# Proof theory of first order logic 

Ondřej Ježil

November 10, 2022

## First order logic - recap

- Extends propositional logic.


## First order logic - recap

- Extends propositional logic.
- Allowed symbols:


## First order logic - recap

- Extends propositional logic.
- Allowed symbols:
- propositional connectives ( $\wedge, \vee, \neg, \supset)$


## First order logic - recap

- Extends propositional logic.
- Allowed symbols:
- propositional connectives ( $\wedge, \vee, \neg, \supset)$
- quantifiers $((\forall x),(\exists x), \ldots)$


## First order logic - recap

- Extends propositional logic.
- Allowed symbols:
- propositional connectives ( $\wedge, \vee, \neg, \supset)$
- quantifiers $((\forall x),(\exists x), \ldots)$
- variables $(x, y, z \ldots, a, b, \ldots)$


## First order logic - recap

- Extends propositional logic.
- Allowed symbols:
- propositional connectives ( $\wedge, \vee, \neg, \supset)$
- quantifiers $((\forall x),(\exists x), \ldots)$
- variables $(x, y, z \ldots, a, b,, \ldots)$
- function symbols $(f, g, h, \ldots)$


## First order logic - recap

- Extends propositional logic.
- Allowed symbols:
- propositional connectives ( $\wedge, \vee, \neg, \supset)$
- quantifiers $((\forall x),(\exists x), \ldots)$
- variables ( $x, y, z \ldots, a, b,, \ldots$ )
- function symbols ( $f, g, h, \ldots$ )
- constant symbols (function symbols of arity 0 )


## First order logic - recap

- Extends propositional logic.
- Allowed symbols:
- propositional connectives ( $\wedge, \vee, \neg, \supset)$
- quantifiers $((\forall x),(\exists x), \ldots)$
- variables ( $x, y, z \ldots, a, b,, \ldots$ )
- function symbols ( $f, g, h, \ldots$ )
- constant symbols (function symbols of arity 0 )
- relational symbols ( $P, Q, R, \ldots$ )


## First order logic - recap cont.

## Definition (L-formulas)

Let $L$ be a set of function and relational symbols (a language), we inductively define $L$-terms. Every variable is a term and if $f \in L$ is $k$-ary, $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ are $L$-terms. If $P \in L$ is $k$-ary and $t_{1}, \ldots, t_{k}$ are terms, then the string $P\left(t_{1}, \ldots, t_{k}\right)$ is an $L$-atomic formula. $L$-formulas are inductively defined starting from L-atomic formulas as follows. If $A$ and $B$ are $L$-formulas, then so are:

## First order logic - recap cont.

## Definition ( $L$-formulas)

Let $L$ be a set of function and relational symbols (a language), we inductively define $L$-terms. Every variable is a term and if $f \in L$ is $k$-ary, $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ are $L$-terms. If $P \in L$ is $k$-ary and $t_{1}, \ldots, t_{k}$ are terms, then the string $P\left(t_{1}, \ldots, t_{k}\right)$ is an $L$-atomic formula. $L$-formulas are inductively defined starting from L-atomic formulas as follows. If $A$ and $B$ are $L$-formulas, then so are:

- $(\neg A)$


## First order logic - recap cont.

## Definition ( $L$-formulas)

Let $L$ be a set of function and relational symbols (a language), we inductively define $L$-terms. Every variable is a term and if $f \in L$ is $k$-ary, $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ are $L$-terms. If $P \in L$ is $k$-ary and $t_{1}, \ldots, t_{k}$ are terms, then the string $P\left(t_{1}, \ldots, t_{k}\right)$ is an $L$-atomic formula. $L$-formulas are inductively defined starting from L-atomic formulas as follows. If $A$ and $B$ are $L$-formulas, then so are:

- $(\neg A)$
- $(A \wedge B)$


## First order logic - recap cont.

## Definition (L-formulas)

Let $L$ be a set of function and relational symbols (a language), we inductively define $L$-terms. Every variable is a term and if $f \in L$ is $k$-ary, $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ are $L$-terms. If $P \in L$ is $k$-ary and $t_{1}, \ldots, t_{k}$ are terms, then the string $P\left(t_{1}, \ldots, t_{k}\right)$ is an $L$-atomic formula. $L$-formulas are inductively defined starting from L-atomic formulas as follows. If $A$ and $B$ are $L$-formulas, then so are:

- $(\neg A)$
- $(A \wedge B)$
- $(A \vee B)$


## First order logic - recap cont.

## Definition ( $L$-formulas)

Let $L$ be a set of function and relational symbols (a language), we inductively define $L$-terms. Every variable is a term and if $f \in L$ is $k$-ary, $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ are $L$-terms. If $P \in L$ is $k$-ary and $t_{1}, \ldots, t_{k}$ are terms, then the string $P\left(t_{1}, \ldots, t_{k}\right)$ is an $L$-atomic formula. $L$-formulas are inductively defined starting from $L$-atomic formulas as follows. If $A$ and $B$ are $L$-formulas, then so are:

- $(\neg A)$
- $(A \wedge B)$
- $(A \vee B)$
- $(A \supset B)$


## First order logic - recap cont.

## Definition (L-formulas)

Let $L$ be a set of function and relational symbols (a language), we inductively define $L$-terms. Every variable is a term and if $f \in L$ is $k$-ary, $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ are $L$-terms. If $P \in L$ is $k$-ary and $t_{1}, \ldots, t_{k}$ are terms, then the string $P\left(t_{1}, \ldots, t_{k}\right)$ is an $L$-atomic formula. $L$-formulas are inductively defined starting from $L$-atomic formulas as follows. If $A$ and $B$ are $L$-formulas, then so are:

- $(\neg A)$
- $(A \wedge B)$
- $(A \vee B)$
- $(A \supset B)$
- $(\forall x) A$


## First order logic - recap cont.

## Definition (L-formulas)

Let $L$ be a set of function and relational symbols (a language), we inductively define $L$-terms. Every variable is a term and if $f \in L$ is $k$-ary, $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ are $L$-terms. If $P \in L$ is $k$-ary and $t_{1}, \ldots, t_{k}$ are terms, then the string $P\left(t_{1}, \ldots, t_{k}\right)$ is an $L$-atomic formula. $L$-formulas are inductively defined starting from $L$-atomic formulas as follows. If $A$ and $B$ are $L$-formulas, then so are:

- $(\neg A)$
- $(A \wedge B)$
- $(A \vee B)$
- $(A \supset B)$
- $(\forall x) A$
- $(\exists x) A$


## First order logic - free and bound occurances, substitution

- An occurance of a variable $x$ in a formula $A$ is free if $x$ is not in a scope of a quantifier.


## First order logic - free and bound occurances, substitution

- An occurance of a variable $x$ in a formula $A$ is free if $x$ is not in a scope of a quantifier.
- An occurance which is not free is called bound.


## First order logic - free and bound occurances, substitution

- An occurance of a variable $x$ in a formula $A$ is free if $x$ is not in a scope of a quantifier.
- An occurance which is not free is called bound.
- Example: $((x=0) \vee(\forall x)(x \neq f(x)))$


## First order logic - free and bound occurances, substitution

- An occurance of a variable $x$ in a formula $A$ is free if $x$ is not in a scope of a quantifier.
- An occurance which is not free is called bound.
- Example: $((x=0) \vee(\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.


## First order logic - free and bound occurances, substitution

- An occurance of a variable $x$ in a formula $A$ is free if $x$ is not in a scope of a quantifier.
- An occurance which is not free is called bound.
- Example: $((x=0) \vee(\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.
- If $t$ is a term, $x$ a variable, then $A(t / x)$ denotes the formula obtained from $A$ by replacing every free occurance of $x$ with $t$.


## First order logic - free and bound occurances, substitution

- An occurance of a variable $x$ in a formula $A$ is free if $x$ is not in a scope of a quantifier.
- An occurance which is not free is called bound.
- Example: $((x=0) \vee(\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.
- If $t$ is a term, $x$ a variable, then $A(t / x)$ denotes the formula obtained from $A$ by replacing every free occurance of $x$ with $t$.
- We say $t$ is freely substitutable for $x$ in $A$ if no free variable in $t$ becomes bound as a result of this substitution.


## First order logic - free and bound occurances, substitution

- An occurance of a variable $x$ in a formula $A$ is free if $x$ is not in a scope of a quantifier.
- An occurance which is not free is called bound.
- Example: $((x=0) \vee(\forall x)(x \neq f(x)))$
- We call a formula without any free variables a sentance.
- If $t$ is a term, $x$ a variable, then $A(t / x)$ denotes the formula obtained from $A$ by replacing every free occurance of $x$ with $t$.
- We say $t$ is freely substitutable for $x$ in $A$ if no free variable in $t$ becomes bound as a result of this substitution.
- For simplicity, if we denote a formula by $A(x)$, then $A(t)$ denotes $A(t / x)$.


## First order logic - semantics

- To define a truth value for a formula, we need to give an interpretation of non-logical symbols appearing in it.


## First order logic - semantics

- To define a truth value for a formula, we need to give an interpretation of non-logical symbols appearing in it.
- Let $L$ be a language, a tuple $\mathcal{M}=\left\{M, f^{\mathcal{M}}, g^{\mathcal{M}}, \ldots, P^{\mathcal{M}}, Q^{\mathcal{M}}, \ldots\right\}$ is an $L$-structure, if $M$ is an non-empty set, $f \mathcal{M}$ is a function $f^{\mathcal{M}}: M^{a(f)} \rightarrow M$, for every function symbol in $L$ and $R^{\mathcal{M}}$ is a relation $R^{\mathcal{M}} \subseteq M^{a(R)}$, for every relational symbol in $L$.


## First order logic - semantics

- To define a truth value for a formula, we need to give an interpretation of non-logical symbols appearing in it.
- Let $L$ be a language, a tuple $\mathcal{M}=\left\{M, f^{\mathcal{M}}, g^{\mathcal{M}}, \ldots, P^{\mathcal{M}}, Q^{\mathcal{M}}, \ldots\right\}$ is an $L$-structure, if $M$ is an non-empty set, $f \mathcal{M}$ is a function $f^{\mathcal{M}}: M^{a(f)} \rightarrow M$, for every function symbol in $L$ and $R^{\mathcal{M}}$ is a relation $R^{\mathcal{M}} \subseteq M^{a(R)}$, for every relational symbol in $L$.
- if $=\in L$, then $={ }^{\mathcal{M}}$ gets interpreted as the true equality


## First order logic - semantics

- To define a truth value for a formula, we need to give an interpretation of non-logical symbols appearing in it.
- Let $L$ be a language, a tuple $\mathcal{M}=\left\{M, f^{\mathcal{M}}, g^{\mathcal{M}}, \ldots, P^{\mathcal{M}}, Q^{\mathcal{M}}, \ldots\right\}$ is an $L$-structure, if $M$ is an non-empty set, $f^{\mathcal{M}}$ is a function $f^{\mathcal{M}}: M^{a(f)} \rightarrow M$, for every function symbol in $L$ and $R^{\mathcal{M}}$ is a relation $R^{\mathcal{M}} \subseteq M^{a(R)}$, for every relational symbol in $L$.
- if $=\in L$, then $=^{\mathcal{M}}$ gets interpreted as the true equality
- For an $L$-formula $\varphi$, an $L$-structure $\mathcal{M}$, and an assignment $\sigma:\{$ free variables in $\varphi\} \rightarrow \mathcal{M}$, we define

$$
M \models \varphi[\sigma]
$$

inductively by first interpreting terms and then logical connectives/quantifiers.

## First order logic - semantics

- To define a truth value for a formula, we need to give an interpretation of non-logical symbols appearing in it.
- Let $L$ be a language, a tuple $\mathcal{M}=\left\{M, f^{\mathcal{M}}, g^{\mathcal{M}}, \ldots, P^{\mathcal{M}}, Q^{\mathcal{M}}, \ldots\right\}$ is an $L$-structure, if $M$ is an non-empty set, $f^{\mathcal{M}}$ is a function $f^{\mathcal{M}}: M^{a(f)} \rightarrow M$, for every function symbol in $L$ and $R^{\mathcal{M}}$ is a relation $R^{\mathcal{M}} \subseteq M^{a(R)}$, for every relational symbol in $L$.
- if $=\in L$, then $=^{\mathcal{M}}$ gets interpreted as the true equality
- For an $L$-formula $\varphi$, an $L$-structure $\mathcal{M}$, and an assignment $\sigma:\{$ free variables in $\varphi\} \rightarrow \mathcal{M}$, we define

$$
M \models \varphi[\sigma]
$$

inductively by first interpreting terms and then logical connectives/quantifiers.

## First order logic - semantics

- To define a truth value for a formula, we need to give an interpretation of non-logical symbols appearing in it.
- Let $L$ be a language, a tuple $\mathcal{M}=\left\{M, f^{\mathcal{M}}, g^{\mathcal{M}}, \ldots, P^{\mathcal{M}}, Q^{\mathcal{M}}, \ldots\right\}$ is an $L$-structure, if $M$ is an non-empty set, $f^{\mathcal{M}}$ is a function $f^{\mathcal{M}}: M^{a(f)} \rightarrow M$, for every function symbol in $L$ and $R^{\mathcal{M}}$ is a relation $R^{\mathcal{M}} \subseteq M^{a(R)}$, for every relational symbol in $L$.
- if $=\in L$, then $=^{\mathcal{M}}$ gets interpreted as the true equality
- For an $L$-formula $\varphi$, an $L$-structure $\mathcal{M}$, and an assignment $\sigma:\{$ free variables in $\varphi\} \rightarrow \mathcal{M}$, we define

$$
M \models \varphi[\sigma]
$$

inductively by first interpreting terms and then logical connectives/quantifiers.

$$
\mathcal{M} \vDash \varphi \Longleftrightarrow \forall \sigma: \mathcal{M} \models \varphi[\sigma]
$$

## First order logic - semantics cont.

- If $\Gamma$ is a set of $L$-formulas and $\mathcal{M}$ an $L$-structure, then

$$
M \models \Gamma \Longleftrightarrow \forall \varphi \in \Gamma: M \models \varphi .
$$

## First order logic - semantics cont.

- If $\Gamma$ is a set of $L$-formulas and $\mathcal{M}$ an $L$-structure, then

$$
M \models \Gamma \Longleftrightarrow \forall \varphi \in \Gamma: M \models \varphi .
$$

- If $\mathcal{M} \vDash \Gamma$ we say $\Gamma$ is satisfied by $\mathcal{M}$ and that $\mathcal{M}$ is a model of $\Gamma$.


## First order logic - semantics cont.

- If $\Gamma$ is a set of $L$-formulas and $\mathcal{M}$ an $L$-structure, then

$$
M \models \Gamma \Longleftrightarrow \forall \varphi \in \Gamma: M \models \varphi .
$$

- If $\mathcal{M} \vDash \Gamma$ we say $\Gamma$ is satisfied by $\mathcal{M}$ and that $\mathcal{M}$ is a model of $\Gamma$.
- $\Gamma$ is said to be satisfiable iff it is satisfied by some model.


## First order logic - semantics cont.

- If $\Gamma$ is a set of $L$-formulas and $\mathcal{M}$ an $L$-structure, then

$$
M \models \Gamma \Longleftrightarrow \forall \varphi \in \Gamma: M \models \varphi
$$

- If $\mathcal{M} \vDash \Gamma$ we say $\Gamma$ is satisfied by $\mathcal{M}$ and that $\mathcal{M}$ is a model of $\Gamma$.
- $\Gamma$ is said to be satisfiable iff it is satisfied by some model.
- We say that $\Gamma$ logically implies $A, \Gamma \models A$, if for every $\mathcal{M} \vDash \Gamma$ we have $\mathcal{M} \vDash A$.


## First order logic - semantics cont.

- If $\Gamma$ is a set of $L$-formulas and $\mathcal{M}$ an $L$-structure, then

$$
M \models \Gamma \Longleftrightarrow \forall \varphi \in \Gamma: M \models \varphi
$$

- If $\mathcal{M} \models \Gamma$ we say $\Gamma$ is satisfied by $\mathcal{M}$ and that $\mathcal{M}$ is a model of $\Gamma$.
- $\Gamma$ is said to be satisfiable iff it is satisfied by some model.
- We say that $\Gamma$ logically implies $A, \Gamma \models A$, if for every $\mathcal{M} \models \Gamma$ we have $\mathcal{M} \vDash A$.
- If $\Gamma=\varnothing$ and $\Gamma \models A$, we write $\models A$ and say that $A$ is valid.


## First order logic - semantics cont.

- If $\Gamma$ is a set of $L$-formulas and $\mathcal{M}$ an $L$-structure, then

$$
M \models \Gamma \Longleftrightarrow \forall \varphi \in \Gamma: M \models \varphi
$$

- If $\mathcal{M} \models \Gamma$ we say $\Gamma$ is satisfied by $\mathcal{M}$ and that $\mathcal{M}$ is a model of $\Gamma$.
- $\Gamma$ is said to be satisfiable iff it is satisfied by some model.
- We say that $\Gamma$ logically implies $A, \Gamma \models A$, if for every $\mathcal{M} \vDash \Gamma$ we have $\mathcal{M} \models A$.
- If $\Gamma=\varnothing$ and $\Gamma \models A$, we write $\models A$ and say that $A$ is valid.
- If a set of $L$-sentences $T$ is closed under logical implication, then $T$ is called a theory. A set of $L$-sentaces $\Gamma$ is called an axiomatization of $T$ is precisely the set of sentences logically implied by $\Gamma$.


## Hilbert-style calculus

- $\mathcal{F}_{F O}$ is an extension of propositional Hilbert calculus $\mathcal{F}$


## Hilbert-style calculus

- $\mathcal{F}_{F O}$ is an extension of propositional Hilbert calculus $\mathcal{F}$
- In addition to axioms of $\mathcal{F}$ there are two axiom schemes:

$$
A(t) \supset(\exists x) A(x) \quad \text { and } \quad(\forall x) A(x) \supset A(t)
$$

## Hilbert-style calculus

- $\mathcal{F}_{F O}$ is an extension of propositional Hilbert calculus $\mathcal{F}$
- In addition to axioms of $\mathcal{F}$ there are two axiom schemes:

$$
A(t) \supset(\exists x) A(x) \quad \text { and } \quad(\forall x) A(x) \supset A(t)
$$

- And in addition to modus ponens there are two quantifier rules of inference:

$$
\frac{C \supset A(x)}{C \supset(\forall x) A(x)} \quad \text { and } \quad \frac{A(x) \supset C}{(\exists x) A(x)}
$$

where $x$ does not appear freely in $C$.

## Hilbert-style calculus

- $\mathcal{F}_{F O}$ is an extension of propositional Hilbert calculus $\mathcal{F}$
- In addition to axioms of $\mathcal{F}$ there are two axiom schemes:

$$
A(t) \supset(\exists x) A(x) \quad \text { and } \quad(\forall x) A(x) \supset A(t)
$$

- And in addition to modus ponens there are two quantifier rules of inference:

$$
\frac{C \supset A(x)}{C \supset(\forall x) A(x)} \quad \text { and } \quad \frac{A(x) \supset C}{(\exists x) A(x)}
$$

where $x$ does not appear freely in $C$.

- If $=$ is in the language we are considering, then we also include for every $k$-ary $f$ and $P$ the following

$$
\begin{aligned}
& (\forall x)(x=x) \\
& (\forall \bar{x})(\forall \bar{y})\left(x_{1}=y_{1} \wedge \cdots \wedge x_{k}=y_{k} \supset f(\bar{x})=f(\bar{y})\right) \\
& (\forall \bar{x})(\forall \bar{y})\left(x_{1}=y_{1} \wedge \cdots \wedge x_{k}=y_{k} \supset P(\bar{x}) \supset P(\bar{y})\right) .
\end{aligned}
$$

## Hilbert-style calculus - soundness

Theorem (The Soundness Theorem)

## Hilbert-style calculus - soundness

Theorem (The Soundness Theorem)
(c) If $\mathcal{F}_{F O} \vdash A$, then $\models A$.

## Hilbert-style calculus - soundness

Theorem (The Soundness Theorem)
(1) If $\mathcal{F}_{\text {FO }} \vdash A$, then $\models A$.
(3) Let $\Gamma$ bet a se $t$ of sentences, if there is an $\mathcal{F}_{\text {FO }}$ proof of $A$ using sentences from $\Gamma$ as additional axioms, then $\Gamma \models A$.

## Hilbert-style calculus - soundness

Theorem (The Soundness Theorem)
(1) If $\mathcal{F}_{F O} \vdash A$, then $=A$.
(3) Let $\Gamma$ bet a se $t$ of sentences, if there is an $\mathcal{F}_{F O}$ proof of $A$ using sentences from $\Gamma$ as additional axioms, then $\Gamma \models A$.

## Proof.

By induction on the number of lines in a proofs.

## Hilbert-style calculus - completeness

Theorem (The Completeness Theorem)
${ }^{1}$ See the outline on wiki.

## Hilbert-style calculus - completeness

Theorem (The Completeness Theorem)
(1) If $\models A$, then $\mathcal{F}_{F O} \vdash A$.

## Hilbert-style calculus - completeness

Theorem (The Completeness Theorem)
(1) If $\models A$, then $\mathcal{F}_{F O} \vdash A$.
(2) Let $\Gamma$ bet a set of sentences. If $\Gamma \models A$ then there is an $\mathcal{F}_{F O}$ proof of $A$ using sentences from $\Gamma$ as additional axioms.

## Hilbert-style calculus - completeness

Theorem (The Completeness Theorem)
(1) If $\models A$, then $\mathcal{F}_{F O} \vdash A$.
(2) Let $\Gamma$ bet a set of sentences. If $\Gamma \models A$ then there is an $\mathcal{F}_{F O}$ proof of $A$ using sentences from $\Gamma$ as additional axioms.

- The original proof is due to Gödel [1930]. ${ }^{1}$


## Hilbert-style calculus - completeness

Theorem (The Completeness Theorem)
(1) If $\models A$, then $\mathcal{F}_{F O} \vdash A$.
(2) Let $\Gamma$ bet a set of sentences. If $\Gamma \models A$ then there is an $\mathcal{F}_{F O}$ proof of $A$ using sentences from $\Gamma$ as additional axioms.

- The original proof is due to Gödel [1930]. ${ }^{1}$
- The now standard textbook proof is due to Henkin [1949].


## Hilbert-style calculus - completeness

## Theorem (The Completeness Theorem)

(1) If $\models A$, then $\mathcal{F}_{F O} \vdash A$.
(2) Let $\Gamma$ bet a set of sentences. If $\Gamma \models A$ then there is an $\mathcal{F}_{F O}$ proof of $A$ using sentences from $\Gamma$ as additional axioms.

- The original proof is due to Gödel [1930]. ${ }^{1}$
- The now standard textbook proof is due to Henkin [1949].
- We shall not give proof directly, but since $\mathcal{F}_{F O}$ can simulate cut-free fragment of first order sequent calculus it suffices to show completeness of cut-free fragment of $L K$ proof system.
${ }^{1}$ See the outline on wiki.


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.
- !!! Now we have two classes of variables:


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.
- !!! Now we have two classes of variables:
- Free variables: $a, b, c, \ldots$ (cannot be quantified)


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.
- !!! Now we have two classes of variables:
- Free variables: $a, b, c, \ldots$ (cannot be quantified)
- Bound variables: $z, y, x, \ldots$ (cannot occur free in formulas)


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.
- !!! Now we have two classes of variables:
- Free variables: $a, b, c, \ldots$ (cannot be quantified)
- Bound variables: $z, y, x, \ldots$ (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.
- !!! Now we have two classes of variables:
- Free variables: $a, b, c, \ldots$ (cannot be quantified)
- Bound variables: $z, y, x, \ldots$ (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.
- Formulas now have the restriction, that only free variables may occur freely.


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.
- !!! Now we have two classes of variables:
- Free variables: $a, b, c, \ldots$ (cannot be quantified)
- Bound variables: $z, y, x, \ldots$ (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.
- Formulas now have the restriction, that only free variables may occur freely.
- Semiformulas may contain free occurances of bound variables.


## First order sequent calculus $L K$

- We shall define the system $L K$ which is an extention of $P K$ to first-order logic.
- !!! Now we have two classes of variables:
- Free variables: $a, b, c, \ldots$ (cannot be quantified)
- Bound variables: $z, y, x, \ldots$ (cannot occur free in formulas)
- Terms only use free variables, whereas semiterms can use both free and bound variables.
- Formulas now have the restriction, that only free variables may occur freely.
- Semiformulas may contain free occurances of bound variables.
- ! Generally subformula of a formula is now just a semiformula.


## LK rules

- $L K$ contains all the rules of inference of $P K$ plus The Quantifier Rules:

$$
\begin{array}{ll}
\forall: \text { left } \frac{A(t), \Gamma \rightarrow \Delta}{(\forall x) A(x), \Gamma \rightarrow \Delta} & \forall: \text { right } \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta,(\forall x) A(x)} \\
\exists: \text { left } \frac{A(b), \Gamma \rightarrow \Delta}{(\exists x) A(x), \Gamma \rightarrow \Delta} & \exists: \text { right } \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta,(\exists x) A(x)}
\end{array}
$$

in these rules, $A$ may be an arbitrary formula, $t$ an arbitrary term and the free variable $b$ of $\forall$ : right and $\exists$ : left is called the eigenvariable of the inference and it must not appear in $\Gamma, \Delta$.

## LK rules

- LK contains all the rules of inference of $P K$ plus The Quantifier Rules:

$$
\begin{array}{ll}
\forall: \text { left } \frac{A(t), \Gamma \rightarrow \Delta}{(\forall x) A(x), \Gamma \rightarrow \Delta} & \forall: \text { right } \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta,(\forall x) A(x)} \\
\exists: \text { left } \frac{A(b), \Gamma \rightarrow \Delta}{(\exists x) A(x), \Gamma \rightarrow \Delta} & \exists: \text { right } \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta,(\exists x) A(x)}
\end{array}
$$

in these rules, $A$ may be an arbitrary formula, $t$ an arbitrary term and the free variable $b$ of $\forall$ : right and $\exists$ : left is called the eigenvariable of the inference and it must not appear in $\Gamma, \Delta$.

- The propositional rules together with the quantifier rules are collectively called logical rules.


## LK rules cont.

- Most of syntactic definitions of PK carry over to LK


## LK rules cont.

- Most of syntactic definitions of PK carry over to $L K$
- (direct) descendants and ancestors


## LK rules cont.

- Most of syntactic definitions of PK carry over to LK
- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.


## LK rules cont.

- Most of syntactic definitions of PK carry over to LK
- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.
- For a sequent $S$ of the form $\Gamma \rightarrow \Delta$, we let $A_{S}$ to be the formula $(\bigwedge) \supset(\bigvee \Delta)$.


## LK rules cont.

- Most of syntactic definitions of PK carry over to $L K$
- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.
- For a sequent $S$ of the form $\Gamma \rightarrow \Delta$, we let $A_{S}$ to be the formula $(\bigwedge) \supset(\bigvee \Delta)$.
- Now all the definitions of validity and logical implication apply also to sequents, where $S$ is understood to have the meaning as $A_{S}$.


## LK rules cont.

- Most of syntactic definitions of PK carry over to LK
- (direct) descendants and ancestors
- proof lengths still measured in the number of strong inferences which include quantifier inferences.
- For a sequent $S$ of the form $\Gamma \rightarrow \Delta$, we let $A_{S}$ to be the formula $(\bigwedge \Gamma) \supset(\bigvee \Delta)$.
- Now all the definitions of validity and logical implication apply also to sequents, where $S$ is understood to have the meaning as $A_{S}$.
- Let the free variables of $A_{S}$ be $\bar{b}$, so $A_{S}=A_{S}(\bar{b})$ and we let $\forall S$ denote the formula $(\forall x) A_{S}(\bar{x})$.
- LK only allows initial sequents of the form $A \rightarrow A$ with $A$ atomic.
- LK only allows initial sequents of the form $A \rightarrow A$ with $A$ atomic.
- We define $L K_{\mathfrak{S}}$ to be the system extending $L K$ by allowing sequents from a set $\mathfrak{S}$ to be initial sequents too.
- LK only allows initial sequents of the form $A \rightarrow A$ with $A$ atomic.
- We define $L K_{\mathfrak{S}}$ to be the system extending $L K$ by allowing sequents from a set $\mathfrak{S}$ to be initial sequents too.
- Important example: $L K_{e}$ is the theory for first order logic with equality and we have the following additional initial segments:

$$
\rightarrow s=s
$$

$$
\begin{aligned}
s_{1} & =t_{1}, \ldots, s_{k}=t_{k} \rightarrow f(\bar{s})=f(\bar{t}) \\
s_{1} & =t_{1}, \ldots, s_{k}=t_{k}, P(\bar{s}) \supset P(\bar{t})
\end{aligned}
$$

- LK only allows initial sequents of the form $A \rightarrow A$ with $A$ atomic.
- We define $L K_{\mathfrak{S}}$ to be the system extending $L K$ by allowing sequents from a set $\mathfrak{S}$ to be initial sequents too.
- Important example: $L K_{e}$ is the theory for first order logic with equality and we have the following additional initial segments:

$$
\begin{gathered}
\rightarrow s=s \\
s_{1}=t_{1}, \ldots, s_{k}=t_{k} \rightarrow f(\bar{s})=f(\bar{t}) \\
s_{1}=t_{1}, \ldots, s_{k}=t_{k}, P(\bar{s}) \supset P(\bar{t})
\end{gathered}
$$

- We say $\mathfrak{S}$ is closed under substitution, if whenever $\Gamma(a) \rightarrow \Delta(a)$ is in $\mathfrak{S}$, and $t$ is a term, then $\Gamma(t) \rightarrow \Delta(t)$ is also in $\mathfrak{S}$.


## $L K_{\mathfrak{S}}$ and substitutions

## Definition

We say $\mathfrak{S}$ is closed under substitution, if whenever $\Gamma(a) \rightarrow \Delta(a)$ is in $\mathfrak{S}$, and $t$ is a term, then $\Gamma(t) \rightarrow \Delta(t)$ is also in $\mathfrak{S}$.

## $L K_{\mathfrak{S}}$ and substitutions

## Definition

We say $\mathfrak{S}$ is closed under substitution, if whenever $\Gamma(a) \rightarrow \Delta(a)$ is in $\mathfrak{S}$, and $t$ is a term, then $\Gamma(t) \rightarrow \Delta(t)$ is also in $\mathfrak{S}$.

## Theorem

Let $\mathfrak{S}$ be a set of sequents which is closed under substitution. If $p(b)$ is a $L K_{\mathfrak{S}}-$ proof, and if neither b nor any variable in $t$ is used as an eigenvariable in $p(b)$, then $p(t)$ is a valid $L K_{\mathfrak{S}}$-proof.

## Free variable normal form

## Definition

A free variable in the endsequent of a proof is called a parameter variable of the proof. A proof $p$ is said to be free variable normal form provided that:

## Free variable normal form

## Definition

A free variable in the endsequent of a proof is called a parameter variable of the proof. A proof $p$ is said to be free variable normal form provided that:
(1) no parameter variable is used as an eigenvariable

## Free variable normal form

## Definition

A free variable in the endsequent of a proof is called a parameter variable of the proof. A proof $p$ is said to be free variable normal form provided that:
(1) no parameter variable is used as an eigenvariable
(2) every other free variable appering in $p$ is used exactly once as an eigenvariable and appears in $p$ only in sequents above the inference for which it is used as an eigenvarible.

## Free variable normal form

## Definition

A free variable in the endsequent of a proof is called a parameter variable of the proof. A proof $p$ is said to be free variable normal form provided that:
(1) no parameter variable is used as an eigenvariable
(2) every other free variable appering in $p$ is used exactly once as an eigenvariable and appears in $p$ only in sequents above the inference for which it is used as an eigenvarible.

## Free variable normal form

## Definition

A free variable in the endsequent of a proof is called a parameter variable of the proof. A proof $p$ is said to be free variable normal form provided that:
(1) no parameter variable is used as an eigenvariable
(2) every other free variable appering in $p$ is used exactly once as an eigenvariable and appears in $p$ only in sequents above the inference for which it is used as an eigenvarible.

In the rest of the talk, we only consider tree-like proofs and thus any proof may be put in free variable normal form by renaming variables.

## Soundness of $L K_{\mathfrak{S}}$

Theorem
Let $\Gamma \rightarrow \Delta$ be an arbitrary sequent.

## Soundness of $L K_{\mathfrak{S}}$

Theorem
Let $\Gamma \rightarrow \Delta$ be an arbitrary sequent.
(1) If $\Gamma \rightarrow \Delta$ has a LK-proof, then $\Gamma \rightarrow \Delta$ is valid.

## Soundness of $L K_{\mathfrak{S}}$

Theorem
Let $\Gamma \rightarrow \Delta$ be an arbitrary sequent.
(1) If $\Gamma \rightarrow \Delta$ has a LK-proof, then $\Gamma \rightarrow \Delta$ is valid.
(2) Let $\mathfrak{S}$ be a set of sequents. If $\Gamma \rightarrow \Delta$ has an $L K_{\mathfrak{S}}$-proof, then $\mathfrak{S} \models \Gamma \rightarrow \Delta$.

## Completeness of cut-free $L K$ and cut-full $L K_{\mathfrak{S}}$

Theorem
Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.

## Completeness of cut-free $L K$ and cut-full $L K_{\mathfrak{S}}$

Theorem
Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.
(1) If $\Gamma \rightarrow \Delta$ is valid, then it has a cut-free LK-proof.

## Completeness of cut-free $L K$ and cut-full $L K_{\mathfrak{S}}$

Theorem
Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.
(1) If $\Gamma \rightarrow \Delta$ is valid, then it has a cut-free LK-proof.
(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Completeness of cut-free $L K$ and cut-full $L K_{\mathfrak{S}}$

## Theorem

Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.
(1) If $\Gamma \rightarrow \Delta$ is valid, then it has a cut-free LK-proof.
(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Corollary

Let $\mathfrak{S}$ be a set of sequents. If $\mathfrak{S}$ logically implies $\Gamma \rightarrow \Delta$, then $\Gamma \rightarrow \Delta$ has a $L K_{\mathfrak{S}}-$ proof.

## Completeness of cut-free $L K$ and cut-full $L K_{\mathfrak{S}}$

## Theorem

Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.
(1) If $\Gamma \rightarrow \Delta$ is valid, then it has a cut-free LK-proof.
(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Corollary

Let $\mathfrak{S}$ be a set of sequents. If $\mathfrak{S}$ logically implies $\Gamma \rightarrow \Delta$, then $\Gamma \rightarrow \Delta$ has a $L K_{\mathfrak{S}}-$ proof.

## Proof.

If $\mathfrak{S} \models \Gamma \rightarrow \Delta$, then (2) implies that there are $S_{1}, \ldots, S_{k} \in \mathfrak{S}$ such that $\forall S_{1}, \ldots, \forall S_{k}, \Gamma \rightarrow \Delta$ has an $L K$-proof. Each $\rightarrow \forall S_{i}$ has an $L K_{\mathfrak{S}}$-proof, so with $k$ further cut inferences, we obtain $\Gamma \rightarrow \Delta$.

## Proof of completeness

Theorem
Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.

## Proof of completeness

## Theorem

Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.
(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof of completeness

## Theorem

Let $\Gamma \rightarrow \Delta$ be a sequent in a first order language which does not contain equality.
(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof.

We shall only prove the case where $\Pi$ is countable (and therefore $L$ is).
We assume $\Pi \models \Gamma \rightarrow \Delta$. We shall try to build up a proof of
$C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ from the bottom up. Quantifiers make this a potentially infinite process so we need to show that the construction terminates.

## Proof of completeness

Theorem

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof cont.

We start with an (incomplete) proof $p_{0}$ which consists of just the sequent $\Gamma \rightarrow \Delta$ and we will proceed by building stages $p_{i}$. A leaf sequent of $p_{i}$ is called active if no formula occurs in both its cedents.
Let $A_{1}, A_{2}, \ldots$ be a sequence of all $L$-formulas where every formula is repeated infinitely many times. Let $t_{1}, t_{2}, \ldots$ be a sequence of all $L$-terms where every term is repeated. And we enumerate all pairs $\left(A_{j}, t_{k}\right)$ using diagonal enumeration. We shall construct $p_{i+1}$ using $\left(A_{j_{i}}, t_{k_{i}}\right)$ and $p_{i}$.

## Proof of completeness

## Theorem

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof cont.

Let $\left(A_{j}, t_{k}\right)$ be the pair for $p_{i}$.
(1) If $A_{j} \in \Pi$ then replace every sequent $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ in $P$ with the sequent $\Gamma^{\prime}, A_{i} \rightarrow \Delta^{\prime}$.

## Proof of completeness

Theorem

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof cont.

(2) If $A_{j} \notin \Pi$ is not atomic, we shall modify all active sequents which contain $A_{i}$ as follows:
(2a) If $A_{j}$ is $\neg B$, then active sequents of the form $\Gamma^{\prime}, \neg B, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}$ are replaced by the derivation:

$$
\frac{\Gamma^{\prime}, \neg B, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}, B}{\Gamma^{\prime}, \neg B, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}}
$$

and ones of the form $\Gamma^{\prime} \rightarrow \Delta^{\prime}, \neg B, \Delta^{\prime \prime}$ with the dual derivation.

## Proof of completeness

Theorem

## Proof of completeness

Theorem
(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof cont.

(2b) If $A_{j}$ is $B \vee C$, then active sequents of the form $\Gamma^{\prime}, B \vee C, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}$ are replaced by the derivation:

$$
\frac{B, \Gamma^{\prime}, B \vee C, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime} \quad C, \Gamma^{\prime}, B \vee C, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}}{B, \Gamma^{\prime}, B \vee C, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}, B}
$$

and ones of the form $\Gamma^{\prime} \rightarrow \Delta^{\prime}, B \vee C, \Delta^{\prime \prime}$ with

$$
\frac{\Gamma^{\prime} \rightarrow \Delta^{\prime}, B \vee C, \Delta^{\prime \prime}, B, C}{\Gamma^{\prime} \rightarrow \Delta^{\prime}, B \vee C, \Delta^{\prime \prime}} .
$$

## Proof of completeness

Theorem

## Proof of completeness

Theorem
(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof of completeness

## Theorem

(2) Let $\Pi$ be a set of sentences. If $\Pi$ logically implies $\Gamma \rightarrow \Delta$, then there are $C_{1}, \ldots, C_{k} \in \Pi$, such that $C_{1}, \ldots, C_{k}, \Gamma \rightarrow \Delta$ has a cut-free LK-proof.

## Proof cont.

(2c)(2d) Analogously for $\wedge$ and $\supset$. (2e) $A_{j}$ is $(\exists x) B(c)$ and an active sequent in $p_{i}$ is of the form $\Gamma^{\prime},(\exists x) B, \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}$ we replace it with

$$
\frac{B(c), \Gamma^{\prime},(\exists x) B(x), \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}}{\Gamma^{\prime},(\exists B), \Gamma^{\prime \prime} \rightarrow \Delta^{\prime}}
$$

where $c$ is a new variable. In the case where the form is $\Gamma^{\prime} \rightarrow \Delta^{\prime},(\exists x) B(x), \Delta^{\prime \prime}$ we replace it with

$$
\frac{\Gamma^{\prime} \rightarrow \Delta^{\prime},(\exists x), \Delta^{\prime \prime}, B\left(t_{j}\right)}{\Gamma^{\prime} \rightarrow \Delta^{\prime},(\exists x) B(x), \Delta^{\prime \prime}}
$$

## Proof of completeness - bulilding $\mathcal{M}$ from $p_{i}$ 's

## Lemma

If the proccess of building $p_{i}$ 's never stops (so no complete proof is formed), we can build $\mathcal{M} \vDash \Pi$ and $\sigma$ such that $\mathcal{M} \not \models(\Gamma \rightarrow \Delta)[\sigma]$.

## Proof of completeness - bulilding $\mathcal{M}$ from $p_{i}$ 's

## Lemma

If the proccess of building $p_{i}$ 's never stops (so no complete proof is formed), we can build $\mathcal{M} \vDash \Pi$ and $\sigma$ such that $\mathcal{M} \not \models(\Gamma \rightarrow \Delta)[\sigma]$.

## Proof cont.

Assume it is always possible to build $p_{i+1}$ and consider $p=\bigcup_{i \rightarrow \infty} p_{i}$ (form a union of the proof-trees).
Unless $\Gamma \rightarrow \Delta$ contains only atomic formulas, $p$ is an infinite finitely branching tree and thus by König's lemma there is an infinite branch $\pi$ in $p$.
We define the universe of $\mathcal{M}$ to be the set of all $L$-terms, we let $\sigma$ map all variables to themselves, and define $f^{\mathcal{M}}\left(r_{1}, \ldots, r_{k}\right)$ to be just $f\left(r_{1}, \ldots, r_{k}\right)$ and $P^{\mathcal{M}}\left(r_{1}, \ldots, r_{k}\right)$ holds iff $P\left(r_{1}, \ldots, r_{k}\right)$ appears in an antecedent in $\pi$. Note that if $P\left(r_{1}, \ldots, r_{k}\right)$ were in both antecedent and succedent of some sequent in $\pi, \pi$ would have not become infinite.

## Proof of completeness - bulilding $\mathcal{M}$ from $p_{i}$ 's

## Lemma

If the proccess of building $p_{i}$ 's never stops (so no complete proof is formed), we can build $\mathcal{M} \vDash \Pi$ and $\sigma$ such that $\mathcal{M} \nvdash(\Gamma \rightarrow \Delta)[\sigma]$.

## Proof of completeness - bulilding $\mathcal{M}$ from $p_{i}$ 's

```
Lemma
If the proccess of building pi's never stops (so no complete proof is
formed), we can build \mathcal{M}}=\Pi\mathrm{ and }\sigma\mathrm{ such that }\mathcal{M}\not\vdash(\Gamma->\Delta)[\sigma]
```


## Proof cont.

Now it is enough to show that every formula in an antecedent (resp. a succedent) along $\pi$ is true (resp. false) in $\mathcal{M}$. We proceed by the induction on the complexity of $A$. For $A$ atomic it holds by definition. For $A$ of the form $(\exists x) B(x)$ in an antecedent, we have $B(c)$ further up $\pi$ also in an antecedent by construction, if such $A$ is in the succedent, then, for every $t, B(t)$ eventually appears in the succedent. The rest of the cases are analogous to these.

## from my ignorance? $\rightarrow$ Excuse me

 Thank you $\rightarrow$ for your attention!