
We use the notation from Sec.31.2.

In the proof of Lemma 31.2.1 we pick by averaging e s.t. at least a fraction
of δ 1

(3m)k more inputs u to C (and f) yield a sample a(u, e) ∈ W whose trace

is exactly i than those which do yield a(u, e) ∈ W whose trace properly
contains i (Claims 1 and 2). The error in the argument for Claim 3 is that
we have no control over the number of u for which a(u, e) /∈ W but its trace
contains i, i.e. of the size of the set U \ W .

However, if we knew that the size of the complement of W is at most e.g.

wc :=
1

2
· 2n1/3

·
1

(3m)c

then the argument works: wc bounds the number of bad u and the algorithm
constructed in Claim 3 gets the advantage at least (we ignore δ now)

1

(3m)k
−

1

2
·

1

(3m)c
≥

1

2
·

1

(3m)k

and the rest of the proof (bottom p.212, top p.213) remains the same.
Hence what is established in Sec.31.2 is the following statement.

Lemma A: Under the same hypothesis as in Lemma 31.2.1, the number

of samples ω ∈ Ω for which α(ω) is defined is at least

wc :=
1

2
· 2n1/3

·
1

(3m)c

where c bounds the number of queries α can ask on any sample.

Note that wc is a nonstandard number for any m ∈ Mn and any standard c.

We would like to use Lemma A to establish

Lemma B: There exists an infinite set Ω∗ ⊆ Ωb, Ω∗ ∈ M, such that each

α ∈ Fb is defined on all but an infinitesimal fraction of samples from Ω∗.

Taking F ∗

b , the family of random variables defined as Fb but restricted to
Ω∗, determines model K(F ∗

b ) for which the analogous statement to Lemma
31.2.1 (Lemma B) holds and it can be used in place of K(Fb).

Lemma B can be derived by a combinatorial argument for small m > n
but here we shall give a model-theoretic argument which has the advantage
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of being much simpler and working for any m, using a smaller set of random
variables.

Namely, for any string w ∈ Mn let F unif
b,w be the family of partial random

variables on Ωb defined as Fb but allowing the algorithms computing the
random variables to use as an advice only the triple (A, b, w). This is perfectly
sufficient for any application of the eventual model in Secs.31.3. and 31.4 (w
can contain e.g. a proof of the τ -formula or a witness of the membership of
b in an NP set R, etc.) and has the great advantage that the family F unif

b,w is
now countable.

Lemma C: Let w ∈ Mn be arbitrary. Then there exists an infinite set

Ω∗ ⊆ Ωb, Ω∗ ∈ M, such that each α ∈ F unif
b,w is defined on all samples from

Ω∗.

Proof:

Enumerate α1, α2, . . . the set F unif
b,w in such a way that the algorithm

defining αk runs in time ≤ mk and ask at most k queries, for all k ≥ 1.
Let (αi)i<t ∈ M be its non-standard extension obtained via the ℵ1-

saturation (see p.9).
If we take α1, . . . , αk we can compose the programs defining the αs by

first running α1, if it is not aborted then instead of outputting a value run
α2, etc. , and output (arbitrary) values only at the end, if the computation
is not aborted earlier. The resulting function is computed in time O(kmk)
using at most k(k + 1)/2 ≤ k2 queries. Hence by Lemma A it is defined on
at least wk2 samples from Ωb. This yields the following

Claim: For each standard k ≥ 1 there exists definable subset Ωk ⊆ Ωb of
size at least wk2 such that all α1, . . . , αk are defined on all samples from Ωk.

By Overspill the statement of the Claim holds also for the sequence (αi)i<s

for some non-standard s < t, and we can take s small enough (but still
non-standard) such that Ω∗ := Ωs satisfies the statement of the lemma.

q.e.d.
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