function symbols. Thus $N^{*} \models P V+T h_{\forall \Pi_{1}^{b}}(M)+\pi(c)+\neg S a t_{n}(c)$ and hence

$$
N^{*} \models \exists D(\forall x,|x|=n) ; \operatorname{Sat}_{n}(x) \rightarrow D(x) \models x
$$

Moreover, N^{*} is a Π_{1}^{b}-elementary and cofinal (as $|c|=n$) extension of M.

However, that is a contradiction with Lemma 1.3, as by the hypothesis of the theorem M admits a counter-example function in $P /$ poly.

By the claim we may take M^{1}, a Π_{1}^{b}-elementary, cofinal extension of M that is a model of $\pi(c) \wedge \neg S a t_{n}(c)$, and such that there is no circuit in M^{1} recognizing $S A T_{n}\left(M^{1}\right)$. Then we construct a countable chain $M \subseteq M^{1} \subseteq M^{2} \subseteq \ldots$ killing all potential Π_{1}^{b}-definitions (with all possible parameters from all M^{i}) of $\operatorname{Sat}_{n}(x)$. Thus $M^{\prime}:=\bigcup_{i} M^{i}$ is the required extension.
Q.E.D.

4 A Boolean-valued extension

Boolean-valued extensions of S_{2}^{1} were defined in [5], see also [4, Chpt. 9.4]. For $P V$ in place of S_{2}^{1} the construction has a particular formulation.

Let M be a model of $P V$ and let $\left(p_{1}, \ldots, p_{n}\right) \in M$ be a sequence of propositional atoms. Let Circuit $_{M}(\bar{p})$ be all circuits with one output formed from atoms p_{i}, and let $\mathbf{B}(\bar{p})$ be the Boolean algebra obtained by factoring Circuit $_{M}(\bar{p})$ by the equivalence relation $C_{1} \sim C_{2}$ that holds for C_{1}, C_{2} iff there is an $E F$-proof in M of $C_{1} \equiv C_{2}$ (see [5] for a formalization of this notion).

Given an ultrafilter \mathcal{G} on $\mathbf{B}(\bar{p})$, let $\nu_{\mathcal{G}}(C)$ be equal 1 if $(C / \sim) \in \mathcal{G}$ and equal to 0 otherwise.

Define the extension $M[\mathcal{G}]$ of M as follows. Let $\operatorname{Names}_{M}(\bar{p})$ be the set of sequences $\left\langle C_{1}, \ldots, C_{\ell}\right\rangle \in M$ of elements of Circuit $_{M}(\bar{p})$. The elements of $M[\mathcal{G}]$ are tuples

$$
\left\langle\nu_{\mathcal{G}}\left(C_{1}\right), \ldots, \nu_{\mathcal{G}}\left(C_{\ell}\right)\right\rangle
$$

one for each $\left\langle C_{1}, \ldots, C_{\ell}\right\rangle \in \operatorname{Names}_{M}(\bar{p})$.
For $f\left(x_{1}, \ldots, x_{k}\right)$ a $P V$-function and $\ell \in \log (M)$ a length, let $D_{f, \ell}^{t}\left(y_{i j}\right)$ ($i \leq k$ and $j \leq \ell$) be a circuit in M computing (provably in $P V$) the $t^{t h}$ bit of $\bar{f}\left(x_{1}, \ldots, x_{k}\right)$ for inputs x_{i} of length at most ℓ with bits $y_{i 1}, \ldots, y_{i \ell}$. Define $f\left(w_{1}, \ldots, w_{k}\right)$ for elements w_{i} of $M[\mathcal{G}]$

$$
w_{i}=\left\langle\nu_{\mathcal{G}}\left(C_{i 1}\right), \ldots, \nu_{\mathcal{G}}\left(C_{i \ell}\right)\right\rangle
$$

to be

$$
\left\langle\nu _ { \mathcal { G } } \left(D_{f, \ell}^{1}\left(y_{i j} / C_{i j}\right), \nu_{\mathcal{G}}\left(D_{f, \ell}^{2}\left(y_{i j} / C_{i j}\right), \ldots\right\rangle\right.\right.
$$

The following is a special case of [5, Thm. 5.1]. See also [7] or [5, Sec. 9.4] for another treatment of the construction.

Theorem 4.1 Let M be a model of $P V,\left(p_{1}, \ldots, p_{n}\right) \in M$ propositional atoms, and let \mathcal{G} be an ultrafilter on $\mathbf{B}(\bar{p})$. Assume that \mathcal{G} is closed under EF-provability in M, i.e., whenever there is an EF-proof in M of D from C_{1}, \ldots, C_{k} and $\nu_{\mathcal{G}}\left(C_{i}\right)=1$ then $\nu_{\mathcal{G}}(D)=1$ too.

Then $M[\mathcal{G}]$ is a cofinal extension of M and it is a model of $P V$.
Moreover, if $\nu_{\mathcal{G}}(C)=1$ whenever $C \in \operatorname{Circuit}_{M}(\bar{p})$ computes the function constantly 1 in M, then $M[\mathcal{G}]$ is a Π_{1}^{b}-elementary, cofinal extension of M.

We give now another proof of Theorem 2.1.
Let M be a countable model of $P V$ in which $S A T_{n}(M)$ is not recognized by a circuit, and that admits a counter-example function ξ in $P / p o l y$.

We shall denote by $y \models x$ also the circuit in M that computes on two n-bit inputs x, y whether they satisfy the relation $y \models x$. Let $\phi(x)$ be a Π_{1}^{b}-formula with parameters from M of the form $\forall z,|z| \leq|x|^{k} \rightarrow \phi_{0}(x, z)$, where ϕ_{0} is open.

Let $\bar{p}=\left(p_{1}, \ldots, p_{n}\right)$ be mutually different propositional atoms in M. Consider the set T of propositional formulas of the form

$$
\neg\left(\left\langle W_{1}, \ldots, W_{n}\right\rangle \models \bar{p}\right)
$$

and of the form

$$
\phi_{0}\left(\bar{p},\left\langle Z_{1}, \ldots, Z_{m}\right\rangle\right)
$$

where $\bar{W}=\left\langle W_{1}, \ldots, W_{n}\right\rangle, \bar{Z}=\left\langle Z_{1}, \ldots, Z_{m}\right\rangle$ are all elements of $\operatorname{Names}_{M}(\bar{p})$ of the length n and $m=n^{k}$ respectively.

Claim 1 There is no EF-refutation of T in M.
Assume otherwise, i.e., there is an EF-proof of

$$
\underset{\frac{\bigvee}{W}}{\bar{W}}(\bar{p}) \models \bar{p} \quad \vee \quad \bigvee_{\bar{Z}} \neg \phi_{0}(\bar{p}, \bar{Z})
$$

for some \bar{W} 's and \bar{Z} 's. As $E F$ is sound in any model of $P V$, the \bar{W} 's and \bar{Z} 's may be combined into a circuit in M recognizing the set $S A T_{n}(M)$. That is a contradiction.

Claim 2 There is an ultrafilter \mathcal{G} on $\mathbf{B}(\bar{p})$ that is closed under EF-provability in M and such that

1. $\nu_{\mathcal{G}}(C)=1$, for all $C \in T$.
2. $\nu_{\mathcal{G}}(C)=1$, for all $C \in \operatorname{Circuit}_{M}(\bar{p})$ computing in M constantly 1 .

Take $S \subseteq$ Circuit $_{M}(\bar{p})$ the set of all circuits C^{\prime} majorizing (as Boolean functions) in M some $C \in T$. By Claim 1 the subset of $\mathbf{B}(\bar{p})$ of \sim-classes of all $C^{\prime} \in S$ is a non-trivial filter. Any ultrafilter extending this set satisfies the requirements of the claim.

Take $M^{1}:=M[\mathcal{G}]$ for any \mathcal{G} given by Claim 2. Then, by Theorem 4.1, M^{1} is a model of $P V$ in which the element

$$
a_{\mathcal{G}}:=\left\langle\nu_{\mathcal{G}}\left(p_{1}\right), \ldots, \nu_{\mathcal{G}}\left(p_{n}\right)\right\rangle
$$

is not in $S A T_{n}\left(M^{1}\right)$ but

$$
M^{1} \models \phi\left(a_{\mathcal{G}}\right)
$$

Hence $\phi(x)$ will not define $S_{a t_{n}}(x)$ in any Π_{1}^{b}-elementary extension of M^{1}.

By the Π_{1}^{b}-elementarity and cofinality of M^{1} over M and by Lemma 1.3 , no circuit in M^{1} recognizes $S A T_{n}\left(M^{1}\right)$ and M^{1} admits a counter-example function in $P /$ poly. We may thus repeat the construction to produce a chain $M \subseteq M^{1} \subseteq$ $M^{2} \subseteq \ldots$ such that $M^{\prime}:=\bigcup_{i} M^{i}$ is the required model, identically as in sections 2 and 3.
Q.E.D.

5 A construction of a counter-example function

Let $E \subseteq X \times Y$ be a bipartite graph, $\left\lceil\log _{2}|X|\right\rceil=n$ and $\left\lceil\log _{2}|Y|\right\rceil=m$. If

$$
\forall y_{0}, \ldots, y_{n} \in Y \exists x \in X ; \bigwedge_{j} \neg\left(x E y_{j}\right)
$$

then

$$
\exists x_{0}, \ldots, x_{m} \in X \forall y \in Y ; \bigvee_{i} \neg\left(x_{i} E y\right)
$$

This is easily proved by a pigeon-hole argument. For the purpose of bounded arithmetic we shall relax the statement a bit, removing explicit bounds on the number of x_{i} 's and y_{j} 's.

Definition 5.1 Let $\alpha(x, y)$ be a binary predicate. $C E(u, \alpha)$ is an $\exists \Pi_{1}^{b}(\alpha)$-formula formalizing that either there is a sequence $\left(x_{0}, \ldots, x_{k}\right)$ of elements smaller than u such that

$$
\forall y \leq u ; \bigvee_{i} \neg \alpha\left(x_{i}, y\right)
$$

or there is a sequence $\left(y_{0}, \ldots, y_{\ell}\right)$ of elements smaller than u such that

$$
\forall x \leq u ; \bigvee_{j} \alpha\left(x, y_{j}\right)
$$

Lemma 5.2 Assume that M is a model of $P V$ in which $S A T_{n}(M)$ is not recognized by a circuit. Assume also that M satisfies for all open $P V$-formulas $\alpha(x, y)$ the statement $\forall u ; C E(u, \alpha)$ with bounds $k, \ell \leq|t(u)|, t$ a term.

Then M admits a counter-example function in $P /$ poly.

Proof

Let $\alpha(x, y)$ formalizes that y is a circuit C of size at most m with n inputs, x is a pair (a, w) of $a \in S A T_{n}(M)$ and $w \models a$, and $C(a) \models a$.

Take the principle $C E(u, \alpha)$ for $u:=\max \left(2^{2 n}, 2^{m}\right)$. The principle provides us either with circuits C_{0}, \ldots, C_{ℓ} of size at most m such that for every $a \in S A T_{n}(M)$

$$
\bigvee_{j} C_{j}(a) \models a
$$

or with pairs $\left(a_{0}, w_{0}\right), \ldots,\left(a_{k}, w_{k}\right)$ of $a_{i} \in S A T_{n}(M)$ and $w_{i} \models a_{i}$ such that for every circuit C of size at most m

$$
\bigvee_{i} C\left(a_{i}\right) \not \models a_{i}
$$

The former option is, however, impossible as otherwise we could combine C_{j} 's into one circuit recognizing $S A T_{n}(M)$. Hence we have the pairs (a_{i}, w_{i}) and we define the circuit D_{m} as follows. Given as an input a circuit C, D_{m} tries C on all a_{i} and outputs the first pair $\left(a_{i}, w_{i}\right)$ such that $C\left(a_{i}\right) \nLeftarrow a_{i}$. Clearly D_{m} computes a counter-example function for circuits of size at most m.
Q.E.D.

It is open whether the combinatorial principle is provable in $P V$ or even in S_{2}. A corollary of the principle, namely the tournament principle (see [4, Sec. 12.1]), is also not known to be provable in bounded arithmetic.

Theorem 5.3 Assume that S_{2} proves the formula

$$
\forall u ; C E(u, \alpha)
$$

for the Δ_{1}^{b}-formula $\alpha(x, y)$ defined at the beginning of the proof of Lemma 5.2. Assume also that $P V$ has a countable model in which $N P \not \subset P / p o l y$.

Then $P V \neq S_{2}^{1}$.
Proof
Take M a countable model of $P V$ in which $S A T_{n}(M)$ is not recognized by a circuit. If $M \not \models S_{2}^{1}$ then we are done. So assume that $M \models S_{2}^{1}$.

Consider the theory T formed by

$$
P V+T h_{\Pi_{1}^{b}}(M)
$$

together with all formulas

$$
\forall y \exists x ; \operatorname{Sat}_{n}(x) \not \equiv \phi(x, y)
$$

one for each Π_{1}^{b}-formula ϕ without parameters.
If T were consistent then any of its models is a Π_{1}^{b}-elementary extension of M in which $N P \nsubseteq$ co $N P /$ poly and thus by $[2,9] P V \neq S_{2}^{1}$.

On the other hand, if T is inconsistent then $P V+T h_{\Pi_{1}^{b}}(M)$ proves a disjunction of formulas of the form

$$
\exists y \forall x ; \operatorname{Sat}_{n}(x) \equiv \phi(x, y)
$$

$\phi \Pi_{1}^{b}$-formulas without parameters. This means that in M every bounded formula is equivalent to a Σ_{1}^{b}-formula and, in particular, the PIND scheme for all bounded formulas holds in M as $M \models S_{2}^{1}$. Hence $M \models S_{2}$ and consequently $M \vDash \forall u ; C E(u, \alpha)$.

By Lemma 5.2 and Theorem $2.1 M$ has an extension M^{\prime} in which $N P \nsubseteq$ co $N P /$ poly. So, by [2, 9] again, $P V \neq S_{2}^{1}$.

Acknowledgements: I discussed the idea of the first proof of the theorem with S. Buss in Toronto in Spring 1993 and I thank him for pointing out then a problem with the original version. R. Impagliazzo reminded me of a construction concerning a circuit-simulation of probabilistic computations similar to the one from Lemma 5.2. I thank A. A. Razborov for critical comments on the preliminary version of this paper.

References

[1] Buss, S. R. (1986) Bounded Arithmetic. Naples, Bibliopolis.
[2] - (1995) Relating the bounded arithmetic and polynomial time hierarchies, Annals of Pure and Applied Logic, 75: 67-77.
[3] Cook, S A. (1975) Feasibly constructive proofs and the propositional calculus, in: Proc. $7^{\text {th }}$ Annual ACM Symp. on Theory of Computing, pp. 83-97. ACM Press.
[4] Krajíček, J. (1995) Bounded arithmetic, propositional logic and complexity theory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge University Press, Cambridge - New York - Melbourne, 343 p.
[5] -_ (1995) On Frege and Extended Frege proof systems, in: Feasible Mathematics II, eds. P. Clote and J. Remmel, Birkhauser, pp. 284-319.
[6] _ (1995) On methods for proving lower bounds in propositional logic, in: Proceedings of the Tenth International Congress Logic, Methodology and Philosophy of Science, International Union of History and Philosophy of Science, Florence (August 19-25, 1995), Eds. M. L. Dalla Chiara, K. Doets, D. Mundici, J. van Benthem, to appear.
[7] Krajíček, J and P. Pudlák (1990) Propositional Provability and Models of Weak Arithmetic, in: Computer Science Logic (Kaiserlautern, Oct. '89), E. Borger, H. Kleine Buning, M.M. Richter (eds.), LNCS 440, Springer-Verlag, pp. 193-210.
[8] Krajíček, J, Pudlák, P, and Takeuti, G. (1991) Bounded arithmetic and the polynomial hierarchy, Annals of Pure and Applied Logic, 52: 143-153.
[9] Zambella, D. (1996) Notes on polynomially bounded arithmetic, J. of Symbolic Logic, 61(3), pp.942-966.

[^0]: *Partially supported by the US - Czechoslovak Science and Technology Program grant \# 93025, and by grant \#A1019602 of the AVC̆R.

[^1]: ${ }^{1}$ We inessentially abuse the notation here; instead of $P V$, which is an equational theory as defined in [3], we work with its first-order conservative extension $P V_{1}$ defined in [8, 4], and in place of S_{2}^{1} we should use its conservative extension $S_{2}^{1}(P V)$ in the language of $P V$, cf. [4].

