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1. An extension of the Finite Ramsey Theorem

In this chapter we present a recent discovery in mathematical logic. We
investigate a reasonably natural theorem of finitary combinatorics, a simple
extension of the Finite Ramsey Theorem. This chapter is mainly devoted to
demonstrating that this theorem, while true, is not provable in Peano
arithmetic.

The first examples of strictly mathematical statements about natural
numbers which are true but not provable in PA (Peano arithmetic) were
due to the first author (see PARis [to appear]) and grew out of the work in
Paris and KIRrBY [to appear]. The second author’s contribution was to show
that Paris’s proof could be carried through with the particularly simple
extension of the Finite Ramsey Theorem mentioned above (and stated
precisely in 1.2).

Since we are going to work extensively with the partition calculus, the
reader would be wise to consult pages 390-393 of Chapter B.3 for basic
information and pages 393-395 for a proof of the Infinite Ramsey
Theorem.

1.2. DeriNiTION. We call a finite set H of natural numbers relatively large
if card(H)=min(H). Given natural numbers e,r,k and M, we use the
notation

M —— (k):

to mean that for every partition P:[M]° — r there is a relatively large
H C M which is homogeneous for P and of cardinality at least k.

1.2. THEOREM. For all natural numbers e, r and k there is an M such that
M — (k):.

Without the * under the arrow which makes the homogeneous sets
relatively large, this would just be the Finite Ramsey Theorem. The Finite
Ramsey Theorem is provable in Peano Arithmetic. Our proof of 1.2 will
use the Infinite Ramsey Theorem, and cannot be carried out in PA.

1.3. MAIN THEOREM. The combinatorial principle of 1.2 is not provable in
Peano Arithmetic.

For the reader who is not used to working in PA, and so does not even
see how to formulate 1.2 in PA, we would remark that PA is equivalent



cH. D.8, §2] PROOFS OF 1.2 AND 1.3 1135

(for statements about natural numbers) to the result of replacing the axiom
of infinity by its negation in the usual axioms ZF of set theory (see Chapter
B.1), and 1.2 can be formulated in this theory directly, without any coding.

2. Proofs of 1.2 and 1.3

We first prove 1.2. Fix e, r and k, and suppose there were no M of the
desired kind. Call P a counterexample for M if P is a partition of [M]° into
r pieces with no relatively large homogeneous set of size at least k. We may
view the set of counterexamples as a finitely branching infinite tree. That is,
if P and P’ are counterexamples for M and M’ respectively, we put P
below P’ in our tree just in case M < M’ and P is the restriction of P’ to
[M]°. By Ké6nig’s Lemma there is a P : [w]® — r such that for every M, the
restriction of P to [M]® is a counterexample for M. By the Infinite Ramsey
Theorem, there is an infinite H C w homogeneous for P. But then by
choosing M large enough (compared to k and min(H)) we see that H N M
is, after all, a relatively large homogeneous set for P [[M]° of size at least
k. 0O

Looking ahead to Section 3, we point out that, for each e, the above
proof can be formalized in PA. (The proof on pages 393-395 of w — (w); is
naturally formalized, by induction on e, in restricted-(II2 — CA), which is
conservative over PA (see page 940).) Thus, for every e,

PAFVr, k IM (M — (k)).

We now begin the proof of 1.3, which will take up the remainder of this
section. We define a certain theory T in 2.1 and then show
Con(T)— Con(PA) is provable in PA. The proof will be concluded by
showing, in PA, that the combinatorial principle of 1.2 implies Con(T).

For the purpose of the following we identify finite subsets of w with finite
increasing sequences from w. The theory T is expressed in the language of
PA plus infinitely many new constant symbols ¢y, Cy,... .

2.1. DEeFiNiTiON. The axioms of T are as follows:
(i) The usual recursive defining equations for +, X, <, plus the
induction axioms but only for limited formulas.
(ii) For each i =0,1,..., the axiom (¢)* < Ci+1.
(iii) For each finite subset i =iy,...,i, of w, let c(i)=c,...,c.
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For each i <k, k' and each limited formula ¢(y; z) (where k, k' and z all
have the same length) we have the axiom:

Vy<c[d(y;ck) e d(y;ck))]
2.2. ProrosiTioN. Con(T) implies Con(PA).

ProoF. Let Ak T and let I be the initial segment of U of those a < ¢, for
some i € w. By (ii), I is closed under + and X. It will be enough to show
the following.

2.3. Camm. I=(I +, X, <) is a model of PA.

For each formula 6(y) from the language of PA, define a limited formula
6*(y; z) as follows. Write 8 in prenex normal form, say 3x,-:-Vx, @ (x;y)
where ¢ is quantifier free. Then 0*(y;zy,...,2,) is 3x: <z, -Vx, <

zo(x;y).

2.4. CLaM. Given i <k, a <c, and 6(y), where k,a and y are all of the
appropriate length,

JSkE6(a) if and only if Uk 0*(a;c(k)).

Notice that 2.3 is an immediate consequence of 2.4 since part (i) of 2.1
guarantees that for all 6, & will satisfy induction for *. Then proof of 2.4
proceeds by induction on 6. Suppose 6(y) is Ax¢¥(x,y). Thus 6*(y; z) is
Ax <z, ¥*(x,y;22,...,2.). So JF 0(a) ift for some b in I and some j
(where min(j) is large) A= ¢*(b, a; c(j)), which happens iff for some k’
(again, where min(k’) is large) ¥ = 8 *(a; c (k’)) which, by 2.1(iii), is the case
iff Ak 0*(a;c(k)). O

The attentive reader should observe that the proof of 2.2 can be
formalized in PA (in a way similar to Section 6 of Chapter D.1). Also, one
should notice that for the purposes of the above proof, we can weaken
2.1(iii) to those limited formulas ¢ (y;z) of the form 6*(y;z) for some

0(y)

2.5. ProrosiTioN. The combinatorial principal of 1.2 implies Con(T).

By Godel’s Second Incompleteness Theorem (see page 825), 2.5 and 2.2
yield our main theorem, provided of course that 2.5, like 2.2, is proved in
PA.
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Before beginning the proof of 2.5, we. point out a few facts about
partitions.

2.6. LEMMA. Given partitions P, and P, of [M° into r, and r, pieces, there is
a partition P of [M]° into r, - r, pieces such that for H C M, H is homogene-
ous for P iff H is homogeneous for both P, and P,.

ProoF. Let P(a)=(Po(a), Pi(a)). O

2.7. LEMMA. A set H C M is homogeneous for a partition P of [M]° iff every
subset of H of size e + 1 is homogeneous for P.

PRroOOF. Let a = a,,..., a. be the first e elements of H. Pick b= b,,...,b.
so that P(a)# P(b) and so that b, + - - - + b. is minimized. If i is the least
index such that a, # b;, then {a,,...,a;,b,...., b} is not homogeneous and
of sizee+1. O

We define \/r to be the first natural number s such that s*>=r. Notice
that for most r (i.e., for r =7), r=1+2/r.

2.8. LEMMA. Given P :[M]° — rthereisa P':[M]**'— (1+2\/r) such that
for all HC M of cardinaltiy >e +1, H is homogeneous for P iff H is
homogeneous for P'.

Proor. Let s = \/r. Define functions Q (for quotient) and R (for remain-
der) both mapping [M]° into s by the equation P(a)= s Q(a)+ R(a).
For b = b,..., b, b.+: in [M]°*}, let b'=b,,...,b.. We now define our
desired P’ on [M]°*! by:

0 if b is homogeneous for P,
P'(b) = {<O,R(b’)) if b is homogeneous for Q but not for P,

(1, Q(b’)) otherwise,
Let H be homogeneous for P’ of cardinality > e + 1, and let ¢ be the first
e + 1 members of H. We need to see that P'(¢) =0 to verify that H is
homogeneous for P, by 2.7. Note that for each a in [c]* there is a b in
[H]°*' such that b'=a. Suppose P’(c)=(1,i). Then, by the previous
remark, Q(a)=i for all a in [¢]° so that ¢ is homogeneous for Q,
contradicting the definition of P’. So suppose P’'(¢)=(0,j) so that ¢ is Q
homogeneous, say Q(a) =i for all a in [¢]°. But then P(a)=s ‘i +j for all
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such a so that ¢ is homogeneous for P, again contradicting the definition of

pP. 0O

2.9. LEMMA. Suppose we are given n partitions P; : [M]% — r, alli < n. Let
e = max; e and r = II; max(r, 7). There is a partition P : [M]* — r such that
for all HC M of cardinality >e, H is homogeneous for P iff H is
homogeneous for all the P;.

)
Proor. Combine 2.6, 2.8 and the remark preceeding 2.8. [

We now state a combinatorial principle which is tailored to imply
Con(T). Parts (ii) and (iii) of 2.10 correspond to the similar parts of 2.1.
There is no 2.10(i). After showing that 2.10 implies Con(T), we will return
to derive 2.10 from 1.2.

2.10. ProrosiTiON. For all e, k,r there is an M such that for any family
(P;; £ <2M) of partitions P, : [M]° — r, there is an X of cardinality = k such
that:

(ii) if a,b € X and a < b, then a>*< b,

(iii) if a € X and &€ <2° then X ~ (a + 1) is homogeneous for P.

2.11. CLam. 2.10 implies Con(T).

Proor. Given a finite subset S of T, let co,...,c-; be all constants
appearing in S. We will use 2.10 to show that S has a model of the form
(w; +, X, <,Xo,...,Xk—1), Wwhere Xo,...,xi_; are the first k elements of
the set X given by 2.10. This model clearly satisfies (i) of 2.1 so we need
only worry about those axioms of the forms (ii) and (iii) in S. Part (ii) of 2.10
takes care of the axioms of form (ii) automatically, so we only need to set
up our partitions to handle those of form (iii).

We may view each £ € w as coding a finite increasing sequence a(§)
from w in such a way that all sequences from b are coded by some ¢ < 2°.
Given a limited formula ¢(y; z) and a sequence a(¢) of the same length as
y, we obtain a partition F, , : [M]*— 2, where e’ is the length of z defined
by F,:(c)=0 if ¢(a(§);c), and = 1 otherwise.

Consider, for the moment, fixed M and £ For each axiom of type (iii)
occurring in S there is a corresponding limited formula ¢ (y; z) and hence a
corresponding partition F, .. By 2.9 we may combine these into a single
partition P;:[M]*— r, where e and r depend only on S, not on £ or M.
Now using 2.10, choose M so large that (ii) and (iii) hold for some X C M



cH. D.8, §2] PROOFS OF 1.2 AND 1.3 1139

for the family (P, ; ¢ <2™), and card(X) = k + e. Now choosing xo, . . ., Xk-1
as described above, we see that all axioms of type (iii) are satisfied. [J

Our attentive reader will have noticed that since (w; +, X, <) has a
primitive recursive satisfaction relation for limited formulas, we can prove
in PA (or even PRA) that this structure satisfies (i) of 2.1. Hence the above
proof can be carried out in PA.

All that remains is for us to prove (in PA) that 1.2 does imply 2.10. To do
this we need a method for obtaining homogeneous sets which grow fast.
We are indebted to F. Abramson for some of the following arguments
which have simplified our original proof.

For any function g, let g* be g composed with itself x times. Let
fo(x) = x +2 and let f,..(x) = (f.)*Q). ’I;he reader can check that fi(x)=

2x, f2(x) =2 fi(x)=2,, where 3, =2* | a stack of x 2’s, and se on for
fs fs, ... . Readers familiar with the Ackermann function will realize that
each f, is primitive recursive and that every primitive recursive function is
eventually dominated by some f,, but these facts will not be used below.

2.12. LEmMMA. For every p there is a Q :[M]'— p +1 such that if X is
homogeneous for Q and of cardinality at least 2, then min(X) = p.

Proor. Let Q(a)=min(a,p). 0O

We now come to two lemmas which use relatively large homogeneous
sets.

2.13. Lemma. For each m there is a partition R : [M]* — r (where r depends
only on m) such that if X C M is relatively large and homogeneous for R and
of cardinality >2, then for every x,y € X, x <y implies f.(x)<y.

Proor. For each i =m, let P,(a,b)=0 if fi(a)<b; =1 otherwise Let
p = f» (3) and let Q be as in 2.12 for this p. Use 2.9 to combine all of these
into R :[M]*—r. Let X be relatively large and homogeneous for R. Let
a = min(X), b = max(X). By induction on i = m, it is easy to show first
that f; (a) < b (this is where you use card(X) = a) and second that f,(x) <y
for all x,y in X, x <y, by homogeneity. []

2.14. LeMMA. Let P:[M]°—s (e=2) and m be given. There is a
P*:[M] - s/, where s' depends only on m, e and s, such that if there is a
relatively large Y C M homogeneous for P* of cardinality > e, then there is
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an X C M such that X is homogeneous for P and card(X) is at least e + 1
and f,, (min(X)).

Proor. Let h(a) be the largest x such that f,,(x)<a.Fora = a,,..., a., let
h. = h(a:),...,h(a.). Let S(a)= P(h,) if h. is an e-tuple (i.e., if
h(a))<h(a:)<:--<h(a.)); S(a)=s otherwise. Thus S :[M]°— s+ 1.
Let R be asin 2.13. Use 2.9 to combine R, S into P*:[M]* —s’. Let Y be
given as in the statement of our lemma, and let X be the image of Y under
h. The partition R promises us that h is one-one on Y so that card(X) =
card(Y) =min(Y). But the definition of h implies that f, (min(X))=
min(Y) so card(X) = f, (min(X)) as desired. [

2.15. ProprosITION. The combinatorial principle of 1.2 implies that of 2.10.

Proor. We are given e, k and r, and must produce an M asin 2.10. Finda p
so that for all a = p, f;(a) is reasonably big as compared with e, r, k and a.
We will make this precise in the last paragraph of the proof; for now, just
note that fi(y)=3,. Let e’ =2e + 1.

Now given any M and any family P, : [M]° — r for £ <2", define a new
S :[M]*—2by: S(a, b,c)=0if P;(b) = P;(c) for all £ <2°; S(a,b,c)=1
otherwise. Let Q be as in 2.12 and R as in 2.13 for m =2. Use 2.9 to
combine Q, R and S into a single P and then use 2.14 to obtain
P*:[M]*— s'. The number s’ depends only on e’ =2¢ + 1 and on p. We
now apply the combinatorial principle 1.2. Find an M such that
M —— (e’ +1)%. By 2.12 there is an X C M which is homogeneous for
Q, R and S with card(X) = f;(min(X)). Since X is homogeneous for Q,
min(X) = p. Since X is homogeneous for R, and since f,(y) = y? for those y
big enough to be in X, X satisfies 2.10(ii).

To verify 2.10(iii), we replace X by X'= X ~d, whered = d,,...,d. are
the last e elements of X. Let i; = P,(d). If we show that for all a < b, <
-+ < b, in X" and all £ <2° P,(b) = i, we will have shown that X" satisfies
2.10. To show this it suffices to show that S(a, b, ¢) = 0 for some (hence, by
homogeneity, for every) 1+ 2e tuple a, b, ¢ from X. Let a = min(X) and
consider consecutive e-tuples from X ~ (a + 1). Our choice of p earlier
should be such that there are more than r®” such e-tuples for then we can
find e-tuples b, ¢ such that P;(b)= P;(c) for all £ <2° as desired. O
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3. Refinements

In the proof of our main theorem we relied on various proof-theoretic
results, in particular, on Go6del’s Second Incompleteness Theorem. It is
possible, however, to prove our main theorem using only model-theoretic
methods. This is the approach taken in PARIs [to appear], where a general
model-theoretic methodology (called indicator functions) for producing
such results is developed.

On the other hand, 1.2 is actually equivalent, in PA, to a well-known
proof-theoretic principle, and our proof has the advantage of making this
fairly obvious. Recall, from page 849, the definition of RFNg,, the
statement of number theory expressing the statment “For all 2, sentences
Y, if PA+ ¢, then ¢,

3.1. THEOREM. It is a theorem of PA that RFN;, is equivalent to the
combinatorial principle of 1.2.

Proor. After the proof of 1.2 we mentioned that
for all e,r, k, PA+F3IM (M —— (k)).

This fact, which we indicated how one would verify, is itself a theorem of
PA. An application of RFNj3, gives 1.2

Assume 1.2 and let us prove RFN;,. Let ¢ be a X, sentence. We prove
that if — ¢, then Con(PA + —¢). The proof of 2.5 shows that if ¢ is false in
w, then Con(T + —¢), using 1.2. But the proof of 2.2 shows that
Con(T + —¢) implies Con(PA + 1 ¢). O

For our final result, define a recursive function f by

f(e) = the least M such that M — (e + 1);.

3.2. THEOREM. If g is a (description of a) recursive function, and if PA ‘g
is total”, then for all sufficiently large e, f(e)> g(e).

Proor. Let S be a finite subset of T and let co,..., ¢, be the constants
appearing in S. As the proof of 2.5 (in particular that of 2.11) shows, we
may interpret these constants so as to make w a model of S. By examining
that proof, one can see that for all large enough e, we can in fact interpret
Co, ..., Ck—1 using members of the interval (e, f(e)). If g(e)=f(e) for
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infinitely many e, the above would show the consistency of T plus the
following axioms in a new constant e:

e < Co; —3dx =c(gle)=x) foralli=w.

By the proof of 2.2 we obtain the consistency of PA + 3Je (g(e) is not
defined). [

We wish to thank the editor for almost forcing us to write this chapter,
for typing it himself, and for a number of minor changes, provided he
accepts responsibility for all misprints.
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