The midsequent theorem and witnessing

Ondra Ježil

February 24, 2023

Context

- Cut elimination: proof \mapsto cut free proof

Context

- Cut elimination: proof \mapsto cut free proof
- The midsequent theorem: proof \mapsto (cut free) proof split into two parts

Context

- Cut elimination: proof \mapsto cut free proof
- The midsequent theorem: proof \mapsto (cut free) proof split into two parts
- an upper part which uses only structural and propositional inferences

Context

- Cut elimination: proof \mapsto cut free proof
- The midsequent theorem: proof \mapsto (cut free) proof split into two parts
- an upper part which uses only structural and propositional inferences
- a sequent S^{\prime} which is the lower sequent of the last propositional inference

Context

- Cut elimination: proof \mapsto cut free proof
- The midsequent theorem: proof \mapsto (cut free) proof split into two parts
- an upper part which uses only structural and propositional inferences
- a sequent S^{\prime} which is the lower sequent of the last propositional inference
- a lower part which uses only structural and quantifier inferences

Context

- Cut elimination: proof \mapsto cut free proof
- The midsequent theorem: proof \mapsto (cut free) proof split into two parts
- an upper part which uses only structural and propositional inferences
- a sequent S^{\prime} which is the lower sequent of the last propositional inference
- a lower part which uses only structural and quantifier inferences
- This can be then used to provide some witnessing theorems which are frequently used in the context of bounded arithmetic.

The statement

Theorem (The midsequent theorem)

Let S be a sequent consisting of formulas in prenex form which is provable in LK. Then there is cut free LK-proof P of S which contains a sequent S^{\prime} (called the midsequent) satisfying:

- S^{\prime} is quantifier free

The statement

Theorem (The midsequent theorem)

Let S be a sequent consisting of formulas in prenex form which is provable in LK. Then there is cut free LK-proof P of S which contains a sequent S^{\prime} (called the midsequent) satisfying:

- S^{\prime} is quantifier free
- Every inference above S^{\prime} is either structural or propositional inference

The statement

Theorem (The midsequent theorem)

Let S be a sequent consisting of formulas in prenex form which is provable in LK. Then there is cut free LK-proof P of S which contains a sequent S^{\prime} (called the midsequent) satisfying:

- S^{\prime} is quantifier free
- Every inference above S^{\prime} is either structural or propositional inference
- Every inference below S^{\prime} is either structural or quantifier inference

The proof $1 / 4$

Proof.

We already know, that there exists a cut free proof P of S, we can also assume that only sequents of the form $A \rightarrow A$ were used as initial sequents, where A is atomic.

The proof $1 / 4$

Proof.

We already know, that there exists a cut free proof P of S, we can also assume that only sequents of the form $A \rightarrow A$ were used as initial sequents, where A is atomic.
Let I be an inference instance in P, we define

$$
\operatorname{ord}_{P}(I)=\text { number of propositional inferences below } I
$$

and

$$
\operatorname{ord}(P)=\sum_{l \text { in } P} \operatorname{ord}_{P}(I)
$$

The proof $1 / 4$

Proof.

We already know, that there exists a cut free proof P of S, we can also assume that only sequents of the form $A \rightarrow A$ were used as initial sequents, where A is atomic.
Let I be an inference instance in P, we define

$$
\operatorname{ord}_{P}(I)=\text { number of propositional inferences below } I
$$

and

$$
\operatorname{ord}(P)=\sum_{l \text { in } P} \operatorname{ord}_{P}(I)
$$

We proceed in constructing the $L K$-proof from the statement by induction on ord (P).

The proof $2 / 4$

Proof cont.

Case $\operatorname{ord}(P)=0$: While in this case there is no propositional inference found below any quantifier instance, the sequenct S_{0}-defined as the lower sequent of the lowest propositional inference-might still contain formulas with quantifiers.

The proof $2 / 4$

Proof cont.

Case $\operatorname{ord}(P)=0$: While in this case there is no propositional inference found below any quantifier instance, the sequenct S_{0}-defined as the lower sequent of the lowest propositional inference-might still contain formulas with quantifiers.
From the assumption on the proof P, the quantifier formula(s) could have only been introduced using weakenings. But since the end-sequent S is prenex and the proof is cut free, there were no propositional inferences applied to any of them. So the weakening can be "postponed" after S_{0} which finished this case.

The proof $3 / 4$

Proof cont.

Case ord $(P)>0$: Now there exists some quantifier inference $/$ under which the uppermost logical inference is a propositional inference I^{\prime}.

The proof $3 / 4$

Proof cont.

Case $\operatorname{ord}(P)>0$: Now there exists some quantifier inference I under which the uppermost logical inference is a propositional inference I^{\prime}.We will lower the order of P by exchanging the positions of I and I^{\prime}.

The proof $3 / 4$

Proof cont.

Case $\operatorname{ord}(P)>0$: Now there exists some quantifier inference I under which the uppermost logical inference is a propositional inference I^{\prime}.We will lower the order of P by exchanging the positions of I and I^{\prime}. We restrict ourself here to the case where I is \forall : right so we have

$$
\text { (*) }\left\{\begin{array}{c}
I \quad \frac{\Gamma \rightarrow \Theta, F(a)}{\Gamma \rightarrow \Theta, \forall x F(x)} \\
I^{\prime} \frac{\Delta \rightarrow \Lambda}{\Delta \rightarrow \Lambda}
\end{array},\right.
$$

where ($*$) contains only structural inferences.

The proof $4 / 4$

Proof cont.

The rearrangement in such a case looks like this:

$$
\begin{aligned}
& \text { I } \frac{\Gamma \rightarrow \Theta, F(a)}{\Gamma \rightarrow \Theta, \forall x F(x)} \\
& \text { (*) }\left\{I^{\prime} \frac{{ }^{\prime}}{\Delta \rightarrow \Lambda}\right. \text {, } \\
& \Gamma \rightarrow \Theta, F(a) \\
& \text { structural inferences } \\
& \Gamma \rightarrow F(a), \Theta, \forall x F(x) \\
& I^{\prime} \\
& \frac{\overline{\Delta \rightarrow F(a), \Lambda}}{\overline{\Delta \rightarrow \Lambda, \forall x F(x)}}
\end{aligned}
$$

Herbrand's theorem

- With the midsequent theorem at our disposal we can obtain the following classical theorem.

Herbrand's theorem

- With the midsequent theorem at our disposal we can obtain the following classical theorem.

Theorem (Herbrand's theorem; [Jacques Herbrand 1930])
Let T be a universal theory in the language $L, \varphi(x, y)$ a quantifier free L-formula and let

$$
T \vdash(\forall x)(\exists y) \varphi(x, y),
$$

then there exist L-terms t_{1}, \ldots, t_{n} such that

$$
T \vdash(\forall x)\left(\varphi\left(x, t_{1}(x)\right) \vee \cdots \vee \varphi\left(x, t_{n}(x)\right)\right)
$$

Herbrand's theorem

- With the midsequent theorem at our disposal we can obtain the following classical theorem.

Theorem (Herbrand's theorem; [Jacques Herbrand 1930])

Let T be a universal theory in the language $L, \varphi(x, y)$ a quantifier free L-formula and let

$$
T \vdash(\forall x)(\exists y) \varphi(x, y),
$$

then there exist L-terms t_{1}, \ldots, t_{n} such that

$$
T \vdash(\forall x)\left(\varphi\left(x, t_{1}(x)\right) \vee \cdots \vee \varphi\left(x, t_{n}(x)\right)\right)
$$

- Remark: If L contains no terms or constants, the situation becomes trivial, because the terms are therefore simply variables, and therefore for any universal L-theory T we have that $T \vdash(\forall x)(\exists y) \varphi(x, y)$ implies $T \vdash(\forall x) \varphi(x, x)$. (e.g. the theory of graphs)

Herbrand's theorem - the proof $1 / 2$

Theorem (Herbrand's theorem; [Jacques Herbrand 1930])
Let T be a universal theory in the language $L, \varphi(x, y)$ a quantifier free L-formula and let

$$
T \vdash(\forall x)(\exists y) \varphi(x, y),
$$

then there exist L-terms t_{1}, \ldots, t_{n} such that

$$
T \vdash(\forall x)\left(\varphi\left(x, t_{1}(x)\right) \vee \cdots \vee \varphi\left(x, t_{n}(x)\right)\right) .
$$

Proof.

If $T \vdash(\forall x)(\exists y) \varphi(x, y)$ then there is some finite subset $\Gamma \subseteq T$ such that the sequent $\Gamma \rightarrow(\forall x)(\exists y) \varphi(x, y)$ is valid a therefore there is an $L K$-proof of it, called P, with a midsequent S^{\prime}.

Herbrand's theorem - the proof $2 / 2$

Proof cont.

Since S^{\prime} is in P transformed into $\Gamma \rightarrow(\forall x)(\exists y) \varphi(x, y)$ by structural and quantifier inferences it has to be of the form:

$$
S^{\prime}: \quad \gamma_{0}(\bar{a}), \ldots, \gamma_{n}(\bar{a}) \rightarrow \varphi\left(b_{1}, t_{1}\right), \ldots, \varphi\left(b_{n}, t_{n}\right) .
$$

Herbrand's theorem - the proof $2 / 2$

Proof cont.

Since S^{\prime} is in P transformed into $\Gamma \rightarrow(\forall x)(\exists y) \varphi(x, y)$ by structural and quantifier inferences it has to be of the form:

$$
S^{\prime}: \quad \gamma_{0}(\bar{a}), \ldots, \gamma_{n}(\bar{a}) \rightarrow \varphi\left(b_{1}, t_{1}\right), \ldots, \varphi\left(b_{n}, t_{n}\right) .
$$

from which we can in $L K$ infer (here we are using that T is universal)

$$
S^{\prime \prime}: \quad \Gamma \rightarrow \varphi\left(b_{1}, t_{1}\right), \ldots, \varphi\left(b_{n}, t_{n}\right),
$$

Herbrand's theorem - the proof $2 / 2$

Proof cont.

Since S^{\prime} is in P transformed into $\Gamma \rightarrow(\forall x)(\exists y) \varphi(x, y)$ by structural and quantifier inferences it has to be of the form:

$$
S^{\prime}: \quad \gamma_{0}(\bar{a}), \ldots, \gamma_{n}(\bar{a}) \rightarrow \varphi\left(b_{1}, t_{1}\right), \ldots, \varphi\left(b_{n}, t_{n}\right) .
$$

from which we can in $L K$ infer (here we are using that T is universal)

$$
S^{\prime \prime}: \quad \Gamma \rightarrow \varphi\left(b_{1}, t_{1}\right), \ldots, \varphi\left(b_{n}, t_{n}\right),
$$

and by weakening

$$
S^{\prime \prime \prime}: \quad \Gamma, b_{1}=b_{2}, b_{1}=b_{3}, \ldots, b_{1}=b_{n} \rightarrow \varphi\left(b_{1}, t_{1}\right), \ldots, \varphi\left(b_{n}, t_{n}\right),
$$

from which the sequent $\Gamma \rightarrow \varphi\left(b, t_{1}(b)\right), \ldots, \varphi\left(b, t_{n}(b)\right)$ logically follows using the equality axioms.

A non-example

- We will instead start with an example which demonstrates that the assumption on T being universal is crucial for the theorem to hold.

A non-example

- We will instead start with an example which demonstrates that the assumption on T being universal is crucial for the theorem to hold.

Example

Let $T=$ RCF, the theory of real closed fields. One of the axioms of RCF is the existence of a cube root. So we trivially have

$$
T \vdash(\forall x)(\exists y)\left(y^{3}=x\right)
$$

However, the language of RCF is the language of rings, so the only terms in $L_{\text {RCF }}$ are polynomials with integer coefficients, which for cannot serve as an witness for y when $x:=2 \in \mathbb{R} \models \mathrm{RCF}$ and so the Herbrand disjunction cannot be provable in RCF.

A non-example

- We will instead start with an example which demonstrates that the assumption on T being universal is crucial for the theorem to hold.

Example

Let $T=$ RCF, the theory of real closed fields. One of the axioms of RCF is the existence of a cube root. So we trivially have

$$
T \vdash(\forall x)(\exists y)\left(y^{3}=x\right)
$$

However, the language of RCF is the language of rings, so the only terms in $L_{\text {RCF }}$ are polynomials with integer coefficients, which for cannot serve as an witness for y when $x:=2 \in \mathbb{R} \models \mathrm{RCF}$ and so the Herbrand disjunction cannot be provable in RCF.

- Can be circumvented by adding a function symbol cbroot $(-)$ and the axiom $(\forall x) \operatorname{cbroot}(x)^{3}=x$.

An example - the theory of commutative rings

- Let $L=\{0,1,+,-, \cdot\}$ and T be the usual axiomatization of commutative rings (associativity, distributivity, properties of 1 and 0 , ...).

An example - the theory of commutative rings

- Let $L=\{0,1,+,-, \cdot\}$ and T be the usual axiomatization of commutative rings (associativity, distributivity, properties of 1 and 0 , ...).
- Let $\varphi(x, p)$ be a system of polynomial equations with parameter p written out as a formula.

An example - the theory of commutative rings

- Let $L=\{0,1,+,-, \cdot\}$ and T be the usual axiomatization of commutative rings (associativity, distributivity, properties of 1 and 0 , ...).
- Let $\varphi(x, p)$ be a system of polynomial equations with parameter p written out as a formula.
- We can see that if the theory

$$
T \vdash(\forall p)(\exists x) \varphi(x, p)
$$

(the system has solution for every parameter p), then the Herbrand's theorem gives us a list of terms $p_{1}(p), p_{2}(p), \ldots, p_{n}(p)$ (which are essentially polynomials with integer coefficients) such that a solution can be always found by trying all these values.

An example $-T_{\mathrm{PV}}$

- Let $L_{P V}$ be the language containing a function f_{M} for every polynomial-time machine M with intended interpretation of $f_{M}(x)$ being the output of the machine M on a number x.

An example $-T_{\mathrm{PV}}$

- Let $L_{P V}$ be the language containing a function f_{M} for every polynomial-time machine M with intended interpretation of $f_{M}(x)$ being the output of the machine M on a number x.
- Let T_{PV} be the set of universal PV-sentences true in the intended interpretation.

An example $-T_{\mathrm{PV}}$

- Let $L_{P V}$ be the language containing a function f_{M} for every polynomial-time machine M with intended interpretation of $f_{M}(x)$ being the output of the machine M on a number x.
- Let T_{PV} be the set of universal PV-sentences true in the intended interpretation.
- Note that T_{PV} is not recursively. For example the validity of

$$
(\forall x) \text { DoesHaltInTime }\left({ }^{\prime} M^{\prime}, 1^{|x|}\right)=0
$$

is not recursive for a general machine M.

An example $-T_{\mathrm{PV}}$

- Let $L_{P V}$ be the language containing a function f_{M} for every polynomial-time machine M with intended interpretation of $f_{M}(x)$ being the output of the machine M on a number x.
- Let T_{PV} be the set of universal PV-sentences true in the intended interpretation.
- Note that T_{PV} is not recursively. For example the validity of

$$
(\forall x) \text { DoesHaltInTime }\left({ }^{\prime} M^{\prime}, 1^{|x|}\right)=0
$$

is not recursive for a general machine M.

- Reasonably axiomatized subsystem PV of $T_{P V}$ is a well studied system of bounded arithmetic and can prove a lot of the contemporary complexity theory.

An example $-T_{\mathrm{PV}}$ cont.

- Notice that any quantifier free $L_{P V}$-formula is testable in polynomial time. (Computing all the terms are equalities can be done in polynomial time.)

An example $-T_{\mathrm{PV}}$ cont.

- Notice that any quantifier free $L_{P V}$-formula is testable in polynomial time. (Computing all the terms are equalities can be done in polynomial time.)
- This is true for every disjunct from Herbrand's theorem, so there exists a polynomial time function which tries all values $t_{i}(x)$ and picks the one which makes the formula true.

An example $-T_{\mathrm{PV}}$ cont.

- Notice that any quantifier free $L_{P V}$-formula is testable in polynomial time. (Computing all the terms are equalities can be done in polynomial time.)
- This is true for every disjunct from Herbrand's theorem, so there exists a polynomial time function which tries all values $t_{i}(x)$ and picks the one which makes the formula true.
- So we get that if

$$
T_{\mathrm{PV}} \vdash(\forall x)(\exists y) \varphi(x, y)
$$

then there exists $f \in L_{P V}$ such that

$$
T_{\mathrm{PV}} \vdash(\forall x) \varphi(x, f(x))
$$

An example $-T_{\text {PV }}$ cont.; Some complexity classes

- Let $A(x)$ be some property a number can have.

An example $-T_{\text {PV }}$ cont.; Some complexity classes

- Let $A(x)$ be some property a number can have.
- We say $A \in \mathbf{P}$ if there is a polynomial-time machine $M(x)$ such that

$$
A(x) \Longleftrightarrow M(x)=1
$$

An example $-T_{\text {PV }}$ cont.; Some complexity classes

- Let $A(x)$ be some property a number can have.
- We say $A \in \mathbf{P}$ if there is a polynomial-time machine $M(x)$ such that

$$
A(x) \Longleftrightarrow M(x)=1
$$

- We say $A \in \mathbf{N P}$ if there is a polynomial-time machine $M(x, y)$ and a polynomial p, such that for all x

$$
A(x) \equiv \exists y,|y| \leq p(|x|): M(x, y)=1
$$

An example $-T_{\text {PV }}$ cont.; Some complexity classes

- Let $A(x)$ be some property a number can have.
- We say $A \in \mathbf{P}$ if there is a polynomial-time machine $M(x)$ such that

$$
A(x) \Longleftrightarrow M(x)=1
$$

- We say $A \in$ NP if there is a polynomial-time machine $M(x, y)$ and a polynomial p, such that for all x

$$
A(x) \equiv \exists y,|y| \leq p(|x|): M(x, y)=1
$$

- We say $A \in \mathbf{c o N P}$ if there is a polynomial-time machine $M(x, y)$ and a polynomial p, such that for all x

$$
A(x) \equiv \forall y,|y| \leq p(|x|): M(x, y)=0
$$

An example $-T_{\text {PV }}$ cont.; Some complexity classes

- Let $A(x)$ be some property a number can have.
- We say $A \in \mathbf{P}$ if there is a polynomial-time machine $M(x)$ such that

$$
A(x) \Longleftrightarrow M(x)=1
$$

- We say $A \in$ NP if there is a polynomial-time machine $M(x, y)$ and a polynomial p, such that for all x

$$
A(x) \equiv \exists y,|y| \leq p(|x|): M(x, y)=1
$$

- We say $A \in \mathbf{c o N P}$ if there is a polynomial-time machine $M(x, y)$ and a polynomial p, such that for all x

$$
A(x) \equiv \forall y,|y| \leq p(|x|): M(x, y)=0
$$

- A fundamental problem in complexity theory: Are any of $\mathbf{P}, \mathbf{N P}$, coNP equal? What about \mathbf{P} and $\mathbf{N P} \cap \operatorname{coNP}$?

An example $-T_{\mathrm{PV}}$ cont.

- It is conjectured that \mathbf{P} is different from $\mathbf{N P} \cap \operatorname{coNP}$. (Factoring)

An example $-T_{\mathrm{PV}}$ cont.

- It is conjectured that \mathbf{P} is different from $\mathbf{N P} \cap \operatorname{coNP}$. (Factoring)

Theorem
If for some NP property $\varphi T_{P V}$ proves it is also coNP (or vice-versa) then φ is in fact in \mathbf{P}.

An example $-T_{\mathrm{PV}}$ cont.

Theorem

If for some NP property $\varphi T_{\text {PV }}$ proves it is also coNP (or vice-versa) then φ is in fact in \mathbf{P}.

Proof.

Let $\varphi(x)$ be of the form $(\exists y,|y| \leq p(|x|))(f(x, y)=1)$, let $\psi(x)$ be of the form $(\forall y,|y| \leq q(|x|))(g(x, y)=1)$, and let

$$
T_{\mathrm{PV}} \vdash \varphi(x) \equiv \psi(x),
$$

we also have

$$
T_{\mathrm{PV}} \vdash \varphi(x) \vee \neg \psi(x) .
$$

By Herbrand's theorem we have that there exists a polynomial time h such that

$$
T_{\mathrm{PV}} \vdash(\forall x)(f(x, h(x))=1 \vee g(x, h(x))=0)
$$

now we can get a p-time algorithm deciding $\varphi(x)$ using f, g and h.

Generalization - The KPT theorem

- Herbrand's theorem: $\forall \exists$ statement \rightarrow a list of terms $t_{1}(a), \ldots, t_{n}(a)$ such that in any model, one of these terms is the witness.

Generalization - The KPT theorem

- Herbrand's theorem: $\forall \exists$ statement \rightarrow a list of terms $t_{1}(a), \ldots, t_{n}(a)$ such that in any model, one of these terms is the witness.
- KPT theorem: $\forall \exists \forall$ statement \rightarrow a list of terms $t_{1}(a), t_{2}\left(a, b_{1}\right), \ldots, t_{n}\left(a, b_{1}, \ldots, b_{n-1}\right)$, if the i-th term is not valid in a given model, it gives a value b_{i} (corresponding to the last \forall quantifier) which can then be used to compute the next value. In any model, one of these terms is the witness.

Generalization - The KPT theorem

- Herbrand's theorem: $\forall \exists$ statement \rightarrow a list of terms $t_{1}(a), \ldots, t_{n}(a)$ such that in any model, one of these terms is the witness.
- KPT theorem: $\forall \exists \forall$ statement \rightarrow a list of terms $t_{1}(a), t_{2}\left(a, b_{1}\right), \ldots, t_{n}\left(a, b_{1}, \ldots, b_{n-1}\right)$, if the i-th term is not valid in a given model, it gives a value b_{i} (corresponding to the last \forall quantifier) which can then be used to compute the next value. In any model, one of these terms is the witness.
- This can be understood as a two player game, the teacher (\forall-player) and a student (\exists-player), the game is played in any model of the theory we are considering. The teacher always picks some element, the student tries to compute a potential witness using a term, and if the witness is wrong, the teacher provides a counter example, which the student can later use to find another potential witness.

Thank you for your attention!

