Sequents

- Our logical formulas consist of variables and connectives $\neg, \wedge, \vee, \supset$.

Sequents

- Our logical formulas consist of variables and connectives $\neg, \wedge, \vee, \supset$.
- A sequent is an expression of the form $A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{l}$, where all A_{i}, B_{j} are formulas.

Sequents

- Our logical formulas consist of variables and connectives $\neg, \wedge, \vee, \supset$.
- A sequent is an expression of the form $A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{l}$, where all A_{i}, B_{j} are formulas.
- We interpret the sequent as $\bigwedge_{i=1}^{k} A_{i} \supset \bigvee_{j=1}^{l} B_{j}$.

Sequents

- Our logical formulas consist of variables and connectives $\neg, \wedge, \vee, \supset$.
- A sequent is an expression of the form $A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{l}$, where all A_{i}, B_{j} are formulas.
- We interpret the sequent as $\bigwedge_{i=1}^{k} A_{i} \supset \bigvee_{j=1}^{l} B_{j}$.
- By convention, empty conjunction is true and empty disjuntion is false, so " $\rightarrow X$ " means X and " \rightarrow " means false.

Sequents

- Our logical formulas consist of variables and connectives $\neg, \wedge, \vee, \supset$.
- A sequent is an expression of the form $A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{l}$, where all A_{i}, B_{j} are formulas.
- We interpret the sequent as $\bigwedge_{i=1}^{k} A_{i} \supset \bigvee_{j=1}^{l} B_{j}$.
- By convention, empty conjunction is true and empty disjuntion is false, so " $\rightarrow X$ " means X and " \rightarrow " means false.
- A sequent is defined to be valid or a tautology, if the corresponding formula is.

Sequents

- Our logical formulas consist of variables and connectives $\neg, \wedge, \vee, \supset$.
- A sequent is an expression of the form $A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{l}$, where all A_{i}, B_{j} are formulas.
- We interpret the sequent as $\bigwedge_{i=1}^{k} A_{i} \supset \bigvee_{j=1}^{l} B_{j}$.
- By convention, empty conjunction is true and empty disjuntion is false, so " $\rightarrow X$ " means X and " \rightarrow " means false.
- A sequent is defined to be valid or a tautology, if the corresponding formula is.
- In the example above, A_{1}, \ldots, A_{k} is called antecedent and $B_{1}, \ldots, B_{\text {I }}$ is called succedent. They are both referred to as cedents.

Proof system PK

- A proof in sequent calculus is a tree (or sometimes directed acyclic graph) of sequents.

Proof system PK

- A proof in sequent calculus is a tree (or sometimes directed acyclic graph) of sequents.
- The root of the tree is called endsequent and is the sequent proved by the proof.

Proof system PK

- A proof in sequent calculus is a tree (or sometimes directed acyclic graph) of sequents.
- The root of the tree is called endsequent and is the sequent proved by the proof.
- Leaves are called initial sequents or axioms - usually we allow only $p \rightarrow p$, where p is a variable.

Proof system PK

- A proof in sequent calculus is a tree (or sometimes directed acyclic graph) of sequents.
- The root of the tree is called endsequent and is the sequent proved by the proof.
- Leaves are called initial sequents or axioms - usually we allow only $p \rightarrow p$, where p is a variable.
- All sequents except initial sequents must be inferred by one of the inference rules.

Proof system PK

- A proof in sequent calculus is a tree (or sometimes directed acyclic graph) of sequents.
- The root of the tree is called endsequent and is the sequent proved by the proof.
- Leaves are called initial sequents or axioms - usually we allow only $p \rightarrow p$, where p is a variable.
- All sequents except initial sequents must be inferred by one of the inference rules.
- On next slides, A, B denote formulas and Γ, Δ, etc. denote cedents.

Weak structural rules

Exchange:left $\frac{\Gamma, A, B, \Pi \rightarrow \Delta}{\Gamma, B, A, \Pi \rightarrow \Delta}$
Exchange:right $\frac{\Gamma \rightarrow \Delta, A, B, \Lambda}{\Gamma \rightarrow \Delta, B, A, \Lambda}$

Weak structural rules

Exchange:left $\frac{\Gamma, A, B, \Pi \rightarrow \Delta}{\Gamma, B, A, \Pi \rightarrow \Delta}$
Exchange:right $\frac{\Gamma \rightarrow \Delta, A, B, \Lambda}{\Gamma \rightarrow \Delta, B, A, \Lambda}$

Contraction:left $\frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}$
Contraction:right $\frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A}$

Weak structural rules

Exchange:left $\frac{\Gamma, A, B, \Pi \rightarrow \Delta}{\Gamma, B, A, \Pi \rightarrow \Delta}$
Exchange:right $\frac{\Gamma \rightarrow \Delta, A, B, \Lambda}{\Gamma \rightarrow \Delta, B, A, \Lambda}$

Contraction:left $\frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}$
Contraction:right $\frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A}$

Weakening:left $\frac{\Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}$
Weakening:right $\frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, A}$

Weak structural rules

Exchange:left $\frac{\Gamma, A, B, \Pi \rightarrow \Delta}{\Gamma, B, A, \Pi \rightarrow \Delta}$ Exchange:right $\frac{\Gamma \rightarrow \Delta, A, B, \Lambda}{\Gamma \rightarrow \Delta, B, A, \Lambda}$

Contraction:left $\frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}$
Contraction:right $\frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A}$

Weakening:left $\frac{\Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}$
Weakening:right $\frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, A}$

All other inference rules are called strong.

Cut rule

$$
\operatorname{cut} \frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}
$$

Cut rule

$$
\operatorname{cut} \frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}
$$

A proof in $P K$ is cut free, if it does not use the cut rule.

Propositional rules

$$
\neg: \operatorname{left} \frac{\Gamma \rightarrow \Delta, A}{\neg A, \Gamma \rightarrow \Delta}
$$

$$
\neg \text { :right } \frac{A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, \neg A}
$$

Propositional rules

$\neg:$ left $\frac{\Gamma \rightarrow \Delta, A}{\neg A, \Gamma \rightarrow \Delta}$
\neg :right $\frac{A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, \neg A}$
$\wedge: \operatorname{left} \frac{A, B, \Gamma \rightarrow \Delta}{A \wedge B, \Gamma \rightarrow \Delta}$
$\wedge:$ right $\frac{\Gamma \rightarrow \Delta, A \quad \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \wedge B}$

Propositional rules

$$
\begin{gathered}
\neg: \operatorname{left} \frac{\Gamma \rightarrow \Delta, A}{\neg A, \Gamma \rightarrow \Delta} \\
\wedge: \operatorname{left} \frac{A, B, \Gamma \rightarrow \Delta}{A \wedge B, \Gamma \rightarrow \Delta} \\
\vee: \operatorname{left} \frac{A, \Gamma \rightarrow \Delta \quad B, \Gamma \rightarrow \Delta}{A \vee B, \Gamma \rightarrow \Delta}
\end{gathered}
$$

$$
\wedge: \text { right } \frac{\Gamma \rightarrow \Delta, A \quad \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \wedge B}
$$

$$
\vee: \text { right } \frac{\Gamma \rightarrow \Delta, A, B}{\Gamma \rightarrow \Delta, A \vee B}
$$

Propositional rules

$$
\begin{array}{cc}
\neg: \text { left } \frac{\Gamma \rightarrow \Delta, A}{\neg A, \Gamma \rightarrow \Delta} & \neg: \text { right } \frac{A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, \neg A} \\
\wedge: \text { left } \frac{A, B, \Gamma \rightarrow \Delta}{A \wedge B, \Gamma \rightarrow \Delta} & \wedge: \text { right } \frac{\Gamma \rightarrow \Delta, A \quad \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \wedge B} \\
\vee: \text { left } \frac{A, \Gamma \rightarrow \Delta}{A \vee B, \Gamma \rightarrow \Delta} & \vee: \text { right } \frac{\Gamma \rightarrow \Delta, A, B}{\Gamma \rightarrow \Delta, A \vee B} \\
\supset: \text { left } \frac{\Gamma \rightarrow \Delta, A \rightarrow \Delta}{A \supset B, \Gamma \rightarrow \Delta} & \supset: \text { right } \frac{A, \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \supset B}
\end{array}
$$

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.
- Each formula in upper sequents except cut formulas has an immediate descendant.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.
- Each formula in upper sequents except cut formulas has an immediate descendant.
- For side formulas it is the corresponding side formula in lower sequent.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.
- Each formula in upper sequents except cut formulas has an immediate descendant.
- For side formulas it is the corresponding side formula in lower sequent.
- For auxiliary formulas in propositional rules it is the principal formula.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.
- Each formula in upper sequents except cut formulas has an immediate descendant.
- For side formulas it is the corresponding side formula in lower sequent.
- For auxiliary formulas in propositional rules it is the principal formula.
- For formula A (or B) in weak structural rules it is the formula A (or B) in lower sequent.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.
- Each formula in upper sequents except cut formulas has an immediate descendant.
- For side formulas it is the corresponding side formula in lower sequent.
- For auxiliary formulas in propositional rules it is the principal formula.
- For formula A (or B) in weak structural rules it is the formula A (or B) in lower sequent.
- The descendant relation is a reflexive, transitive closure of immediate descendant relation.

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.
- Each formula in upper sequents except cut formulas has an immediate descendant.
- For side formulas it is the corresponding side formula in lower sequent.
- For auxiliary formulas in propositional rules it is the principal formula.
- For formula A (or B) in weak structural rules it is the formula A (or B) in lower sequent.
- The descendant relation is a reflexive, transitive closure of immediate descendant relation.
- The direct descendant of a formula is a descendant which is the same formula (in content).

Terminology

- Formulas in $\Lambda, \Delta, \Pi, \Gamma$ are called side formulas.
- Formulas in lower sequent which are not side are called principal formulas.
- In upper sequent, not side formulas are called auxiliary formulas. The two auxiliary formulas in cut sequent are called cut formulas.
- Each formula in upper sequents except cut formulas has an immediate descendant.
- For side formulas it is the corresponding side formula in lower sequent.
- For auxiliary formulas in propositional rules it is the principal formula.
- For formula A (or B) in weak structural rules it is the formula A (or B) in lower sequent.
- The descendant relation is a reflexive, transitive closure of immediate descendant relation.
- The direct descendant of a formula is a descendant which is the same formula (in content).
- C is an (direct, immediate) ancestor of D, if D is a (direct, immediate) descendant of C.

Example proof

$$
a \vee b, \neg a \vee c \rightarrow b \vee c
$$

Example proof

\vee :right $\frac{a \vee b, \neg a \vee c \rightarrow b, c}{a \vee b, \neg a \vee c \rightarrow b \vee c}$

Example proof

$$
\begin{aligned}
& \vee: \text { left } \frac{a, \neg a \vee c \rightarrow b, c \quad b, \neg a \vee c \rightarrow b, c}{\vee: \text { right } \frac{a \vee b, \neg a \vee c \rightarrow b, c}{a \vee b, \neg a \vee c \rightarrow b \vee c}}
\end{aligned}
$$

Example proof

$$
\vee: \text { left } \frac{a, \neg a \vee c \rightarrow b, c \quad \frac{b \rightarrow b}{b, \neg a \vee c \rightarrow b, c}}{\quad \text { :right } \frac{a \vee b, \neg a \vee c \rightarrow b, c}{a \vee b, \neg a \vee c \rightarrow b \vee c}}
$$

Example proof

$$
\text { V:left } \frac{a, \neg a \rightarrow b, c \quad a, c \rightarrow b, c}{V: \text { left } \frac{b, \neg a \vee c \rightarrow b, c}{b, \neg a \vee c \rightarrow b, c}}
$$

Example proof

$$
\vee: \text { left } \frac{a, \neg a \rightarrow b, c \quad \frac{c \rightarrow c}{a, c \rightarrow b, c}}{\vee: \text { left } \frac{a, \neg a \vee c \rightarrow b, c}{b, \neg a \vee c \rightarrow b, c}} \quad . \quad \begin{aligned}
& \vee: \text { right } \frac{a \vee b, \neg a \vee c \rightarrow b, c}{a \vee b, \neg a \vee c \rightarrow b \vee c}
\end{aligned}
$$

Example proof

ᄀ:left $\frac{a \rightarrow a, b, c}{\frac{a, \neg a \rightarrow b, c}{} \quad \frac{c \rightarrow c}{a, c \rightarrow b, c}} \quad \frac{b \rightarrow b}{b, \neg a \vee c \rightarrow b, c}$
$\vee:$ left $\frac{a, \neg a \vee c \rightarrow b, c}{\vee} \quad$
\quad :right $\frac{a \vee b, \neg a \vee c \rightarrow b, c}{a \vee b, \neg a \vee c \rightarrow b \vee c}$

Example proof

ᄀ:left $\frac{\frac{a \rightarrow a}{a \rightarrow a, b, c}}{\text { V:left } \frac{c \rightarrow c}{a, \neg a \rightarrow b, c} \quad \frac{a, c \rightarrow b, c}{a, \neg a \vee c \rightarrow b, c} \quad \frac{b \rightarrow b}{b, \neg a \vee c \rightarrow b, c}}$
\quad : left $\frac{a \vee b, \neg a \vee c \rightarrow b, c}{\quad \text { right } \frac{a \vee b, \neg a \vee c \rightarrow b \vee c}{a \vee b}}$

Subformula property

It can be easily checked that if D is a descendant of C, then C is a subformula of D. This gives the following consequence.

Subformula property

It can be easily checked that if D is a descendant of C, then C is a subformula of D. This gives the following consequence.

Theorem (subformula property)
If P is a cut free $P K$-proof, then every formula occuring in P is a subformula of a formula in the endsequent of P.

Subformula property

It can be easily checked that if D is a descendant of C, then C is a subformula of D. This gives the following consequence.

Theorem (subformula property)
If P is a cut free $P K$-proof, then every formula occuring in P is a subformula of a formula in the endsequent of P.

Proof

Since the proof is cut free, all formulas in all sequents except the endsequent have an immediate descendant. Thus, every formula has a descendant in the endsequent.

Soundness and completeness

Soundness theorem
Every PK-provable sequent is valid.

Soundness and completeness

Soundness theorem

Every PK-provable sequent is valid.

Abstract

Inversion theorem Let I be any inference rule other than weakening. If I's lower sequent is true under a truth assignment τ, then so are all of I's upper sequents. Likewise, if I's lower sequent is valid, then so are all of I's upper sequents.

Soundness and completeness

Soundness theorem

Every PK-provable sequent is valid.

Abstract

Inversion theorem Let I be any inference rule other than weakening. If I's lower sequent is true under a truth assignment τ, then so are all of I's upper sequents. Likewise, if I's lower sequent is valid, then so are all of I's upper sequents.

Completeness theorem
Every valid sequent has a cut free proof in PK.

Proof length

We distinguish between 'tree-like' and 'dag-like' proofs ('dag' stands for 'directed acyclic graph'). Unless stated otherwise, all proofs are presumed to be tree-like.

Proof length

We distinguish between 'tree-like' and 'dag-like' proofs ('dag' stands for 'directed acyclic graph'). Unless stated otherwise, all proofs are presumed to be tree-like.
For a tree-like proof P, we denote by $\|P\|$ the number of strong inferences in P. For a dag-like proof P, we denote the same quantity by $\|P\|_{\text {dag }}$.

Proof length

We distinguish between 'tree-like' and 'dag-like' proofs ('dag' stands for 'directed acyclic graph'). Unless stated otherwise, all proofs are presumed to be tree-like.
For a tree-like proof P, we denote by $\|P\|$ the number of strong inferences in P. For a dag-like proof P, we denote the same quantity by $\|P\|_{\text {dag }}$.

Theorem

For a given tree-like proof P of sequent $\Gamma \rightarrow \Delta$, there is a tree-like proof of $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ for some $\Gamma^{\prime} \subseteq \Gamma$ and $\Delta^{\prime} \subseteq \Delta$ having at most $\|P\|^{2}$ sequents.

Completeness theorem

Theorem
Let $\Gamma \rightarrow \Delta$ be a valid sequent with m occurences of logical connectives. Then there is a tree-like cut free $P K$-proof P of $\Gamma \rightarrow \Delta$ such that $\|P\|<2^{m}$.

Completeness theorem

Theorem

Let $\Gamma \rightarrow \Delta$ be a valid sequent with m occurences of logical connectives. Then there is a tree-like cut free $P K$-proof P of $\Gamma \rightarrow \Delta$ such that $\|P\|<2^{m}$.

Proof ($1 / 2$)

The proof is by induction on m. For $m=0$ all formulas in Γ, Δ are atomic. Since $\Gamma \rightarrow \Delta$ is valid, there is some variable p which occurs both in Γ and Δ. Thus $\Gamma \rightarrow \Delta$ can be proved with zero strong inferences from the initial sequent $p \rightarrow p$.

Completeness theorem

Theorem

Let $\Gamma \rightarrow \Delta$ be a valid sequent with m occurences of logical connectives. Then there is a tree-like cut free $P K$-proof P of $\Gamma \rightarrow \Delta$ such that $\|P\|<2^{m}$.

Proof (1/2)

The proof is by induction on m. For $m=0$ all formulas in Γ, Δ are atomic. Since $\Gamma \rightarrow \Delta$ is valid, there is some variable p which occurs both in Γ and Δ. Thus $\Gamma \rightarrow \Delta$ can be proved with zero strong inferences from the initial sequent $p \rightarrow p$.

Now let $m \geq 1$. Assume the sequent is of the form $\neg A, \Gamma^{\prime} \rightarrow \Delta$ for some formula A. Then $\Gamma^{\prime} \rightarrow \Delta, A$ is valid, and by induction hypothesis it can be proved in less than 2^{m-1} strong inferences. Using \neg :left, we can thus prove our sequent in less than $2^{m-1}+1 \leq 2^{m}$ strong inferences.

Completeness theorem

Proof (2/2)
If the sequent is of the form $\Gamma \rightarrow \Delta^{\prime}, \neg A$, we proceed analogously.

Completeness theorem

Proof (2/2)

If the sequent is of the form $\Gamma \rightarrow \Delta^{\prime}, \neg A$, we proceed analogously.
If the sequent is of the form $A \wedge B, \Gamma^{\prime} \rightarrow \Delta$, we prove $A, B, \Gamma^{\prime} \rightarrow \Delta$ in less than 2^{m-1} strong inferences and finish the proof by using \wedge :left.

Completeness theorem

Proof (2/2)

If the sequent is of the form $\Gamma \rightarrow \Delta^{\prime}, \neg A$, we proceed analogously.
If the sequent is of the form $A \wedge B, \Gamma^{\prime} \rightarrow \Delta$, we prove $A, B, \Gamma^{\prime} \rightarrow \Delta$ in less than 2^{m-1} strong inferences and finish the proof by using \wedge :left.

If the sequent is of the form $\Gamma \rightarrow \Delta^{\prime}, A \wedge B$, we prove $\Gamma \rightarrow \Delta^{\prime}, A$ and $\Gamma \rightarrow \Delta^{\prime}, B$, both in less than 2^{m-1} strong inferences. Then we apply \wedge :right.

Completeness theorem

Proof (2/2)

If the sequent is of the form $\Gamma \rightarrow \Delta^{\prime}, \neg A$, we proceed analogously.
If the sequent is of the form $A \wedge B, \Gamma^{\prime} \rightarrow \Delta$, we prove $A, B, \Gamma^{\prime} \rightarrow \Delta$ in less than 2^{m-1} strong inferences and finish the proof by using \wedge :left.

If the sequent is of the form $\Gamma \rightarrow \Delta^{\prime}, A \wedge B$, we prove $\Gamma \rightarrow \Delta^{\prime}, A$ and $\Gamma \rightarrow \Delta^{\prime}, B$, both in less than 2^{m-1} strong inferences. Then we apply \wedge :right.

Other cases are handled analogously by using \vee :left, \vee :right, $\supset:$ left and $\supset:$ right. The inversion theorem implies that we never attempt to prove a sequent which is not valid.

Cut rule

$$
\frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}
$$

Cut rule

$$
\frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}
$$

Cut rule does not allow us to prove anything new, but it can allow for shorter proofs. A procedure can be described to turn a proof using cuts into cut free proof.

Cut rule

$$
\frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}
$$

Cut rule does not allow us to prove anything new, but it can allow for shorter proofs. A procedure can be described to turn a proof using cuts into cut free proof.

Cut-elimination theorem

Let P be a dag-like proof of $\Gamma \rightarrow \Delta$. Then there is a tree-like cut free proof Q of $\Gamma \rightarrow \Delta$ such that $\|Q\| \leq 2^{\|P\|_{\text {dag }} \text {. }}$

Cut rule

Let \mathfrak{S} be a set of sequents. By \mathfrak{S}-proof we mean a sequent calculus proof which may contain sequents from \mathfrak{S} as initial sequents, in addition to sequents of form $p \rightarrow p$.

Cut rule

Let \mathfrak{S} be a set of sequents. By \mathfrak{S}-proof we mean a sequent calculus proof which may contain sequents from \mathfrak{S} as initial sequents, in addition to sequents of form $p \rightarrow p$.

There is no cut free $\{\rightarrow a \wedge b\}$-proof of $\rightarrow a$.

Cut rule

Let \mathfrak{S} be a set of sequents. By \mathfrak{S}-proof we mean a sequent calculus proof which may contain sequents from \mathfrak{S} as initial sequents, in addition to sequents of form $p \rightarrow p$.

There is no cut free $\{\rightarrow a \wedge b\}$-proof of $\rightarrow a$. But there is one using cuts:
$\rightarrow a$

Cut rule

Let \mathfrak{S} be a set of sequents. By \mathfrak{S}-proof we mean a sequent calculus proof which may contain sequents from \mathfrak{S} as initial sequents, in addition to sequents of form $p \rightarrow p$.

There is no cut free $\{\rightarrow a \wedge b\}$-proof of $\rightarrow a$. But there is one using cuts:

$$
\text { cut } \frac{a \wedge b \rightarrow a \quad \rightarrow a, a \wedge b}{\rightarrow a}
$$

Cut rule

Let \mathfrak{S} be a set of sequents. By \mathfrak{S}-proof we mean a sequent calculus proof which may contain sequents from \mathfrak{S} as initial sequents, in addition to sequents of form $p \rightarrow p$.

There is no cut free $\{\rightarrow a \wedge b\}$-proof of $\rightarrow a$. But there is one using cuts:

$$
\wedge: \text { right } \frac{a, b \rightarrow a}{a \wedge b \rightarrow a} \rightarrow a, a \wedge b
$$

Cut rule

Let \mathfrak{S} be a set of sequents. By \mathfrak{S}-proof we mean a sequent calculus proof which may contain sequents from \mathfrak{S} as initial sequents, in addition to sequents of form $p \rightarrow p$.

There is no cut free $\{\rightarrow a \wedge b\}$-proof of $\rightarrow a$. But there is one using cuts:

$$
\wedge: \text { right } \frac{\frac{a \rightarrow a}{a, b \rightarrow a}}{\operatorname{cut} \frac{a \wedge b \rightarrow a}{a} \rightarrow a, a \wedge b}
$$

Cut rule

Let \mathfrak{S} be a set of sequents. By \mathfrak{S}-proof we mean a sequent calculus proof which may contain sequents from \mathfrak{S} as initial sequents, in addition to sequents of form $p \rightarrow p$.

There is no cut free $\{\rightarrow a \wedge b\}$-proof of $\rightarrow a$. But there is one using cuts:

$$
\wedge \text { ^right } \frac{\frac{a \rightarrow a}{a, b \rightarrow a}}{\operatorname{cut} \frac{\rightarrow a \wedge b}{a \wedge b \rightarrow a}} \frac{\rightarrow a}{\rightarrow a, a \wedge b}
$$

Free cuts

Let P be a \mathfrak{S}-proof and let I be a cut inference in P. We say that I 's cut formulas are directly descended from \mathfrak{S}, if they have some direct ancestor in an initial sequent from \mathfrak{S}. A cut $/$ is free if neither of I 's cut formulas are directly descended from \mathfrak{S}. A proof is free-cut free, if it contains no free cuts.

Free cuts

Let P be a \mathfrak{S}-proof and let I be a cut inference in P. We say that I 's cut formulas are directly descended from \mathfrak{S}, if they have some direct ancestor in an initial sequent from \mathfrak{S}. A cut I is free if neither of I 's cut formulas are directly descended from \mathfrak{S}. A proof is free-cut free, if it contains no free cuts.

Free-cut elimination theorem

Let S be a sequent and \mathfrak{S} a set of sequents. If $\mathfrak{S} \models S$, then there is a free-cut free \mathfrak{S}-proof of S.

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.
- If Γ is a set of formulas, then $\Lambda \Gamma$ is a formula.

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.
- If Γ is a set of formulas, then $\Lambda \Gamma$ is a formula.
- If Γ is a set of formulas, then $\bigvee \Gamma$ is a formula.

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.
- If Γ is a set of formulas, then $\Lambda \Gamma$ is a formula.
- If Γ is a set of formulas, then $\bigvee \Gamma$ is a formula.
- If A is a formula, we define \bar{A} recursively:

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.
- If Γ is a set of formulas, then $\Lambda \Gamma$ is a formula.
- If Γ is a set of formulas, then $\bigvee \Gamma$ is a formula.
- If A is a formula, we define \bar{A} recursively:
- $\overline{\Lambda \Gamma}=\bigvee\{\bar{X}: X \in \Gamma\}$,

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.
- If Γ is a set of formulas, then $\Lambda \Gamma$ is a formula.
- If Γ is a set of formulas, then $\bigvee \Gamma$ is a formula.
- If A is a formula, we define \bar{A} recursively:
- $\overline{\Lambda \Gamma}=\bigvee\{\bar{X}: X \in \Gamma\}$,
- $\overline{V \Gamma}=\bigwedge\{\bar{X}: X \in \Gamma\}$,

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.
- If Γ is a set of formulas, then $\Lambda \Gamma$ is a formula.
- If Γ is a set of formulas, then $\bigvee \Gamma$ is a formula.
- If A is a formula, we define \bar{A} recursively:
- $\overline{\triangle \Gamma}=\bigvee\{\bar{X}: X \in \Gamma\}$,
- $\overline{V \Gamma}=\bigwedge\{\bar{X}: X \in \Gamma\}$,
- $\bar{p}=\neg p$,

Tait calculus

- Similar to sequent calculus, commonly used for infinitary logic.
- Formulas are defined recursively as follows:
- If p is a variable, then p and $\neg p$ are formulas.
- If Γ is a set of formulas, then $\Lambda \Gamma$ is a formula.
- If Γ is a set of formulas, then $\bigvee \Gamma$ is a formula.
- If A is a formula, we define \bar{A} recursively:
- $\overline{\bigwedge \Gamma}=\bigvee\{\bar{X}: X \in \Gamma\}$,
- $\bar{V} \bar{r}=\bigwedge\{\bar{X}: X \in \Gamma\}$,
- $\bar{p}=\neg p$,
- $\overline{\neg p}=p$.

Tait calculus

- Each line in a Tait calculus proof is a set 「 of formulas. We interpret it as the disjunction of the formulas in Γ.

Tait calculus

- Each line in a Tait calculus proof is a set 「 of formulas. We interpret it as the disjunction of the formulas in Γ.
- Similar to sequent calculus, Tait calculus proofs can be tree-like or dag-like.

Tait calculus

- Each line in a Tait calculus proof is a set 「 of formulas. We interpret it as the disjunction of the formulas in Γ.
- Similar to sequent calculus, Tait calculus proofs can be tree-like or dag-like.
- Initial sets of a proof are sets of the form $\Gamma \cup\{p, \neg p\}$.

Tait calculus

- Each line in a Tait calculus proof is a set 「 of formulas. We interpret it as the disjunction of the formulas in Γ.
- Similar to sequent calculus, Tait calculus proofs can be tree-like or dag-like.
- Initial sets of a proof are sets of the form $\Gamma \cup\{p, \neg p\}$.
- There are three rules of inference:

Tait calculus

- Each line in a Tait calculus proof is a set Γ of formulas. We interpret it as the disjunction of the formulas in Γ.
- Similar to sequent calculus, Tait calculus proofs can be tree-like or dag-like.
- Initial sets of a proof are sets of the form $\Gamma \cup\{p, \neg p\}$.
- There are three rules of inference:

$$
\frac{\Gamma \cup\left\{A_{j}\right\}}{\Gamma \cup\left\{\bigvee_{i \in I} A_{i}\right\}} \quad(\text { where } j \in I)
$$

Tait calculus

- Each line in a Tait calculus proof is a set 「 of formulas. We interpret it as the disjunction of the formulas in Γ.
- Similar to sequent calculus, Tait calculus proofs can be tree-like or dag-like.
- Initial sets of a proof are sets of the form $\Gamma \cup\{p, \neg p\}$.
- There are three rules of inference:

$$
\begin{aligned}
\frac{\Gamma \cup\left\{A_{j}\right\}}{\Gamma \cup\left\{\bigvee_{i \in I} A_{i}\right\}} & \text { (where } j \in I) \\
\frac{\Gamma \cup\left\{A_{j}\right\} \text { for all } j \in I}{\Gamma \cup\left\{\bigwedge_{i \in I} A_{i}\right\}} & \text { (there are }|I| \text { many hypotheses) }
\end{aligned}
$$

Tait calculus

- Each line in a Tait calculus proof is a set Γ of formulas. We interpret it as the disjunction of the formulas in Γ.
- Similar to sequent calculus, Tait calculus proofs can be tree-like or dag-like.
- Initial sets of a proof are sets of the form $\Gamma \cup\{p, \neg p\}$.
- There are three rules of inference:

$$
\begin{array}{cl}
\frac{\Gamma \cup\left\{A_{j}\right\}}{\Gamma \cup\left\{\bigvee_{i \in I} A_{i}\right\}} & \text { (where } j \in I) \\
\frac{\Gamma \cup\left\{A_{j}\right\} \text { for all } j \in I}{\Gamma \cup\left\{\bigwedge_{i \in I} A_{i}\right\}} & \text { (there are }|I| \text { many hypotheses) } \\
\frac{\Gamma \cup\{A\} \quad \Gamma \cup\{\bar{A}\}}{\Gamma} & \text { (the cut rule) }
\end{array}
$$

Tait calculus

- In the finitary setting, Tait calculus is isomorphic to sequent calculus.

Tait calculus

- In the finitary setting, Tait calculus is isomorphic to sequent calculus.
- Sequent $\Gamma \rightarrow \Delta$ corresponds to $\{\bar{A}: A \in \Gamma\} \cup \Delta$.

Tait calculus

- In the finitary setting, Tait calculus is isomorphic to sequent calculus.
- Sequent $\Gamma \rightarrow \Delta$ corresponds to $\{\bar{A}: A \in \Gamma\} \cup \Delta$.
- Exchange and contraction are not needed when working with sets, weakening is hidden in the definition of axioms.

Tait calculus

- In the finitary setting, Tait calculus is isomorphic to sequent calculus.
- Sequent $\Gamma \rightarrow \Delta$ corresponds to $\{\bar{A}: A \in \Gamma\} \cup \Delta$.
- Exchange and contraction are not needed when working with sets, weakening is hidden in the definition of axioms.
- Length of a proof in sequent calculus corresponds to number of inferences in a Tait calculus proof.

Tait calculus

- In the finitary setting, Tait calculus is isomorphic to sequent calculus.
- Sequent $\Gamma \rightarrow \Delta$ corresponds to $\{\bar{A}: A \in \Gamma\} \cup \Delta$.
- Exchange and contraction are not needed when working with sets, weakening is hidden in the definition of axioms.
- Length of a proof in sequent calculus corresponds to number of inferences in a Tait calculus proof.
- Cut elimination theorem for Tait calculus is called normalization theorem. For general infinitary logic it does not hold. However, it holds for logic with formulas of countable length.

Thank you for your attention

