
Lecture 4

The Immerman–Szelepcsényi Theorem

In 1987, Neil Immerman [65] and independently Róbert Szelepcsényi [119]
showed that for space bounds S(n) ≥ log n, the nondeterministic space
complexity class NSPACE(S(n)) is closed under complement. The case
S(n) = n gave an affirmative solution to a long-standing open problem of
formal language theory: whether the complement of every context-sensitive
language is context-sensitive.

Theorem 4.1 (Immerman–Szelepcsényi Theorem) For S(n) ≥ log n, NSPACE (S(n)) =
co-NSPACE (S(n)).

Proof. For simplicity we first prove the result for space-constructible
S(n). One can remove this condition in a way similar to the proof of Sav-
itch’s theorem (Theorem 2.7).

The proof is based on the following idea involving the concept of a census
function. Suppose we have a finite set A of strings and a nondeterministic
test for membership in A. Suppose further that we know in advance the
size of the set A. Then there is a nondeterministic test for nonmembership
in A: given y, successively guess |A | distinct elements and verify that they
are all in A and all different from y. If this test succeeds, then y cannot be
in A.

Let M be a nondeterministic S(n)-space bounded Turing machine. We
wish to build another such automaton N accepting the complement of

The Immerman–Szelepcsényi Theorem 23

L(M). Assume we have a standard encoding of configurations of M over
a finite alphabet ∆, |∆ | = d, such that every configuration on inputs of
length n is represented as a string in ∆S(n).

Assume without loss of generality that whenever M wishes to accept,
it first erases its worktape, moves its heads all the way to the left, and
enters a unique accept state. Thus there is a unique accept configuration
accept ∈ ∆S(n) on inputs of length n. Let start ∈ ∆S(n) represent the
start configuration on input x, |x | = n: in the start state, heads all the
way to the left, worktape empty.

Because there are at most dS(n) configurations M can attain on input
x, if x is accepted then there is an accepting computation path of length
at most dS(n). Define Am to be the set of configurations in ∆S(n) that are
reachable from the start configuration start in at most m steps; that is,

Am = {α ∈ ∆S(n) | start ≤m−→ α}.

Thus A0 = {start} and

M accepts x ⇔ accept ∈ AdS(n) .

The machine N will start by laying off S(n) space on its worktape. It
will then proceed to compute the sizes |A0 |, |A1 |, |A2 |, . . . , |AdS(n) | in-
ductively. First, |A0 | = 1. Now suppose |Am | has been computed and is
written on a track of N ’s tape. Because |Am | ≤ dS(n), this takes up S(n)
space at most. To compute |Am+1 |, successively write down each β ∈ ∆S(n)

in lexicographical order; for each one, determine whether β ∈ Am+1 (the
algorithm for this is given below); if so, increment a counter by one. The
final value of the counter is |Am+1 |. To test whether β ∈ Am+1, nondeter-
ministically guess the |Am | elements of Am in lexicographic order, verify

that each such α is in Am by guessing the computation path start
≤m−→ α,

and for each such α check whether α
≤1−→ β. If any such α yields β in one

step, then β ∈ Am+1; if no such α does, then β �∈ Am+1.
After |AdS(n) | has been computed, in order to test accept �∈ AdS(n)

nondeterministically, guess the |AdS(n) | elements of AdS(n) in lexicographic
order, verifying that each guessed α is in AdS(n) by guessing the computa-

tion path start
≤dS(n)

−→ α, and verifying that each such α is different from
accept.

The nondeterministic machine N thus accepts the complement of L(M)
and can easily be programmed to run in space S(n).

To remove the constructibility condition, we do the entire computation
above for successive values S = 1, 2, 3, . . . approximating the true space
bound S(n). In the course of the computation for S, we eventually see all
configurations of length S reachable from the start configuration, and can

24 Lecture 4

check whether M ever tries to use more than S space. If so, we know that
S is too small and can restart the computation with S + 1. �

