Cut-Elimination for LK-Calculus

Max Lin

Department of Logic, Faculty of Arts, Charles University

December 9, 2022

N /	224	1.00
1.		

Image: A matrix

э

Theorem

Let P be an LK-proof and suppose every cut formula in P has depth less than or equal to d. Then there is a cut-free LK-proof P^* with the same endsequent as P, with size

$$\|P^*\| < 2_{2d+2}^{\|P\|}.$$

Lemma

Let P be an LK-proof with final inference a cut of depth d such that every other cut in P has depth strictly less than d. Then there is an LK-proof P^* with the same endsequent as P with all cuts in P^* of depth less than d and with $||P^*|| < ||P||^2$.

2/12

A B M A B M

Proof.

The proof P ends with a cut inference

$$\begin{array}{c} & \ddots & \vdots & \ddots & R \\ \hline \Gamma \longrightarrow \Delta, A & A, \Gamma \longrightarrow \Delta \\ \hline & \Gamma \longrightarrow \Delta \end{array}$$

where the depth of the cut formula equals d and where all cuts in the subproofs Q and R have depth strictly less than d. The proof of this theorem is by induction on the outermost logical connective of the cut formula A.

3/12

The proof for the cases of $A = \neg B, B \lor C, B \land C$, and $B \supset C$ are done in previous two lectures. We still have the cases where A are of the form $(\exists x)B(x)$ and $(\forall x)B(x)$. We prove the case where A is $(\exists x)B(x)$ since the proof of the case $(\forall x)B(x)$ is similar.

Subproof Q

Since A is not atomic, it can only be introduced by weakening and by \exists :*right* inferences. Suppose that there are $k \ge 0$ many \exists :*right* inferences in Q which have their principal formula a direct ancestor of the cut formula. List as

$$\frac{\Pi_i \to \Lambda_i, B(t_i)}{\Pi_i \to \Lambda_i, (\exists x) B(x)}$$

for $1 \le i \le k$.

イロト イポト イヨト イヨト

Subproof R

Suppose that there are $l \ge 0$ many $\exists : left$ inferences in R which have their principal formula a direct ancestor of the cut formula. List as

$$\frac{B(a_i), \Pi'_i \to \Lambda'_i}{(\exists x) B(x), \Pi'_i \to \Lambda'_i}$$

for $1 \le i \le I$.

Idea : Construct new proof based on the proof we already have.

イロト 不得下 イヨト イヨト

For each $i \leq k$, we form a proof R_i of the sequent $B(t_i), \Gamma \rightarrow \Delta$ as follows

- In R, replacing all I variables a_i with the term t_i ,
- In R, replacing every direct ancestor of the cut formula $(\exists x)B(x)$ with $B(t_i)$,
- Removing the *I*-many ∃:*left* inferences.

Remark

P is in free variable normal form ensures that replacing the a_i 's with t_i will not impact the eigenvariable condition.

Construct Q' from subproof Q as follows :

- Replacing each sequent Π → Λ in Q with the sequent Π, Γ → Δ, Λ⁻ where Λ⁻ := Λ minus all direct ancestors of (∃x)B(x). Ex. the end sequent is Γ, Γ → Δ, Δ
- Initial Sequent : A, Γ → Δ, A. Can be derived by A → A using weakenings and exchanges.
- For each $1 \le i \le k$, replace *i*-th \exists :*right* inference :

$$\frac{\Pi_i, \Gamma \to \Delta, \Lambda_i, B(t_i)}{\Pi_i, \Gamma \to \Delta, \Lambda_i}$$

by

$$\frac{\begin{array}{c} & \ddots & \vdots & \ddots & R_i \\ \hline \Pi_i, \Gamma \longrightarrow \Delta, \Lambda_i, B(t_i) & B(t_i), \Gamma \longrightarrow \Delta \\ \hline \Pi_i, \Gamma \longrightarrow \Delta, \Lambda_i \end{array}}{\begin{array}{c} \end{array}}$$

7/12

- Construct P^{*} from Q' by adding some exchanges and contractions to the end of Q'. This gives us new proof P^{*} of Γ → Δ.
- Note that the replacement of ∃:right inference of Q above gives us cut inference with a cut of depth d − 1,
- Every cut in P^* has depth < d,
- $||P^*|| \le ||Q|| \cdot (||R|| + 1) < ||P||^2$.

From the previous lemma, we can replace a single cut by lower depth cut inferences. Iterating this construction, we can remove all cuts of the maximum depth d in a proof.

Lemma

If P is an LK-proof with all cuts of depth at most d, there is an LK-proof with the same endsequent which has all cuts of depth strictly less than d and with size $||P^*|| < 2^{2^{||P||}}$.

Proof.

This can be proved by induction on the number of depth d cuts in P.

- Base case : No depth d cuts. We get P^* which is P and $\|P\| < 2^{2^{\|P\|}}$
- Inductive case : it suffices to prove the lemma in the case where P ends with the following sequent with cut formula A of the depth d

$$\frac{\overbrace{\Gamma \longrightarrow \Delta, A}^{\dots \dots \dots Q} \qquad \overbrace{\Lambda, \Gamma \longrightarrow \Delta}^{\dots \dots \dots R}}{\Gamma \longrightarrow \Delta}$$

Subproof R with ||R|| = 0

R must satisfies one of the following cases :

- a having direct ancestors of the cut formula A introduced by weakenings

Then

- the cut formula A must appear in Δ, and the proof P* can be obtained from Q by adding some exchange inferences and a contraction inference to the end of Q,
- the proof P* can be obtained from R by removing all the Weakening:left inferences that introduce direct ancestors of the cut formula A,

Subproof Q with ||Q|| = 0 : Similar.

Note. $||P^*|| < ||P|| < 2^{2^{||P||}}$

Subproof R and Q with $||R|| \neq 0, ||Q|| \neq 0$

By inductive hypothesis, there are proof Q^* and R^* of the same sequents, with all cuts of depth < d, and

$$\|Q^*\| < 2^{2^{\|Q\|}}, \|R^*\| < 2^{2^{\|R\|}}.$$

Applying previous lemma to the proof

$$\frac{\ddots \vdots \cdots Q^* \qquad \ddots \vdots \cdots R^*}{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}$$

gives a proof P^* of $\Gamma \to \Delta$ with all cuts of depth < d. Note that $\|P^*\| < (\|Q^*\| + \|R^*\| + 1)^2 \le (2^{2^{\|Q\|}} + 2^{2^{\|R\|}} - 1)^2 < 2^{2^{\|Q\| + \|R\| + 1}} = 2^{2^{\|P\|}}.$

11/12

イロト イポト イヨト イヨト 二日

A general bound on cut elimination

The upper bound $2_{2d+2}^{\|P\|}$ in the Cut Elimination Theorem is based not only on the size of P, but also on the maximum depth of the cut formulas in P.

Proposition

Suppose P is an LK-proof of the sequence $\Gamma \to \Delta$. Then there is a cut-free proof P^* of the same sequent with size $||P^*|| < 2_{2||P||}^{||P||}$.