Cut-Elimination for LK-Calculus

Max Lin
Department of Logic, Faculty of Arts, Charles University

December 9, 2022

Theorem

Let P be an LK-proof and suppose every cut formula in P has depth less than or equal to d. Then there is a cut-free LK-proof P^{*} with the same endsequent as P, with size

$$
\left\|P^{*}\right\|<2_{2 d+2}^{\|P\|} .
$$

Lemma

Let P be an LK-proof with final inference a cut of depth d such that every other cut in P has depth strictly less than d. Then there is an LK-proof P^{*} with the same endsequent as P with all cuts in P^{*} of depth less than d and with $\left\|P^{*}\right\|<\|P\|^{2}$.

Proof.

The proof P ends with a cut inference

$$
\begin{array}{cr}
\ddots \vdots . Q & \ddots . \vdots . R \\
\Gamma \rightarrow \Delta, A & A, \Gamma \rightarrow \Delta \\
\Gamma \rightarrow \Delta
\end{array}
$$

where the depth of the cut formula equals d and where all cuts in the subproofs Q and R have depth strictly less than d. The proof of this theorem is by induction on the outermost logical connective of the cut formula A .

Proof (Cont.)

The proof for the cases of $A=\neg B, B \vee C, B \wedge C$, and $B \supset C$ are done in previous two lectures. We still have the cases where A are of the form $(\exists x) B(x)$ and $(\forall x) B(x)$. We prove the case where A is $(\exists x) B(x)$ since the proof of the case $(\forall x) B(x)$ is similar.

Subproof Q

Since A is not atomic, it can only be introduced by weakening and by \exists :right inferences. Suppose that there are $k \geq 0$ many \exists :right inferences in Q which have their principal formula a direct ancestor of the cut formula. List as

$$
\frac{\Pi_{i} \rightarrow \Lambda_{i}, B\left(t_{i}\right)}{\Pi_{i} \rightarrow \Lambda_{i},(\exists x) B(x)}
$$

for $1 \leq i \leq k$.

Proof (Cont.)

Subproof R

Suppose that there are $I \geq 0$ many \exists :left inferences in R which have their principal formula a direct ancestor of the cut formula. List as

$$
\frac{B\left(a_{i}\right), \Pi_{i}^{\prime} \rightarrow \Lambda_{i}^{\prime}}{(\exists x) B(x), \Pi_{i}^{\prime} \rightarrow \Lambda_{i}^{\prime}}
$$

for $1 \leq i \leq l$.
Idea : Construct new proof based on the proof we already have.

Proof (Cont.)

For each $i \leq k$, we form a proof R_{i} of the sequent $B\left(t_{i}\right), \Gamma \rightarrow \Delta$ as follows

- In R, replacing all / variables a_{i} with the term t_{i},
- In R , replacing every direct ancestor of the cut formula $(\exists x) B(x)$ with $B\left(t_{i}\right)$,
- Removing the l-many \exists :left inferences.

Remark

P is in free variable normal form ensures that replacing the a_{i} 's with t_{i} will not impact the eigenvariable condition.

Proof (Cont.)

Construct Q^{\prime} from subproof Q as follows :

- Replacing each sequent $\Pi \rightarrow \Lambda$ in Q with the sequent $\Pi, \Gamma \rightarrow \Delta, \Lambda^{-}$ where $\Lambda^{-}:=\Lambda$ minus all direct ancestors of $(\exists x) B(x)$. Ex. the end sequent is $\Gamma, \Gamma \rightarrow \Delta, \Delta$
- Initial Sequent : $A, \Gamma \rightarrow \Delta, A$. Can be derived by $A \rightarrow A$ using weakenings and exchanges.
- For each $1 \leq i \leq k$, replace i-th \exists :right inference :

$$
\frac{\Pi_{i}, \Gamma \rightarrow \Delta, \Lambda_{i}, B\left(t_{i}\right)}{\Pi_{i}, \Gamma \rightarrow \Delta, \Lambda_{i}}
$$

by

$$
\xlongequal{\Pi_{i}, \Gamma \rightarrow \Delta, \Lambda_{i}, B\left(t_{i}\right) \quad B\left(t_{i}\right), \Gamma \rightarrow \Delta} \Pi_{i}, \Gamma \rightarrow \Delta, \Lambda_{i}
$$

Proof (Cont.)

- Construct P^{*} from Q^{\prime} by adding some exchanges and contractions to the end of Q^{\prime}. This gives us new proof P^{*} of $\Gamma \rightarrow \Delta$.
- Note that the replacement of \exists :right inference of Q above gives us cut inference with a cut of depth $d-1$,
- Every cut in P^{*} has depth $<d$,
- $\left\|P^{*}\right\| \leq\|Q\| \cdot(\|R\|+1)<\|P\|^{2}$.

From the previous lemma, we can replace a single cut by lower depth cut inferences. Iterating this construction, we can remove all cuts of the maximum depth d in a proof.

Lemma

If P is an LK-proof with all cuts of depth at most d, there is an LK-proof with the same endsequent which has all cuts of depth strictly less thand and with size $\left\|P^{*}\right\|<2^{2^{\|P\|}}$.

Proof.

This can be proved by induction on the number of depth d cuts in P.

- Base case : No depth d cuts. We get P^{*} which is P and $\|P\|<2^{2^{\|P\|}}$.
- Inductive case : it suffices to prove the lemma in the case where P ends with the following sequent with cut formula A of the depth d

$$
\begin{array}{cc}
\ddots \vdots . Q & \ddots . . \cdot R \\
\Gamma \rightarrow \Delta, A & A, \Gamma \rightarrow \Delta \\
\Gamma \rightarrow \Delta
\end{array}
$$

Proof (Cont.)

Subproof \mathbf{R} with $\|R\|=0$

R must satisfies one of the following cases :
(1) containing the axiom $A \rightarrow A$
(2) having direct ancestors of the cut formula A introduced by weakenings Then
(1) the cut formula A must appear in Δ, and the proof P^{*} can be obtained from Q by adding some exchange inferences and a contraction inference to the end of Q,
(2) the proof P^{*} can be obtained from R by removing all the Weakening:left inferences that introduce direct ancestors of the cut formula A,
$\underline{\text { Subproof } \mathbf{Q} \text { with }\|Q\|=0 \text { : Similar. }}$
Note. $\left\|P^{*}\right\|<\|P\|<2^{2^{\|P\|}}$

Proof (Cont.)

Subproof \mathbf{R} and \mathbf{Q} with $\|R\| \neq 0,\|Q\| \neq 0$

By inductive hypothesis, there are proof Q^{*} and R^{*} of the same sequents, with all cuts of depth $<d$, and

$$
\left\|Q^{*}\right\|<2^{2^{\|Q\|}},\left\|R^{*}\right\|<2^{2^{\|R\|}}
$$

Applying previous lemma to the proof

gives a proof P^{*} of $\Gamma \rightarrow \Delta$ with all cuts of depth $<d$. Note that $\left\|P^{*}\right\|<\left(\left\|Q^{*}\right\|+\left\|R^{*}\right\|+1\right)^{2} \leq\left(2^{2^{\|Q\|}}+2^{2^{\mid R \|}}-1\right)^{2}<2^{2^{| | Q\|+\| R \|+1}}=2^{2^{| | P \|}}$.

A general bound on cut elimination

The upper bound $2_{2 d+2}^{\|P\|}$ in the Cut Elimination Theorem is based not only on the size of P, but also on the maximum depth of the cut formulas in P.

Proposition

Suppose P is an $L K$-proof of the sequenct $\Gamma \rightarrow \Delta$. Then there is a cut-free proof P^{*} of the same sequent with size $\left\|P^{*}\right\|<2_{2\|P\| \|}^{\|P\|}$.

