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Abstract

We describe a general method how to construct from a propositional
proof system P a possibly much stronger proof system iP . The system
iP operates with exponentially long P -proofs described “implicitly” by
polynomial size circuits.

As an example we prove that proof system iEF , implicit EF , cor-
responds to bounded arithmetic theory V 1

2
and hence, in particular,

polynomially simulates the quantified propositional calculus G and the
Πb

1
-consequences of S1

2
proved with one use of exponentiation. Further-

more, the soundness of iEF is not provable in S1

2
. An iteration of the

construction yields a proof system corresponding to T2 + Exp and, in
principle, to much stronger theories.

Extended Frege system EF is considered to be a strong propositional
proof system. The qualification strong means that EF smoothly formalizes
many arguments in elementary combinatorics or algebra and it seems very
hard to come up with tautologies that would be hard to prove in EF (i.e.
that they would require long proofs). Another strong proof system is the
quantified propositional calculus G which operates with quantified proposi-
tional formulas. We can move up in this hierarchy allowing a proof system
to quantify also over boolean functions, functionals, etc. But besides simu-
lating definitions from higher order arithmetic or set theory we do not really
have any other way of directly constructing strong proof systems.

The qualification directly is important here as we do have a general cor-
respondence between proof systems and first-order theories (obeying certain
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tame technical conditions satisfied by all “usual” theories, including set the-
ory) and, in particular, we can define a strong proof system from a strong
theory. This correspondence is very useful and it is the deepest information
applying to all proof systems (as opposed to statements about particular
ones) that we have. In particular, the statements above that EF and G are
strong could be substantiated by identifying theories corresponding to them
(S1

2 and U1
2 , respectively; see the references given below). (The proof system

extending G by allowing the quantification over functions, functionals, etc.
corresponds to T2 +Exp or to a bit stronger theory, depending on the exact
definition).

However, our aim here is to investigate a possibility of a direct, essentially
combinatorial, description of strong proof systems that would, in particular,
not refer to first order theories. This appears of interest in connections with
several problems (e.g. a combinatorial characterization of hard tautologies
and of consistency statements in particular, the existence of an optimal proof
system, constructions of models of strong bounded arithmetic theories, etc.).

In proof complexity there are several interesting results of the form of an
upper bound on the size of proofs of particular formulas or of the form of a
polynomial simulation of one proof system by another. These results tend to
be much simpler to prove using bounded arithmetic than using direct proof
manipulations. Thus although we want to bypass the reference to theories in
definitions of strong proof systems, we shall use the correspondence between
proof systems and theories in proofs. However, the concept of implicit EF
(and iP in general) is defined without any reference to arithmetic.

Let us now describe a part of this correspondence that we will need
(and fix the notation in the process). A ∀Πb

1-sentence ∀x, ψ(x), with ψ(x)
having the form ∀y(|y| ≤ |x|O(1)), ψ0(x, y) for some p-time predicate ψ0,
determines an infinite sequence of propositional formulas ||ψ(x)||n as follows.
The formula has n atoms p1, . . . , pn for bits of an x, some nO(1) atoms
q1, . . . , qm for bits of a y in ψ0, and further it has nO(1) atoms r1, . . . , rs
for bits of values of subcircuits of a fixed (canonically constructed) circuit
computing from p, q the truth value of ψ0(x, y). The formula ||ψ(x)||n

expresses in a DNF form that if r are correctly computed by the circuit
from the inputs p, q then the output of the computation is 1. A number b of
length n is identified with a binary string (b1, . . . , bn) of length n, and these
bits will make ||ψ(x)||n(pi/bi) a tautology iff ψ(b) is true.

The correspondence between a theory T and a proof system P implies,
in particular, the following:

• If T proves ∀x;ψ(x) then tautologies ||ψ(x)||n(b) have polynomial size
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P -proofs.

• T proves the soundness of P and for any another proof system Q, if T
proves also the soundness of Q then P polynomially simulates Q.

This correspondence has been discovered by Cook [2] (he considered the key
case of T = PV and P = EF ). The two properties of the correspondence
between S1

2 and EF has been proved by Buss [1], between U1
2 and G by

Kraj́ıček and Takeuti [9], and the case of general T and P was treated in
Kraj́ıček and Pudlák [7].

We shall not repeat other definitions and basic facts from proof com-
plexity or bounded arithmetic. The reader can find those in [5] (or in the
other original references listed in the bibliography).

1 Implicit EF

A proof system is a polynomial-time function P whose range is exactly the
set TAUT of tautologies in the DeMorgan language, cf.[3]. A P -proof of τ is
any string π such that P (π) = τ . The idea of implicit proofs is that instead
of representing π of length ℓ by writing down it’s bits π1, . . . , πℓ we present
a circuit β with log(ℓ) inputs that computes πi from i ≤ ℓ. The advantage
of this implicit description of π is that β can be, in principle, exponentially
smaller than π. However, the circuit β alone does not constitute a proof of
anything. In order to get a proof system we supplement β with an ordinary
P -proof α of the fact that β indeed describes a valid P -proof.

We will consider this general definition in Section 3. Now we will confine
ourselves to EF . This particular case allows to achieve a full generality of
the construction while having a nice intuitive property of β: The circuit
computes whole formulas forming the steps of an EF -proof rather than just
individual bits. This is useful in developing the connections with bounded
arithmetic. We show in Section 3 that even with this property of β nothing
is lost in generality.

Let EF be a fixed Extended Frege system in the DeMorgan language.
The set of all DeMorgan tautologies is denoted TAUT . We shall assume
that EF proofs are written in an enhanced form where each step caries
an information about the rule and the previous steps that were used in
its derivation. This is an inessential change that does not affect the proof
complexity of EF (more than by a logarithmic factor).

The symbol ≤lex denotes the lexicographic ordering on any fixed {0, 1}k.
If we identify i = (i1, . . . , ik) ∈ {0, 1}k with the number

∑
j:ij 6=0 2j then ≤lex
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corresponds to the usual ordering on {0, . . . , 2k − 1}.

Definition 1.1 Let τ ∈ TAUT . An implicit EF proof of τ is a pair (α, β)
such that:

1. β is a many-output boolean circuit in variables i1, . . . , ik.

2. The sequence β(0), . . . , β(i), . . . , β(1) is an EF -proof of τ (the i’s are
ordered by ≤lex).

The EF -proof described by β is denoted β∗.

3. α is an EF -proof of a (canonical) tautology Correctβ(x1, . . . , xk) ex-
pressing that

“the formula in the step β(x1, . . . , xk) has been derived

in β∗ according to the EF -rules specified in β(x1, . . . , xk)
′′

The proof system so defined is denoted iEF .

Note that we do not need to require that α also contains an EF -proof
of the fact that the last step of β∗ is τ (plus the auxiliary information); that
is expressed by a true boolean sentence written using a circuit and so it
always has a polynomial size proof in EF . Further note that as we consider
enhanced EF -proofs the formula Correctβ(x) is indeed expressible without
existential quantification over steps in β∗, and hence if β∗ is a correct EF -
proof the formula is a tautology (when considering only polynomial size
proofs such a quantification posses no problem as the quantifiers range only
over a polynomial size set). The size of Correctβ is O(|β|).

The formulas in β∗ are of the size at most |β| while their number can be
up to 2Ω(|β|). This would pose an apriori restriction for a proof system like a
Frege system. However, for EF this is not a restriction due to the presence
of the Extension rule, as we shall see in the proof of Theorem 2.1.

Let us start with the obvious.

Lemma 1.2 iEF is a proof system in the sense of Cook-Reckhow [3], and
it polynomially simulates EF .

Proof :
It is clear that iEF is sound and complete. The third condition in the

Cook-Reckhow’s definition is that the relation “(α, β) is an iEF -proof of
τ” is decidable in polynomial time. That follows as it is sufficient to check
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that the formula in the last step of β∗ is τ , and that “α is an EF -proof of
Correctβ” which is a polynomial time relation obviously.

A p-simulation of EF by iEF proceeds as follows. Let π be an EF -proof
of τ of size m. Let β be a circuit in log(m) inputs that simply copies π into
β∗, i.e. β∗ = π. Clearly such β exists of size O(|π|).

For α we take an EF -proof of ||Prf(u, v)||m(π, τ), where Prf(u, v) is
the polynomial time relation “u is an EF -proof of v”. This has an EF -proof
of size O(|π|2) that is constructed by a polynomial time algorithm from π
and τ . This completes the p-simulation.

q.e.d.

Another p-simulation of EF by iEF follows from Lemma 4.1.

2 The strength of iEF

Now we calibrate the strength of iEF .

Theorem 2.1 iEF corresponds to bounded arithmetic theory V 1
2 . In par-

ticular,

1. V 1
2 proves the soundness of iEF .

2. Whenever a ∀Πb
1-sentence ∀xψ(x) is provable in V 1

2 then the sequence
of tautologies ||ψ(x)||n has polynomial size iEF -proofs.

3. If V 1
2 proves the soundness of a proof system Q then iEF polynomially

simulates Q.

Moreover, an iEF -proof of ||ψ(x)||n can be constructed by a polynomial-time
algorithm (from a string of length n) and the construction can be formalized
in S1

2 , and the polynomial simulation in item 3. can be also defined in S1
2 .

Proof :
We start by proving the soundness of iEF in V 1

2 . Work in a model of V 1
2

where we have an iEF -proof (α, β) (coded by a number, say b) of formula
τ . Let a be a number coding a truth assignment to atoms of τ .

By induction on i ∈ {0, 1}k (ordered by ≤lex) construct a set Ai coding
a truth assignment to extension atoms in β∗ introduced in steps ≤lexi such
that all their extension axioms are true when atoms of τ are evaluated by
a. The induction step is trivial and the statement that such a set exists is
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Σ1,b
1 , hence the Σ1,b

1 -induction implies that there is such a set A := A1 for
i = 1.

Using A, a and b as parameters prove by Πb
1-induction on i that all for-

mulas in β∗ are true under the assignment given by a and A. The induction
step uses the proof α: EF is sound in any model of V 1

2 and hence each step
of β∗ is indeed derived correctly via EF -rules, which are all sound. Hence
τ is satisfied by (any) assignment a. This completes the proof of the first
part.

Assume that V 1
2 proves a ∀Πb

1-sentence ∀x, ψ(x) which is of the form
∀yψ0(x, y) with y implicitly bounded in a ∆b

1-formula ψ0. We shall describe
polynomial size iEF -proofs of tautologies ||ψ(x)||n, n ≥ 1. In fact, the proof
πn of ||ψ(x)||n will be constructed by a polynomial time algorithm from a
string of length n, and the construction itself could be formalized in S1

2 .
By [4] the hypothesis implies (is equivalent to, in fact) that there is a

term t(x) of the language of S1
2 such that S1

2 proves:

(∗) t(x, y) ≤ |z| −→ ψ0(x, y) .

Furthermore, we may assume that (∗) has an S1
2 -proof in which all formulas

are strict Σb
1; let Ω be one such proof. The algorithm that will construct πn

will use Ω as an advice (but it is common for all n and so the algorithm is
uniform).

A general sequent in Ω looks like

∃uA(x, y, z, u), . . . −→ ∃vB(x, y, z, v), . . .

To simplify the notation we show just one formula per cedent and we do not
show explicit bounds in the existential quantifiers.

The proof β∗ will contain n atoms p for bits of x, nO(1) atoms q for bits
of y and t(2n) ≤ 2nO(1)

atoms r for bits of z. Proof Ω is translated into β∗

step by step. If we were constructing a simulation in EF , a sequent of the
form as above would be translated into a sequent of the form

||A(x, y, z, u)||(p, q, r, u), . . . −→ ||B(x, y, z, v)||(p, q, r, v), . . .

where we denote new atoms assigned to bits of u and v (≤ 2nO(1)
of them)

also u and v for simplicity of the notation. Here u are new atoms that are
not extension atoms and are intended to represent bits of a witness to the
existential quantifier in the antecedent of the sequent, while v are extension
atoms depending possibly on all p, q, r, u. Atoms v are intended to represent
bits of a witness to the existential quantifier in the succedent. The fact
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that v are extension atoms depending on p, q, r, u means that the witness is
computed by a circuit from x, y, z, u. The circuit (i.e. the extension axioms)
are constructed along with the propositional proof simulating Ω. But as
there are exponentially many atoms r already, such a sequent would be
exponentially long and could not be produced by a polynomial size circuit.

We overcome this difficulty by systematically introducing new extension
atoms for all (sub)formulas that appear in the translation. Hence the sequent
gets translated into a sequent of the form

wA, . . . −→ wB, . . .

where wA and wB are extension atoms depending on p, q, r, u and p, q, r, v
(and hence u too) respectively, and represent the truth values of formulas A
and B, respectively.

Having the sequent from Ω this introduction of the extension atoms is
exponential in size but very canonical and can be constructed by a poly-
nomial size circuit with an access to Ω. By this phrase we mean that the
circuit has size nO(1) and produces the extension atoms and axioms bit by
bit (an atom is a letter followed by an index, so the phrase “bit by bit”
means that the indices are produced bit by bit).

The whole proof β∗ consists of distinct pieces that correspond to sequents
in Ω. Each piece has its own canonical assignment, depending only on the
sequent but not on how it was derived in Ω, of extension atoms and is
constructed by a suitable polynomial size circuit. It remains to show how
these pieces are put together to form an EF -proof. That is, how are the
inferences in Ω simulated.

We shall consider only the most complicated case, the simulation of a
Σb

1-LIND inference

∃uA(t, u) → ∃vA(t+ 1, v)

∃u′A(0, u′) → ∃v′A(|w|, v′)

(we leave out the free parameters including x, y, z and the quantifier bounds).
Assume that the proof β∗ contains a derivation of a sequent of the from
wA −→ wB representing

||A||(t, u) −→ ||A||(s, v)

where t are new atoms (not extension atoms) representing bits of a witness
to the existential quantifier in the antecedent, and s are extension atoms
introduced so that they define the number represented by t plus 1 (so their
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definition just copies a circuit computing the successor function), and v are
extension atoms depending on (p, q, r and) t, u representing a witness to the
existential quantifier in the succedent (ie. they are computed by a circuit
from t, u and from the free parameters).

Take |w| = 2nO(1)
copies of this derivation (canonically listed), all writ-

ten in disjoint copies of atoms t, s, u, v, say ti, si, ui, vi for 0 ≤ i < 2nO(1)
.

The copies copy also the extension axioms. Piece the copies together by
postulating that t0 = 0 (represents 0), that si = ti+1, and that vi = ui+1.
This we can do as atoms ti and ui were not extension atoms and so we can
add conditions on them to the proof.

This concatenation of the |w| subproofs is again quite canonical and it
constitutes a proof of a sequent of the form wA −→ wB corresponding to:

||A||(0, u0) −→ ||A||(|w|, v|w|) .

To finish the description of β∗ we only need to derive the (translation of the)
antecedent t(x, y) ≤ |z| of (∗). This is done by stipulating (by extension
axioms) that all atoms r are equal to 1 and by using a canonical EF -proof
of the valid inequality saying that the term t(x, y) produces from x and y of

the lengths n and nO(1), respectively, at most 2nO(1)
bits.

The EF -proof α of the formula Correctβ is easy and uses the splitting
of β∗ into pieces given by the steps in Ω. It is essentially an EF -proof of
the fact that Ω is indeed a proof in S1

2 + 1-Exp of (∗).
This concludes the proof of the second part of the theorem.

The third property of the correspondence between iE and V 1
2 stated in

the theorem is actually a consequence of the first two (this is a standard
argument, cf. [5]). The formalization of the constructions in items 2. and
3. is routine. Note that the formalization starts with Ω and not with an
arbitrary V 1

2 -proof, i.e. we do not need to formalize the cut-elimination etc.
(that would not be possible in S1

2). This concludes the proof of Theorem
2.1.

q.e.d.

Now we note some corollaries of the theorem. The first one just restates
explicitly what has been used in the proof of the theorem (the last sen-
tence in the corollary follows by a general well-known argument using the
correspondence between a theory and a proof system).
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Corollary 2.2 Let ∀xψ(x) be a ∀Πb
1-sentence that is provable in

S1
2 + 1-Exp, i.e so that S1

2 proves

|y| ≥ t(x) → ψ(x) .

Then the sequence of tautologies ||ψ(x)||n, n ≥ 1, admits polynomial size
iEF -proofs.

Moreover, the set of all ∀Πb
1-sentences provable in S1

2 + 1-Exp is ax-
iomatized over S1

2 by the canonical (see [5]) ∀Πb
1-sentence expressing the

soundness of iEF .

By [4] S1
2 + 1-Exp is not ∀Πb

1-conservative over S1
2 . Hence Corollary 2.2

immediately yields

Corollary 2.3 The soundness of iEF is not provable in S1
2 .

Note that it is not known if S1
2 proves the soundness of the quantified

propositional calculus G.
Theorem 2.1 yields an information about the relative strength of G and

iEF .

Corollary 2.4 iEF p-simulates G.

Proof :
By [9] the proof system G corresponds to theory U1

2 and, in particular,
the two properties of the correspondence singled out in the introduction are
valid for U1

2 and G. This implies (as U1
2 is weaker than V 1

2 ) that V 1
2 proves

the soundness of G, and hence iEF polynomially simulates G by the third
property stated in Theorem 2.1.

q.e.d.

Proving Corollary 2.4 directly would be rather challenging to a formal-
ization. It is not very difficult to prove directly (via a witnessing style
argument) that iEF polynomially simulates G1. But the simulation of full
G, say via Herbrand theorem, would lead to very convoluted formulas (sim-
ilarly as formulas in Herbrand theorem get complex with the growth of the
quantifier complexity).
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3 A general definition

In defining the implicit version of a general proof system we return to the
original idea of β computing single bits of a proof rather than whole formulas
(in fact, a general proof system needs not to operate with formulas at all).

A Q-proof of τ is any string π such that Q(π) = τ . Assume that the
computation of Q is performed by a deterministic machine running in time
nc; we shall denote it also Q. We will represent the computation of Q on
an input of size n by the list of all t ≤ nc instantaneous descriptions of the
computation. This list can be represented by an t×O(t) 0-1 matrix W : the
ith row Wi represents the ith instantaneous description.

By increasing t to O(t) we may assume that t is a power of 2 and that
W is a t × t matrix. Let k := log(t) and let β(i, j), i = (i1, . . . , ik) and
i = (j1, . . . , jk), be a circuit with 2k inputs.

Let CorrectQβ be a canonical propositional formula expressing that:

• The matrix Wi,j := β(i, j) satisfies all local conditions in order to be
a valid computation of Q on an input (encoded in the first row of W ).

Note that the size of CorrectQβ is O(|β|).

Definition 3.1 Let P,Q be any proof systems. Define a new proof system
[P,Q] as follows. A [P,Q]-proof of τ ∈ TAUT is a pair (α, β) such that:

1. β is a single-output boolean circuit in variables (i1, . . . , ik, j1, . . . , jk),
some k ≥ 1.

2. β defines a valid computation W of Q on an input whose output is τ .

3. α is a P -proof of the tautology CorrectQβ .

As before we need not to ask for a P -proof of the fact that the output of
W is τ . Note also that we could have defined analogously [P,Q]-proofs of
(possibly exponentially long) formulas τ given implicitly by a circuit; this is
taken up in [6].

We would like to define now the implicit version of P to be [P, P ]. But
first we need to verify that this new definition will agree for P = EF with
the definition of iEF given in Definition 1.1.

Lemma 3.2 The proof systems iEF and [EF,EF ] polynomially simulate
each other, provably in S1

2 .
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Proof :
To conform with the definition of a proof system being a p-time function

we will think of EF as being a function computed by the following specific
machine. On input π the machine subsequently verifies one step of π after
another, checking that the steps are formed from formulas and that they
were derived as specified in π. When all these individual checks are fulfilled
the machine outputs τ , otherwise it outputs 1.

Let (γ, δ) be an [EF,EF ]-proof of τ . The computation W defined by δ
contains an EF -proof π of τ in it’s first row W1. Hence a circuit β of size
computing the steps of π can be readily constructed from δ. However, we
need to see that the size of β is |δ|O(1). In order to achieve this we need
to preprocess δ so that π does not contain big formulas. By a general p-
simulation (cf. [3]) every EF -proof can be transformed into another one, at
most polynomially longer, where all formulas contain at most |τ | occurrences
of atoms. This transformation is very explicit and can be done by a p-time
algorithm on the level of circuits describing a proof by a p-time algorithm.

Furthermore, the particular definition of the machine means that the
formula Correctβ from Definition 1.1 is a simple consequence of CorrectEF

δ

(the implication clearly has a p-size EF -derivation). Hence α can be con-
structed by joining this derivation of Correctβ with γ. This shows that
[EF,EF ] p-simulates iEF .

Now let (α, β) be an iEF -proof of τ , with |β∗| < 2k. The individual
checks done by the machine computing EF on π := β∗ are parametrized
by i < 2k. The ith check can be performed by a fixed p-time algorithm
knowing only the formula β∗(i) plus the information how it was derived, i.e.
knowing only β(i). Hence we can construct from β a circuit δ describing
this computation W , and |δ| is |β|O(1).

The formula CorrectEF
δ asserts that all local conditions posed on W are

met. This is obvious from the construction of δ for the whole of W except for
the last part in which the machine collects the results of individual checks
and proclaims them all affirmative. In order to prove that this affirmative
proclamations are correct we need to know that π was indeed an EF -proof,
i.e. we need to prove Correctβ. However, such a proof is provided by α. So
the wanted proof γ of CorrectEF

δ is constructed from α, and |γ| is |α|O(1).
This shows that [EF,EF ] p-simulates iEF .

We leave it to the reader to verify that the simulations can be formalized
in S1

2 .

q.e.d.
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Definition 3.3 For any proof system P define implicit P to be the proof
system iP := [P, P ].

4 Iteration of the construction

We note few simple properties of the bracket operation. The symbols ≤p

and ≡p denote the p-simulation and the p-equivalence, respectively. Recall
that F , R and R∗ denote a Frege system, resolution and tree-like resolution,
respectively.

Lemma 4.1 For all P , P ≤p [P,R∗].

Proof :
We will show first that P ≤p [P, F ] and observe at the end that F could

be replaced by R∗.
Let τ(x1, . . . , xn) be a tautology. Circuit β will describe the following

trivial, exponential derivation of τ in F (plus the canonical verification that
it is an F -proof). For each a ∈ {0, 1}n, β∗ has a segment where it computes
the truth value of τ(a): this is simply the derivation of subformulas which
are true, respectively of the negations of subformulas which are false.

Then it contains 2n−1 segments, one for each (a2, . . . , an) ∈ {0, 1}n−1

where it derives τ(x1, a2, . . . , an) from τ(0, a2, . . . , an) and τ(1, a2, . . . , an)
(using x1 ≡ 0 ∨ x1 ≡ 1).

Then there are 2n−2 segments where all τ(x1, x2, a3, . . . , an) are derived
from τ(x1, 0, a3, . . . , an) and τ(x1, 1, a3, . . . , an), etc. The proof ends with a
derivation of τ from τ(x1, . . . , xn−1, 0) and τ(x1, . . . , xn−1, 1).

The correctness of the steps in β∗ is trivial to prove assuming one knows
that all τ(a)’s have been derived, i.e. are true. But if P proves τ , it proves
that “all τ(a) are true”, and hence can prove the formula CorrectFβ . So
[P, F ] p-simulates P .

It is easy to see that one can rewrite β∗ into a tree-like resolution
refutation of (the clauses representing) the formula ¬τ . Hence, in fact,
P ≤p [P,R∗].

q.e.d.

The next lemma shows that it makes no sense to iterate the construction
in the place of α.

Lemma 4.2 For all P ≥p EF , iP ≡p [iP, P ].
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Proof :
The p-simulation of iP by [iP, P ] follows from Lemma 4.1. For the

opposite p-simulation consider first the case P = EF .
In the proof of the soundness of iEF in V 1

2 we only used the fact that α
is an EF -proof in order to know that what α proves is actually true in the
model. That is, we only used that the soundness of EF is provable in V 1

2 .
Hence α could have been an iEF -proof as well. This shows (by part 3 of
Theorem 2.1) that iEF ≥p [iEF,EF ].

The case of general P ≥p EF is proved analogously, using a theory
corresponding to iP in place of V 1

2 . Such a theory exists by virtue of a
general construction of [7]. For example, S1

2 augmented by a ∀Πb
1-sentence

asserting the soundness of iP as an extra axiom can be used.

q.e.d.

The restriction to P ’s p-simulating EF in the lemma is added for tech-
nical reasons only. If P ≥p EF we can appeal to a general construction of
a corresponding theory in [7]. But, in fact, such theories exists for many
weaker systems like R or F too, cf. [5].

So if we want to iterate the i-construction we should apply it to the
second argument in the bracket operation. For the rest of the section we
restrict ourselves to P = EF .

Definition 4.3 Put i1EF := iEF , and for k ≥ 1 define

ik+1EF := [EF, ikEF ]

One can show analogously to Theorem 2.1 (or by applying Theorem
2.1 to its own formalization in S1

2) that ikEF corresponds to S1
2 + k-Exp

of [4] (or see [5]) and hence to the Σ1-induction in a k-th order bounded
arithmetic. Analogously to Corollary 2.3, S1

2 + k-Exp does not prove the
soundness of ik+1EF . We shall not get into details as we are unable to say
anything else sensible about the proof systems besides the next theorem.

Theorem 4.4 The soundness of each ikEF , k ≥ 1, is provable in T2+Exp.
On the other hand, if a ∀Πb

1-sentence ∀xψ(x) is provable in T2+Exp then
there is a k ≥ 1 such that all tautologies ||ψ(x)||n, n ≥ 1, have polynomial
size ikEF -proofs.

In the correspondence between T2 + Exp and ikEF ’s the constant k is
fixed in proofs of any particular sequence ||ψ(x)||n, n ≥ 1. But we can also
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allow k unbounded (besides the implicit bound given by the size of the whole
proof). In this way we get a proof system that is (presumably) stronger.
This is analogous to the situation for G: proofs in T2 translate into Gk-
proofs, fixed k ≥ 1, while G (unbounded quantifier complexity) corresponds
to a stronger theory U1

2 . A formal definition of this very strong proof system
might be as follows.

Definition 4.5 Proof system i∞EF is defined as follows. An i∞EF -proof
of τ ∈ TAUT is a triple (α, β, w) such that (α, β) is an i|w|EF -proof of τ .

It can be shown that T2 + Exp does not prove the soundness of i∞EF .
This is an evidence that i∞EF may be indeed stronger than any ikEF .

It is easy to see that i(i∞EF ) ≡p i∞EF and hence the i-operation does
not necessarily always produce a stronger proof system. But we can now
start iterating the i∞-operation and proceed forward. We could have also
defined the i∞-operation not as |w|-iteration of the i-operation but as w-
iteration (or even 2w-iteration, etc.) enumerated by a polynomial size circuit
(or by a circuit produced by a polynomial size circuit, etc.).

In fact, there does not seem to be a canonical way how to iterate the
basic i-operation. This appears analogous to a situation in proof theory of
higher order arithmetic and set theory where there is also no canonical way
how to iterate consistency statements or even how to represent ordinals.

We conclude by two remarks about the bracket operation for systems
below EF , e.g. for F . Consider what would happened if we were to define
[P, F ] analogously to Definition 1.1, requiring that β outputs whole formulas
forming the steps of β∗. To avoid a confusion let us denote this modified
bracket operation by [P, F ]m.

For example, U1
2 can be described (its bounded first-order consequences,

precisely) as R1
2 + 1-Exp, where R1

2 is a subtheory of S1
2 corresponding to

quasipolynomial Frege systems F . But we cannot conclude analogously to
Theorem 2.1 that [F, F ]m corresponds to U1

2 . This is because F has no
extension atoms and cannot abbreviate a priori exponentially long formulas
translating formulas in the starting arithmetical proof, no matter that it is
equally canonical as in the case of V 1

2 .
The absence of extension atoms in F has another corollary: For any

P ≥p G1 it holds that [P, F ]m ≡p P . This can be seen as follows. As
P ≥p G1 we can take for a theory TP corresponding to P (it is unique only
up to ∀Πb

1-consequences) a theory containing T 1
2 . Now assume that (α, β)

is an [P, F ]m-proof of τ in a model of TP . The P -proof α is sound in the
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model and hence β∗ is indeed an F -proof of τ . As there are no other atoms
in β∗ than the atoms of τ , a truth assignment falsifying τ would transfer
β∗ into a sequence of 0’s and 1’s which has no first occurrence of 0. That
contradicts the minimization principle for ∆b

1-formulas valid in the model
(by T 1

2 ). Hence TP proves the soundness of [P, F ]m and so P ≥p [P, F ]m.
The opposite simulation [P, F ]m ≥p P follows by (the proof of) Lemma 4.1
(formulas in β∗ there are of polynomial size). In fact, P ≡p [P, F ]m ≡p

[P,R]m.
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[5] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press, (1995).
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