Proof theory of first order logic

Ondřej Ježil

November 10, 2022

-				
- ()	nd	PO1		ožil
0	пu	101	_	ezn

• Extends propositional logic.

Image: A matrix

- Extends propositional logic.
- Allowed symbols:

Image: A matrix

- Extends propositional logic.
- Allowed symbols:
 - ▶ propositional connectives $(\land, \lor, \neg, \supset)$

э

Image: A matrix

- Extends propositional logic.
- Allowed symbols:
 - ▶ propositional connectives (\land , \lor , \neg , \supset)
 - quantifiers $((\forall x), (\exists x), \ldots)$

3

イロト 不得 トイヨト イヨト

- Extends propositional logic.
- Allowed symbols:
 - ▶ propositional connectives $(\land, \lor, \neg, \supset)$
 - quantifiers $((\forall x), (\exists x), \ldots)$
 - ▶ variables (*x*, *y*, *z* . . . , *a*, *b*, , . . .)

- ∢ 🗗 ▶

- Extends propositional logic.
- Allowed symbols:
 - ▶ propositional connectives (\land , \lor , \neg , \supset)
 - quantifiers $((\forall x), (\exists x), \ldots)$
 - ▶ variables (*x*, *y*, *z* . . . , *a*, *b*, , . . .)
 - function symbols (f, g, h, ...)

< A

- Extends propositional logic.
- Allowed symbols:
 - ▶ propositional connectives (\land , \lor , \neg , \supset)
 - quantifiers $((\forall x), (\exists x), \ldots)$
 - variables (x, y, z ..., a, b, ,...)
 - ▶ function symbols (*f*, *g*, *h*, . . .)
 - constant symbols (function symbols of arity 0)

< A

- Extends propositional logic.
- Allowed symbols:
 - ▶ propositional connectives (\land , \lor , \neg , \supset)
 - quantifiers $((\forall x), (\exists x), \ldots)$
 - ▶ variables (x, y, z ..., a, b, , ...)
 - ▶ function symbols (*f*, *g*, *h*, . . .)
 - constant symbols (function symbols of arity 0)
 - relational symbols (P, Q, R, ...)

Definition (L-formulas)

Let L be a set of function and relational symbols (a language), we inductively define L-terms. Every variable is a term and if $f \in L$ is k-ary, t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ are L-terms. If $P \in L$ is k-ary and t_1, \ldots, t_k are terms, then the string $P(t_1, \ldots, t_k)$ is an L-atomic formula. L-formulas are inductively defined starting from L-atomic formulas as follows. If A and B are L-formulas, then so are:

Definition (L-formulas)

Let L be a set of function and relational symbols (a language), we inductively define L-terms. Every variable is a term and if $f \in L$ is k-ary, t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ are L-terms. If $P \in L$ is k-ary and t_1, \ldots, t_k are terms, then the string $P(t_1, \ldots, t_k)$ is an L-atomic formula. L-formulas are inductively defined starting from L-atomic formulas as follows. If A and B are L-formulas, then so are:

(¬A)

Definition (L-formulas)

Let L be a set of function and relational symbols (a language), we inductively define L-terms. Every variable is a term and if $f \in L$ is k-ary, t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ are L-terms. If $P \in L$ is k-ary and t_1, \ldots, t_k are terms, then the string $P(t_1, \ldots, t_k)$ is an L-atomic formula. L-formulas are inductively defined starting from L-atomic formulas as follows. If A and B are L-formulas, then so are:

• (A ∧ B)

Definition (L-formulas)

Let L be a set of function and relational symbols (a language), we inductively define L-terms. Every variable is a term and if $f \in L$ is k-ary, t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ are L-terms. If $P \in L$ is k-ary and t_1, \ldots, t_k are terms, then the string $P(t_1, \ldots, t_k)$ is an L-atomic formula. L-formulas are inductively defined starting from L-atomic formulas as follows. If A and B are L-formulas, then so are:

- (A ∧ B)
- $(A \lor B)$

Definition (L-formulas)

Let L be a set of function and relational symbols (a language), we inductively define L-terms. Every variable is a term and if $f \in L$ is k-ary, t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ are L-terms. If $P \in L$ is k-ary and t_1, \ldots, t_k are terms, then the string $P(t_1, \ldots, t_k)$ is an L-atomic formula. L-formulas are inductively defined starting from L-atomic formulas as follows. If A and B are L-formulas, then so are:

- (¬A)
- (A ∧ B)
- $(A \lor B)$
- $(A \supset B)$

Definition (L-formulas)

Let L be a set of function and relational symbols (a language), we inductively define L-terms. Every variable is a term and if $f \in L$ is k-ary, t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ are L-terms. If $P \in L$ is k-ary and t_1, \ldots, t_k are terms, then the string $P(t_1, \ldots, t_k)$ is an L-atomic formula. L-formulas are inductively defined starting from L-atomic formulas as follows. If A and B are L-formulas, then so are:

- (¬A)
- (A ∧ B)
- $(A \lor B)$
- $(A \supset B)$
- (∀x)A

3

Definition (L-formulas)

Let L be a set of function and relational symbols (a language), we inductively define L-terms. Every variable is a term and if $f \in L$ is k-ary, t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ are L-terms. If $P \in L$ is k-ary and t_1, \ldots, t_k are terms, then the string $P(t_1, \ldots, t_k)$ is an L-atomic formula. L-formulas are inductively defined starting from L-atomic formulas as follows. If A and B are L-formulas, then so are:

- (¬A)
- (A ∧ B)
- (*A* ∨ *B*)
- $(A \supset B)$
- (∀x)A
- (∃x)A

3

• An occurance of a variable x in a formula A is **free** if x is not in a scope of a quantifier.

- An occurance of a variable x in a formula A is **free** if x is not in a scope of a quantifier.
- An occurance which is not free is called **bound**.

- An occurance of a variable x in a formula A is **free** if x is not in a scope of a quantifier.
- An occurance which is not free is called **bound**.
- Example: $((x = 0) \lor (\forall x)(x \neq f(x)))$

- An occurance of a variable x in a formula A is **free** if x is not in a scope of a quantifier.
- An occurance which is not free is called **bound**.
- Example: $((x = 0) \lor (\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.

- An occurance of a variable x in a formula A is **free** if x is not in a scope of a quantifier.
- An occurance which is not free is called **bound**.
- Example: $((x = 0) \lor (\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.
- If t is a term, x a variable, then A(t/x) denotes the formula obtained from A by replacing every free occurance of x with t.

- An occurance of a variable x in a formula A is **free** if x is not in a scope of a quantifier.
- An occurance which is not free is called **bound**.
- Example: $((x = 0) \lor (\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.
- If t is a term, x a variable, then A(t/x) denotes the formula obtained from A by replacing every free occurance of x with t.
- We say *t* is **freely substitutable** for *x* in *A* if no free variable in *t* becomes bound as a result of this substitution.

- An occurance of a variable x in a formula A is **free** if x is not in a scope of a quantifier.
- An occurance which is not free is called **bound**.
- Example: $((x = 0) \lor (\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.
- If t is a term, x a variable, then A(t/x) denotes the formula obtained from A by replacing every free occurance of x with t.
- We say *t* is **freely substitutable** for *x* in *A* if no free variable in *t* becomes bound as a result of this substitution.
- For simplicity, if we denote a formula by A(x), then A(t) denotes A(t/x).

4 / 26

• To define a truth value for a formula, we need to give an interpretation of non-logical symbols appearing in it.

- To define a truth value for a formula, we need to give an *interpretation* of non-logical symbols appearing in it.
- Let L be a language, a tuple M = {M, f^M, g^M, ..., P^M, Q^M, ...} is an L-structure, if M is an non-empty set, f^M is a function f^M: M^{a(f)} → M, for every function symbol in L and R^M is a relation R^M ⊆ M^{a(R)}, for every relational symbol in L.

- To define a truth value for a formula, we need to give an *interpretation* of non-logical symbols appearing in it.
- Let L be a language, a tuple M = {M, f^M, g^M, ..., P^M, Q^M, ...} is an L-structure, if M is an non-empty set, f^M is a function f^M: M^{a(f)} → M, for every function symbol in L and R^M is a relation R^M ⊆ M^{a(R)}, for every relational symbol in L.
- if $= \in L$, then $=^{\mathcal{M}}$ gets interpreted as the true equality

- To define a truth value for a formula, we need to give an *interpretation* of non-logical symbols appearing in it.
- Let L be a language, a tuple M = {M, f^M, g^M, ..., P^M, Q^M, ...} is an L-structure, if M is an non-empty set, f^M is a function f^M: M^{a(f)} → M, for every function symbol in L and R^M is a relation R^M ⊆ M^{a(R)}, for every relational symbol in L.
- if $= \in L$, then $= \mathcal{M}$ gets interpreted as the true equality
- For an *L*-formula φ , an *L*-structure \mathcal{M} , and an assignment σ : {free variables in φ } $\rightarrow \mathcal{M}$, we define

$$\pmb{M}\models \varphi[\sigma]$$

inductively by first interpreting terms and then logical connectives/quantifiers.

- To define a truth value for a formula, we need to give an *interpretation* of non-logical symbols appearing in it.
- Let L be a language, a tuple M = {M, f^M, g^M, ..., P^M, Q^M, ...} is an L-structure, if M is an non-empty set, f^M is a function f^M: M^{a(f)} → M, for every function symbol in L and R^M is a relation R^M ⊆ M^{a(R)}, for every relational symbol in L.
- if $= \in L$, then $= \mathcal{M}$ gets interpreted as the true equality
- For an *L*-formula φ , an *L*-structure \mathcal{M} , and an assignment σ : {free variables in φ } $\rightarrow \mathcal{M}$, we define

$$\pmb{M}\models \varphi[\sigma]$$

inductively by first interpreting terms and then logical connectives/quantifiers.

- To define a truth value for a formula, we need to give an *interpretation* of non-logical symbols appearing in it.
- Let L be a language, a tuple M = {M, f^M, g^M, ..., P^M, Q^M, ...} is an L-structure, if M is an non-empty set, f^M is a function f^M: M^{a(f)} → M, for every function symbol in L and R^M is a relation R^M ⊆ M^{a(R)}, for every relational symbol in L.
- if $= \in L$, then $= \mathcal{M}$ gets interpreted as the true equality
- For an *L*-formula φ , an *L*-structure \mathcal{M} , and an assignment σ : {free variables in φ } $\rightarrow \mathcal{M}$, we define

$$\pmb{M}\models \varphi[\sigma]$$

inductively by first interpreting terms and then logical connectives/quantifiers.

$$\mathcal{M} \models \varphi \iff \forall \sigma : \mathcal{M} \models \varphi[\sigma]$$

• If Γ is a set of *L*-formulas and \mathcal{M} an *L*-structure, then

 $M \models \Gamma \iff \forall \varphi \in \Gamma : M \models \varphi.$

• If Γ is a set of *L*-formulas and \mathcal{M} an *L*-structure, then

$$M\models \Gamma \iff \forall \varphi\in \Gamma: M\models \varphi.$$

• If $\mathcal{M} \models \Gamma$ we say Γ is satisfied by \mathcal{M} and that \mathcal{M} is a model of Γ .

• If Γ is a set of L-formulas and $\mathcal M$ an L-structure, then

$$M\models \mathsf{\Gamma}\iff \forall \varphi\in\mathsf{\Gamma}:M\models\varphi.$$

• If $\mathcal{M} \models \Gamma$ we say Γ is satisfied by \mathcal{M} and that \mathcal{M} is a model of Γ .

• Γ is said to be **satisfiable** iff it is satisfied by some model.

• If Γ is a set of *L*-formulas and \mathcal{M} an *L*-structure, then

$$M\models \mathsf{\Gamma}\iff \forall \varphi\in\mathsf{\Gamma}:M\models \varphi.$$

- If $\mathcal{M} \models \Gamma$ we say Γ is satisfied by \mathcal{M} and that \mathcal{M} is a model of Γ .
- Γ is said to be **satisfiable** iff it is satisfied by some model.
- We say that Γ logically implies A, Γ ⊨ A, if for every M ⊨ Γ we have M ⊨ A.

• If Γ is a set of *L*-formulas and \mathcal{M} an *L*-structure, then

$$M\models \mathsf{\Gamma}\iff \forall \varphi\in\mathsf{\Gamma}:M\models \varphi.$$

• If $\mathcal{M} \models \Gamma$ we say Γ is satisfied by \mathcal{M} and that \mathcal{M} is a model of Γ .

- Γ is said to be **satisfiable** iff it is satisfied by some model.
- We say that Γ logically implies A, Γ ⊨ A, if for every M ⊨ Γ we have M ⊨ A.
- If $\Gamma = \emptyset$ and $\Gamma \models A$, we write $\models A$ and say that A is valid.

• If Γ is a set of *L*-formulas and \mathcal{M} an *L*-structure, then

$$M\models \mathsf{\Gamma}\iff \forall \varphi\in\mathsf{\Gamma}:M\models \varphi.$$

- If $\mathcal{M} \models \Gamma$ we say Γ is satisfied by \mathcal{M} and that \mathcal{M} is a model of Γ .
- Γ is said to be **satisfiable** iff it is satisfied by some model.
- We say that Γ logically implies A, Γ ⊨ A, if for every M ⊨ Γ we have M ⊨ A.
- If $\Gamma = \emptyset$ and $\Gamma \models A$, we write $\models A$ and say that A is valid.
- If a set of L-sentences T is closed under logical implication, then T is called a theory. A set of L-sentaces Γ is called an axiomatization of T is precisely the set of sentences logically implied by Γ.

- 本間下 本臣下 本臣下 三臣

Hilbert-style calculus

• \mathcal{F}_{FO} is an extension of propositional Hilbert calculus \mathcal{F}

- (日)
Hilbert-style calculus

- \mathcal{F}_{FO} is an extension of propositional Hilbert calculus \mathcal{F}
- In addition to axioms of \mathcal{F} there are two axiom schemes:

 $A(t) \supset (\exists x)A(x)$ and $(\forall x)A(x) \supset A(t)$

э

Hilbert-style calculus

- \mathcal{F}_{FO} is an extension of propositional Hilbert calculus \mathcal{F}
- In addition to axioms of \mathcal{F} there are two axiom schemes:

 $A(t) \supset (\exists x)A(x)$ and $(\forall x)A(x) \supset A(t)$

 And in addition to modus ponens there are two quantifier rules of inference: $\frac{C}{A(x)}$

$$\frac{C \supset A(x)}{C \supset (\forall x)A(x)} \quad \text{and} \quad \frac{A(x)}{(\exists x)A(x)}$$

where x does not appear freely in C.

Hilbert-style calculus

- \mathcal{F}_{FO} is an extension of propositional Hilbert calculus \mathcal{F}
- In addition to axioms of ${\mathcal F}$ there are two axiom schemes:

 $A(t) \supset (\exists x)A(x)$ and $(\forall x)A(x) \supset A(t)$

• And in addition to modus ponens there are two quantifier rules of inference:

$$\frac{C \supset A(x)}{C \supset (\forall x)A(x)} \qquad \text{and} \qquad \frac{A(x) \supset A(x)}{(\exists x)A(x)}$$

where x does not appear freely in C.

If = is in the language we are considering, then we also include for every k-ary f and P the following

(∀x)(x = x)
(∀x)(∀y)(x1 = y1 ∧ ··· ∧ xk = yk ⊃ f(x) = f(y))
(∀x)(∀y)(x1 = y1 ∧ ··· ∧ xk = yk ⊃ P(x) ⊃ P(y)).

7/26

イロト イヨト イヨト ・

Hilbert-style calculus – soundness

Theorem (The Soundness Theorem)

< A[™]

э

Hilbert-style calculus – soundness

Theorem (The Soundness Theorem)

1 If $\mathcal{F}_{FO} \vdash A$, then $\models A$.

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Hilbert-style calculus - soundness

Theorem (The Soundness Theorem)

1 If $\mathcal{F}_{FO} \vdash A$, then $\models A$.

2 Let Γ bet a set of sentences, if there is an \mathcal{F}_{FO} proof of A using sentences from Γ as additional axioms, then $\Gamma \models A$.

Hilbert-style calculus – soundness

Theorem (The Soundness Theorem)

1 If $\mathcal{F}_{FO} \vdash A$, then $\models A$.

2 Let Γ bet a set of sentences, if there is an \mathcal{F}_{FO} proof of A using sentences from Γ as additional axioms, then $\Gamma \models A$.

Proof.

By induction on the number of lines in a proofs.

Theorem (The Completeness Theorem)

¹See the outline on wiki.

Theorem (The Completeness Theorem) • If $\models A$, then $\mathcal{F}_{FO} \vdash A$.

¹See the outline on wiki.

< 行

Theorem (The Completeness Theorem)

- **1** If $\models A$, then $\mathcal{F}_{FO} \vdash A$.
- 2 Let Γ bet a set of sentences. If Γ ⊨ A then there is an F_{FO} proof of A using sentences from Γ as additional axioms.

¹See the outline on wiki.

Theorem (The Completeness Theorem)

- **1** If $\models A$, then $\mathcal{F}_{FO} \vdash A$.
- 2 Let Γ bet a set of sentences. If Γ ⊨ A then there is an F_{FO} proof of A using sentences from Γ as additional axioms.
 - The original proof is due to Gödel [1930]. ¹

¹See the outline on wiki.

Theorem (The Completeness Theorem)

- **1** If $\models A$, then $\mathcal{F}_{FO} \vdash A$.
- 2 Let Γ bet a set of sentences. If Γ ⊨ A then there is an F_{FO} proof of A using sentences from Γ as additional axioms.
 - The original proof is due to Gödel [1930]. ¹
 - The now standard textbook proof is due to Henkin [1949].

¹See the outline on wiki.

Theorem (The Completeness Theorem)

- **1** If $\models A$, then $\mathcal{F}_{FO} \vdash A$.
- 2 Let Γ bet a set of sentences. If Γ ⊨ A then there is an F_{FO} proof of A using sentences from Γ as additional axioms.
 - The original proof is due to Gödel [1930]. ¹
 - The now standard textbook proof is due to Henkin [1949].
 - We shall not give proof directly, but since \mathcal{F}_{FO} can simulate cut-free fragment of first order sequent calculus it suffices to show completeness of cut-free fragment of LK proof system.

¹See the outline on wiki.

• We shall define the system LK which is an extention of PK to first-order logic.

Image: Image:

э

- We shall define the system *LK* which is an extention of *PK* to first-order logic.
- !!! Now we have two classes of variables:

э

- We shall define the system *LK* which is an extention of *PK* to first-order logic.
- !!! Now we have two classes of variables:
 - ▶ Free variables: *a*, *b*, *c*, ... (cannot be quantified)

- We shall define the system *LK* which is an extention of *PK* to first-order logic.
- !!! Now we have two classes of variables:
 - ► Free variables: *a*, *b*, *c*, ... (cannot be quantified)
 - Bound variables: z, y, x, ... (cannot occur free in formulas)

- We shall define the system *LK* which is an extention of *PK* to first-order logic.
- !!! Now we have two classes of variables:
 - ► Free variables: *a*, *b*, *c*, ... (cannot be quantified)
 - Bound variables: z, y, x, ... (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.

- We shall define the system *LK* which is an extention of *PK* to first-order logic.
- !!! Now we have two classes of variables:
 - ► Free variables: *a*, *b*, *c*, . . . (cannot be quantified)
 - Bound variables: z, y, x, ... (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.
- Formulas now have the restriction, that only free variables may occur freely.

- We shall define the system *LK* which is an extention of *PK* to first-order logic.
- !!! Now we have two classes of variables:
 - ▶ Free variables: *a*, *b*, *c*, ... (cannot be quantified)
 - Bound variables: z, y, x, ... (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.
- Formulas now have the restriction, that only free variables may occur freely.
- Semiformulas may contain free occurances of bound variables.

- We shall define the system *LK* which is an extention of *PK* to first-order logic.
- !!! Now we have two classes of variables:
 - ► Free variables: *a*, *b*, *c*, ... (cannot be quantified)
 - Bound variables: z, y, x, ... (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.
- Formulas now have the restriction, that only free variables may occur freely.
- Semiformulas may contain free occurances of bound variables.
- ! Generally subformula of a formula is now just a semiformula.

10 / 26

LK rules

• *LK* contains all the rules of inference of *PK* plus **The Quantifier Rules:**

$$\begin{aligned} \forall : left \frac{A(t), \Gamma \to \Delta}{(\forall x) A(x), \Gamma \to \Delta} & \forall : right \frac{\Gamma \to \Delta, A(b)}{\Gamma \to \Delta, (\forall x) A(x)} \\ \exists : left \frac{A(b), \Gamma \to \Delta}{(\exists x) A(x), \Gamma \to \Delta} & \exists : right \frac{\Gamma \to \Delta, A(t)}{\Gamma \to \Delta, (\exists x) A(x)} \end{aligned}$$

in these rules, A may be an arbitrary formula, t an arbitrary term and the free variable b of \forall : *right* and \exists : *left* is called the eigenvariable of the inference and it must not appear in Γ, Δ .

LK rules

• *LK* contains all the rules of inference of *PK* plus **The Quantifier Rules:**

$$\begin{aligned} \forall : left \frac{A(t), \Gamma \to \Delta}{(\forall x) A(x), \Gamma \to \Delta} & \forall : right \frac{\Gamma \to \Delta, A(b)}{\Gamma \to \Delta, (\forall x) A(x)} \\ \exists : left \frac{A(b), \Gamma \to \Delta}{(\exists x) A(x), \Gamma \to \Delta} & \exists : right \frac{\Gamma \to \Delta, A(t)}{\Gamma \to \Delta, (\exists x) A(x)} \end{aligned}$$

in these rules, A may be an arbitrary formula, t an arbitrary term and the free variable b of \forall : *right* and \exists : *left* is called the eigenvariable of the inference and it must not appear in Γ, Δ .

• The propositional rules together with the quantifier rules are collectively called **logical rules**.

• Most of syntactic definitions of PK carry over to LK

Image: A matrix

э

• Most of syntactic definitions of PK carry over to LK

(direct) descendants and ancestors

Image: Image:

3

- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.

- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.
- For a sequent S of the form $\Gamma \to \Delta$, we let A_S to be the formula $(\bigwedge \Gamma) \supset (\bigvee \Delta)$.

- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.
- For a sequent S of the form $\Gamma \to \Delta$, we let A_S to be the formula $(\bigwedge \Gamma) \supset (\bigvee \Delta)$.
- Now all the definitions of validity and logical implication apply also to sequents, where S is understood to have the meaning as A_S.

- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.
- For a sequent S of the form $\Gamma \to \Delta$, we let A_S to be the formula $(\bigwedge \Gamma) \supset (\bigvee \Delta)$.
- Now all the definitions of validity and logical implication apply also to sequents, where S is understood to have the meaning as A_S.
- Let the free variables of A_S be \overline{b} , so $A_S = A_S(\overline{b})$ and we let $\forall S$ denote the formula $(\forall x)A_S(\overline{x})$.

• *LK* only allows initial sequents of the form $A \rightarrow A$ with A atomic.

э

LK_©

- *LK* only allows initial sequents of the form $A \rightarrow A$ with A atomic.
- We define $LK_{\mathfrak{S}}$ to be the system extending LK by allowing sequents from a set \mathfrak{S} to be initial sequents too.

LK_©

- LK only allows initial sequents of the form $A \rightarrow A$ with A atomic.
- We define LK_S to be the system extending LK by allowing sequents from a set S to be initial sequents too.
- Important example: LK_e is the theory for first order logic with equality and we have the following additional initial segments:

$$\rightarrow s = s$$

$$s_1 = t_1, \dots, s_k = t_k \to f(\overline{s}) = f(\overline{t})$$

 $s_1 = t_1, \dots, s_k = t_k, P(\overline{s}) \supset P(\overline{t}).$

13/26

LK_©

- LK only allows initial sequents of the form $A \rightarrow A$ with A atomic.
- We define LK_S to be the system extending LK by allowing sequents from a set S to be initial sequents too.
- Important example: LK_e is the theory for first order logic with equality and we have the following additional initial segments:

$$\rightarrow s = s$$

$$s_1 = t_1, \dots, s_k = t_k \to f(\overline{s}) = f(\overline{t})$$

 $s_1 = t_1, \dots, s_k = t_k, P(\overline{s}) \supset P(\overline{t}).$

 We say S is closed under substitution, if whenever Γ(a) → Δ(a) is in S, and t is a term, then Γ(t) → Δ(t) is also in S.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$LK_{\mathfrak{S}}$ and substitutions

Definition

We say \mathfrak{S} is closed under substitution, if whenever $\Gamma(a) \to \Delta(a)$ is in \mathfrak{S} , and t is a term, then $\Gamma(t) \to \Delta(t)$ is also in \mathfrak{S} .

э

$LK_{\mathfrak{S}}$ and substitutions

Definition

We say \mathfrak{S} is closed under substitution, if whenever $\Gamma(a) \to \Delta(a)$ is in \mathfrak{S} , and t is a term, then $\Gamma(t) \to \Delta(t)$ is also in \mathfrak{S} .

Theorem

Let \mathfrak{S} be a set of sequents which is closed under substitution. If p(b) is a $LK_{\mathfrak{S}}$ -proof, and if neither b nor any variable in t is used as an eigenvariable in p(b), then p(t) is a valid $LK_{\mathfrak{S}}$ -proof.

Free variable normal form

Definition

A free variable in the endsequent of a proof is called a **parameter variable** of the proof. A proof p is said to be **free variable normal form** provided that:
Definition

A free variable in the endsequent of a proof is called a **parameter variable** of the proof. A proof p is said to be **free variable normal form** provided that:

In parameter variable is used as an eigenvariable

Definition

A free variable in the endsequent of a proof is called a **parameter variable** of the proof. A proof p is said to be **free variable normal form** provided that:

- In parameter variable is used as an eigenvariable
- every other free variable appering in p is used exactly once as an eigenvariable and appears in p only in sequents above the inference for which it is used as an eigenvarible.

Definition

A free variable in the endsequent of a proof is called a **parameter variable** of the proof. A proof p is said to be **free variable normal form** provided that:

- In parameter variable is used as an eigenvariable
- every other free variable appering in p is used exactly once as an eigenvariable and appears in p only in sequents above the inference for which it is used as an eigenvarible.

Definition

A free variable in the endsequent of a proof is called a **parameter variable** of the proof. A proof p is said to be **free variable normal form** provided that:

In parameter variable is used as an eigenvariable

every other free variable appering in p is used exactly once as an eigenvariable and appears in p only in sequents above the inference for which it is used as an eigenvarible.

In the rest of the talk, we only consider tree-like proofs and thus any proof may be put in free variable normal form by renaming variables.

Soundness of $LK_{\mathfrak{S}}$

Theorem

Let $\Gamma \to \Delta$ be an arbitrary sequent.

э

・ロト ・四ト ・ヨト ・ヨト

Soundness of $LK_{\mathfrak{S}}$

Theorem

Let $\Gamma \to \Delta$ be an arbitrary sequent.

 $If \ \Gamma \to \Delta \ has \ a \ LK-proof, \ then \ \Gamma \to \Delta \ is \ valid.$

3

イロト イポト イヨト イヨト

Soundness of $LK_{\mathfrak{S}}$

Theorem

Let $\Gamma \to \Delta$ be an arbitrary sequent.

- $\ \, {\rm If}\ \Gamma\to\Delta\ {\it has}\ {\it a}\ {\it LK-proof},\ {\it then}\ \Gamma\to\Delta\ {\it is}\ {\it valid}.$
- 2 Let \mathfrak{S} be a set of sequents. If $\Gamma \to \Delta$ has an $LK_{\mathfrak{S}}$ -proof, then $\mathfrak{S} \models \Gamma \to \Delta$.

3

イロト イヨト イヨト ・

Theorem

Let $\Gamma \to \Delta$ be a sequent in a first order language which does not contain equality.

Theorem

Let $\Gamma \to \Delta$ be a sequent in a first order language which does not contain equality.

 $\ \, {\rm If}\ \Gamma\to\Delta\ {\rm is\ valid,\ then\ it\ has\ a\ cut-free\ LK-proof.}$

Theorem

Let $\Gamma \to \Delta$ be a sequent in a first order language which does not contain equality.

- $\ \, {\rm If}\ \Gamma \to \Delta \ {\rm is \ valid, \ then \ it \ has \ a \ cut-free \ LK-proof. }$
- ② Let Π be a set of sentences. If Π logically implies $\Gamma \to \Delta$, then there are $C_1, \ldots, C_k \in \Pi$, such that $C_1, \ldots, C_k, \Gamma \to \Delta$ has a cut-free *LK*-proof.

Theorem

Let $\Gamma \to \Delta$ be a sequent in a first order language which does not contain equality.

- $\ \, {\rm If}\ \Gamma \to \Delta \ {\rm is \ valid, \ then \ it \ has \ a \ cut-free \ LK-proof. }$
- 2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Corollary

Let \mathfrak{S} be a set of sequents. If \mathfrak{S} logically implies $\Gamma \to \Delta$, then $\Gamma \to \Delta$ has a $LK_{\mathfrak{S}}$ -proof.

Theorem

Let $\Gamma \to \Delta$ be a sequent in a first order language which does not contain equality.

- $\label{eq:relation} \textbf{If} \ \Gamma \to \Delta \ \text{is valid, then it has a cut-free LK-proof.}$
- 2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Corollary

Let \mathfrak{S} be a set of sequents. If \mathfrak{S} logically implies $\Gamma \to \Delta$, then $\Gamma \to \Delta$ has a $LK_{\mathfrak{S}}$ -proof.

Proof.

If $\mathfrak{S} \models \Gamma \to \Delta$, then (2) implies that there are $S_1, \ldots, S_k \in \mathfrak{S}$ such that $\forall S_1, \ldots, \forall S_k, \Gamma \to \Delta$ has an *LK*-proof. Each $\to \forall S_i$ has an *LK* \mathfrak{S} -proof, so with *k* further cut inferences, we obtain $\Gamma \to \Delta$.

Theorem

Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.

э

< □ > < /□ >

Theorem

Let $\Gamma \to \Delta$ be a sequent in a first order language which does not contain equality.

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

3

Theorem

Let $\Gamma \to \Delta$ be a sequent in a first order language which does not contain equality.

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Proof.

We shall only prove the case where Π is countable (and therefore *L* is). We assume $\Pi \models \Gamma \rightarrow \Delta$. We shall try to build up a proof of $C_1, \ldots, C_k, \Gamma \rightarrow \Delta$ from the bottom up. Quantifiers make this a potentially infinite process so we need to show that the construction terminates.

18 / 26

イロト 不得 トイヨト イヨト 二日

э

イロト イヨト イヨト イヨト

Theorem

2 Let Π be a set of sentences. If Π logically implies $\Gamma \to \Delta$, then there are $C_1, \ldots, C_k \in \Pi$, such that $C_1, \ldots, C_k, \Gamma \to \Delta$ has a cut-free LK-proof.

э

Theorem

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Proof cont.

We start with an (incomplete) proof p_0 which consists of just the sequent $\Gamma \rightarrow \Delta$ and we will proceed by building stages p_i . A leaf sequent of p_i is called **active** if no formula occurs in both its cedents. Let A_1, A_2, \ldots be a sequence of all *L*-formulas where every formula is

Let $A_1, A_2, ...$ be a sequence of all *L*-formulas where every formula is repeated infinitely many times. Let $t_1, t_2, ...$ be a sequence of all *L*-terms where every term is repeated. And we enumerate all pairs (A_j, t_k) using diagonal enumeration. We shall construct p_{i+1} using (A_{j_i}, t_{k_i}) and p_i .

イロト 不得 トイラト イラト 一日

Theorem

\sim	- IV		_ V • I
. ()	ndr	<u>e</u> i 1	e71
	i u i		CZ 11

2

イロト イヨト イヨト イヨト

Theorem

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

э

Theorem

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Proof cont.

Let (A_j, t_k) be the pair for p_i . (1) If $A_j \in \Pi$ then replace every sequent $\Gamma' \to \Delta'$ in P with the sequent $\Gamma', A_i \to \Delta'$.

A B M A B M

2

・ロト ・四ト ・ヨト ・ヨト

Theorem

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

э

Theorem

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Proof cont.

(2) If $A_j \notin \Pi$ is not atomic, we shall modify all active sequents which contain A_i as follows:

(2a) If A_j is $\neg B$, then active sequents of the form $\Gamma', \neg B, \Gamma'' \rightarrow \Delta'$ are replaced by the derivation:

$$\frac{\Gamma', \neg B, \Gamma'' \to \Delta', B}{\Gamma', \neg B, \Gamma'' \to \Delta'}$$

and ones of the form $\Gamma' o \Delta',
eg B, \Delta''$ with the dual derivation.

Theorem

2

・ロト ・四ト ・ヨト ・ヨト

Theorem

2 Let Π be a set of sentences. If Π logically implies $\Gamma \to \Delta$, then there are $C_1, \ldots, C_k \in \Pi$, such that $C_1, \ldots, C_k, \Gamma \to \Delta$ has a cut-free LK-proof.

- (日)

3

Theorem

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Proof cont.

(2b) If A_j is $B \vee C$, then active sequents of the form $\Gamma', B \vee C, \Gamma'' \to \Delta'$ are replaced by the derivation:

$$\frac{B, \Gamma', B \lor C, \Gamma'' \to \Delta' \quad C, \Gamma', B \lor C, \Gamma'' \to \Delta'}{B, \Gamma', B \lor C, \Gamma'' \to \Delta', B}$$

and ones of the form $\Gamma' \to \Delta', B \vee C, \Delta''$ with

$$\frac{\Gamma' \to \Delta', B \lor C, \Delta'', B, C}{\Gamma' \to \Delta', B \lor C, \Delta''}.$$

22 / 26

Theorem

2

・ロト ・四ト ・ヨト ・ヨト

Theorem

2 Let Π be a set of sentences. If Π logically implies $\Gamma \to \Delta$, then there are $C_1, \ldots, C_k \in \Pi$, such that $C_1, \ldots, C_k, \Gamma \to \Delta$ has a cut-free LK-proof.

- (日)

3

Theorem

2 Let Π be a set of sentences. If Π logically implies Γ → Δ, then there are C₁,..., C_k ∈ Π, such that C₁,..., C_k, Γ → Δ has a cut-free LK-proof.

Proof cont.

(2c)(2d) Analogously for \land and \supset . (2e) A_j is $(\exists x)B(c)$ and an active sequent in p_i is of the form $\Gamma', (\exists x)B, \Gamma'' \rightarrow \Delta'$ we replace it with

$$\frac{B(c), \Gamma', (\exists x)B(x), \Gamma'' \to \Delta'}{\Gamma', (\exists B), \Gamma'' \to \Delta'}$$

where c is a new variable. In the case where the form is $\Gamma' \to \Delta', (\exists x)B(x), \Delta''$ we replace it with

$$\frac{\Gamma' \to \Delta', (\exists x), \Delta'', B(t_j)}{\Gamma' \to \Delta', (\exists x)B(x), \Delta''.}$$

Lemma

If the process of building p_i 's never stops (so no complete proof is formed), we can build $\mathcal{M} \models \Pi$ and σ such that $\mathcal{M} \nvDash (\Gamma \rightarrow \Delta)[\sigma]$.

3

イロト 不得 トイヨト イヨト

Lemma

If the process of building p_i 's never stops (so no complete proof is formed), we can build $\mathcal{M} \models \Pi$ and σ such that $\mathcal{M} \nvDash (\Gamma \rightarrow \Delta)[\sigma]$.

Proof cont.

Assume it is always possible to build p_{i+1} and consider $p = \bigcup_{i\to\infty} p_i$ (form a union of the proof-trees).

Unless $\Gamma \to \Delta$ contains only atomic formulas, p is an infinite finitely branching tree and thus by König's lemma there is an infinite branch π in p.

We define the universe of \mathcal{M} to be the set of all *L*-terms, we let σ map all variables to themselves, and define $f^{\mathcal{M}}(r_1, \ldots, r_k)$ to be just $f(r_1, \ldots, r_k)$ and $P^{\mathcal{M}}(r_1, \ldots, r_k)$ holds iff $P(r_1, \ldots, r_k)$ appears in an antecedent in π . Note that if $P(r_1, \ldots, r_k)$ were in both antecedent and succedent of some sequent in π , π would have not become infinite.

э

24 / 26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

If the process of building p_i 's never stops (so no complete proof is formed), we can build $\mathcal{M} \models \Pi$ and σ such that $\mathcal{M} \nvDash (\Gamma \rightarrow \Delta)[\sigma]$.

Lemma

If the process of building p_i 's never stops (so no complete proof is formed), we can build $\mathcal{M} \models \Pi$ and σ such that $\mathcal{M} \nvDash (\Gamma \rightarrow \Delta)[\sigma]$.

Proof cont.

Now it is enough to show that every formula in an antecedent (resp. a succedent) along π is true (resp. false) in \mathcal{M} . We proceed by the induction on the complexity of A. For A atomic it holds by definition. For A of the form $(\exists x)B(x)$ in an antecedent, we have B(c) further up π also in an antecedent by construction, if such A is in the succedent, then, for every t, B(t) eventually appears in the succedent. The rest of the cases are analogous to these.

イロト 不得 トイヨト イヨト

$\frac{\text{from my ignorance}? \rightarrow \text{Excuse me}}{\text{Thank you} \rightarrow \text{for your attention}!}$