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1 Notation and review.

Let me begin by briefly discussing many-sorted structures. Although in most
of the course I will be working with the traditional 1-sorted structures, ev-
erything is valid in the more general context.

By a many-sorted language L (or rather a language for many-sorted struc-
tures), we mean a set S of “sorts”, a set R of sorted relation symbols, and
a set F of sorted function symbols. What this means is that each R ∈ R
comes together with a certain finite sequence (S1, .., Sn) of sorts where n ≥ 1,
and each f ∈ F comes together with a sequence (S1, .., Sn, S) of sorts where
n ≥ 0. By the cardinality |L| of L we mean |S|+ |R|+ |F .

By an L-structure M we mean a family (S(M) : S ∈ S) of nonempty sets,
together with, for each R ∈ R of sort (S1, .., Sn) a subset R(M) of S1(M)×
... × Sn(M), and for each f ∈ F of sort (S1, .., Sn, S) a function f(M) :
S1(M)× ..× Sn(M)→ S(M). So an L-structure is just an interpretation of
the formal language L. The S(M) are the sorts of the structure, the R(M)
the basic relations of the structure and the f(M) the basic functions of the
structure. By the cardinality |M | of M we mean the sum of the cardinalities
of the sets S(M).

A one-sorted language is a (many-sorted) language with only one sort,
that is S is a singleton, say {S}. In that case the sort of a relation symbol is
just a natural number n ≥ 1 and likewise for the sort of a function symbol. If
M is an L-structure then S(M) is called the underlying set (or universe) of
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M and we often notationally identify it with M (just as we often notationally
identify a group G with its underlying set) if there is no ambiguity.

The many-sorted point of view is quite natural, because a whole “cat-
egory” of objects can be now viewed as a single structure. An example is
the category of “algebraic varieties over Q”. By an algebraic variety over Q
we mean (for now) a subset X of some Cn which is the common zero-set of
a finite number of polynomials Pi(x1, .., xn) in Q[x1, .., xn]. By a morphism
(over Q) between X ⊆ Cn and Y ⊆ Cm, we mean a map f : X → Y given
by m polynomials Q1(x1, .., xn), ..., Qm(x1, .., xn) over Q. The many-sorted
structure V arQ has as sorts the algebraic varieties over Q, as basic relations
the algebraic subvarieties (over Q) of products of the sorts, and as basic
functions morphisms from products of sorts to sorts.

Of course there is another natural associated one-sorted structure, the
structure (C,+, ·,−, 0, 1). This is the structure with universe C, two basic
2-ary functions, addition and multiplication, one basic unary function (−)
and two basic 0-ary functions (or constants), 0 and 1.

Note that V arQ and (C,+, ·,−, 0, 1) are not only different structures, but
structures for different languages. But we hope later to explain a sense in
which they are the “same”. (They are “bi-interpretable”.)

Given a many-sorted language L we build up in the usual manner terms
and first order formulas of L from the relation and function symbols of L
together with ∧, ∨, ¬, →, ∀, ∃ and a countable set of variables for each sort
S ∈ S, as well as the symbol =S for each S ∈ S. Note that every variable
comes equipped with a sort. If φ is an L-formula we may write φ(x1, .., xn)
to mean that the free variables in φ are among x1, .., xn. An L-sentence is
an L-formula with no free variables. If φ(x1, .., xn) is an L-formula where xi
is of sort Si, M is an L-structure and ai ∈ Si(M) for i = 1, .., n we define
(inductively)
M |= φ[x1/a1, .., xn/an]
in the usual way. (“(a1, ., an) satisfies φ(x1, .., xn) in M”, or “φ(x1, .., xn)
is true of (a1, .., an) in M”.) When there is no ambiguity we just write
M |= φ[a1, .., an]. An important fact is that exactly one of M |= φ[a1, .., an],
M |= (¬φ)[a1, .., an] holds.

(By the way the =S symbols are interpreted as equality, namely if x, y
are variables of sort S, M is an L-structure, and a, b ∈ S(M) we define
M |= x =S y[x/a, y/b] to hold if a = b.)

If σ is an L-sentence we say “M is a model of σ” for M |= σ and this is
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where the expression “model theory” comes from.

Definition 1.1 Let L be a language and M an L-structure, Σ a set of L-
sentences, and σ an L-sentence.
(i) We say that M |= Σ (M is a model of Σ) if M |= σ for all σ ∈ Σ.
(ii) Σ |= σ (Σ logically implies σ) means that every model of Σ is a model of
σ.
(iii) By an L-theory we mean a set of L-sentences closed under |=. (L-
theories are often debtoed by T .)
(iv) We say that Σ is consistent if Σ has a model.
(v) We say that Σ is complete if Σ is consistent and for every σ, either σ ∈ Σ
or ¬σ ∈ Σ.
(vi) Let K be a class of L-structures. By Th(K) we mean {σ : M |= σ for all
M ∈ K}. If K = {M} we write Th(M) in place of Th(K).
(vii) Let K be a class of L-structures. We say that K is an elementary class
if there is a set Σ of L-sentences such that K = {M : M |= Σ}.
(viii) We write M ≡ N (M is elementarily equivalent to N)if M and N are
models of the same L-sentences, that is, if Th(M) = Th(N).
(ix) Let T be an L-theory. We say that Σ axiomatizes T if Σ ⊆ T and Σ |= σ
for all σ ∈ T .

Exercise 1.2 (i) Let Σ be a set of L-sentences and Σ′ = {σ : Σ |= σ}. Then
Σ′ is a theory.
(ii) Th(M) is a complete theory.
(iii) Let K be a class of L-structures. Then K is an elementary class iff
K = {M : M |= Th(K)}.
(iv) T is complete iff all models of T are elementarily equivalent

Example 1.3 Let L be the 1-sorted language containing a single binary func-
tion symbol f say, and a single constant sybol e say. Any group can be con-
sidered to be an L-structure.
(i) The class of groups is elementary.
(ii) The class of torsion-free divisible abelian groups is an elementary class.
(iii) (needs compactness theorem) The class of torsion abelian groups is NOT
elementary.
(iv) (needs more) The class of simple nonabelian groups is NOT an elemen-
tary class.
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Example 1.4 Let L be the language “of unitary rings” that is L is again
one-sorted, contains two binary function symbolds + and · say, one unary
funtion symbol −, and two constant symbols 0, 1. Any ring can be naturally
viewed as an L-structure.
(i) The class of finite fields is NOT an elementary class. (Needs compact-
ness.)
(ii) Let K be the class of finite fields. By definition a pseudofinite field is an
infinite model of Th(K). Then the class of pseudofinite fields IS an elemen-
tary class. (Why?)

We now consider relations between L-structures. Let us fix a (many-sorted)
language L. The notion of an isomorphism between two L-structures is pretty
obvious and clearly we are only interested in L-structures up to isomorphism.
We have already defined elementary equvalence of L-structures and it is
important that this is generally weaker than isomorphism. However:

Exercise 1.5 Let M and N be elementarily equivalent L-structures. Sup-
pose that for every sort symbol S of L, S(M) is finite. Then M and N are
isomorphic.

Definition 1.6 (i) Let M , N be L-structures. We say that M is a substruc-
ture of N if for each sort symbol S, S(M) ⊆ S(N), for each relation symbol
R of L of sort S1× ...× Sn, R(M) = R(N)∩ (S1(M)× ...× Sn(M)) and for
each function symbol f of L of sort (S1, .., Sn, S), and choice ai ∈ Si(M) for
i = 1, .., n, f(M)(a1, ., an) = f(N)(a1, .., an).
(ii) We say that M is an elementary substructure of N if M is a substruc-
ture of N , and for all L-formulas φ(x1, ., xn) and a1, ., an in the sorts of M
corresponding to variables x1, .., xn respectively, we have M |= φ[a1, .., an] iff
N |= φ[a1, .., an].
(iii) An (elementary) embedding of M into N is an isomorphism of M with
a (elementary) substructure of N .

Exercise 1.7 (i) Let L be the language of unitary rings mentioned earlier.
Let F,K be fields. Then F is a subfield of K iff F is a substructure of K.
(ii) Let L be 1-sorted and consist of a single unary function symbol. Let
S be the succesor function on Z. Then (Z, S) and N, S) are naturally L-
structures. The first is a substructure of the second, but not an elementary
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substructure.
(iii) Let M be a substructure of N . Then for any quantifier-free L-formula
φ(x1, .., xn) and ai ∈M of suitable sort, M |= φ[a1, .., an] iff N |= φ[a1, .., an].

Exercise 1.8 (Tarski-Vaught test.) Let M be a substructure of N . Then
M is an elementary substructure if M if and only if for each L-formula
φ(x1, .., xn, x) and a1, .., an ∈M (in the appropriate sorts), if N |= (∃x(φ))[a1, .., an]
then for some b of the appropriate sort in M , N |= φ[a1, .., an, b].

Let us introduce a bit of notation. Let L be a language as usual, and M
an L-structure. Let LM be L together with a set of new (sorted) constant
symbols cm for m ranging over elements of M (i.e. of elements of sorts of
M). Then we can “expand” canonically M to an LM -structure M ′ say by
defining cm(M ′) = m. We often write M ′ as (M,m)m∈M . For φ(x1, .., xn) an
L-formula, and m1, ..,mn ∈M of appropriate sorts, let φ(cm1 , .., cmn) be the
LM -formula which results from substituting cmi for xi in φ. In this context
we have:

Remark 1.9 (i) M |= φ[m1, ..,mn] iff (M,m)m∈M |= φ(cm1 , .., cmn).

Note that we can do exactly the same thing, if we add constants for a
subset A of M (that is each element of A is in some S(M)), to obtain a
language LA and an “expansion” (M,a)a∈A of M to an LA-structure.

With this notation we have:

Lemma 1.10 Let M be a substructure of N . Then M is an elementary
substructure of N iff and only if (M,m)m∈M and (N,m)m∈M are elementarily
equivalent as LM -structures.

Sometimes we completely abuse notation by writing M |= φ(m1, ..,mn)
in place of the equivalent conditions in Remark 1.9.

Here is a useful slight strengthening of 1.8 which we state for convenience
in the 1-sorted context.

Exercise 1.11 (Assume L to be 1-sorted.) Let M be an L-structure, and A
a subset of the underlying set (or universe) of M . Then A is the universe of
an elementary substructure of M if and only if for each LA-formula φ(x), if
M |= ∃x(φ(x)) then there is b ∈ A such that M |= φ(b).
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By a chain of L-structures we mean a sequence (Mi : i ∈ I) (of L-
structures) where I = (I,<) is an ordered set and i < j implies that Mi is
a substructure of Mj. Note that the union of the underlying sets (or sorts)
of the Mi is naturally equipped with an L-structure, which is an extension
of each Mi. We call this L-structure ∪iMi. An elelementary chain of L-
structures is a chain as above but with the additional feature that i < j
implies Mi is an elementary substructure of Mj.

Lemma 1.12 Let (Mi : i ∈ I) be an elementary chain, and M = ∪iMi.
Then Mi is an elementary substructure of M for all i.

Proof. We prove by induction on the complexity of the L-formula φ(x1, .., xn)
that for all i and a1, .., an ∈Mi, Mi |= φ(a1, ., an) iff M |= φ(a1, .., an). For φ
quantifier-free this is Exercise 1.7 (iii). If φ is built from formulas we already
dealt with, by ¬, →, ∨, or ∧, it is easy.
Suppose φ is ∃x(ψ(x, x1, .., xn)). and suppose that Mi |= φ(a1, .., an), then
Miψ(b, a1, .., an) for some b ∈ Mi, so M |= ψ(b, a1, .., an) by induction hy-
pothesis and so M |= φ(a1, .., an). Conversely, suppse M |= φ(a1, .., an), so
M |= ψ(b, a1, .., an) for some b ∈ M . Then b ∈ Mj for some i < j. By
induction hypothesis Mj |= ψ(b, a1, .., an), so Mj |= φ(a1, .., an) so by our
assumptions Mi |= φ(a1, .., an).

Definition 1.13 Let Σ be a set of L-sentences. We say that Σ is finitely
consistent, if every finite subset of Σ is consistent (namely every finite subset
of Σ has a model).

From now on we assume L to be one-sorted for convenience.

Exercise 1.14 Suppose Σ is a finitely consistent set of L-sentences. Then
(i) For any L-sentence σ either Σ ∪ σ or Σ ∪ ¬σ is finitely consustent.
(ii) Suppose ∃xφ(x) ∈ Σ and c is a constant symbol not appearing in Σ. Then
Σ ∪ φ(c) is finitely consistent.

Theorem 1.15 (Compactness) Let Σ be a set of L-sentences. Then Σ is
finitely consistent if and only if Σ is consistent.

Note that right to left is trivial.
We will give a couple of sketch proofs of left to right.

Proof A. (essentially Henkin.) Assume for simplicity that the language L is
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countable and has no function symbols. Assume Σ to be finitely consistent.
Let {ci : i < ω} be a countable set of new constant symbols. Let L′ be L
together with these new symbols. Let (σi : i < ω) be an enumeration of all
L′-sentences. We build an increasing sequence Σ0 ⊆ Σ1 ⊆ Σ2... of sets of
L-sentences with the following properties:
(i) Σ0 = Σ,
(ii) Each Σi is finitely consistent and consists of Σ together with at most
finitely many additional sentences,
(iii) If (a) Σi ∪ {σi} is finitely consustent then σi ∈ Σi+1. Otherwise ¬σi ∈
Σi+1.
(iv) If (a) holds in (iii) and σi has the form ∃xφ(x) then for some new constant
cj, φ(cj) ∈ Σi+1.

The construction of the Σi is by induction, using Exercise 1.13.
Let Σ′ be the union of the Σi. Then we have:
(v) Σ′ is a finitely consistent set of L′-sentences,
(vi) For each L′-sentence σ, exactly one of σ,¬σ is in Σ′, and
(vii) if ∃xφ(x) ∈ Σ′ then φ(c) ∈ Σ′ for some constant symbol c of L′.

Now we build an L′-structure. Let ∼ be the following relation on {ci : i < ω}:
ci ∼ cj if ci = cj ∈ Σ′.
Check that ∼ is an equivalence relation.
Let M be the L′-structure whose elements are the ∼ classes, and such that
for an n-place relation symbol R of L, ((ci1/ ∼), ..., (cin/ ∼)) ∈ R(M) if
R(ci1 , .., cin) ∈ Σ′.
Check this is well-defined.
Finally check that for each L′-sentence σ, M |= σ iff σ ∈ Σ′. (By induction
on the complexity of σ.) In particular M |= Σ′. Let M0 be the L-reduct of
M , that is M considered as an L-structure. So M0 is a model of Σ, and Σ is
consistent.
(Where in the proof do we use finite consistency of Σ′?)

Proof B. This proof is by ultraproducts which we will define subsequently.
Let I be the set of finite subsets of Σ. For each i ∈ I let Mi be a model of i.
For each σ ∈ Σ, let Xσ = {i ∈ I : σ ∈ i}. Let F0 = {Xσ : σ ∈ Σ}. Then F0

is a collection of subsets of I, i.e. a subset of P (I).
Let F be the filter on I generated by F0, namely the closure of F0 under
supersets and finite intersections.

7



Claim. F is a nontrivial filter on I, that is ∅ /∈ F .
Proof. It is enough to show that for σ1, .., σn ∈ Σ, Xσ1 ∩ ...∩Xσn 6= ∅, which
is clear since it contains {σ1, .., σn}.
By Zorn’s Lemma we can extend F to an ultrafilter U on I. This means that
U is a maximal nontrivial filter on I, equivalent U is a nontrivial filter on I
such that for any X ⊆ I, either X or the complement of X is in U . Now let
M be the ultraproduct (

∏
Mi)/U (to be expained below).

Los’ Theorem states that for any L-sentence σ, M |= σ if and only if {i ∈ I :
Mi |= σ} ∈ U .
Claim. M is a model of Σ.
Proof. Let σ ∈ Σ. Then for each i ∈ Xσ, Mi |= σ (by choice), so {i ∈ I :
Mi |= σ} ⊇ Xσ so is in F so also in U . By Los’ Theorem, M |= σ.

Let us define ultraproducts and state Los’ Theorem. Let I be a set, and
U an ultrafilter on I. We will say that a subset X of I is large if X ∈ U .
By

∏
i∈IMi we mean for now just the set of sequences s = (s(i) : i ∈ I)

such that s(i) ∈ Mi for each i. Define ∼ on this set by s ∼ t if {i : s(i) =
t(i)} is large. M = (

∏
iMi)/U will be the L-structure whose underlying

set is {s/ ∼: s ∈ ∏
iMi), and such that for R an n-ary relation symbol

(s1/ ∼, .., sn/ ∼) ∈ R(M) if {i ∈ I : (s1(i), .., sn(i)) ∈ R(Mi)} is large,
and for an n-ary function symbol f , f(M)(s1/ ∼, .., sn/ ∼) = t/ ∼ where
t(i) = f(Mi)(s1(i), .., sn(i)). One must prove that this is well-defined.

Theorem 1.16 (Los.) Let φ(x1, .., xn) be an L-formula, and s1/ ∼, ., sn/ ∼
elements of (

∏
iMi)/U . Then

(
∏
iMi)/U |= φ(s1/ ∼, .., sn/ ∼) if and only if {i ∈ I : Mi |= φ(s1(i), .., sn(i))}

is large.

The theorem is proved by induction on the complexity of φ (with maybe a
prior lemma on terms). In the proof B above of the compactness theorem
we used the special case of the Theorem where σ is a sentence.

Lemma 1.17 Let K be a class of L-structures. Then K is an elementary
class if and only if K is closed under elementary equivalence and ultraprod-
ucts.

Proof. Left to right is immediate (using Theorem 1.16). For right to left.
Let T = Th(K). We must prove that every model M of T is in K. Let M
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be a model of T . Let Σ = Th(M). Let I be the set of finite subsets of Σ.
Note that for each i ∈ I there is Mi ∈ K which is a model of i. (Otherwise
¬∧ i is a sentence in T so in Σ, contradiction.) Let U be the ultrafilter on I
produced as in the proof B of the compactness theorem. Then (

∏
iMi)/U is

a model of Σ so elementarily equivelent to M . By the hypotheses, M ∈ K.

Let us give some corollaries and reformulations of the compactness theorem.

Proposition 1.18 Let Σ be a set of L-sentences and suppose that for every
n < ω, every finite subset of Σ has a model of cardinality at least n. Then Σ
has an infinite model

Proof. Let σn be the L-sentence expressing that there are at least n elements
(for n < ω). Then By hypothesis Σ ∪ {σn : n < ω} is finitely consistent, so
consistent by the compactness theorem.

Proposition 1.19 Let Σ and Γ be sets of L-sentences. Suppose that for
every model M of Σ there is γ ∈ Γ such that M |= γ. (We could write here
Σ |= ∨Γ.) Then there is are finite subsets Σ′ of Σ and Γ′ of Γ such that
Σ′ |= ∨Γ′.

Proof. The hypothesis says that Σ ∪ {¬γ : γ ∈ Γ} is inconsistent. By
the compactness theorem a finite subset is inconsistent, yielding the desired
conclusion.

Proposition 1.20 Let T be the set of complete (consistent) L-theories. De-
fine X ⊆ T to be closed if X = {T : Σ ⊆ T} for some set Σ of L-sentences.
Then this makes T into a topological space which is compact (Hausdorff) and
totally disconnected.

Proof. First as a word of explanation, a topological space is said to be totally
disconnected if it has a basis of clopens.

First we’ll show that T is a topological space. Clearly an intersection of
closed sets is closed. The whole space is closed (by taking Σ = ∅) and the
empty set is closed (by taking Σ to be {σ ∧ ¬σ} for some sentence σ). T is
Hausdorff because if T1 and T2 are distinct complete L-theories then there is
σ such that σ ∈ T1 and ¬σ ∈ T2. σ and ¬σ yield disjoint clopen subsets of
T . For σ a sentence Xσ =def {T : σ ∈ T} is clopen, and the Xσ form a basis
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for T so T is totally disconnected. Finally compactness of T is precisely the
compactness theorem: Suppose that T is covered by open sets Ui so by basic
open sets Xσi , for i ∈ I. This means that every complete theory T contains
some σi, and thus no complete theory contains ¬σi for all i. So {¬σi : i ∈ I}
is inconsistent (has no model) thus by the compactness theorem sme finite
subset, say {¬σ1, ..,¬σn} is inconsistent. But then every complete theory T
contains one of the σ1, .., σn so Xσ1 , .., Xσn cover T .

Remark 1.21 Compact (Hausdorff) totally disconnected spaces are precisely
the Boolean spaces. The set of clopen subsets of such a space S form (under
the natural operations) a Boolean algebra B. The set of ultrafilters on B
form a Boolean space homeomorphic to S.

There are other interpretations of the compactness theorem, including
“Deligne’s Theorem”: A coherent topos has enough points.

I will point out now how the compactness theorem for sets of sentences also
holds for sets of formulas. Let L be a language as before. We defined the
cardinality of L to be the number of (nonlogical) symbols in L. We built up
L-formulas from these symbols together with the logical symbols (including
a countably infinite supply of variables). Note that the cardinality of the set
of L-formulas is |L| + ω. Let us now allow ourselves as many variables as
we want. We then get possibly more L-formulas, but still the same number
of L-sentences up to logical equivalence. (Why?) Let us write Σ(xi)i∈I to
mean that Σ is a set of L-formulas with free variables among {xi : i ∈
I}. By a model of Σ(xi)i∈I we mean an L-structure M together with a set
{ai : i ∈ I} of elements of M such that for each formula φ(xi1 , .., xin) ∈ Σ,
M |= φ(ai1 , .., ain). We’ll say that Σ(xi)i∈I is consistent if it has a model,
and finitely consistent if every finite subset has a model.

Remark 1.22 Σ(xi)i∈I is finitely consistent, if for each finite subset Σ′ of
Σ, and finite sequence x̄ of variables from among the xi which includes the
free varoables occuring in Σ′, the L-sentence ∃x̄(∧Σ′(x̄)) is consistent.

Exercise 1.23 Let Σ(xi)i∈I be a set of L-formulas. Let {ci : i ∈ I} be a set
of new constant symbols, and let L′ be the language got by adjoining these to
L. Let Σ(ci)i∈I be the set of L′-sentences obtained by substituting the ci for
the xi in Σ. Then σ(xi)i∈I is consustent if and only if Σ(ci)i∈I is consistent
(as a set of L′-sentences.
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This we get:

Proposition 1.24 Σ(xi)i∈I is consistent if and only if it is finitely consis-
tent.

Definition 1.25 Let T be an L-theory. Let (xi : i ∈ I) be a sequence of
variables. By an I-type of T we mean a set Σ(xi)i∈I of L-formulas such that
T ∪ Σ is consistent.

Lemma 1.26 Suppose T = Th(M). Let Σ(xi)i∈I be a set of L-formulas.
Then Σ(xi)i∈I is an I-type of T if and only if for every finite subset Σ′(x̄) of
Σ, M |= ∃x̄(∧Σ′(x̄)).

Proof. By 1.24, Σ is an I-type of T if and only if T ∪Σ is finitely consistent
if and only if for each finite subset Σ′(x̄) of Σ, T ∪ Σ′(x̄) is consistent if and
only if for each such Σ′, T ∪ ∃x̄(∧Σ′(x̄)) is consistent if and only for each
such Σ′, M |= ∃x̄(∧Σ′(x̄)).

We will come back to types in the next section. We complete this section
with the Lowenheim-Skolem theorems and some applications.

Proposition 1.27 (Downward L-S.) Let M be an L-structure of cardinality
κ. Let A be a subset of the universe of M and let λ be a cardinal such that
|L| + ω + |A| ≤ λ ≤ κ. Then There is an elementary substructure N of M
such that A is a subset of the universe of N and N has cardinality λ.

Proof. Without loss of generality |A| = λ. Note that the cardinality of the
set of LA-formulas is λ. For each LA-formula φ(x) such that M |= ∃x(φ(x)),
pick bφ ∈ M such that M |= φ(bφ) and let A1 = A ∪ {bφ}φ. Then |A1| = λ.
Now construct A2 from A1 in the same way that A1 was constructed from
A. Continue to get A ⊆ A1 ⊆ A2 ⊆ A3....., and let B be the union. Then
B is a subset of the universe of M of cardinality λ and for each LB-formula
φ(x) such that M |= ∃xφ(x), there is b ∈ B such that M |= φ(b). By 1.11,
B is the universe of an elementary substructure of M .

Definition 1.28 Let L ⊂ L′ be say one-sorted languages. Let M ′ be an
L′-structure. By M ′|L (the L-reduct of M ′) we mean the L-structure whose
universe is the same as that of M and such that for all relation symbols
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R ∈ L, R(M ′|L) = R(M ′) and for all functions symbols f ∈ L, f(M ′|L) =
f(M ′). We call M ′ an expansion of M ′|L to an L′-structure

(If L and L′ are many sorted languages and L ⊆ L′ then maybe sort sort
symbols of L′ are not in L. It is then natural to consider the L-reduct of an
L′-structure, to be the L-structure M such that S(M) = S(M ′) for all sort
symbols in L, etc.)

Definition 1.29 Let M be an L-stucture. Let Dc(M), the complete diagram
of M be Th(M,m)m∈M in the language LM .

Lemma 1.30 Let M,N be L-structures. Then M can be elementarily em-
bedded in N if and only if N can be expanded to a model of Dc(M).

Proof. Suppose first that there is an elementary embedding f of M into N .
Expand N to an LM -structure by interpreting cm as f(m). Check that this
expansion N ′ say is a model of Dc(M).

Conversely, if n can be expanded to a model N ′ say of Dc(M), let us
denote f(m) as the interpretation of cm in M ′, and then check that f is an
elemetary embedding of M into N .

Proposition 1.31 (Upward L-S.) Let M be an infinite L-structure. Let
λ ≥ |M |+ |L|. Then M has an elementary extension of cardinality λ.

Proof. Let (ci : i < λ) be a sequence of new constants. Let L′ be LM together
with these new constant symbols. Let Σ = Dc(M) ∪ {ci 6= cj : i < j < λ}.
Σ is a set of L′-sentences. We claim that Σ is finitely consistent. This is
immediate as any finite subset Σ′ of Σ involves a finite part of Dc(M) and
only finitely many of the constant symbols ci. So (M,m)m∈M together with
distinct interpretations of these finitely many ci will be a model of Σ′. By
the compactness theorem, Σ has a model N ′ say. N ′ has cardinality at least
λ. Let N the be L-reduct of N ′. By 1.30 we may assume that N is an
elementary extension of M . By 1.27 we may find an elementary substructure
of N of cardinality exactly λ which contais the universe of M and so is also
an elementary extension of M .

Corollary 1.32 Let T be an L-theory, and suppose that T has an infinite
model. Then for any infinite cardinal λ ≥ |L|, T has a model of cardinality
λ.
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Here is another important application of 1.30.

Proposition 1.33 Suppose that M and N are elementarily equivalent L-
structures. Then there is an L-structure M1 and elementary embedding f of
M into M1 and g of N into M1. (Also we could choose one of f, g to be the
identity map.)

Proof. There is no harm in assuming the universes of M and N to be disjoint.
Let L′ = LM ∪ LN . (So the new constants for elements of M are assumed
disjoint from the new constants for elements of N . By 1.30 it suffices to prove
that Dc(M) ∪ Dc(N) is consistent (as a set of L′-sentences). We’ll show it
to be finitely consistent (and use compactness). Let Σ1 be a finite subset of
Dc(M) and Σ2 a finite subset of Dc(M). Let cn1 , .., cnk be the new constants
appearing in Σ2. So we can write Σ2 as Σ3(cn1 , .., cnk) where Σ3(x1, .., xk)
is a finite set of L-formulas. Note that N |= Σ3(n1, .., nk) and thus N |=
∃x1, .., xk(∧Σ3(x1, .., xk)), and so also M |= ∃x1...xk(∧Σ3(x1, .., xk)). Let
a1, .., ak ∈ M be such that M |= Σ3(a1, .., ak). Then clearly, if we inter-
pret cni as ai (and the other cn as anything you want) we expand M to an
LN -structure which is a model of Σ2. Of course M can also be expanded
(tautologically) to an LM -structure which is a mdel of Σ1. So Σ1 ∪ Σ2 is
consistent.

Definition 1.34 Let T be an L-theory and κ a (possibly finite) cardinal. T
is said to be κ-categorical if T has exactly one model of cardinality κ (up to
isomorphism).

Proposition 1.35 Suppose that T has only infinite models, and is κ-categorical
for some cardinal κ ≥ |L|. Then T is complete.

Proof. Let M,N be models of T . Let T1 = Th(M) and T2 = Th(N). By
Corollary 1.31, T1 has a model M1 of cardinality κ and T2 has a model N2

of cardinality κ. Then M1 and N1 are models of T of cardinality κ so are
isomorphic by assumption. It follows that T1 = T2 and M ≡ N . Thus T is
complete.

Example 1.36 Let L be the empty language and T the theory axiomatized
by {σn : n < ω} where σn “says” there are at least n elements. Then T is
“totally categorical” (categorical in all infinite cardinalities) and so complete.
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Proof. A model of T is just an infinite set. An isomorphism between models
is simply a bijection between their universes. So T is κ-categorical for any
infinite cardinal.

Example 1.37 Let L = {+, 0}. Let T be the theory of torsion-free divis-
ible nontrivial abelian groups. Then T is categorical in every uncountable
cardinality, and complete.

Proof. I leave it to you to axiomatize T . The models of T are precisely
the nontrivial torsion-free divisible abelian groups. Any such model is a Q-
vector space of dimension ≥ 1. An isomorphism between two such models is
precisely an isomorphism of Q-vector spaces. Any nontrivial Q-vector space
V is infinite, and its isomorphism type is determined by its dimension (the
cardinality of a Q-basis. If V has cardinality λ > ω, then clearly dim(V ) = κ.
(Why?) Thus T is κ-categorical for any uncountable κ.

Example 1.38 Let G be an infinite group of cardinality κ say. Let L =
{λg : g ∈ G} where the λg are unary function symbols. Let T be the theory
of free G-sets. Then T is categorical in every cardinality > κ, and complete.

Proof. First what do we mean by a free G-set? First of all, a G-set is a set X
together with mapping from G×X to X ((g, x)→ g · x) such that 1.x = x
for all x ∈ X and (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X. X is said
to be a free G-set if it is a G-set and for g 6= 1 in G and x ∈ X, g · x 6= x.
Any G-set X can be viewed naturally as an L-structure, and we can write
axioms for free G-sets in the language L. If X is a free G-set then X is the
disjoint union of G-orbits where a G-orbit is G · a = {g · a : g ∈ G}. Any
such G-orbit is in bijection with G via g → g ·a (for a fixed a in the G-orbit).
If X, Y are free G-sets with the same number of orbits then X and Y are
isomorphic (as G-sets and as L-structures) as follows: Let (ai : i ∈ I) and
(bi : i ∈ I) be representatives of the G-orbits in X, Y respectively. Define a
bijection between X and Y by (g · ai) goes to g · bi for each g ∈ G and i ∈ I.
Then this is an isomorphism. Now if X is a G-set of cardinality λ > κ then
X has precisely λ-many G-orbits. It follows that T is λ-categorical.

Example 1.39 Let L = {<} and let T be the theory of dense linear orderings
without endpoints. Then T ω-categorical and complete.
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Proof. The axioms are obvious. Any model is infinite. A well-known back-
and forth argument shows that any two countable models of T are isomorphic
so T is ω-categorical, so complete. T has 2κ models of cardinality κ for every
uncountable κ.

Example 1.40 Let L = {R} where R is a binary relation symbol. T says
(informally) that R is irreflexive, symmetric and that for any distinct x1, .., xn,
y1, ., yn there is z such that R(z, xi) and ¬R(z, yi) for all i = 1, .., n. Then T
is ω-categorical and complete.

Proof. Again the axiomatization of T is clear. Clearly T has only infinite
models. One issue is why T has a model. An important general construction
of Fraisse produces a countable model. For now we just assume T to be con-
sistent. Now if M,N are countable models we can show by a back-and-forth
argument that M and N are isomorphic. T is ω-categorical, so complete.
However again T has 2κ models of cardinality κ for any uncountable κ. The
countable model of T is called the random graph.

2 Types, ω-saturation and quantifier elimina-

tion

We have seen in the previous section that categoricity can be used to prove
completeness of a theory. However this method does not always work as
there are complete theories which are not categorical in any uncountable
cardinality (such as what). The method of (relative) quantifier elimination
often enables one to prove completeness of particular theories and we’ll talk
about this now. Moreover quantifier elimination tells one about the definable
sets in models of a theory, and that is also very important. We continue our
convention of working with one-sorted structures although everything holds
in the many-sorted case.

Definition 2.1 Let M be an L-structure, and X ⊂ Mn. We say that X
is ∅-definable in M if there is an L-formula φ(x1, .., xn) such that X =
{(a1, .., an) ∈ Mn : M |= φ(a1, .., an)} ( = φ(M).) If A is a subset of
the universe of M we say that X is A-definable in M if we can find an LA-
formula (or if you want an LM -formula where only constants for elements of
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A appear) such that X = φ(M) again. A definable set in M is by definition
an LM -definable set in M .

Understanding a structure M from the model-theoretic point of view involves
at least understanding its definable sets.

Definition 2.2 Let T be a theory in language L. We say that T has quanti-
fier elimination if for any L-formula φ(x1, .., xn) (n ≥ 1) there is a quantifier-
free L-formula ψ(x1, .., xn) such that T |= ∀x̄(φ(x̄)↔ ψ(x̄)).

Remark 2.3 (i) Suppose that T has quantifier-elimination and L contains
at least one constant symbol. Then for any L-sentence σ there is a quantifier-
free L-sentence τ such that T |= σ ↔ τ .
(ii) Suppose T has quantifier-elimination and M is a model of T . Then
every definable set in M is defined by a quantifier-free LM -formula. Every
∅-definable set in M is defined by a quantifier-free L-formula.

Definition 2.4 Let T be an L-theory. Let L′ = L together with some new
relation symbols and function symbols. For each new n-ary relation symbol
R, let φR(x1, .., xn) be an L-formula. For each new nary function symbol
f , let ψf (x̄, y) be an L-formula such that T |= (∀x̄)(∃=1y)(ψf (x̄, y)). Let
T ′ be axiomatized by T together with ∀x̄(R(x1, ., xn) ↔ φR(x1, .., xn)), and
∀x̄∀y(ψf (x̄, y) ↔ f(x̄) = y)), for all new R and f . We call any T ′ obtained
this way a definitional expansion of T .

Remark 2.5 Note that a definitional expansion T ′ of T is to all intents and
purposes the same as T : any model of T ca be expanded to a unique model of
T ′, etc. On the other hand for any theory T we can find a definitional expan-
sion of T which has quantifier-elimination: for each L-formula φ(x1, .., xn)
adjoin a new n-ary relation symbol Rφ and the axiom ∀x̄(Rφ(x̄) ↔ φ(x̄)).
This definitional expansion is called the Morleyization of T .

We will give a useful method for proving quantifier elimination (when it’s
true) using back-and-forth systems of partial isomorphisms in ω-saturated
models.

Let us first recall types. We saw in 1.25 the definition of an I-type of a
theory. By an n-type we mean an I-type where I = {1, .., n}. x̄ will usually
denote an n-tuple of variables (x1, .., xn) for some 1 ≤ n < ω.
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Definition 2.6 (i) Let Σ(xi)i∈I be a collection of L-formulas and M an L-
structure. We say that Σ is realized in M if there is a tuple (ai)i∈I of elements
of M such that M |= Σ(ai)i∈I (and we also say then that (ai)i∈I realizes Σ
in M). We say that Σ is omitted in M if its is not realized in M .
(ii) By a complete n-type of T we mean an n-type Σ(x̄) of T such that for
each L-formula φ(x̄) either φ(x̄) or ¬φ(x̄) is in Σ. Complete types are often
denoted by p, q, ...
(iii) Let M be an L-structure and ā be an n-tuple from M . By tpM(ā) (the
type of ā in M) we mean {φ(x̄) ∈ L : M |= φ(ā)}.

Remark 2.7 (i) By definition, an I-type of T is realized in some model of
T .
(ii) Let Σ(x̄) be a set of L-formulas. Then Σ is a complete n-type of T if and
only if Σ(x̄) = tpM(ā) for some model M of T and n-tuple ā from M .

Definition 2.8 The L-structure M is said to be ω-saturated if whenever A
is a finite subset of (the universe of) M and Σ(x̄) is a set of LA-formulas
which is finitely satisfiable in M (that is every finite subset of Σ is realized
in M), then Σ is realized in M .
(ii) For κ an arbitrary infinite cardinal, we define κ-saturated in the same
way except that A has cardinality < κ.

Lemma 2.9 The following are equuivalent:
(i) M is ω-saturated.
(ii) For any finite subset A of M and n-type Σ of Th(M,a)a∈A, Σ is realized
in M .
(iii) For any finite subset A of M and complete n-type p(x̄) of Th(M,a)a∈A,
p is realized in M .

Proof. The lemma follows from a couple of observations. First, a set Σ(x̄) of
LA-formulas is a n-type of Th(M,a)a∈A if and only if Σ is finitely satisfiable
in M (by 1.26). Second, any n-type of a theory extends to a complete m-type
of that theory.

Remark 2.10 (i) If the structure M is understood and A is a subset of M
then by a type over A we mean a type of Th(M,a)a∈A. To make things more
explicit we may say : a type over A in the sense of M . Note that if N is an
elementary extension of M then a type over A in the sense of M is the same
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thing as a type over A in the sense of N .
(ii) With the notation of (i), any type over A is realized in an elementary
extension of M .

Proof of (ii). If Σ(x̄) is a type over A then it is easy to see that it is also
an n-type of Dc(M), and so is realized in a model of Dc(M) and thus in an
elementary extension of M .

A related notion to ω-saturation is ω-homogeneity.

Definition 2.11 M is ω-homogeneous if for any n, whenever ā, b̄ are n-
tuples from M and tpM(ā) = tpM(b̄) then for any c ∈M there is d ∈M such
that tpM(āc) = tpM(b̄d).

Lemma 2.12 Any L-structure M has an ω-saturated elementary extension
N . Moreover if L and M are at most countable then we can choose N to be
of cardinality at most 2ω.

Proof. By compactness (a variant of Remark 2.10(ii)) we can find an elemen-
tary extension M1 of M realizing all types over finite subsets of M . Continue
with M1 in place of M . We build an elementary chain M ⊂M1 ⊂M2... and
let N be the union, an elementary extension of M . N is ω-saturated, as
any finite subset of N is contained in some Mi. Under the additional cardi-
nality hypotheses, note that there are at most continuum many types over
finite subsets of M so we can choose M1 to have cardiality at most 2ω (by
downward Lowenheim-Skolem). Likewise there are at most continuum many
types over finite subsets of M1 etc.

Although it is not easy to recogize when a model of a theory is ω-saturated,
we can nevertheless often deduce properties from ω-saturation:

Example 2.13 Let T be the theory of torsion-free divisible abelian groups
(from 1.35). Let (V,+, 0) be an ω-saturated model of T . Then dimQ(V ) is
infinite.

Proof. Without loss of generality we will assume that our language also
contains symbols for scalar multiplication by each element of Q. (Why can
we assume this?). For each n consider the set Σn(x1, .., xn) of L-formulas:
{r1x1 + ...rnxn 6= 0 : r1, .., rn ∈ Q not all zero}. Then Σn is finitely satisfiable
in V (why?), so realized, by ω-saturation.
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Lemma 2.14 Let M be a structure and ā, b̄ two k-tuples in M such that
tpM(ā) = tpM(b̄). Let Σ(x̄) be an n-type over a. Let Σ′(x̄) = {φ(x1, .., xn, b1, .., bk) :
φ(x1, .., xn) ∈ L and φ(x1, .., xn, a1, .., ak) ∈ Σ}. Then Σ′(x̄) is an n-type over
b̄. Moreover Σ′ is complete (as an n-type over b̄) if Σ(x̄) is complete as an
n-type over ā.

Proof. We have to show that Σ′ is finitely satisfiable in M . Choose a fi-
nite subset, without loss of generality a single formula φ(x1, .., xn, b1, .., bk).
So φ(x1, .., xn, a1, .., ak) ∈ Σ so M |= ∃x1, .., xnφ(x1, .., xn, a1, .., ak). Let
ψ(y1, .., yk) be the L-formula ∃x1, ..., xnφ(x1, ., xn, y1, .., yk). So ψ(y1, .., yk) ∈
tpM(ā) so also in tpM(b̄). Thus M |= ψ(b1, .., bn).

Remark 2.15 Here are some useful bits of notation.
(i)In the above lemma let us write Σ as Σā to emphasize the dependence on ā.
Then we write Σ′ as Σb̄. (So Σ′ is just the result of replacing the parameters
for ā by b̄.)
(ii) Let A be a subset of M and b̄ a tuple from M . By tpM(b̄/A) we mean
the type of b̄ in the structure (M,a)a∈A.

Lemma 2.16 Any ω-saturated structure is ω-homogeneous.

Proof. Let M be ω-saturated. Let ā, b̄ be tuples from M with the same
(complete) type in M . Let c ∈ M . Let pa(x) = tpM(c/a). By Lemma 2.14,
pb(x) is a complete type (over b in M). By ω-saturation of M we can realize
pb(x) by some d.
Claim. tpM(ā, c) = tpM(b̄, d).
Proof. Let φ(x, ȳ) be an L-formula. Then M |= φ(c, ā) iff φ(x, ā) ∈ pa(x) iff
φ(x, b̄) ∈ pb(x) iff M |= φ(d, b̄).

Corollary 2.17 Any structure has an ω-homogeneous elementary extension.

We can do better if L is countable.

Proposition 2.18 Let L be countable and M a countable L-structure. Then
M has a countable ω-homogeneous elementary extension.

Proof. Let P be the set of all types of the form pb̄(x) where ā and b̄ are finite
tuples from M with the same type in M and where pā(x) = tpM(c/ā) for
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some c ∈M . Note that P is a countable set of types, so there is a countable
elementary extension M1 of M which realizes all types in P . Now do the same
thing, with M1 in place of M . Continue to get a countable elementary chain
Mi for i < ω. If N is the union, then N is ω-homogenous by construction.

Lemma 2.18 can be used to relate types and automorphisms.

Lemma 2.19 Let M be a countable ω-homogeneous structure. Let ā, b̄ be fi-
nite tuples from M with the same type in M . Then there is an automorphism
f of M such that f(ā) = b̄.

Proof. (Back-and-forth.) List the elements of M as (ei : i < ω). Let us define
ci and di from M by induction, such that tpM(ā, c1, .., cn) = tpM(b̄, d1, .., dn)
for all n. At stage 2n, let c2n be en, and let d2n be such that tpM(ā, c0, .., c2n−1, c2n) =
tpM(b̄, d0, .., d2n−1, d2n) (by induction hypothesis and homogeneity of M). At
stage 2n+1 let d2n+1 = en and let c2n+1 be such that tpM(ā, c0, .., c2n, c2n+1) =
tpM(b̄, d0, .., d2n, d2n+1). Then the map f which takes cn to dn is by construc-
tion well-defined (why?), a permutation of the universe of M (why?) and as
for each formula φ(x1, .., xm) of L, M |= φ(c1, .., cm) iff M |= φ(d1, .., dm), f
is an automorphism of M . Finally f(ā) = b̄ (why?)

Corollary 2.20 Let M be an L-structure, and ā, b̄ n-tuples from M . Then
tpM(ā) = tpM(b̄) iff there is an elementary extension N of M and an auto-
morphism f of N such that f(ā) = b̄.

Proof. Right to left is immediate (???).
Left to right: Add a new function symbol f . Note that we can express “f is
an L-automorphism” by set of sentences in L∪{f}. Let L′ = LM ∪{f}, and
let Σ be Dc(M) ∪ “f is an L-automorphism” ∪{f(ā) = b̄}. It is enough to
show that Σ is finitely consistent. Let Σ0 be a finite subset of Σ. Σ0 involves
only symbols from a finite sublanguage L0 of L and finitely many elements
of M . Let M0 be a countable elementary substructure of M |L0 containing
those elements as well as ā and b̄. Let N0 be a countable ω-homogeneous
elementary extension of M0. Then by Lemma 2.19 there is an automorphism
of N0 taking ā to b̄. So Σ0 has a model.

Definition 2.21 (i) By a quantifier-free n-type of T we mean a set Σ(x1, .., xn)
of quantifier-free L-formulas such that T ∪ Σ is consistent.
(ii) A complete quantifier-free n-type of T is a quantifier-free n-type Σ of T
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such that for each quantifier-free formula φ(x1, .., xn), φ or ¬φ is in Σ.
(iii) Let M be an L-structure and ā an n-tuple from M . Then by qftpM(ā)
(the quantifier-free type of ā in M) we mean {φ(x1, .., xn) : φ ∈ L quantifier-
free and M |= φ(ā).

Remark 2.22 (i) Σ(x̄) is a complete quantifier-free type of T if and only if
Σ = qftpM(ā) for some model M of T and tuple ā from M .
(ii) The quantifier-free type of ā in M is precisely the set of quantifier-free
formulas in tpM(ā).

Before getting into the details of quantifier elimination, let us make some
remarks on the topology on type spaces.

Remark 2.23 (i) Let T be a theory and let Sn(T ) be the set of complete
n-types of T . Put a topology on Sn(T ) be calling a subset X closed if there
is a set Σ(x̄) of L-formulas (x̄ = (x1, .., xn)) such that X = {p(x̄ ∈ Sn(T ) :
Σ ⊆ p}. Write X = XΣ. Note that this IS a topology, and under it Sn(T )
becomes a compact Hausdorff space with a basis of clopens (namely Xφ) for
φ(x1, .., xn) an L-formula. (Exercise.)
(ii) We can do exactly the same thing, but now with quantifier-free types.
Let Sqfn (T ) be the set of complete quantifier-free n-types of T . Again give
it a topology where the closed sets are of the form XΣ where Σ is a set
of quantifier-free L-formulas. Again Sn(T ) becomes a compact Hausdorff,
totally disconnected space.
(iii) In the context of (i), let φ(x̄) and ψ(x̄) be L-formulas. Then T |=
∀x̄(φ(x̄) ↔ ψ(x̄) if and only if Xφ = Xψ. Likewise in the context of (ii),
when φ and ψ are quantifier-free formulas.

Definition 2.24 We will say that T has property (Q) if for any two models
M,N of T , n < ω and n-tuples ā from M , b̄ from N , IF qftpM(ā) = qftpN(b̄)
THEN tpM(ā) = tpN(b̄).

Proposition 2.25 T has quantifier-elimination if and only if T has property
(Q).

Proof. Left to right is obvious.
We will give two proofs of the right to left direction. (In fact they will be
the same proof.)
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PROOF A. Assume that T has (Q). Fix n ≥ 1. Define f : Sn(T )→ SqfN (T ),
by f(p) = the set of quantifier-free formulas in p. Note that f(p) IS a
complete quantifier-free n-type of T , and that f is surjective and continuous.
(For continuity, if φ(x̄) is a quantifier-free formula of T , then {p ∈ Sn(T ) :
φ ∈ f(p)} is clearly {p ∈ Sn(T ) : φ ∈ p}.) Now the assumption that T has
property (Q) means precisely that f is also injective. So f is a continuous
bijection between compact Hausdorff spaces. It is well-known (exercise) that
f must therefore be a homeomorphism. Let φ(x̄) be an L-formula. So the
image of Xφ under f mut also be clopen hence of the form Xψ for ψ quantifier-
free. But it then follows that (in the space Sn(T )) Xφ = Xψ whereby φ(x̄)
and ψ(x̄) are equivalent modulo T .

PROOF B. Assume T has property (Q). Let φ(x̄) be an arbitrary L-formula
with free variables x̄ = (x1, .., xn). We seek a quantifier-free formula equiva-
lent to φ modulo T .
Let Σ(x̄) be the set of quantifier-free formulas ψ(x̄) such that T |= ∀x̄(φ(x̄)→
ψ(x̄)).
Claim. T ∪ Σ(x̄) |= φ(x̄). (That is, for any model M of T and realization ā
of Σ in M , also M |= φ(ā).)
Proof of claim. Suppose not. So there is a model M of T and ā inM such that
M |= Σ(ā) and M |= ¬φ(ā). Let Γ(x̄) = qftpM(ā). Then T ∪{Γ(x̄)}∪{φ(x̄)}
is consistent. (Otherwise by compactness T ∪{φ(x̄)} |= ¬γ(x̄) for some γ ∈ Γ
whereby ¬γ ∈ Σ, a contradiction.)
So there is a modelN of T and b̄ fromN such that qftpN(b̄) = Γ(= qftpM(ā))
and N |= φ(b̄). This contradicts (Q) and proves the claim.

By the claim and compactness (and the closure of Σ under conjunctions)
there is ψ(x̄) ∈ Σ such that T |= ∀x̄(ψ(x̄)→ φ(x̄)). So ψ works.

Definition 2.26 Let M and N be L-structures.
By a finite partial isomorphism between M and N we mean a pair (ā, b̄) of
finite (nonempty) tuples ā from M and b̄ from N . Such that qftpM(ā) =
qftpN(b̄).

Remark 2.27 A finite partial isomorphism between M and N is the same
thing as an isomorphism (of L-structures) between a finitely generated sub-
structure of M and a finitely generated substructure of N .

Explanation. Suppose first that (ā, b̄) is as in the definition above. For each
L-term τ(x̄), define f(τ(ā)) = τ(b̄). Then f is an isomorphism between< ā >
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and < b̄ > (where < − > denotes substructure generated by). On the other
hand if f is an isomorphism between substructures A of M and B of N and
A is generated by the finite tuple ā, and b̄ = f(ā) then qftpM(ā) = qftpN(b̄).
So we often denote a finite partial isomorphism by f .

Definition 2.28 Let M and N be L-structures and let I be a set of par-
tial isomorphisms between M and N . We say that I has the back-and-forth
property if whenever (ā, b̄) ∈ I and c ∈ M then there is d ∈ N such that
(āc, b̄d) ∈ I, and dually.

Proposition 2.29 The following are equivalent:
(i) T has quantifier-elimination,
(ii) whenever M and N are ω-saturated models of T , and I is the set of all
finite partial isomorphisms between M and N , then I has the back-and-forth
property.

Proof. (i) implies (ii). Assume T has QE. So T has property (Q). Let M,N
be ω-saturated models of T , and I the set of all finite partial isomorphisms
beteween M and N . So (ā, b̄) ∈ I iff tpM(ā) = tpN(b̄). Let tpM(ā) = tpN(b̄)
and c ∈M . Let pā(x) = tpM(c/ā). Then as in 2.14, pb̄(x) is a complete type
over b̄ in the sense of N , so by ω-saturation, it is realized in N by d say.
Then tpM(āc) = tpN(b̄d).
(ii) implies (i). We assume (ii) and prove that T has property (Q).
Let M,N be models of T , ā ∈ M and b̄ ∈, and qftpM(ā) = qftpN(b̄). Let
M ′, N ′ be ω-saturated elementary extensions of M,N respectively (by 2.12).
Let I be the set of finite partial isomorphisms between M ′ and N ′. Note
that (ā, b̄) ∈ I. So to complete the proof it is enough to prove (changing
notation):
Claim. For any (ā, b̄) ∈ I, tpM ′(ā) = tpN ′(b̄).
Proof of claim. We prove by induction o the complexity of φ(x1, .., xn) (n
varying) that for any pair ā, b̄) ∈ I of n-tuples, M |= φ(ā) iff N |= φ(b̄). This
is immediate for quantifier-free formulas, and the inductive step where we use
∧,∨,¬ or → is clear. So suppose now tht φ has the form ∃y(ψ(x1, .., xn, y)).
Suppose (ā, b̄) ∈ I, and M |= φ(ā). So there is c ∈M such that M |= ψ(ā, c).
As I has the back-and-forth property , there is d ∈ N such that (āc, b̄d) ∈ I.
By inductive assumption, N |= ψ(b̄, d), and thus N |= φ(b̄). (The dual case
is the same).
The claim is proved. We have shown that T has (Q) and so QE (by 2.25).
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Proposition 2.30 Suppose that for any two ω-saturated models M,N of T ,
the set of finite partial isomorphisms between M and N has the back-and-
forth property AND is nonempty. Then T is complete.

Proof. Let M,N be arbitrary models of T . Let M ′, N ′ be ω-saturated ele-
mentary extensions of M,N respectively. By assuption, let (ā, b̄) ∈ I (the
set of finite partial isomorphisms between M ′ and N ′). By 2.29, T has
quantifier-elimination, and thus tpM(ā) = tpN(b̄). In particular M ′ and N ′

are elementarily equivalent. So M and N are elementarily equivalent. Thus
T is complete.

Before passing to examples and applications of quantifier-elimination, it will
be convenient to discuss notions around model-completeness and existentially
closed structures.

Definition 2.31 (i) A theory T will be called universal if T can be axioma-
tized by universal sentences.
(ii) T will be called ∀∃ if T can be axiomatized by ∀∃ sentences.
(iii) T∀ is the set of universal consequences of T .
(iv) Let M be an L-structure. By D(M) (the diagram of M) we mean the
set of quantifier-free sentences of LM true in M (namely the quantifier-free
part of the complete diagram Dc(M) of M).

Exercise 2.32 (i) Let M and N be an L-structures. Then M can be em-
bedded in N if and only if N can be expanded to a model of D(M).
(ii) The models of T∀ are precisely the substructures of models of T .
(iii) T is universal iff any substructure of a model of T is a model of T .
(iv) T is ∀∃ iff the class of models of T is closed under unions of chains.

Definition 2.33 Let T be a universal theory. A model M of T is said to
be existentially closed (in the class of models of T ) if whenever M ⊆ N is
a model of T and σ is an existential LM -formula such that N |= σ, then
M |= σ.

Lemma 2.34 Let T be universal.
(i) For any model M of T there is an existentially closed model N of T such
that M ⊆ N and N has cardinality at most |M |+ |L|+ ω.
(ii) Suppose T ′ is an ∀∃ theory and T = T ′∀. Then any existentially closed

24



model of T is a model of T ′.
(iii) Let M1,M2 be models of T . Let ā, b̄ be finite tuples from M1,M2 re-
spectively, and suppose that etpM1(ā) ⊆ etpM2(b̄) (where etp(−) denotes the
existential type). Then there is a model N of T and embeddings f : M1 → N
and g : M2 → N such that f(a) = g(b).
(iv) Let

Proof. (i) First by a union of chains argument, produce a model M∗ of T (of
the right cardinality) containing M such that whenever σ is an existential
LM -sentence true in some extension of M∗ to a model of T , then σ is true in
M∗. Now construct M∗∗, carry on ω times and take the union.
(ii) As M is a model of T ′∀ there is by Exercise 2.32, an extension N of M
which is a model of T ′. Let σ be an ∀∃ sentence of L which is true in N . σ
has the form ∀x̄φ(x̄) where φ is existential. Pick ā from M . Then N |= φ(ā)
so M |= φ(ā).
(iii) Consider LM1 ∪LM2 where we only identify ā and b̄ (by constants c̄ say).
In this language consider Σ = T ∪ D(M1) ∪ D(M2). We claim that Σ is
consistent. Let φ(c̄, m̄1) ∈ D(M1) and ψ(c̄, m̄2) ∈ D(M2). Then ∃ȳφ(x̄, ȳ) ∈
etpM1(ā) so is also in etpM2(b̄). So we can find m̄′ ∈ M2 such that M2 |=
φ(b̄, m̄′) ∧ ψ(b̄, m̄2). So Σ is consistent. Let N0 be a model of Σ, and let N
be the L-reduct of N0. Then we have embeddings f of M1 into N and g of
M2 into N , such that f(ā) = g(b̄).

Corollary 2.35 Suppose T is universal. If M is an ec model of the univer-
sal theory T and ā is an n-tuple from M , then etpM(ā) is maximal among
existential types realized in models of T . That is, whenever N |= T , b̄ is an
n-tuple from N and etpM(ā) ⊆ etpN(b̄), then etpM)ā) = etpN(b̄).

Proof. By Lemma 2.34 we may assume that both M and N are substructures
of some model N ′ of T and that ā = b̄. But then etpN(ā) ⊆ etpN ′(ā) ⊆
etpM(ā) where the last inclusion is because of M being existentially closed.

Corollary 2.36 Let T be universal. Let φ(x̄) be an existential L-formula.
Then there is a set Ψ(x̄) of universal L-formulas, such that for any exiten-
tially closed model M of T , M |= (∀x̄)(φ(x̄)↔ ∧Ψ(x̄))

Proof. Let P(x̄) = {etpM(ā) : M an ec model of T , ā a tuple from M , and
M |= ¬φ(ā)}. By the above remark, for each p(x̄) ∈ P, T ∪ p(x̄) ∪ {φ(x̄)}
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is inconsistent, hence there is ψp(x̄) ∈ p such that T ∪ {ψp(x̄)} ∪ {φ(x̄)} is
inconsistent. Let Ψ be the set of negations of the ψp’s.

Definition 2.37 Let T be an (arbitrary) theory. T is said to be model-
complete if whenever M ⊆ N are models of T then M is an elementary
substructure of N .

Remark 2.38 (i) If T has QE then T is model-complete. (The converse
fails.)
(ii) T is model-complete if and only if for any model M of T , T ∪D(M) is
complete (as an LM -theory).
(iii) If T is model-complete then the class of models of T is closed under
unions of chains, hence T is ∀∃.

Proposition 2.39 Let T be any theory. The following are equivalent:
(i) T is model-complete.
(ii) The models of T are precisely the ec models of T∀.
(iii) Every model of T is an ec model of T∀.
(iv) for every L-formula φ(x̄) there is an existential L-formula ψ(x̄) such
that T |= ∀x̄(φ(x̄)↔ ψ(x̄)).

Proof. (i) implies (ii). Assume T is model-complete. So T is ∀∃. If M is an
ec model of T∀ then by Lemma 2.34 (ii), M is a model of T . Conversely, let
M be a model of T . Let M ⊆ N where N is a model of T∀. Let σ be an
existential sentence of LM true in N . Let N ′ be an model of T extending
N . Clearly N ′ |= σ too. By model-completeness of T , M is an elementary
substructure of N ′ so M |= σ. Thus M is an ec model of T∀.
(ii) implies (iii) is trivial.
(iii) implies (iv). By Corollary 2.36 and compactness every existential L-
formula is equivalent modulo T to a universal formula. It follows that every
L-formula is equivalent modulo T to both a universal formula and an exis-
tential formula.
(iv) implies (i). Let M ⊆ N be models of T , φ(x̄) an L-formula, and ā a
tuple from M . Let ψ1(x̄) be an existential formula equivalent to φ mod T
and ψ2 a universal formula equivalent to φ mod T . Then M |= φ(ā) implies
M |= ψ1(ā) implies N |= ψ1(ā) implies N |= φ(ā). Conversely, N |= φ(ā)
implies N |= ψ2(ā) implies M |= ψ2(ā) implies M |= φ(ā).

Here is a useful criterion for a theory to be model-complete.
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Proposition 2.40 The following are equivalent:
(i) T is model-complete.
(ii) Whenever M ⊆ N are models of T , then there is an elementary extension
N ′ of M and an embedding f : N → N ′ such that f |M is the identity.

Proof. (i) implies (ii) is immediate because N is already an elementary
extension of M .
(ii) implies (i). Assume (ii). We will show that any model M of T is an
existentially closed model of T∀, and then we can apply Proposition 2.39. So
let M be a model of T . Let M ⊆ N where N is a model of T∀. So there
is N ⊆ N1 where N1 is a model of T . By (ii) there is an embedding f over
M of N1 into an elementary extension N ′ of M . In particular f |N is an
embedding over M of N into N ′. Without loss of generality N is already a
substructure of N ′. Let σ be an existential LM -sentence such that N |= σ.
Then clearly N ′ |= σ. As N ′ is an elementary extension of M , M |= σ.

Note also

Lemma 2.41 Suppose that T is model-complete and that there is a model
M0 of T which is embeddable in every model of T . Then T is complete.

Proof. LetM be a model of T . So we may assume thatM0 is a substructure of
M , whereby M0 is an elementary substructure of M and Th(M) = Th(M0).

Finally, for cultural reasons, we tie up the above material with the notion of
“model-companion”.

Definition 2.42 Let T be an arbitrary theory in a language L. We say that
T ′ is a model-companion of T if T ′∀ = T∀ and T ′ is model-complete.

Remark 2.43 To say that T ′∀ = T∀ means precisely that every model of T
is a substructure of a model of T ′ and every model of T ′ is a substructure
of a model of T . Note that T ′ is a model-companion of T iff T ′ is a model
companion of T∀.

Proposition 2.44 (T arbitrary.)
(i) T has a model-companion if and only if the class of ec models of T∀ is an
elementary class.
(ii) The model companion of T , if it exists, is unique and equals the theory
of ec models of T∀.
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Proof. (i) Suppose T has a model companion T ′. By 2.39, the models of T ′

are precisely the ec models of T ′∀ = T∀. Conversely suppose the class of ec
models of T∀ is elementary, and let T ′ be the theory of this class. Note then
that T ′∀ = T∀, so again by 2.39 T ′ is model complete, so is a model companion
of T .
(ii) is contained in the first part of the proof of (i).

Definition 2.45 Let K be a class of L-structures. We say that K has the
amalgamation property, if whenever M0 ⊆ M1 and M0 ⊆ M2 are all in K
then there is N ∈ K and embeddings fi : Mi → N for i = 1, 2 such that f1

and f2 agree on M0. A theory T is said to have the amalgamation property
if its class of models does.

Proposition 2.46 Suppose that T is a universal theory with the amalgama-
tion property. Suppose T ′ is a model-companion for T ′. Then T ′ has QE.

Proof. By 2.44, the class of ec models of T is elementary and T ′ is its theory.
Claim. Suppose M1, M2 are models of T ′, and ā, b̄ are tuples in M1,M2

respectively with the same quantifier-free types. Then tpM1(ā) = tpM2(b̄).
Proof of claim. Let M0 be the substructure of M1 generated by ā and M ′

0 the
substructure of M1 generated by b̄. Then the “map” taking ai to bi yields
an isomorphisms between M0 and M ′

0. So there is no harm in assuming that
M0 = M ′

0 (so ā = b̄). As all the Mi are models of T ′∀ = T∀, and T∀ has
the amalgamation property, we may assume that M1 and M2 are common
substructures of a model N of T ′∀ and thus (by extending N), common sub-
structures of a model N ′ of T ′. But then Mi is an elementary substructure
of N ′ for i = 1, 2 whereby tpM1(ā) = tpN ′(ā) = tpM2(ā), proving the claim.

Quantifier-elimination for T ′ now follows from Proposition 2.29.

3 Examples and applications of quantifier elim-

ination.

Example 3.1 Let T be the theory of infinite sets in the empty language.
Then T has quantifier-elimination (and is complete). T is the model com-
panion of the empty theory.
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Proof. Let M , N be models of T . Let (ā, b̄) be a finite partial isomorphism
between M and N . So ai = aj iff bi = bj. Let c ∈ M . then as N is infinite
there is d ∈ N such that for each i, ai = c iff bi = d. So (āc, b̄d) is a finite
partial isomorphism between M and N . Similarly given d ∈ N we can find
c ∈ M etc. By 2.29 T has quantifier elimination. We already know T to be
complete but we could also use 2.30 to prove this.

Example 3.2 Let T be the theory of dense linear orderings without first or
last element (in the language L = {<}). Then T has quantifier-elimination
and is complete. T is the model companion of the theory of linear orderings.

Proof. Again the set of finite partial isomorphisms between any two models of
T is nonempty and has the back-and-forth property. Note that T∀ is precisely
thee theory of linear orderings.

Example 3.3 Let T be the theory of discrete linear orderings without first
or last element, in the language L = {<}. Then T is complete but not
model-complete.

Proof. We leave it as an exercise to show that T is not model complete.
For each n < ω let Sn and Tn be new unary function symbols. Let L′ be

L together with these new symbols. Let T ′ be the definitional expansion of
T obtained by defining Sn = y iff y is the “nth successor” of x and Tn = y if
y is the “nth predecessor of x”. A back-and-forth argument in ω-saturated
models of T ′ shows that T ′ has quantifier-elimination and is complete (using
2.29 and 2.30). In particular T is complete.

Remark 3.4 Let T and T ′ be as in Example 3.3. Notice that each term
τ(x) of T ′ is equivalent mod T ′ to some Sn or Tn. Now each n and Ti is
defined by an L-formula which is a conjunction of an existential formula
and a universal formla. As T ′ has QE, each L-formula is equivalent mod
T to a Boolean combination of existential L-formulas (vut NOT to a single
existential L-formula, as T is not model-complete).

Example 3.5 Let T be the theory of the random graph from Example 1.40.
Then T has quantifier-elimination. T is the model companion of the theory
of irreflexive, symmetric graphs.
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Proof. Quantifier elimination is obtained by back-and-forth. For the rest we
must show that every irreflexive, symmetric graph embeds in a model of T .
Left to you.

Example 3.6 Let L = {+,−, ·, 0, 1} be the language of rings. Let ACF be
the theory of algebraically closed fields. For p a prime or zero, let ACFp
be the theory of algebraically closed fields of characteristic p. Then ACF
has quantifier-elimination, and each ACFp is complete. ACF is the model
companion of the theory of fields.

Proof and explanation. Let us start with some algebra. Let K be any field.
Then there is a canonical homorphism φ from the ring Z into K: φ(n) =
1 + 1 + .. + 1 (n-times). Im(φ) is an integral domain. So ker(φ) is either
{0} or pZ for some prime p. In the first case φ is an embedding and extends
to an embedding of the field Q into K. In this case we say that K has
characteristic 0, and call the canonical copy of Q the prime field. In the
second case φ induces an isomorphism between Z/pZ = Fp (the field with
p elements) and a subfield of K. We say that K has characteristic p, and
again call Im(φ) the prime field. We can express having characteristic p by a
single L-sentence and having characteristic 0 by infinitely many L-sentence.

The fieldK is said to be algebraically closed if any monic polynomial equation
xn + an−1x

n−1 + ...a1x+ a0 = 0 with n ≥ 1 and ai ∈ K has a solution in K.
This can be expressed by infinitely many L-sentences (one for each n).

So ACF as well as ACF0 and ACFp are L-theories. (For consistency we use
the fact that any field has an algebraic closure.) It is worth remarking that
any algebraically closed field is infinite.

We will prove that ACF has QE by using 2.29. Note that if K is a
field then a substructure of K is precisely a subring. If K,L are fields and
f : R ∼= S is an isomorphism of subrings, then f extends uniquely to an
isomorphism f ′ : Fracr(R) ∼= Frac(S) between the fraction or quotient
fields of R and S. So we may consider a finite partial isomorphisms between
models of ACF to be an isomorphism of finitely generated subfields.

Let K1 and K2 be ω-saturated models of ACF . Suppose f : k1
∼= k2 is

an isomorphism of finitely generated subfields of K1 and K2. Let a ∈ K1 we
must extend f to the field k1(a). If a ∈ k1 already there is nothing to do.
Case 1. a satisfies some (nonzero) polynomial equation over k1.
Let h(x) = xn + bn−1x

n−1 + .. + b0 be the minimal polynomial of a over k1,
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namely the monic polynomial in k1[x] of smallest degree such that h(a) = 0.
It is well-known that h is irreducible in k1[x] and so the ideal (h(x)) it gener-
ates is prime. Let h′(x) = f(h(x)). (That is h′ is the result of applying f to
the coefficients of h.) Then h′(x) is irreducible in k2[x]. As K2 is algebraically
closed h′(x) = 0 has a solution say b in K2. Extend f to f ′ on k1[a] by putting
f ′(a) = b. Then f ′ is an isomorphism between k1[a] and k2[b]. (k1[x]/(h(x))
is isomorphic to k1[a] by taking x to a. Likewise for k2[x]/(h′(x)) and k2[b].
But also k1[x]/(h(x)) and k2[x]/(h′(x)) are isomorphic via f .) In fact k1[a]
is alreasy a subfield of K1.
Case 2. a satisfies no nonzero polynomial equation over k1. That is, a is
transcendental over k1.
It suffices to find b ∈ K2 which is transcendental over k2. Note that k2 is
Frac(R) for some finitely generated ring R. Any nonzero polynomial P (x)
over k2 can be rewritten as a nonzero polynomial over R, and thus as a poly-
nomial whose coefficients are L-terms in the finitely many generators of R.
So Σ(x) = {h(x) 6= 0 : h a nonzero polynomial over R}, can be considered
as a set of formulas with parameters from a fixed finite set of generators of
R. But K2 is infinite, and each h(x) has at most deg(h) many zeros in K2.
Thus Σ(x) is finitely satisfiable in K2, so by ω-saturation is realized in K2

by some b. So b is transcendental over k2. So f extends to f ′ on k1[a] by
putting f ′(a) = b. (k1[a] ∼= k1[x] ∼= k2[x] ∼= k2[b].)

By 2.29 this shows that ACF has quantifier-elimination. Fix p to be
a prime or 0. Let K1, K2 be models of ACFp. Then the prime fields are
isomorphic, so there is at least one finite partial isomorphism between K1

and K2. By 4.30 ACFp is complete.
As ACF has QE it is model-complete. Note that any field embeds in an

algebraically closed field. Thus ACF is the model companion of the theory
of fields.

Corollary 3.7 (Hilbert’s Nullstellensatz.) Let K be an algebraically closed
field. Let P̄ (x̄) = 0 be a finite system of polynomial equations in (x1, .., xn)
with coefficients in K. Suppose that this system has a common solution in
some field extending K. Then it has a common solution in K.

Proof. Suppose L is a field extending K which contains a solution of P̄ (x̄) =
0. We may assume L to be algebraically closed too (why?). The LK-sentence
∃x̄(P̄ (x̄) = 0) is true in L so true in K. (K is an elementary substructure of
L, by model-completeness of ACF .)
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Corollary 3.8 (Lefschetz principle.) Let σ be a sentence in the language of
rings. Then the following are equivalent:
(i) σ is true in the complex field.
(ii) σ is true in some algebraically closed field of characteristic 0,
(iii) σ is true in all algebraically closed fields of characteristic 0.
(iv) For infinitely many primes p, σ is true in some (all) algebraically closed
fields of characteristic p.
(v) For all but finitely many primes p, σ is true in some (all) algebraically
closed fields of characteristic p.

Proof. This is often seen as a consequence of the completeness of ACF0 and
the ACFp’s, but it can be better seen as coming from quantifier-elimination
of ACF . So as ACF has QE (and L contains some constant symbols) there
is a quantifier-free sentence τ such that ACF |= σ ↔ τ . Now τ is a finite
disjunction of finite conjunctions of sentences t1 = t2, t1 6= t2 where ti are
closed terms of L. These just concern the arithmetic of the prime field, so
everything is clear.(???)

Corollary 3.9 (Ax) Let V ⊂ Cn be a variety (namely the common zero-set
of finitely many polynomial equations over C in indeterminates x1, .., xn).
Let f : V → V be an injective polynomial map. That is, the coordinates of f
are given by polynomials Qi(x1, .., xn) with coefficients in C (and f is 1− 1).
Then f is surjective.

Proof. Suppose V is the common zero set of Pi(x1, .., xn, āi) = 0, (i = 1, ..,m)
where P is over Z and ai is a finite tuple from C. Similarly let f be given by
(Q1(x̄, b̄1), ..., Qn(x̄, b̄n)) where the bi are finite tuples from C, and the Qi are
over Z. Let c̄ be a finite tuple including all the ai and bi. Let us suppose for
a contradiction that f is 1− 1 but not surjective. Let φ(ȳ) be the L-formula
expressing that Q̄(x̄, ȳ) defines an injective but not surjective map from the
set defined by P̄ (x̄, ȳ) = 0 to itself. Let σ be the L-sentence ∃ȳ(φ(ȳ)). So σ
is true in the field of complex numbers. By Corollary 3.8, σ is true in Fp for
some prime p. Let K be this field. So we can find some finite tuple d from
K and a variety W ⊆ Kn and a polynomial map g : W → W all defined
with coefficients d such that g is 1− 1 but not onto. K is a (directed) union
of the finite fields Fpn . So the coefficients d are contained in some Fq. Now
W is the union of the W (Fq′) for q′ ≥ q. and each such set is finite. Note
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that g takes W (Fq′) into itself and therefore onto itself (by counting). Thus
g : W → W is surjective, a contradiction.

Example 3.10 The theory RCF of real closed fields in the language of rings,
is complete, model-complete, and is the model companion of the theory of
formally real fields. RCF does not have quantifier-elimination. The theory
RCOF of real closed ordered fields, in the language of ordered rings is com-
plete with quantifier-elimination (and is the model companion of the theory
of ordered fields).

Explanation and proof. The general idea is that real closed fields are to the
reals as algebraically closed fields of characteristic zero are to the complexes.

Let Lr be the language of rings, and Lor = Lr ∪ {<} be the language of
ordered rings.

We will need some algebraic notions and facts which we will now discuss.
Among other things Lang’s Algebra is a good source.

The field F is said to be formally real if −1 is not a sum of squares. Note
that a formally real field has characteristic zero. Also note that the class of
formally real fields (as Lr-structures) is an elementary class. the field F is
said to be real closed if F is formally real and has no proper formally real
algebraic extension.

Fact 3.11 F is real closed iff −1 is not a square in F and F [
√
−1] is alge-

braically closed.

So note that the class of real closed fields is also elementary. (Why?)
RCF is the corresponding theory. Also the field of real numbers is real
closed. Note that it follows from the algebraic closedness of F [

√
−1] that

any polynomial f(x) over a real closed field F splits (over F ) into irreducible
factors of degree 1 and 2. In particular any odd degree polynomial over F
has a root in F .

By an ordered field we mean a field F equipped with a total ordering <
such that
(i) 0 < 1,
(ii) x < y → x+ z < y + z,
(iii) x < y ∧ z > 0→ xz < yz.

Note that the ordering on F has to be dense with no first or last element
(why?).
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By a real closed ordered field we mean an ordered field (F,<) such that
F is real closed.

So the class of ordered fields (as well as the class of real closed ordered
fields) in the language Lor is elementary.

Fact 3.12 (i) The field F is formally real if and only if there is an ordering
on F making F into an ordered field. Moreover a ∈ F is not a sum of squares
iff there is an ordering < of F under which a < 0.
(ii) Suppose that F is a real closed field. Then F has a unique ordering (as
an ordered field), namely that where the positive elements are the squares.
(iii) Let (F,<) be an ordered field. Then F is real closed if and only if (F,<)
has the sign-change property for polynomials: namely whenever f(x) is a
polynomial over F , a, b ∈ F and f(a) < 0 and f(b) > 0 then there is c
between a and b (in the sense of the ordering) such that f(c) = 0.

By virtue of (iii) we get nice axioms for the class of real closed ordered
fields. In any case we denote by RCOF the theory of real closed ordered
fields.

By a real closure of a formally real field we mean a real closed field which
contains F and is algebraic over F . (Such a thing exists by definition).

Fact 3.13 (Artin-Schreier) Let (F,<) be an ordered field. Then there is a
real closure R of F such that < is induced by the (unique) ordering of R.
Moreover any two such real closures of F are isomorphic over F .

To prove quantifier elimination for RCOF we will need the following:

Lemma 3.14 Suppose that (K,<) and (K ′, <) are real closed order fields.
Suppose (F,<) is a real closed (ordered) subfield of (K,<) and likewise for
F ′. Suppose that f : F → F ′ is an isomorphism between k and k′ (as ordered
fields). Suppose b ∈ K, b′ ∈ K ′ and for each a ∈ F , b < a iff b′ < f(a).
Then f extends to an isomorphism g between the the ordered rings F [b] and
F ′[b] by putting g(b) = b′.

Proof. We have to show that for any polynomial p(x) ∈ F [x], p(b) > 0
iff p′(b′) > 0 (Where p′ = f(p)). We may assume that p(x) is monic, and
irreducible in F [x] so p has degree ≤ 2. If p(x) has degree 1, then p(x) = x−a
for some a ∈ F . So p(b) > 0 iff b > a iff b′ > f(a) iff p′(b′) > 0 (using
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our assumptions). Otherwise p(x) is degree 2. Note that F is relatively
algebraically closed in K, so p(x) is also irreducible in K[x]. By the sign
change property, p(x) has constant sign on K. Likewise p′(x) has constant
sign on K ′. Suppose that p(b) > 0. Let a ∈ F . So also p(a) > 0. As f is an
isomorphism, p′(f(a)) > 0. Thus p′(b′) > 0.

Proof of QE for RCOF . We will prove that the class of partial isomorphisms
between countable substructures of ω1-saturated models of RCOF has the
back-and forth property. This clearly implies that the class of partial iso-
morphisms between finitely generated substructures of ω-saturated models
of RCOF has the back-and-forth property, and so we can apply 2.29.
[Let us give a brief explanation of this. Suppose we have a theory T and we
know that the set of partial isomorphism between countable substructures
of any two ω1-saturated models of T has the back-and-forth property. Now
let M,N be ω-saturated models of T . Let M ′, N ′ be ω1-saturated elemen-
tary extensions of M,N respectively (which exist by modifying the proof of
Lemma 2.12 or by 4.7 below). Let a, b be finite tuples from M,N respectively
such that tpM(a) = tpN(b), and let c ∈ M . Then tpM ′(a) = tpN ′(b) so there
is (by assumption) some d ∈ N ′ such that tpM ′(ac) = tpN ′(bd). As N is
ω-saturated, we can realize tpN ′(d/b) in N by d′. Now tpM(ac) = tpN(bd′).
OK.]

So let (K,<), (K ′, <) be ω1-saturated real closed ordered fields. Let F, F ′

be countable substructures of K,K ′ respectively and f an isomorphism be-
tween them (so an isomorphism of ordered rings). f extends to an isomor-
phism between the ordered fields generated by F, F ′ and then, by Fact 3.13,
to an isomorphism between the real closures of F, F ′ in K,K ′ respectively.
As these are still countable, we may assume that F and F ′ are real closed.
Let b ∈ K. As f is an isomorphism between (F,<) and (F ′, <), we may, by
ω1-saturation of K ′ (and denseness of the ordering) find b′ ∈ K ′ such that for
all a ∈ F , a < b iff f(a) < b′. By Lemma 3.14, f extends to an isomorphism
between (F [b], <) and (F ′[b′], <).

This yields QE for RCOF . Note that the ring Z of integers has a unique
ordering on it (making it an ordered ring). So (Z, <) is a (finitely generated)
substructure of every real closed ordered field. By 2.30, RCOF is complete.
(So RCOF = Th(R,+,−, 0, 1, <).)
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Finally we look at RCF , the theory of real closed fields in the language Lr.
By 3.12(ii) RCOF is a definitional expansion of RCF , so RCF is complete
too. In fact x < y is defined by the existential formula ∃z(y − x = z2). But
the negation of x < y is equivalent (in RCOF ) to y < x∨y = x which is also
defined by an existential formula. So x < y is equivalent, in RCOF , to both
an existential Lr-formula and a universal Lr-formula. It follows from QE
for RCOF that every Lr-formula is equivalent in RCF to an existential Lr-
formula. By 2.39, RCF is model-complete. Note that any formally real field
is a substructure of a real closed field, and so RCF is the model companion
of of the theory of formally real fields.

Finally we note that RCF does NOT have quantifier-elimination. In the
model R, both π and −π have the same quantifier-free Lr-type (they are
both transcendental), but different types (one is a square, one is not).

Corollary 3.15 (Hilbert’s 17th problem) Let (R,<) be a real closed field
(such as the field of reals), and let f(x1, .., xn) ∈ R(x1, .., xn) be a rational
function which is postive semidefinite, that is, for all ā ∈ Rn, f(ā) ≥ 0. Then
f is a sum of squares in R(x̄).

Proof. Suppose not. Then by 3.12(i), there is an ordering < on the field R(x̄)
such that f < 0. Notice that < restricts to the given ordering on R (why?).
So (R,<) is a substructure of (R(x̄), <). The formula ∃x̄(f(x̄) < 0) is true
in R(x̄), <) so also in (R,<) (as the latter is existentially closed in the class
of substructures of models of RCOF ), a contradiction.

Example 3.16 Consider the theory T of groups in the language {·, 1,−1 ).
(Note that T is universal.) Then T has no model-companion.

Proof. We will use the following well-known fact:
(*) Let G be a group and a, b ∈ G. Then there is a group extension H ⊇ G
and h ∈ H such that h−1ah = b if and only if a and b have the same order.

It follows that if G is an ec model of T (that is, an existentially closed group),
then for any a, b in G, G |= ∃x(x−1ax = b) iff a and b have same order.

Now assume for the sake of a contradiction that T has a model companion
T ∗ (whose models will thus be precisely the ec groups). For each n < ω let
ψn(x, y) be a formula expressing that the order of x is n if and only if the
order of y is n. Let φ(x, y) be the formula ∃z(z−1xz = y). So φ(x, y) is
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equivalent to ∧nψn(x, y) in all models of T ∗. By compactness there is n such
that φ(x, y) is equivalent to ∧i<nψi(x, y) in all models of T ∗. Let k 6= l be
greater than n. Let G be a group containing an element a of order k and an
element b of order l. (For example G could be the direct product of Z/kZ
and Z/lZ.) Let H be an existentially closed group extending G. So a, b
still have orders k, l respectively in H. But then H |= ∧i<nψi(a, b) whence
H |= φ(a, b) so a and b are conjugate in H which is impossible as conjugation
is a group isomorphism and a and b have different orders.

See Hodges “Building models by games” for more on ec groups.

We finally mention (with no details) a couple of topical examples.

Example 3.17 Fields with operators.

A differential field is a field F equipped with a derivation ∂. This means that
∂ is an additive homomorphism and ∂(xy) = x∂(y) + ∂(x)y. An example is
(C(t), d/dt). We consider differential fields as structures in the language of
rings together with a function symbol ∂. Let DF0 be the (obvious) theory
of differential fields of characteristic zero. DF0 is ∀∃ (because the theory of
fields is). By definition a differentially closed field (of characteristic zero) is
an existentially closed model of DF0 (that is an ec structure for the DF0 or
equivalently (DF0)∀). It is a fact that DF0 DOES HAVE a model companion,
DCF0 (the theory of differentially closed fields of characteristic zero), and
that moreover DCF0 has quantifier-elimination and is complete.

Let FA be the theory of fields equipped with an automorphism (in the lan-
guage of rings together with a new function symbol σ). FA is ∀∃. FA DOES
have a model-companion which is called ACFA. The models of ACFA are
precisely the existentially closed models of FA. Any model of ACFA is, as
a field, algebraically closed. ACFA does NOT have quantifier-elimination.
ACFA is not complete. If (K, σ) is a model of ACFA then Th(K, σ) is
determined by the isomorphism type of (K0, σ|K0) where K0 is the algebraic
closure of the prime field of K.
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4 Saturation, homogeneity, countable mod-

els, ω-categoricity.

In this section we complete our exposition of the elements of “basic” model
theory.

As usual we fix a language L and we consider L-structures. We will
often be considering types of possible infinite tuples in structures. We recall
the notation. Let M be an L-structures. Let I be some index set (often
an ordinal). Let A be a subset of the universe of M and (bi)i∈I a set of
elements of M , indexed by I. Let xi (i ∈ I) be distinct variables . Then
by tpM((bi)i∈I/A) we mean the set of LA-formulas, φ(xi1 , .., xin) (with free
variables from among the xi, i ∈ I) such that M |= φ(bi1 , .., bin). If A = ∅ we
may omit it and just write tpM((bi)i∈I).

Definition 4.1 Let M,N be L-structures. By a partial elementary map be-
tween M and N we mean a map f from a subset A = dom(f) of (the universe
of) M into (the universe of) N such that for any L-formula φ(x1, .., xn) and
a1, .., an ∈ A, M |= φ(a1, .., an) iff N |= φ(f(a1), .., an).

We will freely use the next remark.

Remark 4.2 Let f be a map from a subset A of M into N . Let (ai)i∈I be
some indexing of A. (For example it could be (aα : α < β) for some ordinal
β. Let bi = f(ai). Then f is a a (partial) elementary map between M and
N if and only if tpM((ai)i∈I) = tpN(bi)i∈I).

Definition 4.3 (i) Let M be an L-structure, and A a subset of the uni-
verse of M . Let n < ω. Then Sn(A,M) is the set of complete n-types of
Th(M,a)a∈A. Likewise for SI(A,M) where I is a possibly infinite index set.
If I is an ordinal β we write Sβ(A,M). We sometimes omit M if it is un-
derstood. Note that Sn(∅,M) = Sn(Th(M)) from 2.23.
(ii) Let κ be an infinite cardinal. We say that M is κ-saturated if whenever
A ⊆ M has cardinality < κ, then any p ∈ Sn(A) is realized in M . We say
that M is saturated if it is |M |-saturated.
(iii) We say that M is κ-homogeneous, if whenever β < κ and a, b are β-
tuples from M with tpM(a) = tpM(b), and c is an element of M then there
is d such that tpM(a, c) = tpM(b, d). We say that M is homogeneous if it is
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|M |-homogeneous.
(iv), We say that M is strongly κ-homogeneous if whenever a, b are as in (hy-
pothesis of) (iii) then there is an automorphism f of M such that f(a) = b.
M is strongly homogeneous if it is strongly |M |-homogeneous.

Exercise 4.4 (i) M is κ-saturated iff for any A ⊆ M and p ∈ S1(A), p is
realized in M if and only if whenever β < κ and A ⊆ M , any p ∈ Sβ(A) is
realized in M .
(ii) In (iii) of the definition above, we can allow c to be a γ-tuple for any
γ < κ.
(iii) If M is κ-saturated then M is κ-homogeneous.
(iv) If M is homogeneous then M is strongly homogeneous.
(v) If M is saturated then M is strongly homogeneous.

Proposition 4.5 Suppose M,N are elementarily equivalent saturated struc-
tures of the same cardinality. Then M ∼= N .

Proof. Let |M | = |N | = κ. List M = (ai : i < κ) and N = (bi : i < κ).
We define inductively ci ∈ M and di ∈ N for i < κ such that for all α < κ,
tpM(ci : i < α) = tpN(di : i < α). Suppose we have done this for all
α < β. Write β = γ + n for γ limit. Suppose n = 2m. Put cβ = aγ+m. Let
p(x) = tpM(cβ/c<β). Let q(x) be the result of replacing the parameters ci
by di (for i < β). Then as, by induction hypothesis, tpM(c<β) = tpN(d<β),
q(x) ∈ S1(d<β, N) and so is realized in N by some dβ. So tpM(c≤β) =
tpN(d≤β).

If n = 2m+ 1, put dβ = bγ+m and find cβ ∈M as before.
By construction this yields a partial elementary map f from M to N with

dom(f) = M and Ran(f) = N . So f is an isomorphism.

Proposition 4.6 Suppose M and N are elementarily equivalent, |M | ≤ κ
and N is κ-saturated. Then there is an elementary embedding of M into N .

Proof. Like that of Proposition 4.5.

Gien M and κ it is easy to find an elementary extension N of M which
is κ-saturated. The difficult issue is to choose N of “small” cardinality. We
will investigate these questions in the next few results. Let us first recall
the notion of “cofinality”. If κ is a cardinal, the cofinality of κ, cf(κ), is
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the least ordinal δ such that there is an increasing sequence (αi : i < δ) of
ordinals such that limiαi = κ. cf(κ) is known to be a cardinal. κ is said to
be a regular cardinal if cf(κ) = κ. It is a fact that any successor cardinal is
regular.

Proposition 4.7 Let M be an L-structure and τ a cardinal such that τ ≥
|L| + ω, and |M | ≤ 2τ . Then M has an elementary extension N which has
cardinality at most 2τ and is τ+-saturated.

Proof. We may assume that |M | = 2τ .
First we construct an elementary continuous chain (Mi : i < τ+) of models
of cardinality 2τ such that M0 = M and for each ordinal α < τ+, subset
A of Mα of cardinality ≤ τ and complete n-type Σ over A, Σ is realized
in Mα+1. (By “continuity” of the chain we mean that at limit stages take
unions.) Note that the union of a chain of length at most τ+ of models of
cardinality 2τ has cardinality 2τ . So it suffices to prove:
Claim. Any model (without loss M) of cardinality 2τ has an elementary
extension of cardinality 2τ realizing all types over subsets of M of cardinality
at most τ .
Proof of claim. The number of subsets of M of cardinality at most τ is
≤ 2τ . The number of complete types over any such set is at most 2τ . So by
compactness and Lowenheim-Skolem we can find the required model.

So from the claim the construction can be carried out. Let N be the union
of the Mi. So N is an elementary extension of M (and of each Mi) and has
cardinality 2τ . We claim that N is τ+-saturated. Let A be a subset of N
of cardinality τ and p a complete n-type over A. Then (by regularity of τ+,
A ⊂ Mα for some α < τ+. (Otherwise for arbitrarily large α < τ+ there
is something in A which is in Mα+1 \Mα. But then cf(τ+) ≤ |A| = τ , a
contradiction.) So p is realized in Mα+1 by construction, so also in N .

Exercise 4.8 Show that the previous proposition is best possible. Let M be
the structure with a single binary relation R, such that the univese of M is
the set of finite subsets of ω and R is interpreted as inclusion. Show that any
τ+ saturated model of Th(M) has cardinality at least 2τ .

Corollary 4.9 Assume GCH (2τ = τ+ for every infinite cardinal τ). Let T
be any L-theory. Then for ay regular cardinal λ > |L+ω|, T has a saturated
model of cardinality λ.
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Proof. When λ is a successor cardinal, this is given by 4.7. Assume now
λ to be limit. By 4.7, we may construct an elementary (continuous) chain
(Mµ : µ < λ) of saturated models of T such |Mµ| = µ+. Let N be the union.
Then N has cardinality λ. If A is a subset of M of cardinality < λ, then by
regularity of λ, A is contained in some Mµ. We may assume that |A| < µ+,
so by saturation of Mµ every n-type over A is already realized in Mµ.

Exercise 4.10 An infinite cardinal λ is said to be inaccessible if 2µ < λ
whenever µ < λ. Prove that if T is an L-theory and λ > |L| + ω with λ
inaccessible. Then T has a saturated model of cardinality λ.

Proposition 4.11 Let κ be any cardinal. Then any structure M has an
elementary extension which is κ-saturated and strongly κ-homogeneous.

Proof. It is easy to construct (using 4.7 if you wish) an elementary continuous
chain (Mα : α < κ+) such that
(i) M0 = M ,
(ii) Mα+1 is |Mα|+-saturated.
Let N be the union.
Claim 1. N is κ+-saturated.
Proof. As κ+ is regular, any subset A of N of cardinality < κ+ must be
contained in some Mα. But then |A| ≤ |Mα| so any n-type over A is realized
in Mα+1 by (ii).

Claim 2. N is strongly κ+-homogeneous.
Proof. Let a, b be say λ-tuples from N where λ < κ+, and tpN(a) = tpN(b).
Let f : a→ b be the corresponding partial elementary map. We must extend
f to an automorphism of N . As above there is α such that both a and b are
included in Mα. Note that (Mα, a) is elementarily equivalent to (Mα+1, b),
and that (Mα+1, b) is still |Mα|+-saturated. So by 4.6 there is an elementary
embedding fα of Mα in Mα+1 taking a to b (so extending f). Likewise we can
find an elementary embedding fα+1 of Ma+1 in Mα+2 extending fα. Continue
in this way, taking unions at limit ordinals, to obtain an automorphism of N
extending f . (???)

The previous proposition is quite useful methodologically. For example, sup-
pose we are given a complete theory T and we are interested in understanding
the models of T of cardinality < κ. Let N be a model of T given by the
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previous proposition. Then any model of T of cardinality < κ is isomorphic
to an elementary substructure of N (by 4.6). Moreover any two tuples from
N of length < κ have the same type in N iff they are in the same orbit
under Aut(N). Of course, for T to have outright saturated models of arbi-
trarily large cardinality would be even better, but this in general requires
some set-theoretic hypothesis.

Finally in this discussion of saturation and homogeneity, we give a rather
surprising result about homogeneous models.

Lemma 4.12 Suppose that M and N are L-structures, and κ is a cardinal,
such that
(i) for any finite tuple a from M , tpM(a) is realized in N , and conversely.
(ii) N is κ-homogeneous.
Then for any tuple a from M of length < κ, tpM(a) is realized in N .

Proof. We prove it by induction on the length of the tuple a. Suppose length
a is i. For j < i let a|i be the first j elements of a. We will build b in N
inductively. That is construct bj for j < i such that tpM(a|j) = tpN(bj) and
j < j′ implies bj

′
is a extension of bj. For j finite we can start and continue by

our hypotheses. For j limit, take union of what we have so far. What about
the case of an infinite successor ordinal. So we have tpM(a|j) = tpN(bj), and
we want to extend bj to bj+1 such that tpM(a|j + 1) = tpN(bj+1). We can
reorder the tuple a|j+1 as a β-sequence c say where β < j+1. By induction
hypothesis we can find a β-tuple d from N such that tpM(c) = tpN(d). Now
by κ-homogeneity of N we can extend bj to bj+1 as required.

Exercise 4.13 Let T be a complete theory, κ a cardinal, and M,N homoge-
neous models of T of cardinality κ. Suppose that M and N realizes the same
types in Sn(T ) for all n. Then M and N are isomorphic.

We will now specialize to countable models. Classification theory for count-
able models is quite different in spirit from that for uncountable models. But
we will discuss some elementary results in which useful notions like prime
models and cardinalities of type spaces are introduced.

Countable means of cardinality at most ω. From now on when we say that
a theory T is countable we mean that the language L of T has cardinality at
most ω.
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Lemma 4.14 Suppose T is countable and complete. Then the following are
equivalent:
(i) Sn(T ) is countable for all n < ω.
(ii) For any model M of T and finite subset A ⊂M , S1(A,M) is countable.
(iii) For any model M of T and finite A ⊂M , Sn(A,M) is countable for all
n < ω.

Proof. (i) implies (ii). Suppose for a contradiction that S1(A,M) is un-
countable (for some M |= T and finite A ⊂ M). So there is an elementary
extension N of M and bi ∈ N for i < ω1 such that tpN(bi/A) 6= tpN(bj/A)
for i 6= j. Suppose |A| = n. Let ā be an enumeration of A. Then clearly
tpN(ā, bi) 6= tpN(ā, bj) for i 6= j, whereby Sn+1(T ) is uncountable.
(ii) implies (iii). By induction on n. Assume for a contradiction that
Sn+1(A,M) is uncountable for some M |= T and finite A ⊂M . So again we
have n+1-tuples bi for i < ω1 in some elementary extension N of M such that
the tpN(bi/A) are all different. By 4.11 we may assume that N is strongly
ω-homogeneous (this is not really necessary). Let ci be the n-tuple consisting
of the first n elements of bi, and di the last element of bi. By induction hy-
pothesis there are only countably many types over A among the tpN(ci/A).
So relabelling, we may assume that tpN(ci/A) = tpN(cj/A) for all i, j. By
the strong homogeneity assumption, for each i, let fi be an automorphism
of N which fixes A and takes ci to c0. Let d′i = fi(di). Then tpN(c0d

′
i/A) are

all different, so writing C0 as the set enumerated by c0, tpN(d′i/A ∪ C0) are
all different, contradicting (ii).
(iii) implies (i) is immediate.

Proposition 4.15 Let T be countable and and complete. Then the following
are equivalent:
(i) Sn(T ) is countable for all n < ω,
(ii) T has a countable ω-saturated model.

Proof. (ii) implies (i). Let M be a (in fact the) countable ω-saturated model
of T . Then M realizes all types in Sn(T ) for all n (as M is weakly saturated).
So by countability of M we get (i).
(i) implies (ii). Let M0 be any countable model of T . By our hypothesis,
Lemma 4.14 and Lowenheim-Skolem, we can find a countable elementary
extension M1 of M0 such that for every finite A ⊂ M0 and p ∈ Sn(A,M0),
p is realized in M1. Continue to build an elementary chain of countable
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models M0 ⊆ M1 ⊆ M2.... Let M the the union. Then M is countable and
ω-saturated.

Remark 4.16 A countable complete theory T is often said to be “small”
if it satisfies the equivalent conditions of 4.15. By Proposition 4.5 any two
countable saturated models of T are isomorphic. By 4.6, any countable model
of T embeds in any ω-saturated model of T . So for small theories there is
a “biggest” countable model, the countable saturated one. We will discuss
below when there is a “smallest” countable model.

Definition 4.17 Let T be a complete theory. A model M of T is said to be a
prime model of T if for any model N of T there is an elementary embedding
of M in N .

Note that a prime model of T , if it exists, has cardinality at most |L|+ω.
A natural question to ask is whether any two prime models of T must be
isomorphic. This is false in general, but as we will see it is true for countable
theories. We will need the “omitting types” theorem.

Definition 4.18 Let T be a theory, and Σ(x1, .., xn) an n-type of T . We
will say that Σ is principal if there is an L-formula φ(x1, .., xn) such that
(i) φ is consistent with T , and
(ii) for every ψ ∈ Σ, T |= ∀x̄(φ(x̄)→ ψ(x̄))

Remark 4.19 (i) Suppose p is a complete n-type of T . Then p is principal
iff p is an isolated point in the space Sn(T ).
(ii) If T is complete and Σ is a principal type of T then Σ is realized in every
model of T .

Proposition 4.20 Suppose that T is a countable theory and Σ is a nonprin-
cipal n-type of T . Then T has a (countable) model which omits Σ.

Proof. (Note in passing that if Σ(x1, .., xn) is a set of L-formulas which is
not an n-type of T then every model of T omits Σ.)

For notational ease we prove the Proposition when n = 1. The proof will
be a generalized Henkin construction. Let us add a countable set {c0, c1, ...}
of new constants to L to get L′. We will build a complete L′ theory T ′

extending T with the properties
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(i) for each L′-formula φ(x), if ∃xφ(x) ∈ T ′ then φ(cm) ∈ T ′ for some m, and
(ii) for each m there is ψ(x) ∈ Σ(x) such that ¬ψ(cm) ∈ T for all m.

Suppose have found such a theory T ′. Let M ′ be a model of T ′. By
Tarkski-Vaught the subset of M ′ consisting of interpretations of the new
constants ci is the universe of a (countable) elementary substructure M ′′ of
M ′ which clearly omits Σ(x). The L-reduct of M ′′ satisfies the theorem.

So how to build T ′? Let σ0, σ1, ... be a list of all L′-sentences. We will
build consistent sets of L′-sentences T = S0 ⊆ S1 ⊆ .....Sn.. (n < ω), such
that each Si+1 is obtained by adding finitely many sentences to Si, as follows:
Suppose we are given Si. If Si∪σi is consistent, put S ′i = Si∪{σi}. Otherwise
put S ′i = Si ∪ {¬σi}.

Now suppose we added σi and σi was of the form ∃xφ(x). Then add φ(cj)
to S ′i for some cj not appearing in S ′i to get S ′′i . Otherwise put S ′′i = S ′i. In
any case S ′′i is consistent. S ′′i has the form T ∪ {ψ1, .., ψs}. Let c̄ be the
tuple of new constants occuring in ψ1, .., ψs. Write ∧j=1,..,sψj as ψ(c̄) where
ψ(x1, .., xn) is an L-formula. We may assume that ci is included in c̄.
Claim. For some δ(x) ∈ Σ(x), S ′′i ∪ {¬δ(ci)} is consistent.
Proof of claim. Otherwise S ′′i |= δ(ci) for all δ(x) ∈ Σ(x). So T ∪ψ(c̄) |= δ(ci)
for all δ ∈ Σ. Let χ(xi) be the L-formula ∃x1...xi−1xi+1...xn(ψ(x1, .., xn)). So
one sees that T |= ∀xi(χ(xi) → δ(xi)) for all δ ∈ Σ. As χ(xi) is consistent
with T , this shows Σ is principal, a contradiction.

Put Si+1 = S ′′i ∪ {¬δ(ci)} for some δ ∈ Σ given by the claim.
If we take T ′ to be the union of the Si, then T ′ satisfies (i) and (ii) as at

the beginning of the proof.

Exercise 4.21 Let T be countable and for each i < ω let Σi be a nonprincipal
ni-type of T (for some finite ni). Then T has a countable model omitting all
the Σi.

Definition 4.22 (i) An L-structure M is said to be atomic if for each n and
every n-tuple ā in M , tpM(ā) is a principal type of Th(M) (equivalently an
isolated type in Sn(Th(M)).
(ii) Let T be a complete theory. A formula φ(x1, ., xn) of L is said to be
complete, or an atom, or an atomic formula, if φ(x1, .., xn) isolates a com-
plete type in Sn(T ). (Equivalently, if φ is consistent with T and for each
ψ(x1, .., xn) of L, T |= ∀x̄(φ(x̄)→ ψ(x̄)) or T |= ∀x̄(φ(x̄)→ ¬ψ(x̄)).)
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Remark 4.23 Let T be complete. For each n let Φn(x1, .., xn) = {¬φ(x1, .., xn) :
φ(x1, .., xn) is a complete n-formula of T}. Then a model M of T is atomic
if and only if M omits each Φn.

Proposition 4.24 Let T be countable and complete. The following are equiv-
alent:
(i) T has an atomic model,
(ii) T has a countable atomic model,
(iii) For each n the isolated types are dense in Sn(T ).

Proof. (i) implies (ii) is clear (by taking a countable elementary substruc-
ture).
(ii) implies (iii). Let φ(x1, .., xn) be any L-formula consistent with T . Let M
be a (countable) atomic model of T . So φ is realized in M by some n-tuple
ā. But tpM(ā) is isolated (and contains φ). So the clopen subset of Sn(T )
determined by φ contains an isolated point.
(iii) implies (i). Let Φn(x1, .., xn) be as in Remark 4.23. We claim that each
Φn is (if consistent with T ) a nonprincipal n-type of T . For if φ(x1, .., xn)
is consistent with T , then by (iii) there is a complete n-formula ψ(x1, .., xn)
consistent with φ and T (in fact which even implies φ mod T ). But ¬ψ ∈ Φn.
Thus by Exercise 4.21, T has a model omitting each Φn. By Remark 4.23,
such a model is atomic.

Exercise 4.25 Let M be an L-structure, and let a, b be finite tuples from
M . Then tpM(a, b) is isolated iff tpM(a) is isolated and tpM(b/a) is isolated.

Proposition 4.26 Let T be countable and complete, and let M be a model
of T . Then M is a prime model of T if and only if M is a countable atomic
model of T .

Proof. Assume first M to be prime. As remarked earlier M is countable. Let
p ∈ Sn(T ) be nonisolated. By Proposition 4.20, p is omitted in some model
N of T . But there is an elementary embedding of M in N . So p is also
omitted in M . Thus every complete n-type realized in M must be isolated,
and M is atomic.

Conversely, assume M to be countable and atomic. We have to show that M
is elementarily embeddable in every model of T . Let N be a model of T . Let
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us enumerate M = (a0, .., an, ...). We will define inductively an elementary
map f of M into N . Let us suppose that we have defined f on a0, .., an−1 with
f(ai) = ci ∈ N and tpM(a0, .., an−1) = tpN(c0, .., cn−1). Write b = (a0, ., an−1)
and d = (c0, .., cn−1). So (M, b) ≡ (N, d). Let pb(x) = tpM(an/b). By
Exercise 4.25, pb(x) is isolated (in S1(Th(M, b))). Thus pd(x) is isolated (in
S1(Th(N, d))). By 4.19 (ii), pd(x) is realized in N by some cn say. It follows
that tpM(a0, ., an) = tpN(c0, .., cn). Put f(an) = cn.

Exercise 4.27 Suppose T is countable and complete. (i) Show that any
atomic model of T is ω-homogeneous.
(ii) Show that any two prime models of T are isomorphic.

Proposition 4.28 (T countable, complete.) If Sn(T ) is countable then the
isolated types are dense in Sn(T ).

Proof. This is purely “topological”. If X is a countable, Hausdorff, compact
toplogical space with a basis of clopens then the isolated points are dense in
X: Suppose for a contradiction that U is an open subset of X containing
no isolated points. We may assume U to be clopen. U contains 2 distinct
points a 6= b. By Hausdorffness there are open disjoint subsets U0, U1 of U ,
one containing a the other containing b. We may assume U0, U1 to be clopen.
Again each of U0, U1 contains at least two distinct points, so we find disjoint
nonempty clopen subsets U00, U01 of U0 and U10, U11 of U1. Continuing this
way we produce clopen subsets Uη for each η ∈ 2<ω such that if η2 prolongs η1

then Uη2 ⊆ Uη1 . For each ρ ∈ 2ω, put Uρ = ∩{Uρ|n : n < ω}. By compactness
each Uρ is nonempty and for different ρ’s they are disjoint. So X has size at
least the continuum.

Exercise 4.29 (i) Let X be a compact Hausdorff topological space with a
countable basis of clopens. Show that X is either countable or has cardinality
the continuum.
(ii) Suppose T is countable, complete and that for some n, Sn(T ) is uncount-
able. Prove that T has continuum many countable models (up to isomor-
phism).

A big question in model theory is Vaught’s conjecture: If T is a countable
complete theory then the number of countable models of T up to isomorphism
is either at most ω or is 2ω. (A negative solution was recently announced by
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Knight.) By virtue of Exercise 4.29(ii), we may assume T to be small (see
Remark 4.16). From our study so far we have found some kind of information
about the class of countable models of a small theory.

Corollary 4.30 Let T be a countable, complete, small theory. Then T has
a prime model M0 and a countable saturated model M1. For any countable
model M of T , there is an elementary embedding of M0 into M and an
elementary embedding of M into M1.

Proof. We have already dealt with the existence and properties of the count-
able saturated model. (See Remark 4.16.) By Proposition 4.28, for each n
the isolated types are dense in Sn(T ). By Proposition 4.24 T has a countable
atomic model, which by 4.26 is prime.

Let us consider some of the examples mentioned earlier in the light of the
structure and number of countable models. Details are left to you. The
theory of dense linear orderings (with no first or last element) has exactly one
countable model, which must therefore be both prime and saturated. The
theory of independent unary predicates has neither a countable saturated
model nor a prime model. The theory of discrete linear orderings (with no
first or last element) has a prime model and a countable saturated model
(what are they), but has continuum many countable models. The theory of
algebraically closed fields of a given characteristic has a prime and countable
saturated model. Moreover it has only countably many countable models.
The theory of real closed fields has a prime model but no countable saturated
model. So it has continuum many countable models.

Lemma 4.31 Let T be countable and complete. Then T is ω-categorical if
and only if for each n ≥ 1, every type in Sn(T ) is isolated.

Proof. Suppose first that the right hand side is false. So for some n there is
p ∈ Sn(T ) which is not isolated. By 4.20, T has a countable model omitting
p. But T also a countable model realizing p. These models could not be
isomorphic, so T is not ω-categorical.

Conversely, suppose the right hand side holds. Then every model of T is
atomic. By 4.26 and 4.27, T is ω-categorical.

From “topological” considerations, we obtain the following characterization
of ω-categorical theories.
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Corollary 4.32 Let T be countable and complete. Then the following are
equivalent:
(i) T is ω-categorical,
(ii) For each n ≥ 1, Sn(T ) is finite,
(iii) For each n ≥ 1 there are only finitely many many L-formulas φ(x1, .., xn)
up to equivalence modulo T .

Proposition 4.33 Suppose T to be countable complete. Then T does not
have exactly two countable models (up to isomorphism).

Proof sketch. Suppose for the sake of a contradiction that T has exactly two
countable models. By 4.29 (ii) T is small, so by 4.30 has a prime model M
and a countable saturated model M1. On the other hand by 4.30 there is
p ∈ Sn(T ) for some n, which is not isolated. p is realized in M1 but not in M0

whereby M0 and M1 are not isomorphic. We have to find another countable
model. Let p(x̄) be the nonisolated type in Sn(T ). Adjoin new constants c̄
to get a language L′ and let T ′ be T ∪ p(c̄) (or just p(c̄)) which is a complete
L′-theory). By Lemma 4.14, T ′ is also small. (Why?) So by 4.30, T ′ has a
prime model. Let us write this prime model as (M2, ā) where M2 is a model
of T (so an L-structure) and ā is the interpretation of the new constants c̄.
Note that M2 can not be isomorphic to M0, as M0 omits p, and M2 realizes
it. We will now show that M2 is NOT ω-saturated, so is NOT isomorphic to
M1 which will complete the proof.

Now Sn(T ) is infinite (Why?), so also Sn(T ′) is infinite (why?), and so
there is a nonisolated type q(x̄) in Sn(T ′). q is omitted in (M2, ā) as the
latter is a prime, so atomic model of T ′. As q(x̄) ∈ Sn(Th(M2, ā)) is omitted
in (M2 < ā), M2 could not be ω-saturated.

Example 4.34 There is a countable complete theory with exactly three count-
able models, up to isomorphism.

Explanation. This is the so-called Ehrenfeucht example. Let L consists of a
binary relation symbol < and constants ci for i < ω. T says that < is a dense
linear ordering with no first or last element, and that ci < cj whenenever
i < j. A routine back-and-forth argument shows that T is complete with
quantifier-elimination. Let M be a countable model, and let ai = ci(M).
Then exactly one of the following cases occurs:
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(i) the ai are cofinal in M .
(ii) {ai : i < ω} has a supremum in M .
(iii) {ai : i < ω} has an upper bound in M but no supremum in M .
Note that each of these three possibilities can occur, and that moreover the
isomorphism type of M is determined by which one occurs. Thus T has
precisely three countable models. Let us call these M1, M2, M3 according to
whether (i), (ii) or (iii) occurs. M1 has to be the prime model (it elementarily
embeds in the other models). Which of M2,M3 is saturated? Well consider
M2 and let b be the supremum of the ai in M2. Then the set of formulas
{x < b}∪{x > ai : i < ω} is finitely satisfiable in M2 but not realized in M2.
So M2 is not saturated. So M3 is the countable saurated model. Note that
all models elementarily embed in M2 too. So M2 is weakly saturated but not
saturated.

Exercise 4.35 Let T be a countable complete theory. Assume that every
countable model of T is ω-homogeneous. Then either T is ω-categorical, or
T has infinitely many countable models up to isomorphism.

5 ω-stable theories and Morley’s theorem

In this section we will develop some machinery and notions required to prove
Morley’s celebrated theorem. These notions, such as ω-stability and indis-
cernibles, are of interest in their own right. Roughly speaking T is said to be
ω-stable if there are only countably many types over any countable set.

Recall that Morley’s Theorem says: If the countable complete theory T
is κ-categorical for some uncountable cardinal κ then T is κ-categorical for
all uncountable κ.

Our proof will have three steps.
Step 1. Deduce from the κ-categoricity of T (for some some uncountable κ),
the ω-stability of T .
Step 2. Use ω-stability (and sometimes) the assmption of categoricity, to
find enough saturated models in uncountable cardinals, prime models over
arbitrary sets, and indiscernibles in uncountable models.
Step 3. Show using the machinery from Step 2 that if T is κ-categorical in
some uncountable cardinality then every uncountable model of T is saturated.

Let us start with Step 1.

50



Definition 5.1 The countable complete theory T is said to be ω-stable if for
any model M of T , and countable subset A of M , S1(A,M) is countable (that
is, Th(M,a)a∈A has at most countably many complete 1-types).

Remark 5.2 As usual, if T is ω-stable then over any countable set there
are only countably many complete n-types for all n. Many of the theories
we have analyzed earlier are ω-stable: for example the theory of infinite sets
in the empty language, the theory of torsion-free divisible abelian groups, the
theory of algebraically closed fields,..) On the other hand the theory of dense
(or discrete) linear orderings is not ω-stable.

Definition 5.3 Let T0 be a possibly incomplete theory in language L0. We
will say that T0 has Skolem functions, or is Skolemized, if for each L0-formula
φ(x, ȳ) with l(ȳ) = n there is a n-ary function symbol f of L0 such that
T0 |= ∀ȳ(∃xφ(x, ȳ)→ φ(f(ȳ), ȳ)).

Lemma 5.4 Let T be any theory (in language L). Then there is a language
L0 ⊇ L of cardinality at most |L|+ω and an L0 theory T0 containing T , such
that T0 has Skolem functions.

Proof. Let M be a model of T . For each φ(x, ȳ) ∈ L add a new function
symbol fφ(ȳ) to get a language L1. Expand M to an L1-structure M1 by
defining f(M1)(b̄) to be some c such that M |= φ(c, b̄) if there is such a c,
and anything you want otherwise. Iterate this construction to find languages
L ⊂ L1 ⊂ L2... and expansions M1,M2, ... of M . Let L0 be the union of the
Li (for i < ω) and M0 the resulting expansion of M to an L0-structure. Put
T0 = Th(M0).

Lemma 5.5 Suppose that T is Skolemized. Then any substructure of a
model of T is an elementary substructure.

Proof Let M be a substructure of N |= T . Suppose N |= ∃φ(x, b̄) where
φ(x, ȳ) ∈ L and b̄ is from M . Then N |= φ(f(b̄), b̄) for some function symbol
f ∈ L. As M is a substructure of N , f(b̄) ∈ M . So by Tarski-Vaught, M is
an elementary substructure of N .

Definition 5.6 Let M be a structure, A a subset of the universe of M , (I,<)
an ordered set and (bi : i ∈ I) a subset of the universe of M . We say that
(bi : i ∈ I) is indiscernible (relative to (I,<)) over A in M if for any n and
i1 < .. < in and j1 < ..jn from I, tpM((bi1 , .., bin)/A) = tpM((bj1 , .., bjn)/A).
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Remark 5.7 We are mainly interested in the case when I is infinite. We
can define likewise when an indexed sequence of k-tuples from a model M is
indiscernible over A in M . If A = ∅ we just say indiscernible. Often I will
be an ordinal α with the usual ordering, in which case we will just say that
(bi : i < α) is an indiscernible sequence.

Lemma 5.8 Suppose that (ai : i < ω) is an indiscernible sequence in a
structure M . Let (I,<) be any infinite ordered set. Then there is a structure
N containing elements (bi : i ∈ I) such that (bi : i ∈ I) is indiscernible
relative to (I,<) in N and such that for each n and i1 < .. < in ∈ I,
tpN(bi1 , .., bin) = tpM(a1, .., an).

Proof. Compactness.

We will obtain infinite indiscernible sequences from Ramsey’s Theorem. First
some notation: if X is a set and n < ω, X [n] denote the set of n-element
subsets of X.

Fact 5.9 Let n < ω. Let X1, X2 be disjoint subsets of ω[n] whose union is
ω[n]. Then there is an infinite subset Y of ω, and some i such that Y [n] ⊆ Xi.

Remark 5.10 By iterating 5.9 we clearly obtain the following strengthening:
Let n1, .., nr < ω (r < ω), and for each i < r let Xi,1, Xi,2 be a partition of
ω[ni]. Then there is an infinite subset Y of ω and for each i < r some
jr ∈ {1, 2} such that Y [ni] is contained in Xi,ji for i = 1, .., r.

Proposition 5.11 Let T be a complete theory. For each n let Σn(x1, .., xn)
be a (possibly empty) set of L-formulas. Suppose that there is a model M
of T and elements ai ∈ M for i < ω such that for each i1 < .. < in < ω,
(ai1 , .., ain) realizes Σn(x1, ., xn) in M . Then there is a model N of T and an
indiscernible sequence (bi : i < ω) in N such that (b1, .., bn) realize Σ(x1, .., xn)
in N .

Proof. Adjoin new constants {ci : i < ω} to L to get L′. Let Ω be the
following set of L′-sentences: T∪{φ(ci1 , .., cin)↔ φ(cj1 , .., cjn) : i1 < .. < in <
ω, j1 < ..jn < ω, φ(x1, .., xn) ∈ L} ∪ {Σn(ci1 , ., cin) : n < ω, i1 < .. < in < ω}.
It is clearly enough to prove that Ω is consistent. Take a finite subset Ω′

of Ω and let φ1(x1, .., xn1), .., φr(x1, .., xnr) be the L-formulas appearing in
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the second part of Ω′. For i = 1, .., r, partition ω[ni] into two sets Xi,1 and
Xi,2 as follows: suppose j1 < .. < jni < ω. Put {j1, .., jni} into Xi,1 if
M |= φi(aj1 , .., ajni ) and into Xi,2 otherwise. Let Y be as given by 5.10. Let
Y = {s0, s1, s2, ...} where s0 < s1 < .... Then interpreting ci as asi gives a
model of Ω′.

Corollary 5.12 Let T be a theory with infinite models. Then for any cardi-
nal κ there is a model M of T and a set {ai : i < κ} of distinct elements of
M such that (ai : i < κ) is an indiscernible sequence in M .

Proof. By 5.11 and 5.8.

Here is the main conclusion we obtain from the above material on Skolem
functions and indiscernibles:

Proposition 5.13 For any countable theory T and uncountable cardinal κ,
there is a model M of T of cardinality κ such that for every countable subset
A of M only countably many types in S1(A,M) are realized in M .

Proof. By Lemma 5.4 let T ′ be a countable Skolemization of T in a (count-
able) language L′. It is clearly enough to prove the Proposition for T ′. By
Corollary 5.12, let (bi : i < κ) be an indiscernible sequence (of cardinality κ)
in a model M of T . By Lemma 5.5 we may assume that M is the substruc-
ture of itself generated by (bi : i < κ). Namely every element of M is of the
form t(M)(b̄) for some term t of L′ and some finite tuple b̄ of the bi’s. Note
that M has cardinality κ.

Now letA be a countable subset of the universe ofM . For each a ∈ A, pick
a term ta of L′ and a finite tuple b̄a from (bi : i < κ) such that a = ta(b̄a). Let
B be the set of bi appearing in the b̄a for a ∈ A. So B is countable. Let I0 ⊂ κ
be the set of i < κ such that bi ∈ B. So I0 is countable. Now for each n, we
will define an equivalence relation En on n-tuples from κ. Namely, suppose
α1, .., αn < κ and β1, ..., βn < κ. We say that En((α1, .., αn), (β1, .., βn)) if (a)
for each 1 ≤ i, j ≤ n αi < αj iff βi < βj and αi = αj iff βi = βj and (b) for
each z ∈ I0, and each i = 1, .., n, αi < z iff βi < z and αi = z iff βi = z. As
κ is well-ordered it follows that there are at most countably many En-classes
for each n.
Claim. Suppose that En((α1, .., αn), (β1, .., βn)), and that s(x1, .., xn) is an
L′-term. Then tpM(s(bα1 , .., bαn)/A) = tpM(s(bβ1 , ..bβn)/A).
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Proof of claim. This is because every element of A is of the form t(b̄) for some
b̄ from B and because by definition of En and indiscernibility of (bi : i < κ),
if b̄ is a tuple from B then tpM(bα1 , .., bαn , b̄) = tpM(bβ1 , .., bβn , b̄).

There are countably many L′-terms s and countably many En-clases for each
n. So by the claim, only countably many distinct types over A are realized
in M .

Corollary 5.14 (T countable and complete.) Suppose T is κ-categorical for
some uncountable κ. Then T is ω-stable.

Proof. Suppose for the sake of a contradiction that T is not ω-stable. So
there is a model M of T and some countable subset A of M such that
S1(Th(M,a)a∈A) is uncountable. So there is an elementary extension N of
M realizing all these types. By Lowenheim-Skolem we may choose either
an elementary extension N ′ of N or an elementary substructure N ′ of N
containing A, such that N ′ has cardinality κ and uncountably many complete
1-types over A are realized in N ′. Let N ′′ be a model of T of cardinality
κ given by 5.13. Then N ′ and N ′′ are not isomorphic, contradicting κ-
categoricity of T .

Step 1 is complete. We now proceed to Step 2, the study of ω-stable theo-
ries. We will first show that ω-stability is equivalent to “Morley rank” being
defined. We will leave the verification of various things as exercises.

Definition 5.15 Let T be a complete theory, n < ω, M a model of T and
φ(x̄, ā) a formula with free variables x̄ = (x1, .., xn) and parameters ā from
M . We first define by induction “RMn(φ(x̄, ā) ≥ α” where α is an ordinal.
On the face of it this depends on M too.
Anyway
(i) RM(φ(x̄, ā)) ≥ 0 if M |= ∃x̄(φ(x̄, ā).
(ii) For δ a limit ordinal, RMn(φ(x̄, ā)) ≥ δ if RMn(φ(x̄, ā)) ≥ α for all
α < δ,
(iii) RMn(φ(x̄, ā)) ≥ α + 1 if there is some elementary extension N of M
and there are formulas ψj(x̄, b̄j) for j < ω where b̄j ∈ N , such that
(a) N |= ψj(x̄, b̄j)→ φ(x̄, ā) for all j < ω,
(b) RMn(ψj(x̄, b̄j)) ≥ α for all j < ω, and
(c) for all i 6= j, N |= ¬∃x̄(ψi(x̄, b̄i) ∧ ψj(x̄, b̄j)).
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Having defined the expression “RMn(−) ≥ α” we will say
(iv) RMn(φ(x̄, ā)) = α iff α is the greatest ordinal such that “RMn(φ(x̄, ā)) ≥
α”. If RMn(φ(x̄, ā)) ≥ α for all ordinals α, we will say that RMn(φ(x̄, ā)) =
∞.

Exercise 5.16 Show that RMn(φ(x̄, ā)) depends only on tpM(ā).

Remark 5.17 (i) We will drop the n in RMn(−) when it is clear from the
context.
(ii) Let M be an ω-saturated model of T . Identify formulas of LM in free
variables x1, .., xn with definable subsets of Mn. Then the crucial clause (iii)
in Definition 5.15 can be rephrased as: Let X ⊂Mn be definable in M . Then
RM(X) ≥ α + 1 if there are pairwise disjoint definable subsets Yi of X for
i < ω such that RM(Yi) ≥ α for all i < ω.

Exercise 5.18 (Work in an ω-saturated model M of the complete theory T .)
(i) RM(φ(x̄, ā) ∨ ψ(x̄, b̄)) = max{RM(φ(x̄, ā)), RM(ψ(x̄, b̄))}.
(ii) if M |= φ(x̄, ā)→ ψ(x̄, b̄) then RM(φ(x̄, ā)) ≤ RM(ψ(x̄, b̄)).
(iii) RM(φ(x̄, ā)) = 0 if M |= ∃=kx̄(φ(x̄, ā)) for some integer k ≥ 1.
(iv) Suppose that RM(φ(x̄, ā)) = α. Then there is a greatest integer d such
that there exist ψi(x̄, b̄i) for i < d such that RM(ψi(x̄, b̄i)) = α for i < d,
M |= ψi(x̄, b̄i)→ φ(x̄, ā) for i < d, and the ψi(x̄, b̄i) are pairwise inconsistent.
We call d the Morley degree of φ(x̄, ā), dM(φ(x̄, ā)), and this also depends
only on tpM(ā).

Proposition 5.19 Let T be countable, complete. Then the following are
equivalent.
(i) T is ω-stable,
(ii) for any M |= T and formula φ(x̄) of LM , RM(φ(x̄)) <∞.
(iii) For any λ ≥ ω, T is λ-stable. That is, for any M |= T and subset A of
M of cardinality at most λ, S1(A,M) has cardinality at most λ.

Proof. (i) implies (ii). Let γ be an ordinal, such that for any formula φ(x̄)
with parameters from a model M of T , if RM(φ(x̄)) ≥ γ then RM(φ(x̄)) =
∞. (γ exists by Exercise 5.16.) Work in an ω-saturated model M of
T and work with LM -formulas. It follows that if RM(φ(x̄)) = ∞ then
there are ψ1(x̄), ψ2(x̄) each of which also has RM = ∞ and such that
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M |= ¬∃x̄(ψ1(x̄) ∧ ψ2(x̄)). So we can build a tree of (consistent) formu-
las ψη(x̄) of formulas of LM for η ∈ 2<ω, such that if η is an initial segment
of τ then M |= ψτ (x̄) → ψη(x̄) and such that for each η, ψη0(x̄) and ψη1(x̄)
are inconsistent. Let A be the set of parameters from M occuring in the
ψη. For each τ ∈ 2ω, {ψτ |j(x̄) : j < ω} extends to a complete n-type pτ (x̄)
in Sn(Th(M,a)a∈A) and for τ1 6= τ2, pτ1 6= pτ2 . So we have 2ω types over a
countable set, contradicting ω-stability.
(ii) implies (iii). Let M be a model of T of cardinality λ. We will show
that S1(M)(= S1(Th(M,a)a∈M)) has cardinality at most λ. For each p(x) ∈
S1(M) let φp(x) be a formula in p(x) such that (RM(φ(x)), dM(φ(x))) is
least possible. (That is first minimize Morley rank then minimize Morley
degree).
Claim. Let p(x) ∈ S1(M) and let RM(φp) = α and dM(φp) = d. Then
for any formula ψ(x) of LM , ψ(x) ∈ p(x) iff RM(φp(x) ∧ ψ(x)) = α and
dM(φp(x) ∧ ψ(x)) = d.
Proof of claim. Left implies right is clear. For right implies left; assume
the right hand side, and assume for a contradiction that ψ(x) /∈ p and thus
¬ψ(x) ∈ p(x). But then RM(φp(x)∧¬ψ(x)) = α and so dM(φp(x)∧ψ(x)) ≥
1. But then clearly dM(φp(x)) ≥ d+ 1, a contradiction.

So p(x) ∈ S1(Th(M)) is “determined by” φp(x) (that is φp = φq implies
p = q). As there are at most λ many formulas in LM there are at most
(iii) implies (i) is immediate.

The first application of 5.19 will to be find saturated models.

Lemma 5.20 Suppose T (countable, complete) is ω-stable. Then for every
cardinal κ and regular cardinal λ ≤ κ, T has a λ-saturated model of cardi-
nality κ.

. Proof. Let M0 be a model of T of cardinality κ. By 5.19 (iii), we can build
a continuous elementary chain (Mα : α < λ) of models of T of cardinality
κ such that ALL types in S1(Mα) are realized in Mα+1 for all α < λ. Let
M be the union of this chain. So M has cardinality κ and we claim that M
is λ-saturated. Let A be a subset of M of cardinality < λ. As λ is regular
A ⊆ Mα for some α < λ. Any 1-type over A extends to a complete 1-type
over Mα which is realized in Mα+1 so in M .

Corollary 5.21 Suppose that κ is an uncountable cardinal and that the
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(countable, complete) theory T is κ-categorical. Then T has a saturated model
of cardinality κ.

Proof. By 5.14, T is ω-stable. If κ is regular, then we can apply Lemma 5.20
(taking λ = κ). If κ is NOT regular then in particular κ is a limit cardinal.
For each λ < κ, λ+ is a regular cardinal < κ, hence by 5.20, T has some
model of cardinality κ which is λ+-saturated. As T has a unique model (say
M) of cardinality κ, M is λ+-saturated for all λ < κ. It follows that M is
κ-saturated.

Remark 5.22 It is actually a theorem that if T is ω-stable then T has a
saturated model in every infinite cardinality κ. The proof in the case where
κ is singular uses a bit more information about ω-stable theories, such as the
rudiments of forking.

The next fact we need to establish for ω-stable theories is the existence
of “constructible” models over any set.

Definition 5.23 Let M be a structure and A a subset of the universe of M .
We will say that M is constructible over A, if we can write the universe of
M as A∪{bα : α < γ} for some ordinal γ such that tpM(bβ/A∪{bα : α < β})
is isolated, for all β < γ.

Remark 5.24 (i) Suppose M is constructible over A. Then for every model
(N, a)a∈A of Th(M,a)a∈A, M is elementarily embeddable in N over A. That
is (M,a)a∈A is a prime model for Th(M,a)a∈A.
(ii) Let M be constructible over A and let {bα : α < γ} be as in 5.23. For
any given β < γ, tp(bβ/A ∪ {bα : α < β}) is isolated by a formula φ(x)
with parameters from A ∪ {bα : α < β}. Now we can write φ(x) in the
form φ′(x, b̄) where φ′(x, ȳ) is an LA-formula, and b̄ is a finite tuple from
{bα : α < β}. Note then that φ′(x, b̄) also isolates tp(bβ/A ∪ {b̄}). We say
that tp(bβ/A ∪ {bα : α < β}) is isolated over A ∪ {b̄}.

Lemma 5.25 Suppose M is constructible over A. Then for each finite tuple
c̄ from M , tpM(c̄/A) is isolated. That is, M is atomic over A.

Proof. Write M as A ∪ {bα : α < γ} as in Definition 5.23, where we may
assume that the bα /∈ A and are all distinct. (Why?) Let Bβ = A ∪ {bα :
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α < β}. Let us call a finite sequence (bβ1 , .., bβn) good if, possibly after
rearranging the sequence, β1 < ... < βn and for each i = 1, .., n, tp(bβi/Bβi)
is isolated over A ∪ {bβ1 , .., bβi−1

}. By iterating Exercise 4.25, we see that if
b̄ is a good sequence, then tp(b̄/A) is isolated.

Claim. Let c̄ be a finite tuple from (bα : α < γ}. Then c̄ can be extended to
a good sequence.
Proof of claim. In fact we will show by induction on β ≤ γ, that if c̄ is a finite
tuple from Bβ \A then c̄ can be extended to a good tuple from Bβ \A. Let
c̄ be a finite tuple from Bβ+1. We may assume that bβ ∈ c̄ (otherwi8se use
induction hypothesis). Let b̄ be such that tp(bβ/Bβ) is isolated over A ∪ b̄.
Let c̄′ = c̄ \ {bβ} and let c̄′′ = b̄c̄′′. Then c̄′′ is a finite sequence contained in
Bβ \A, so we can apply induction to extend it to a good sequence d̄ contained
in Bβ \ A. Then clearly (d̄, bβ) is also a good sequence (contained in Bβ+1),
and d̄ extends c̄.

We can now use the claim to prove the lemma. Let c̄ be a finite tuple from
M . We want to show that tp(c̄/A) is isolated. We may assume that no
element of c̄ is in A. (Why??) By the claim extend c̄ to a good sequence c̄′.
By a previous remark, tp(c̄′/A) is isolated. Hence so is tp(c̄/A) (by 4.25).

Proposition 5.26 Let T (countable, complete) be ω-stable. Let M |= T and
let A ⊆M . Then there is an elementary substructure N of M which contains
A and is constructible over A.

Proof. If A is already the universe of an elementary substructure of M there
is nothing to do. Otherwise, by Tarski-Vaught there is a formula φ(x) of
LA such that M |= ∃xφ(x) but M |= ¬φ(a) for all a ∈ A. Choose such a
formula φ(x) such that (RM(φ(x)), dM(φ(x))) = (α, d) is minimized. We
claim that φ(x) isolates a complete type in S1(A,M). Otherwise there is
a formula ψ(x) in LA such that both φ(x) ∧ ψ(x) and φ(x) ∧ ¬ψ(x) are
consistent (with Th(M,a)a∈A). But then one of φ(x) ∧ ψ(x), φ(x) ∧ ¬ψ(x)
has lower (RM, dM) than (α, d), a contradiction. Let b0 realize φ(x) in M .
So tp(b0/A) is isolated and b0 /∈ A. Continue like this to find distinct bα in
M such that tp(bβ/A∪ {bα : α < β}) is isolated. We have to stop some time
(as M is a set). At that point we have an elementary substructure of M .

Finally we need to prove the existence of infinite indiscernible sequences in
uncountable models of ω-stable theories.
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Definition 5.27 Suppose that T is ω-stable. Let A be a subset of a model M
of T . Let p(x̄) ∈ Sn(A,M). Then (RM(p), dM(p)) = min{(RM(φ(x̄)), dM(φ(x̄)) :
φ(x̄) ∈ p(x̄)}.

Let us make explicit something that we used earlier.

Exercise 5.28 (T ω stable say.) Let M be a model of T and A a subset of M .
Let φ(x) be an LA-formula with (RM, dM) = (α, d). Then there is at most
one type p(x) ∈ S1(A) such that φ(x) ∈ p(x) and (RM(p(x)), dM(p(x)) =
(α, d).

Proof. Let p(x) ∈ S1(A) be such a type. Then note that for any ψ(x) in LA,
ψ(x) ∈ p(x) if and only if (RM(φ(x)∧ ψ(x)), dM(φ(x)∧ ψ(x))) = (α, d). So
p is uniquely determined.

Lemma 5.29 Suppose that T is ω-stable. Let M be a model of T and A a
subset of the universe of M . Let φ(x) ∈ LA be a formula with
(RM(φ(x)), dM(φ(x))) = (α, d). Let (bi : i < ω) be a sequence of elements
of M . Let pi(x) = tpM(bi/A ∪ {bj : j < i}). Assume that
(i) M |= φ(bi) for all i < ω, and
(ii) (RM(pi), dM(pi)) = (α, d) for all i < ω. Then (bi : i < ω) is an
indiscernible sequence over A.

Proof. We will prove by induction on n < ω that tpM(b0, .., bn/A) = tpM(bi0 , .., bin/A)
whenever i0 < ... < in.

Let us first consider the case n = 0. Let i < ω. Then tp(bi/A) has
(RM, dM) ≤ (α, d) as φ(x) ∈ tp(bi/A). On the other hand tp(bi/A) ⊆ pi(x)
so by (ii) also has (RM, dM) at most (α, d). So tp(bi/A) has (RM, dM) =
(α, d). The same is true of tp(b0/A). By (i) and Exercise 5.28, tp(bi/A) =
tp(b0/A).

Now for the induction step. Fix n > 0. Consider i0 < .. < in < ω. Then as
above tp(bin/A∪{bi0 , .., bin−1}) has (RM, dM) = (α, d), as does pn. Both these
types contain the formula φ(x). By 5.28, for any LA-formula ψ(x, y0, .., yn−1),
we have
(a) M |= ψ(bn, b0, .., bn−1) iff φ(x) ∧ ψ(x, b0, .., bn−1) has (RM, dM) = (α, d).
(b) M |= ψ(bin , bi0 , .., bin−1) iff φ(x)∧ψ(x, bi0 , .., bin−1) has (RM, dM) = (α, d).

By induction hypothesis tpM(b0, .., bn−1/A) = tpM(bi0 , .., bin−1/A). So
by 5.16 the right hand sides of (a),(b) are equivalent. So by (a) and (b),
tpM(b0, .., bn/A) = tpM(bi0 , .., bin/A), proving the lemma.
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Now we are able to obtain the desired consequence of ω-stability.

Proposition 5.30 Let T be ω-stable. Let M be an model of T of cardinality
κ > ω, and A a subset of M of cardinality < κ. Then M contains an infinite
indiscernible sequence over A.

Proof. We may assume A to be infinite. Let λ = |A|. Note that the formula
x = x has > λ many realizations in M . Choose a formula φ(x) in LM such
that φ(x) has> λmany realizations inM and such that (RM(φ(x)), dM(φ(x))) =
(α, d) say is minimized. (Note α > 0.) By adding elements to A we may
assume φ(x) is in LA. We will construct realizations b0, b1, ... of φ(x) in M
such that tpM(bi/A ∪ {b0, .., bi−1}) has (RM, dM) = (α, d).

First we find b0. Suppose for a contradiction that for every realization c
of φ(x) in M , (RM(tp(c/A)), dM(tp(c/A))) < (α, d). So for each such c this
is witnessed by a formula ψc(x) in LA. There are at most λ such formulas.
As there are > λ possible c′, there must be > λ many of them with the same
ψc(x). But then this contradicts the choice of (α, d). So we find b0.

b1, b2, ... are found in precisely the same manner. By 5.29 (bi : i < ω) is
indiscernible over A.

Exercise 5.31 Modify the above proof to show that, under the hypothesis of
5.30, M contains an indiscernible sequence (over A) of cardinality κ, assum-
ing κ is regular.

In any case, Step 2 is complete.

Finally we get to Step 3.

Proposition 5.32 Suppose that (countable, complete) T is ω-stable, κ is
an uncountable cardinal, and every model of T of cardinality κ is saturated.
Then every uncountable model of T is saturated.

Proof. We will show the contrapositive. Assume λ > ω and that M is a
non saturated model of T of cardinality λ. So there is a subset A of M of
cardinality < λ and a type p(x) ∈ S1(A,M) which is not realized in M . By
Proposition 5.30, let I = (ai : i < ω) ⊂ M be an (infinite) indiscernible
sequence over A. Note that that there is no (consistent) formula φ(x) with
parameters from A∪ I such that M |= ∀x(φ(x)→ ψ(x)) for all ψ(x) ∈ p(x).
(For otherwise any realization of φ(x) in M would realize p.)
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That is,
(*) for each consistent formula φ(x) over A∪I, there is a formula ψ(x) ∈ p(x)
such that M |= ∃x(φ(x) ∧ ¬ψ(x)).

Let A0 be a countable subset of A. For each consistent φ(x) over A0 ∪ I,
pick ψφ(x) ∈ p(x) given by (*). As A0 ∪ I is countable, there are countably
many ψφ so there is a countable subset A1 of A which contains A0 and such
that every ψφ is over A1. Continue this way to define countable subsets A0 ⊂
A1... ⊂ An... of A. Let A′ be the union of the Ai, and let p′(x) ∈ S1(A′,M)
be the restriction of p to A′. So A′ is countable, I is indiscernible over A′,
and
(**) for every consistent formula φ(x) over A′ ∪ I, there is ψ(x) ∈ p′(x) such
that M |= ∃x(φ(x) ∧ ¬ψ(x)).

By Lemma 5.8, there is a model (N, a)a∈A′ of Th(M,a)a∈A′ containing a se-
quence I ′ = (bi : i < κ) such that I ′ is indiscernible over A′ in N , and such
that tpN(b0, .., bn/A

′) = tpM(a0, ., , , an/A
′) for all n. By 5.26, let N ′ be an

elementary substructure of N which contains A′∪I ′ and is constructible over
A′ ∪ I ′. Note that N ′ is a model of T ′ of cardinality κ.
Claim. p′(x) is not realized in N ′.
Proof. Suppose, for a contradiction that p′(x) is realized by c in N ′. By 5.25,
tpN ′(c/A

′∪I ′) is isolated, by a formula φ(x, bi0 , .., bin) say, where φ(x, y1, .., yn)
is in LA′ , and i0 < ... < in < κ. So for each ψ(x) ∈ p′(x), N ′ |= ∀x(φ(x, bi0 , .., bin)→
ψ(x)). Now tpN ′(bi0 , .., bin/A

′) = tpM(a0, .., an/A
′). Hence

M |= ∀x(φ(x, a0, .., an) → ψ(x)) for all ψ(x) ∈ p′(x). This contradicts (**),
and proves the claim.

So N ′ is a model of T of cardinality κ which is not saturated (in fact not
even ω1-saturated).

We conclude:

Theorem 5.33 Suppose T is a countable complete theory which is κ-categorical
for some κ > ω. Then T is λ-categorical for all λ > ω.

Proof. By 5.14, T is ω-stable. By 5.21, every model of T of cardinality κ is
saturated. By Proposition 5.32, for any λ > ω every model of T of cardinality
λ is saturated, and thus by 4.5, T has a unique model of cardinality λ.
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