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Faculty of Mathematics and Physics4

Charles University5



2

1



3

1

2

3

4

5

6

7

8

9

To my family



4



Contents1

Preface 92

Acknowledgments 113

1 Introduction 134

1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

1.2 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

1.3 Notation, terminology and conventions . . . . . . . . . . . . . 167

2 Background: the dWPHP problem 198

2.1 Logic: provability and axiomatization . . . . . . . . . . . . . . 209

2.2 Computational complexity: witnessing . . . . . . . . . . . . . 2210

2.3 Proof complexity: τ -formulas . . . . . . . . . . . . . . . . . . 2511

2.4 Strong proof systems . . . . . . . . . . . . . . . . . . . . . . . 2712

3 τ-formulas and generators 2913

3.1 τ -formulas and generators . . . . . . . . . . . . . . . . . . . . 2914

3.2 Hardness and the working conjecture . . . . . . . . . . . . . . 3215

3.3 The pseudo-surjectivity conjecture . . . . . . . . . . . . . . . . 3416

3.4 Consequences for the dWPHP problem . . . . . . . . . . . . . 3717

3.5 A model-theoretic characterization . . . . . . . . . . . . . . . 3818

3.6 A relation to pseudo-randomness . . . . . . . . . . . . . . . . 4119

4 The stretch 4520

4.1 Stretch and Kolmogorov complexity . . . . . . . . . . . . . . . 4521

4.2 Strong feasible disjunction property22

and the
∨
-hardness . . . . . . . . . . . . . . . . . . . . . . . . 4823

4.3 The truth-table function . . . . . . . . . . . . . . . . . . . . . 5224

5



6

4.4 Hardness of the truth-table function . . . . . . . . . . . . . . . 571

5 Nisan-Wigderson generator 612

5.1 The definition and its variants . . . . . . . . . . . . . . . . . . 613

5.2 Iterability of NW-like linear maps . . . . . . . . . . . . . . . . 634

5.3 Razborov’s conjecture . . . . . . . . . . . . . . . . . . . . . . 645

5.4 Limitations of NP ∩ coNP NW-generators . . . . . . . . . . . 686

6 Gadget generator 717

6.1 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

6.2 The
∨
-hardness and gadget size . . . . . . . . . . . . . . . . . 729

6.3 Failure of PHP and ideal NW-designs . . . . . . . . . . . . . . 7410

6.4 Consistency versus existence . . . . . . . . . . . . . . . . . . . 7611

6.5 A conditional hardness for uniform proofs . . . . . . . . . . . 7712

7 The case of ER 8113

7.1 Background on ER and sER . . . . . . . . . . . . . . . . . . . 8214

7.2 Expansion of pseudo-finite structures . . . . . . . . . . . . . . 8615

7.3 A Boolean-valued twist . . . . . . . . . . . . . . . . . . . . . . 9216

7.4 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . 9417

7.5 Tree models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9618

8 Consistency results 10119

8.1 S-T computations and provability . . . . . . . . . . . . . . . . 10220

8.2 The dWPHP for the truth-table function . . . . . . . . . . . . 10321

8.3 The dWPHP for the circuit value function . . . . . . . . . . . 10622

8.4 Revisiting the dWPHP problem . . . . . . . . . . . . . . . . . 10823

8.5 One-way permutations and statement (S) . . . . . . . . . . . . 11024

8.6 S-T computations and a gadget generator . . . . . . . . . . . 11625

8.7 Feasibly infinite NP-sets . . . . . . . . . . . . . . . . . . . . . 11926

9 Contexts 12327

9.1 Essential variables . . . . . . . . . . . . . . . . . . . . . . . . 12328

9.2 The optimality problem . . . . . . . . . . . . . . . . . . . . . 12629

9.3 Structured WPHP . . . . . . . . . . . . . . . . . . . . . . . . 12930

9.4 Incompleteness phenomenon . . . . . . . . . . . . . . . . . . . 13131

9.5 Search problems . . . . . . . . . . . . . . . . . . . . . . . . . . 13432



Contents 7

10 Further research 1371

10.1 Ordinary PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382

10.2 Power of S-T computations . . . . . . . . . . . . . . . . . . . . 1393

10.3 Witnessing the infinitude of NP sets . . . . . . . . . . . . . . 1404

10.4 Proof search variant . . . . . . . . . . . . . . . . . . . . . . . 1415

10.5 Exponential time generators . . . . . . . . . . . . . . . . . . . 1426

10.6 Function inversion . . . . . . . . . . . . . . . . . . . . . . . . 1437

Bibliography 1458

Index 1569

Special symbols 15710



8 Generators



Preface1

Proof complexity (tacitly propositional) has a number of facets linking it2

with mathematical logic, computational complexity theory, automated proof3

search and SAT algorithms and other areas, and there are many open prob-4

lems. The royal subject is the task - still open - to establish lengths-of-proofs5

lower bounds for strong and possibly for all proof systems. This is the fun-6

damental open problem as establishing super-polynomial lower bounds for7

all proof systems is equivalent to showing that the computational class NP8

is not closed under complementation, and establishing lower bounds at least9

for a particular proof system implies the consistency of NP ̸= coNP with a10

first-order theory of arithmetic associated with the system.11

For some specific proof systems strong lower bounds are known. The12

experience with these lower bounds shows that it is instrumental to have13

plausible candidates for hard tautologies with a clear combinatorial or logical14

meaning. To define such hard formulas is difficult and one reason for this is15

the close relationship between proof systems and first-order theories alluded16

to above.17

There are at present only two classes of such formulas known that are18

supported by some non-trivial theory: reflection principles and proof com-19

plexity generators, also known as τ -formulas. The former is a classic topic of20

proof complexity that is treated in literature in details. The theory support-21

ing the latter class is on the other hand spread over a number of papers and22

even proof complexity experts do not seem to be aware of its main points. It23

is the purpose of these notes to present the underlying theory as a coherent24

whole.25

9
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Chapter 11

Introduction2

We shall study a particular class of propositional tautologies that seem to3

be good candidates for being hard for strong and possibly for all proposi-4

tional proof systems. The formulas are called τ-formulas or alternatively5

proof complexity generators. The formulas were defined by K.[49] and6

independently by Alekhnovich et al. [5]. I shall describe my motivation7

for introducing these formulas below. The motivation of [5] was apparently8

different.9

In the intervening 20+ years a theory was developed around these for-10

mulas. Unfortunately the authors of [5] abandoned the idea and - with11

notable exception of [97] which was, however, written already in 2002/0312

- did not contribute to it further. I regret this as a different perspective13

they seemed to have would undoubtedly enrich the theory. Be as it may,14

the bulk of the theory was developed over the years in 14 papers of mine15

[49, 50, 51, 52, 54, 56, 57, 58, 61, 62, 66, 67, 68, 69] (some devoted to the16

topic entirely, some only in part) and in [60, Chpts.29-31]. My student J.Pich17

contributed in his thesis [87] and more recently other people started to chip18

in.19

These lecture notes present the theory around τ -formulas in a unified20

manner. I hope this will enable other researchers to learn its basic ideas and21

to contribute ideas of their own. Or that it will stimulate them to come up22

with an entirely different approach. Of course, it is a conjectural enterprise:23

we cannot be sure that the formulas are indeed hard and, even if they are,24

if we will ever be able to prove their hardness. But without even trying we25

will not get anywhere anyway. In any case, there is no other proposal on the26

table supported by some non-trivial knowledge.27

13
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My motivation for introducing the formulas was a logic question about the1

dual weak PHP principle (dWPHP) for p-time functions in a weak bounded2

arithmetic theory S1
2 . Let me start with presenting briefly its background.3

Bounded arithmetics are weak subtheories of Peano arithmetic which re-4

late to classes of functions with a restricted computational complexity anal-5

ogously to the classical relation between subtheory IΣ1 of PA with induction6

restricted to r.e. sets and the class of primitively recursive functions. Feasible7

algorithms find it hard to count the number of elements of a finite set and8

formalizing counting arguments in bounded arithmetic is similarly difficult.9

A.Woods [105] discovered that in such formalizations explicit counting may10

be often replaced by the pigeonhole principle PHP for bounded formulas,11

denoted ∆0PHP. This statement says that no ∆0-formula defines the graph12

of a function mapping [0, a + 1] injectively into [0, a]. It is still unknown13

whether ∆0PHP is provable in bounded arithmetic (Macintyre’s problem).14

Subsequently Paris, Wilkie and Woods [84] noted that a weaker version of15

PHP, the weak PHP denoted ∆0WPHP, can be often used instead and, cru-16

cially, that this principle is provable in bounded arithmetic (they used theory17

I∆0 +Ω1, extending the original theory of [82] by the Ω1 axiom). The prin-18

ciple says that no bounded formula defines the graph of a function mapping19

[0, 2a] injectively into [0, a], Around that time Buss [10] defined his version20

of bounded arithmetic, theory S2 (a conservative extension of I∆0 + Ω1 )21

and its most important subtheory S1
2 , and proved that p-time functions are22

exactly those functions with NP graphs (represented by Σb
1-formulas) that23

are provably total in S1
2 .24

Let us denote by dWPHP(f) the statement that function f cannot map25

any interval [0, a] onto [0, 2a]:26

∃y < 2a∀x < a, f(x) ̸= y (1.0.1)27

(f may have other arguments than just x) and, following [49], denote the28

theory obtained by adding to S1
2 all instances of dWPHP(f) for all p-time29

functions f by BT:30

BT := S1
2 + dWPHP(∆b

1) (1.0.2)31

Functions f in the dWPHP scheme are allowed to have parameters but, in32

fact, it suffices to consider f without extra parameters, i.e. depending only33

on x (more about this in Section 2.1).34

A development directly leading to my problem below was a theorem by35

A.Wilkie (proof is in [45, 7.3.7]) that functions Σb
1-definable in BT are com-36

putable in randomized p-time. I realized that one ought to be able to use37
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BT for formalizing randomized algorithms and to relate this theory to ran-1

domized p-time analogously to how S1
2 relates to deterministic p-time. (I2

was rather excited by this idea and named the theory BT for Basic Theory).3

This also lead me to formulate the following problem.4

Problem 1.0.1 (Conservativity problem, [49, Problem 7.7])5

Is BT Σb
1-conservative over S1

2?6

We shall discuss it in some detail in Chapter 2.7

At that time E. Jeřábek was starting his PhD studies with me. Knowing8

his exceptional mathematical talent I decided not to waste his time on some9

peripheral topic and I proposed to him to develop this conjectured relation10

between BT and randomized p-time. His PhD Thesis and a subsequent11

series of papers [34, 35, 36, 37] is the most interesting thing that happened12

in bounded arithmetic during the last at least twenty years.13

In order not to interfere with his work I decided to focus on the prov-14

ability/conservativity problem above and on the related propositional logic15

side of things, and this lead me to proof complexity generators. They will be16

introduced in Chapter 3.17

1.1 Prerequisites18

The topic covered in these notes is a fairly advanced part of proof complexity,19

using concepts, methods and results from a large part of the field, as well as20

some more basic mathematical logic and computational complexity theory.21

This is not a text-book of either of these fields. We assume that the reader22

has a solid background in proof complexity including basics of bounded arith-23

metic. It is unfeasible to review the necessary material here but the reader24

can find essentially all of it in [65] (and some bounded arithmetic facts in [45],25

see also [18]). Chapter 2 can serve as an entrance test: it discusses a couple26

of key bounded arithmetic theories, some witnessing theorems, propositional27

translations and some properties of strong proof systems.28

Earlier abbreviated expositions of the theory are in [60, Chpts.29-30] and29

in [65, Sec.19.4]; their knowledge is not required here.30
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1.2 Content1

Chapter 2 examines the dWPHP problem. This leads in Chapter 3 to the2

definition of central notions of the theory: proof complexity generators and3

τ -formulas, the hardness and the pseudo-surjectivity, and to two conjectures4

motivating a lot of the subsequent development.5

Chapter 4 treats the issue of the output/input ratio and its relation to6

the Kolmogorov complexity and to general compression/decompression issue.7

Three examples of proof complexity generators are presented in Section 4.38

and in Chapters 5 and 6, together with various basic results about them.9

Chapter 7 studies the pivotal case of Extended Frege systems. Chapter10

8 establishes the consistency (with particular bounded arithmetic theories)11

of some statements related to the dWPHP problem and to the conjectures12

discussed in the earlier chapters, using proof-theoretic analysis (witnessing13

theorems) and some model theory. Chapter 9 overviews several topics outside14

proof complexity to which the theory of proof complexity generators (or ideas15

developed in the theory) relate in some non-trivial way. The last Chapter 1016

discusses possible avenues for further research.17

The book ends with a general index and with an index of special symbols.18

We do not have a name index but instead each item in the Bibliography is19

attached a list of page numbers where it is cited.20

1.3 Notation, terminology and conventions21

Some common notations have fixed meanings:22

• i < n: i is an integer and runs over 0, 1, . . . , n− 123

• i ∈ n: same as i < n24

• [n]: the set {1, . . . , n}25

The Special symbol index lists all symbols, and recalls their definitions,26

in - roughly - their order of appearance.27

We abbreviate propositional proof systems to just proof systems. Two28

expressions that are usually used informally will get specific technical defini-29

tions:30
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• generator: see Definition 3.1.2,1

• strong proof system: see Definition 2.4.3.2

We denote a tuple (of bits, variables, etc.) by a letter without the over-3

line, its coordinates with indices, and elements of a tuple of tuples are dis-4

tinguished by superscripts. For example, we may write b ∈ {0, 1}m and bi5

for the i-the bit of b, and (b1, . . . , bt) for a t-tuple of strings from {0, 1}m. It6

eases on the notation and does not seem to lead to any confusion.7
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Chapter 21

Background: the dWPHP2

problem3

A silent prerequisite for the Conservativity problem 1.0.1 was the negative4

answer to the following question.5

Problem 2.0.1 (The dWPHP problem)6

Does S1
2 prove the dWPHP for all p-time functions, i.e. S1

2 = BT?7

The quantifier complexity of the instances of dWPHP(∆b
1) is ∀Σb

2 and8

hence showing its unprovability may be, in principle, easier than proving the9

non-conservativity.10

It is convenient to expand the language of S1
2 by adding symbols for all11

clocked p-time algorithms and adding also as additional axioms all axioms12

of theory PV1: the universal theory whose axioms are universal formulas13

codifying how algorithms are defined one from another using Cobham’s [16]14

limited recursion on notation and composition, and adding also axioms of15

induction for open formulas. The resulting theory is denoted S1
2(PV). It is16

fully conservative over S1
2 and ∀Σb

1(PV)-conservative over PV1. Theories PV117

and S1
2(PV) are different unless NP ⊆ P/poly. These are classic notions and18

results of bounded arithmetic stemming from [17, 10, 11, 75, 43] and can be19

all found in [45].20

Using the expanded language we can formulate the dWPHP problem21

using the formula dWPHP(f) as defined in (1.0.1) as22

• Does S1
2(PV) prove dWPHP(PV), i.e. all formulas dWPHP(f) for all23

function symbols f in the language?24

19
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Let us note that the dWPHP problem is open for theory PV1 too. We shall1

discuss the problem more in Chapter 8.2

The dWPHP problem has several facets which we shall discuss in the3

next three sections. Links to computational and proof complexity are fos-4

tered by witnessing methods and by propositional translations of proofs of5

Πb
1-formulas in a theory. Both these connections are very general and provide6

a triangle correspondence among theories, proofs systems and computational7

complexity classes. We shall restrict only to the cases of S1
2(PV) and PV1.8

The reader can find a general treatment in [45], see also [65] for the transla-9

tions.10

2.1 Logic: provability and axiomatization11

One of main motivations for the dWPHP problem 2.0.1 was also the funda-12

mental problem of bounded arithmetic, namely the Finite axiomatizabil-13

ity problem:14

• Is full bounded arithmetic S2 finitely axiomatizable?15

In particular, is S1
2 = S2? The scheme dWPHP(PV) seemed to be a good16

candidate to separate these two theories (but the dWPHP problem turned17

out to be very hard). The reader can find (essentially) all known results18

about the finite axiomatizability problem in [45].19

Let f be a PV function symbol and think in the dWPHP(f) formula20

about the parameter as a := 2n. The formula (1.0.1) then says that f does21

not map {0, 1}n onto {0, 1}n+1. For any specific domain {0, 1}n the function22

f is computed by a circuit, say C. If f depended just on x the size of C23

would be nO(1). But the symbol f may have other arguments than just x;24

for example, f(x, y). Picking some specific y := e may thus force the size of25

C to be bigger.26

On the other hand, if we have a function g computed by a family of circuits27

{Cn}n (not necessarily of polynomial size) the dWPHP for g follows from the28

instance of the principle for the p-time circuit value function CV (x, y)29

that evaluates circuit y on input x. Namely, picking y := Cn implies that30

CV satisfies dWPHP on {0, 1}n iff g does. This gives the following statement31

pointed out in [35].32

Theorem 2.1.133
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BT is axiomatized over S1
2 by the instance of dWPHP for the circuit value1

function CV .2

Now we turn to the ∀Σb
1(PV)-consequences of BT. It can be analyzed3

using Herbradization as in [35] or via model-theory as in [14, 15]. Consider4

the following principle dWPHP1(f, g):5

∃y < 2a, g(y) ≥ a ∨ f(g(y)) ̸= y (2.1.1)6

formalizing that f, g is not a pair of a function f violating dWPHP and a7

function g that is its inverse (both functions may have additional parame-8

ters). Clearly all instances of dWPHP1(PV,PV) follow over S1
2(PV) from9

dWPHP(PV). The next statement is a form of a converse.10

Theorem 2.1.2 ([35, Cor.4])11

Any ∀Σb
1(PV)-consequence of BT is implied over S1

2(PV) by the axiom12

dWPHP1(CV,CV ), the instance of dWPHP1(f, g) for both f, g being the cir-13

cuit value function (with different parameters).14

Corollary 2.1.315

1. The dWPHP problem 2.0.1 has the negative answer, i.e. S1
2 ̸= BT iff16

S1
2 does not prove formula dWPHP(CV ).17

2. The conservativity problem 1.0.1 has the negative answer, i.e. S1
2 ̸⪯Σb

1
18

BT iff S1
2 does not prove formula dWPHP1(CV,CV ).19

Let us note that all statements in this section hold also if S1
2 is replaced by20

PV1, i.e. also BT gets replaced by PV1 + dWPHP(PV). This last theory is21

called APC1 and [36] used it instead of (possibly) stronger BT to formalize22

approximate counting methods.23

The functions entering the dWPHP scheme (or dWPHP1) are allowed to24

have parameters. But, in fact, parameters are not needed if we work over25

S1
2(PV).26

Theorem 2.1.427

1. For every p-time function f with parameters there is a p-time function28

g without parameters such that S1
2(PV) proves the implication:29

dWPHP(g) → dWPHP(f) . (2.1.2)30
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2. There is one p-time function g without parameters such that S1
2(PV)1

proves (2.1.2) for all pt-ime f (with parameters).2

We stated the first part separately although it is implied by the second one3

as its proof in [102, L.3.8] is simpler than the proof in [34, 35] of the second4

part. The function featuring in the second part is the truth-table function5

we shall introduce and discuss in Section 4.3. Let us note that it is unknown6

(and unlikely by results in Chapter 8) whether this theorem holds also for7

PV1 or TPV.8

It is occasionally suggested that because BT (or APC1) are related to ran-9

domized computations while S1
2(PV) (or PV1) to p-time computations one10

ought to expect - in an analogy with the hypothesis of universal derandomiza-11

tion - that S1
2(PV) = BT (or PV1 = APC1). This analogy is fallacious: the12

theories correspond to the classes of functions via their ∀Σb
1-consequences (see13

Section 2.2) while both BT and APC1 are ∀Σb
2-axiomatized. The fallacy of14

the analogy is clearly seen at the following example: both PV1 and S1
2(PV)15

correspond to p-time functions but are different unless NP ⊆ P/poly, cf.16

[75].17

Let us also remark that it follows from these statements that NP- and18

Σp
2-search problems definable in BT or APC1 can be reduced to the search19

problems determined by dWPHP1(CV,CV ) and dWPHP(CV ), respectively.20

What reduced means exactly depends on whether S1
2 or just PV1 (or even21

a weaker theory) was used as the base theory. We shall return to search22

problems briefly in Section 9.5.23

2.2 Computational complexity: witnessing24

The link from theories, in our case bounded arithmetics, to computational
complexity is provided by witnessing theorems. In general they assert that
if a theory T proves a statement of the form ∀x∃yA(x, y) with A from a
syntactic class Γ then there is a function f in a computational complexity
class C that witnesses the statement:

∀x, A(x, f(x)) .

For example, for T being PV1 or S1
2 and Γ = Σb

1 the class C can be just the25

class of p-time functions; for PV1 this is a simple consequence of Herbrand’s26
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theorem, for S1
2 this is Buss’s theorem. In fact, Buss’s theorem can be used1

to prove that S1
2 is ∀Σb

1(PV)-conservative over PV1, cf.[10, 45].2

An immediate consequences of these witnessing theorems is the following3

statement.4

Corollary 2.2.15

Assume BT is ∀Σb
1-conservative over S1

2 . Then any formula from the6

class dWPHP1(PV,PV) can be witnessed by a p-time function.7

It is easy that we can witness formula dWPHP1(f, g) by a randomized p-time8

algorithm: pick independently and at random polynomially many potential9

witnesses y and check whether one of them witnesses the formula. This will10

fail to happen with an exponentially small probability. Hence assuming that11

universal derandomization is possible we would also get a p-time witnessing12

function. This would seem to suggest, assuming universal derandomization,13

that the Conservativity problem 1.0.1 ought to have the affirmative solution:14

BT ought to be ∀Σb
1-conservative over S

1
2 . However, such an argument would15

work only if the derandomization were provable in S1
2 . I find that unlikely.16

For example, we shall see in Theorem 4.3.2 that the existence of Boolean17

functions that has no circuits of size≤ 2ϵn is actually equivalent over S1
2 to the18

dWPHP for p-time functions. In particular, the popular hypothesis used in19

universal derandomization that the computational class E (small exponential20

time 2O(n)) contains languages whose characteristic functions require so big21

circuits is unlikely to be provable in S1
2 unless it equals to BT.22

Formulas in dWPHP(PV) are Σb
2 so we need witnessing for proofs of23

such formulas in PV1 or S1
2 . This time there is a difference between the24

two theories: axioms of S1
2 are themselves Σb

2 but PV1 ̸= S1
2(PV) unless25

NP ⊆ P/poly by [75]. The class of functions where we shall find witnessing26

functions are those computable in a particular interactive manner.27

Assume we are given a formula of the form:28

∀x∃y(|y| ≤ |x|c)∀z(|z| ≤ |x|d), A(x, y, z) (2.2.1)29

for some constants c, d ≥ 1 (it is actually not necessary to assume these30

bounds but it simplifies the discussion). A witnessing function f should thus31

from input x ∈ {0, 1}n compute some y, |y| ≤ nc such that32

∀z(|z| ≤ nd), A(x, y, z) . (2.2.2)33
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The function will be computed interactively by two players: student S and1

teacher T. Student is a p-time algorithm while teacher has unlimited powers2

(i.e. it is an oraculum). Upon receiving input x S computes its first can-3

didate solution y1. If it satisfies (2.2.2) then T acknowledges that and the4

computation stops with the output y1. If y1 is incorrect T will provide to5

S a counter-example: a z1, |z1| ≤ nd ∧ ¬A(x, y, z). Knowing z1 S computes6

its new candidate solution y2. In general we are interested in the number of7

rounds S needs in the worst case to solve the task for all x ∈ {0, 1}n. We will8

call this type of computation briefly S-T computations.9

Note that formula (2.2.1) is ∀Σb
3 if A ∈ Σb

1 and that it is ∀Σb
2(PV) if

A(x, y, z) is the dWPHP formula

y < 2x ∧ (z < x → f(z) ̸= y) .

Theorem 2.2.210

Let f be a PV function symbol and assume that dWPHP(f) is provable11

in (a) PV1 or in (b) S1
2(PV).12

Then there is a p-time student S that interacting with any T computes a13

function witnessing the formula in (a) O(1) rounds or in (b) nO(1) rounds,14

respectively.15

The theorem has a more delicate form that we shall need later; namely16

theory PV1 proves that S solves the task. A student working in a constant17

number of rounds, say k ≥ 1, can be represented by k p-time functions18

S1(x), S2(x, z1), . . . , Sk(x, z1, . . . , zk−1) computing his moves in each round.19

The fact that he succeeds is equivalent to the validity of disjunction20 ∨
1≤i≤k

(Si(x, z1, . . . , zi−1) < 2x ∧ f(zi) ̸= Si(x, z1, . . . , zi−1)) . (2.2.3)21

A student working in nk rounds will be represented by a p-time machine
S(x, z) that has a limited oracle access to string z = (z1, . . . , zt) of t strings
zj < x; we shall write this briefly as

z ∈ [x]t

and we shall denote by z|i the initial part of z consisting of first i strings zj22

with z|0 being the empty string. The fact that S always succeeds in nk steps23

is now equivalent to the validity of24

z ∈ [x]|x|
k → ∃i < |x|k, S(x, z|i) < 2x ∧ f(zi+1) ̸= S(x, z|i) (2.2.4)25

Theorem 2.2.2 can now be strengthen to26
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Theorem 2.2.31

Let f be a PV function symbol and assume that dWPHP(f) is provable2

in (a) PV1 or in (b) S1
2(PV).3

Then there is a p-time student S that interacting with any T computes4

a function witnessing the formula in (a) O(1) rounds or in (b) nO(1) rounds5

such that (2.2.3) and (2.2.4) are provable in PV1, respectively.6

The opposite implications also hold.7

We shall encounter S-T computations a number of times later. In partic-8

ular, and Section 8.1 we give a variant of Theorem 2.2.3 and we shall discuss9

in Section 8.4 a relation between the assumption that dWPHP cannot be10

witness by S-T computation with polynomially many (or constantly many)11

rounds with another computational hypotheses.12

2.3 Proof complexity: τ-formulas13

Witnessing we discussed in Section 2.2 presupposes that the formula in ques-14

tion has an existential quantifier to witness. If a formula is open (no quanti-15

fiers at all), universal or, more generally, Πb
1(PV) we deduce some information16

from the existence of its proof in a theory using the concept of propositional17

translation.18

The translation assigns to a Πb
1(PV)-formula B(x) (with one free variable

x for the simplicity of the notation) a sequence {||B||n}n of propositional
formulas. The n-th formula has atoms p = (p1, . . . , pn) and some auxiliary
atoms q, polynomially many in n of them, and it is constructed so that for
all b ∈ {0, 1}n:

N |= B(b) ⇔ ||B||n(b, q) ∈ TAUT .

The translation is quite natural: it commutes with the logical connectives19

and replaces sharply bounded quantifiers by big disjunctions or conjunctions.20

Atomic formulas are translated using natural circuits computing the PV-21

functions involved in the formula. It is analogous to the standard proof22

of the NP-completeness of SAT. We shall just summarize in the next two23

statements the key properties the translation has. The reader can find details24

in [65, 12.3], [45] or in original [17, 70].25

Lemma 2.3.126
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For a Πb
1(PV)-formula B(x) there is a p-time function (represented by a

PV-function symbol) f such that

f : 1(n) → ||B||n

and PV1 proves

∀x(|x| = n), B(x) ≡ (||B||n(x, q) ∈ TAUT) .

The key fact is that a theory T is attached to a proof system P such that1

whenever ∀xB(x) is T -provable then formulas ||B||n have p-size P -proofs. We2

state this just for the theories used earlier in this chapter.3

The following notation is handy:4

• P ⊢∗ αn: there are p-size P -proofs of formulas αn,5

• π : P ⊢ β : π is a P -proof of β.6

Theorem 2.3.27

Assume that B(x) ∈ Πb
1(PV) and that S1

2(PV) proves ∀xB(x). Then8

EF ⊢∗ ||B||n.9

In fact, there is a p-time function (represented by a PV-function symbol)
f such that PV1 proves

f(1(n)) : EF ⊢ ||B||n .

Applying the translation and this theorem to formulas (2.2.3) and (2.2.4)10

yields the following statement key for next chapter.11

Corollary 2.3.312

Let f be a PV function symbol and assume that (a) PV1 or (b) S1
2(PV)13

proves WPHP(f).14

Then the || . . . ||n translations of the formulas (a)15

∀z1, . . . , zk < x′
∨

1≤i≤k

(Si(x, z1, . . . , zi−1) < 2x ∧ f(zi) ̸= Si(x, z1, . . . , zi−1))

(2.3.1)16

or (b)17

∀z(|z| < x|x|k∃i < |x|k, S(x, z|i) < 2x ∧ f(zi+1) ̸= S(x, z|i) (2.3.2)18

have p-size EF -proofs, respectively. Moreover, these proofs can be con-19

structed provably in PV1 by a p-time function.20
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2.4 Strong proof systems1

Recall that a Cook-Reckhow proof system [19] is a p-time decidable2

binary (provability) relation P (x, y) such that ∃yP (x, y) defines TAUT, and3

that we write the relation P (α, π) as π : P ⊢ α; we call the string π a4

P -proof of α.5

The efficiency of any proof system P is measured primarily by its lengths-
of-proofs function sP . For a proof system P and a formula α put:

sP (α) := min{|π| | π : P ⊢ α}

if α ∈ TAUT, and sP (α) := ∞ otherwise. P is p-bounded iff

∀α ∈ TAUT sP (α) ≤ |α|O(1) .

6

Theorem 2.4.1 ([19])7

A p-bounded proof system exists if and only if NP = coNP.8

Our fundamental task is therefore to decide the existence of a p-bounded9

proof system. The following definition is handy when discussing tautologies10

hard to prove.11

Definition 2.4.2 (hard sets of tautologies)12

A subset H ⊆ TAUT is hard for a proof system P iff for any c ≥ 1 the13

inequality sP (α) ≤ (|α|+ c)c holds for at most finitely many formulas in H.14

A hard set exists for P iff P is not p-bounded, meaning that sP is not bounded15

by a polynomial. Thus if we believe that NP ≠ coNP the task becomes to16

show that all P admit a hard set (of tautologies). It may be that actually17

NP = coNP but a good strategy to show that still may be to try to define18

candidate hard sets and see where the obstacle lies.19

We aim primarily at strong proof systems which are, informally, those in20

the top two levels of the partitioning of proof systems into four levels in [65,21

Chpt.22]. To simplify writing technical hypotheses in many statements we22

adopt the following formal definition of strong proof systems.23
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Definition 2.4.3 (strong proof systems)1

A proof system P is strong, written P ⊇ EF, iff P is EF augmented by2

a p-time subset A ⊆ TAUT as additional axioms: any substitution instance3

of any formula in A can be used in a proof. Such system will be denoted4

EF+ A.5

The usefulness of this definition stems from the following properties sys-6

tems EF + A have (this uses just classic proof complexity, cf. [70, 45, 65]).7

Theorem 2.4.48

Strong proof systems P have the following properties:9

1. Any proof system Q can be p-simulated (provably in PV1) by a strong10

proof system.11

2. P ⊢∗ ||ConP ||n as well as P ⊢∗ ||RefP ||n, where ConP and RefP are the12

consistency and the reflection principles for P .13

3. There is c ≥ 1 such that:14

• whenever σ ∈ TAUT and σ′ is obtained from σ by substituting for15

some atoms constants 0 or 1 then sP (σ
′) ≤ sP (σ)

c, and16

• for all α, β: sP (β) ≤ (sP (α) + sP (α → β))c.17
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τ-formulas and generators2

This chapter introduces the key definitions of τ -formulas, generators, and3

their hardness and pseudo-surjectivity, and states and proves several basic4

facts about them. We also present two conjectures and we discuss their5

implications for the original dWPHP problem 2.0.1. Further we outline a6

model-theoretic view of the conjectures. Finally we give some examples how7

are (and how are not) pseudo-random generators related to proof complexity8

generators.9

3.1 τ-formulas and generators10

A Boolean circuit C of size s with n inputs x = x1, . . . , xn and m outputs11

z = z1, . . . , zm is a series of s intermediate values y = y1, . . . , ys defined12

by instructions how to compute each yi using De Morgan basis functions13

from inputs x, constants 0, 1 or from earlier yjs (we shall sometimes re-14

fer to yi themselves as instructions). The m-tuple z is just the m-tuple of15

the last m intermediate values yis. Hence computation can written also as16

y1, . . . , ys−m, z1, . . . , zm. Each instruction can be written as 3-CNF, so all s17

instructions of C can be collected in one 3-CNF we shall denote DefC(x, y, z)18

or Defn,m,s
C (x, y, z) when we want to stress the parameters. Note that the19

formula has at most 3s 3-clauses.20

Assume 1 ≤ n < m and let gn : {0, 1}n → {0, 1}m be a function com-21

puted by a size s circuit Cn with n inputs xu, m outputs zv, and instructions22

yi, as above. The complement of the range of gn, {0, 1}m \ rng(gn), contains23

at least half of elements of {0, 1}m and, in particular, it is non-empty.24

29
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Definition 3.1.1 (τ-formulas)1

Given any string b ∈ {0, 1}m define the propositional τ-formula τ(Cn)b
to be the 3DNF:

¬DefCn
(x, y, z) ∨

∨
i∈[m]

bi ̸= zi .

The size of the formula is O(s) and for all b ∈ {0, 1}m:

τ(Cn)b ∈ TAUT iff b /∈ rng(gn) .

When we want to stress the propositional atoms in the formula we may2

sometimes use p for (bits of) x and q for (bits of) y.3

We want to study the complexity of τ -formulas determined by one func-4

tion g : {0, 1}∗ → {0, 1}∗ for unbounded input size n. We shall consider func-5

tions g defined by a sequence of circuits {Cn}n that compute finite functions6

gn := g ↾ {0, 1}n, the restrictions of g to {0, 1}n. The following definition is7

handy to avoid long technical hypotheses of various statements.8

Definition 3.1.2 (generators)9

A function g = {Cn}n is generator iff it satisfies the following two10

conditions:11

1. g is stretching: There is a function n → m := m(n) > n such that12

for any n ≥ 1, Cn has m(n) outputs.13

The function m(n) is called the stretch.14

2. The size of Cn is mO(1).15

Sometimes it is useful to assume that the stretch is an injective function;16

that implies that a string b can be in rng(gn) for at most one n. We shall17

call such functions g uniquely stretching. The second condition implies18

that the size of τ(Cn)b is m
O(1) which is also |b|O(1).19

Calling functions from the definition generators is in order to keep up with20

the somewhat unfortunate but established terminology calling the functions21

proof complexity generators. The term generator was used at the start: [5]22

specifically targeted pseudo-random generators and their role in proof com-23

plexity, and to me it looked like that the dWPHP problem 2.0.1 will have a lot24

to do with cryptographic primitives (one-way functions and pseudo-random25
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generators) and their formalization in bounded arithmetic. The connection1

to pseudo-randomness turned out to be eventually less direct and more subtle2

and we shall discuss it in Section 3.6.3

To find our peace with the term generator we may interpret it as meaning4

that any such g generates a class of τ -formulas τ(Cn)b, n ≥ 1 and b ∈5

{0, 1}m\rng(gn). We shall often use simpler notation τ(g)b for the τ -formulas6

when circuits Cn are clear from the context.7

If a generator g is computed by a specific deterministic algorithm (i.e.8

a Turing machine) running in time polynomial in m(n) we assume that the9

algorithm determines canonically circuits Cn. One may use, for example,10

the construction underlying the usual proof of the NP-completeness of SAT.11

We may stress this by saying that g is a uniform generator (and we refer12

sometimes to general generators as non-uniform). Talking about a genera-13

tor as of a function in this case is a mild abuse of language as the τ -formulas14

are determined by the underlying algorithm and not by the function. How-15

ever, when defining various uniform g there is always a canonical algorithm16

computing g and there is no danger of a confusion. Moreover, the candidate17

uniform generators ought to be hard for all algorithms computing them.18

For a generator g we shall denote by τFla(g) the set of all τ -formulas19

determined by g:20

τFla(g) := {τ(g)b | b ∈
⋃
n≥1

{0, 1}m(n) \ rng(gn)} . (3.1.1)21

It will be clear after defining the hardness in the next section why we leave22

out b whose length is not m(n) for some n. In fact, strictly speaking it is not23

necessary as we have not defined the τ -formulas for b which do not have the24

length m(n) for some n ≥ 1. However, if we look at τ -formulas as being the25

translations of the formula (3.1.2) we could substitute into it also strings b26

that do not have the appropriate length and that could lead to a confusion:27

for example, if |g(x)| = 2|x| it is easy to prove that strings of odd size are28

not in the range of g.29

Note that we have a symbol in the language of PV for any uniform and30

p-time generator g and that if g is uniquely stretching then the τ -formula31

τ(g)b is simply the propositional translation of Section 2.3 of the arithmetic32

formula expressing that y /∈ rng(g):33

∀x(|x| ≤ |y|) g(x) ̸= y (3.1.2)34
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with b substituted for (bits of) y.1

Let us remark that formula (3.1.2) remains Πb
1 even if g is onlyNP∩coNP2

and hence the τ -formulas could be defined for these functions (even for non-3

uniform variants) as well. We shall discuss this in Chapter 5.3.4

3.2 Hardness and the working conjecture5

The following elegant definition was given (somewhat informally) in [5]. I6

originally used in [49, 50] instead a model-theoretic condition described here7

in Section 3.5.8

Definition 3.2.1 (hard generators, [5])9

A generator g is hard for a proof system P if and only if the set τFla(g)10

is hard for P . That is, for all c ≥ 1, for all but finitely many τ(g)b ∈ τFla(g)11

sP (τ(g)b) > (|τ(g)b|+ c)c . (3.2.1)12

If the inequality (3.2.1) holds even with an exponential term 2|τ(g)b|
Ω(1)

we13

shall call g exponentially hard for P .14

Now we can state our first working conjecture. The qualification working15

is meant to stress that while we think it is true we do not consider it carved16

in stone and we take it primarily as a sign-post for further research.17

Conjecture 3.2.2 (Working conjecture, [51])18

There exists a uniform p-time generator g with the stretch n + 1 that is19

hard for all proof systems P .20

The requirement on the stretch is not essential (we can always truncate a21

hard p-time generator to stretch n+ 1 and keep the hardness) but it allows22

us to reformulate the conjecture in the following simple but elegant way.23

Lemma 3.2.3 ([51, 68])24

A p-time g with the stretch n+1 satisfies the working conjecture 3.2.2 iff25

rng(g) intersects all infinite NP sets (i.e. rng(g) is NP-immune).26
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Proof:1

Assume w.l.o.g. that P is a strong proof system (Def 2.4.3) and that
condition (3.2.1) fails for some fixed c ≥ 1 and infinitely many b /∈ rng(g).
Define set

{b ∈ {0, 1}∗ | sP (|τ(g)b|) ≤ (|τ(g)b|+ c)c} .

It is in NP , infinite and is disjoint with rng(g).2

For the opposite direction assume that an infinite NP set A is defined
by the condition

x ∈ A ⇔ ∃y(|y| ≤ |x|d)RA(x, y)

where RA a p-time relation, and it is disjoint with rng(g). Then g is not
hard for the strong proof system extending EF by accepting also as a proof
of the τ -formula τ(g)b any string π such that

|π| ≤ |b|d ∧ RA(b, π) .

q.e.d.3

The lemma can be modified to characterize uniform generators hard for4

a given proof system using the following notion (quite close to resultants in5

model theory, hence the name).6

Definition 3.2.4 (resultant, [51])7

For a proof system P and uniform generator g define the resultant to be8

the set ResPg of all NP sets which can be defined by a Σb
1-formula A(x) such9

that P proves by p-size proofs that {y | A(y)} is disjoint from rng(g):10

P ⊢∗ ||g(x) = y → ¬A(y)||n . (3.2.2)11

Lemma 3.2.5 ([51])12

Assume P is a strong proof system and g is a p-time generator. Then g13

is hard for P iff ResPg contains no infinite set.14

Proof:15

Assume a p-time g is not hard for P , i.e. for some c ≥ 1 the inequality
sP (τ(g)b) ≤ |b|c holds for infinitely many b (using that |τ(g)b| ≤ |b|O(1)).
Define NP set by the formula

A(y) := [∃x ≤ y|g(x)| = |y|] ∧ [∃π(|π| ≤ |y|c) π : P ⊢ τ(g)y] .
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As we assume that P is strong, it proves (by Theorem 2.4.4) by p-size proofs1

its own soundness, and hence the condition (3.2.2) holds. The resultant thus2

contains an infinite set.3

The opposite direction is proved analogously as in Lemma 3.2.3.4

q.e.d.5

The uniform version of resultant in Def.3.2.4 is from [65, Sec.19.4]. Orig-6

inally [51] considered a version for non-uniform generators g = {Cn}n and7

the resultant in that case refers to NP/poly sets. If that resultant contains8

no infinite set then g is hard for P but to get an equivalence one needs to9

restrict advices the sets in the resultant may use to circuits Cn.10

Let us conclude this section by recording an obvious observation.11

Lemma 3.2.612

For any strong proof system P : there is a generator (exponentially) hard13

for P iff the circuit value function CV is (exponentially) hard for P .14

3.3 The pseudo-surjectivity conjecture15

The idea underlying hard generators g is that these ought to be functions
that violate - relative to a proof system - the dWPHP. That is, one can think
consistently - in the theory associated to the proof system - that some gn is
onto. Consider, however, the situation when g is hard but you can shortly
prove infinitely many disjunctions

τ(Cn)b1 ∨ τ(Cn)b2

for n ≥ 1 and |bi| = m(n).16

To give another example, and a general definition of similar disjunctions
later, we need to make in τ -formulas explicit some atoms. Recall that for a
generator g = {Cn}n, when writing τ(Cn)b(p) we mean that p is an n-tuple
of atoms corresponding to x in (the translation of) the statement g(x) ̸= b;
there are other atoms q corresponding to the intermediate values of Cn in
DefCn . Hence the disjunction above can be written as

τ(Cn)b1(p
1) ∨ τ(Cn)b2(p

2) .
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In the second example assume you can shortly prove a bit more involved
disjunctions of the form

τ(Cn)b1(p
1) ∨ τ(Cn)B2(p2)

where B2(p1) is a circuit computing m-string from an n-string p1. This latter
disjunction may appear as a translation of a natural first-order statement

g(x1) ̸= b1 ∨ g(x2) ̸= f(x1)

where f is a p-time function, and the formula τ(Cn)B2 involves defining B2
1

using DefB2 .2

Note that in both these examples we cannot consistently think that Cn3

is surjective: in the first case one of b1, b2 cannot be in the range and in4

the second case either b1 is not in the range or, if Cn(a
1) = b1, then string5

b2 := B2(a1) is not in the range.6

The general form of disjunctions for generator g = {Cn}n we need to7

consider is this:8

τ(g)B1(p1) ∨ τ(g)B2(p1, p2) ∨ · · · ∨ τ(g)Bt(p1, . . . , pt) (3.3.1)9

where Bi are circuits with inputs p1, . . . , pi−1. The following definition is10

crucial.11

Definition 3.3.1 (pseudo-surjectivity, [51])12

A generator g = {Cn}n is pseudo-surjective for a proof system P iff13

for any c ≥ 1, for at most finitely many n ≥ 1 and disjunctions (3.3.1) with14

Bi having m(n) outputs have P -proof of size less than m(n)c.15

Similarly as with the hardness, if there are no P -proofs of size less than16

exp(mΩ(1)) we say that g is exponentially pseudo-surjective for P .17

Note that the pseudo-surjectivity obviously implies the hardness. Analo-18

gously to Lemma 3.2.6 we have19

Lemma 3.3.220

For any strong proof system P : there is a generator (exponentially) pseudo-21

surjective for P iff the circuit value function CV is (exponentially) pseudo-22

surjective for P .23
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We shall see in Section 4.3 another example of a function that has this uni-1

versal property.2

Now we can state our second conjecture.3

Conjecture 3.3.3 (Pseudo-surjectivity conjecture, [51])4

There exists a p-time generator with the stretch n + 1 that is pseudo-5

surjective for EF.6

Results in Sections 4.3 and 4.4 will imply that it is not reasonable to7

expect that a pseudo-surjective generator exists for all proof systems, unless8

you are prepared to believe that NE ∩ coNE ⊆ P/poly, cf. [51].9

The next theorem will show that there exists a function pseudo-surjective10

for EF unless EF simulates a proof system that appears to be stronger. The11

proof system in question is WF (for weak PHP Frege ), an extension of12

the proof system CF (standing for circuit Frege, a reformulation of EF).13

Both were defined in [34, 35] in a way equivalent to the following one, cf.[65,14

Sec.7.2].15

Starting with a Frege system F in the DeMorgan language we define a16

CF-proof of a target circuit B from initial circuits Aj to be a sequence of17

circuits π = C1, . . . , Ck such that:18

• Each Ci:19

– is either one of initial circuits Aj,20

– or it is derived from some some earlier circuits Cj1 , . . . Cjℓ , j1, . . . , jℓ <21

i by an inference rule of F :22

D1, . . . , Dℓ

D0

(3.3.2)23

That is, there is a substitution σ of circuits for atoms in the for-24

mulas Du such that σ(Du) = Cu for u = 0, . . . ℓ,25

– or there is j < i such that Ci is similar to Cj,26

• Ck = A.27

The similarity of circuits E,E ′ means that when we unwind the them (in28

some unique way) to formulas then these two formula are identical. Note29

that similarity of circuits is P (cf. [65, L.7.2.1]).30

Having CF we define a WF-proof of B from A1, . . . , At to be a CF-proof31

that can also use the following rule:32
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• For any 1 ≤ n < m and any collection C of m circuits Ci(x), all
with n inputs x, introduce a new m-tuple of atoms r = (r1, . . . , rm)
that is attached to the collection C such that no ri occurs in any of
B,A1, . . . , At, C1, . . . , Cm, and for any circuits D1, . . . , Dn (which may
contain r) we may use the axiom:∨

i≤m

Ci(D1, . . . , Dn) ̸= ri .

Theorem 3.3.4 ([51, Thm.5.2])1

Assume that EF does not simulate the proof system WF. Then EF admits2

a p-time pseudo-surjective generator.3

The proof can be found in [51] or after [65, L.19.5.4]. The generator is the4

truth-table function tts,k with s = 2δk which we shall introduce in Definition5

4.3.1.6

3.4 Consequences for the dWPHP problem7

Using suitable witnessing theorems and propositional translations (Sections8

2.2,2.3) we derive an implication for the dWPHP problem 2.0.1.9

Theorem 3.4.110

Assume that there is a p-time generator g that is pseudo-surjective for11

EF. Then S1
2(PV) does not prove dWPHP(g), i.e. BT ̸= S1

2(PV).12

Proof:13

We shall use Corollary 2.3.3. Assume that g is a p-time generator pseudo-14

surjective for EF. By truncating its output we may assume w.l.o.g. that its15

stretch is n+ 1.16

Assume for the sake of contradiction that dWPHP(g) is provable in
S1
2(PV). By Corollary 2.3.3 (part (b)) the propositional translation of for-

mula (2.3.2) has p-size EF-proofs. This translation has the form of the dis-
junction (3.3.1):

τ(g)B1(p1) ∨ τ(g)B2(p1, p2) ∨ · · · ∨ τ(g)Bt(p1, . . . , pt)

where 1 ≤ t ≤ nO(1) and circuits Bi compute student’s i-th move. As the stu-17

dent is p-time the sizes of Bis are polynomial in m(= n+1). This contradicts18

the assumed pseudo-surjectivity of g for EF.19
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q.e.d.1

The argument can be modified for theory PV1 in place of S1
2(PV) (i.e. the2

dWPHP problem becomes PV1 =? APC1) using the following notion from3

[50, Def.6.1] (it actually preceded the pseudo-surjectivity).4

Definition 3.4.2 (k-freeness, [50])5

Let k ≥ 1 be fixed. A generator g = {Cn}n is k-free for proof system P6

iff for any c ≥ 1, for at most finitely many n ≥ 1 and disjunctions (3.3.1)7

with t = k and with Bi having m(n) outputs have P -proof of size less than8

m(n)c.9

A generator is free iff it is k-free for all k ≥ 1.10

The next statement is derived analogously to Theorem 3.4.1 using part11

(a) of Corollary 2.3.3 instead of part (b).12

Theorem 3.4.313

Assume that there is a p-time generator g that is free for EF. Then PV114

does not prove dWPHP(g), i.e. PV1 ̸= APC1.15

3.5 A model-theoretic characterization16

There is a well-known tight relation between the existence of short proofs and17

extensions of models of bounded arithmetic. We shall formulate it only in18

the version suitable for our purposes; the phenomenon is much more general19

(cf. [45, 65]). Section 7.2 will be concerned with the closely related issue of20

expansions of pseudo-finite structures. General background can be found in21

[65, Chpt.20].22

Let T ⊇ PV1 be a theory in the language of PV1 and let P be a strong23

proof system. We say that T and P correspond to each other iff the24

following two conditions are met:25

1. T ⊢ ConP ,26

2. P simulates T : if B(x) is a Πb
1-formula and T ⊢ B then P ⊢∗ ||B||n.27

Note that by [17] and Theorem 2.3.2 both theories PV1 and S1
2(PV)28

correspond to EF. This is because only the Πb
1-consequences of T play a role29

in the definition.30
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Theorem 3.5.1 ([72])1

Let T ⊇ PV1 be a theory in the language of PV1 and P be a strong proof2

system that correspond to each other. Let M be a model of T and assume3

τ ∈ M is a tautology in the model.4

Then the following two statements are equivalent:5

• M has an extension to M′ such that M′ |= T + ¬τ ∈ SAT.6

• M |= P ̸⊢ τ .7

A simple (though rarely useful) way how to construct non-standard mod-
els of PV1 and S1

2(PV) is to take a nonstandard model M of true arithmetic
in the language of S1

2(PV), its non-standard element n ∈ M \ N and de-
fine the small canonical model to be the substructure Mn of M with the
universe

{u ∈ M | |u| ≤ nk , some k ∈ N} .

It is a cut in M. Large canonical models M∗
n are defined analogously,

just the universes are larger:

{u ∈ M | |u| ≤ 2n
1/k

, all k ∈ N} .

Theorem 3.5.28

Let P be a strong proof system, T ⊇ PV1, and assume they correspond to9

each other. Let g be a p-time generator.10

Assume further that any small canonical model Mn has for any b ∈
{0, 1}m an extension M′ ⊇ Mn such that

M′ |= T + b ∈ rng(gn)

where m = m(n).11

Then the generator g is hard for P .12

Proof:13

If g is not hard for P it means that for some c ≥ 1 and infinitely many14

n′ ∈ N there are formulas τ(g)b ∈ τFla(g), |b| = m(n′) that have P -proofs15

πb of size ≤ (n′)c (here we use that g is p-time so m(n′) is polynomial in n′).16

Hence in M there is a non-standard n for which there is a formula τ(g)b ∈17

τFla(g), |b| = m(n) that has a P -proof πb of size ≤ nc. Therefore also18

πb ∈ Mn and hence, as M′ is a model of T and T ⊢ ConP , b /∈ rng(gn) in19

any extension M′ of Mn.20
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q.e.d.1

We remark that if we assume in addition that T is a universal theory in2

the language of PV1 then also the opposite statement holds.3

The existence of an expansion where the dWPHP fails can be equivalently4

characterized using the notions of pseudo-surjectivity and freeness from Sec-5

tion 3.3. We shall outline the proof; the reader can find details in [50].6

Theorem 3.5.37

Let P be a strong proof system, T ⊇ PV1 be a true universal theory in8

the language of PV1, and assume P and T correspond to each other. Let g9

be a p-time generator.10

Then the following two statements are equivalent:11

• Generator g is free for P .12

• Every small canonical model Mn has an extension M′ ⊇ Mn such that

M′ |= T + rng(gn) = {0, 1}m

where m = m(n).13

The same is true for pseudo-surjectivity when M′ is required to be a model14

of T + S1
2(PV).15

Proof:16

We shall treat the case of pseudo-surjectivity as it is going to be used17

later. Assume first that g is not pseudo-surjective for P . As in the previous18

proof there is a non-standard n ∈ M such that Mn contains a P -proof of a19

disjunction having the form as in the definition of pseudo-surjectivity. This20

proof will be also in any M′ and hence the disjunction will be a tautology in21

M′ too. Hence gn cannot violate the dWPHP.22

Now assume that g is pseudo-surjective for P and hence for no non-
standard n does Mn contain a P -proof of a pseudo-surjectivity disjunction.
Assume for the sake of a contradiction that no extension with the required
properties exists. This mean that theory

T + S1
2(PV) + Diag(Mn)
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where Diag(Mn) is the atomic diagram of the small canonical model proves1

that gn is not onto.2

By a variant of the witnessing Theorem 2.2.3 for T this means that T +3

Diag(Mn) proves a disjunction as in (2.2.4) expressing that a p-time student4

solves the witnessing task in nk rounds. By the correspondence between5

T and P , the propositional translation || . . . ||n of the disjuction has a p-6

size P -proof in M from (translations of) sentences in Diag(Mn). But all7

(translations of) sentences on the diagram are just true Boolean sentences8

that are proved in P by their evaluations. This gives a p-size P -proof πn ∈ M9

of some disjunction as in the pseudo-surjectivity. That is a contradiction.10

q.e.d.11

Statements analogous to these two theorems about exponential hardness12

(or exponential freeness or exponential pseudo-surjectivity) hold when one13

uses large canonical models instead small ones.14

The key message from this section is that Theorem 3.5.2 suggests a way to15

prove the hardness of g (for particular P ): find a construction of extensions16

of small canonical models satisfying suitable theory T corresponding to P .17

We shall discuss a related approach in Sections 7.2 and 7.3.18

3.6 A relation to pseudo-randomness19

The authors of [5] insisted on the role of pseudo-random number generators20

(PRNGs, in short), stressing it already in the title of their paper. I just21

thought originally (as articulated in [49, 50]) that a random behavior of22

generators will be important (and sufficient). Things developed in a bit23

more subtle way.24

The Nisan-Wigderson generator treated at length in [5, 97] is still a good25

candidate generator - and we shall discuss it in Chapter 5 and Section 5.326

- but no other commonly studied PRNG was ever proposed as a candidate27

proof complexity generator. In fact, we shall see below that the construc-28

tion of PRNGs from one-way permutations via hard bits does not lead to29

generators hard for all proof systems (often not even for EF).30

I also moved away from my initial view that random behavior may be31

crucial and I think now that the impossibility to witness errors by restricted32
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computational means is more crucial. This is meant in the formalism of [60]1

and we shall discuss it in Chapter 7 (Sections 7.4 and 7.5).2

Nevertheless, in this section we present a few examples and statements3

illustrating the role of PRNGs. Let us recall first the notion of pseudo-random4

number generators; we shall deviate slightly from the standard terminology5

in order to avoid a clash with our notions of hardness.6

The PRNG-hardness H(g) of stretching function g = {gn}n, gn :
{0, 1}n → {0, 1}m(n), is the function assigning to n ≥ 1 the minimum S
such that there is a circuit C(y) with m(n) inputs and of size ≤ S such that

|Probx∈{0,1}n [C(g(x)) = 1] − Proby∈{0,1}m [C(y) = 1]| ≥ 1

S
.

A pseudo-random number generator is a p-time stretching function g7

that has super-polynomial hardness: H(g) ≥ nω(1).8

The reader ought to recall the concept of feasible interpolation, cf. [65,9

Chpt.17-18].10

Theorem 3.6.1 ([5])11

Assume that g is a PRNG with stretch m(n) ≥ 2n + 1 and define g∗ :
{0, 1}2n → {0, 1}m for u, v ∈ {0, 1}n by:

g∗(u, v) := g(u)⊕ g(v)

where ⊕ denotes the bit-wise sum modulo 2.12

Then g∗ is a (proof complexity) generator hard for all proof systems sim-13

ulating resolution R and admitting feasible interpolation.14

Proof:15

Assume P is a proof system that admits feasible interpolation and that
formula τ(g∗)b has a size s P -proof. Then (the || . . . || translation of)

g(u) ̸= y ∨ g(v) ̸= y ⊕ b

has a size s+mO(1) = sO(1) P -proof.16

The feasible interpolation property then yields a size sO(1) circuit I with
m inputs y defining a set (also denoted I) separating rng(g) from b⊕rng(g):

rng(g) ⊆ I and I ∩ b⊕ rng(g) = ∅ .
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If I contains at most a half of {0, 1}m then ¬I defines a subset of measure1

≥ 1
2
in the complement of rng(g) and hence H(g) ≤ |I| ≤ sO(1). Otherwise2

I ⊕ b defines such a subset. Hence sO(1) ≥ H(g).3

Therefore, if s were nO(1), g is not PRNG.4

q.e.d.5

For the next statement let h : {0, 1}∗ → {0, 1}∗ be a permutation (a
bijection preserving the length) and assume it is a one-way permutation
(OWP, shortly), and further assume that B is a hard bit predicate for h.
Then by [106] the generator

x → (h(x), B(x))

is a PRNG.6

Theorem 3.6.2 ([50])7

Assume h is a OWP and B is its hard bit predicate, and let g be the8

PRNG as defined above. Assume further that P is a strong proof system9

such that10

P ⊢∗ ||h(u) = h(v) → u = v||n . (3.6.1)11

Then g is not a hard proof complexity generator for P .12

In particular, if g is constructed in this way from the RSA and B is the13

parity of the pre-image then g is not hard for EF.14

Proof:15

Take any b ∈ {0, 1}n+1\rng(gn). As h is a permutaion we have rng(hn) =16

{0, 1}n and so for some a ∈ {0, 1}n17

h(a) = b and B(a) ̸= bn+1 . (3.6.2)18

A P -proof of τ(gb) can be thus given as follows: take a and verify (3.6.2),
and subsequently derive b /∈ rng(gn) by using the injectivity (3.6.1) of h, the
translation of

h(x) = b → x = a .

The statement about EF follows as EF has p-size proofs of the injectivity19

of the RSA is by [73] provable in S1
2(PV) (and use propositional translation).20

q.e.d.21
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The theorem implies that PRNGs are not a priori hard proof complexity1

generators but that a PRNG may be a hard proof complexity generator2

because of its specific construction (the prominent example is the Nisan-3

Wigderson generator - Chapter 5).4

We shall mention one more example from the worlds of pseudo-randomness.
Rudich [99] attempted to generalize the concept of natural proofs of [98] to
non-deterministic circuit complexity. One notion he considered goes under
the name demi-bit. Given a generator g consider non-deterministic circuits
Cn with m = m(n) inputs satisfying

C(−1)
n (1) ∩ rng(gn) = ∅.

The demi-bit hardness of g is the minimal s = s(n) such that there are such
Cn of size ≤ s satisfying also the following largeness condition:

|C(−1)
n (1)| ≥ 2m/s .

A generator based on the subset sum following [32] is proposed in [99] as a5

candidate for having large hardness in the above sense but no (even informal)6

evidence for that is offered. Cf. also [60, Sec.30.4].7
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The stretch2

A view of generators we explore in this chapter is that they can be thought of3

as decompression algorithms. Hence their range contains only strings w that4

allow in a sense for shorter than size |w| description. Two prominent ways5

how to formalize compressibility are Kolmogorov’s complexity and circuit6

complexity. I think that both of them are too universal concepts to allow to7

prove the hardness of some specific generators but nevertheless we ought to be8

aware of these connections. In fact, it may turn out that results about proof9

complexity generators will imply statements about Kolmogorov or circuit10

complexity.11

4.1 Stretch and Kolmogorov complexity12

Every string e ∈ {0, 1}∗ is also interpreted as a code of a unique Turing13

machine. We take a time-restricted universal Turing machine U with three14

inputs: machine code e, input to that machine u and string 1(t) of t ones15

bounding the time. Machine U will simulate machine e on input u for at16

most t steps. It will stop, and output the same string, if e stops in ≤ t steps.17

Otherwise U just outputs 0. The simulation runs in p-time (in the length of18

all three inputs).19

Fixing U , the time-bounded Kolmogorov complexity of a string
w ∈ {0, 1}∗ is (cf.[79]):

Kt(w) := min{|e|+ ⌈log t⌉ | U(e, 0, 1(t)) = w} .

45
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For a fixed function t(x) bounding the time there is also this measure:

Kt(w) := min{|e| | U(e, 0, 1(t(|w|))) = w} .

Measure Kt looks more elegant as you do not have to fix the time bound in1

advance. By the same token, measure Kt considers only codes e and does2

not mix it with time.3

Assume now that a uniform p-time generator g has the stretchm := m(n).
This means that any w ∈ rng(g) satisfies

Kt(w) ≤ n+O(1) and Kt(w) ≤ n+O(1) +O(log n)

where the O(1) term accounts for the code of the algorithm defining g and4

the O(log n) term accouns for the (logarithm of) time.5

Hence if the stretch is at least6

m ≥ n+ ω(log n) (4.1.1)7

we have:
w ∈ rng(g) → Kt(w) ≤ Kt(w) < |w| .

This means that if the working conjecture 3.2.2 is true for a p-time generator8

of stretch at least (4.1.1) the following open problem must have an affirmative9

answer.10

Problem 4.1.1 (Kt problem [68, Problem 5.2])11

Does every infinite NP set A contain a string w ∈ A with Kt(w) < |w|?12

Putting it differently: Is it true that the set {w | Kt(w) ≥ |w|} is NP-13

immune?14

Ruling out generators for the working conjecture 3.2.2 by answering the
problem in the negative seems to be difficult because of the next theorem.
Given a binary relation R(x, y) satisfying

R(x, y) → |y| ≤ 2c|x|

for some c ≥ 1 such that R is decidable in time 2O(n) for n = |x|, consider the
following search task: given x, find y such that R(x, y), if it exists. This is
termed NE search problem in [6]. We shall use the following notation from
that paper: for any A ⊆ {0, 1}∗, KtA : N+ → N+ is the function defined by

KtA(m) := min{Kt(w) | w ∈ {0, 1}m ∩ A}

(we leave KtA(m) undefined otherwise).15
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Theorem 4.1.2 ([6, Cor.7,Thm.8])1

There exists an infinite NP set A s.t. KtA(w) = ω(log |w|) for infinitely2

many w ∈ A iff there exists an NE search problem s.t.:3

• ∃yR(x, y) is satisfied for infinitely many x,4

• every algorithm running in time 2O(n) solves the search problem for a5

finite number of inputs x only.6

Not only is the affirmative answer to the problem implied by the existence7

of suitable generators but it itself implies the existence of an interesting8

function too.9

Theorem 4.1.3 ([68, Thm.5.3])10

If Problem 4.1.1 has the affirmative answer then NP is a proper subclass11

of EXP.12

Proof:13

There is a function g computable in time 2O(n) such that

rng(gn) = {w ∈ {0, 1}n+1 | Kt(w) ≤ n} .

The complement {0, 1}∗ \ rng(g) is infinite and is in E but it cannot be -14

assuming the affirmative answer to the problem - in NP . Hence that neither15

E nor EXP are subclasses of NP . As NP ⊆ EXP we have NP ⊂ EXP .16

q.e.d.17

Let us conclude this section by noticing that while we cannot presumably18

express a lower bound to Kt(w), say Kt(w) ≥ |w|/2, by a p-size tautology,19

for a fixed p-time t(n) we can take complexity Kt and consider the universal20

Turing machine U restricted to time t(|u|); call it U t. Machine U t runs in21

p-time if t is a polynomial (though not in time t itself), takes just inputs22

e, u, and simulates machine with code e on u for time t(|u|). We consider U t
23

as mapping n′ = n′(n)-bit strings where n′(n) := n + ω(1) (e.g. n + log n,24

for example) to size m = m(n) strings. The term ω(1) accounts for the25

description of a machine) and we assume w.l.o.g. that all outputs have size26

m = m(n) exactly. Hence U t is a p-time generator and it satisfies27

rng(g) ⊆ rng(U t) (4.1.2)28

whenever g is a uniform generator computed in time t(n) with the stretch29

m(n).30
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Theorem 4.1.41

Let t(n) be a polynomial time bound and let P be a strong proof system.2

If there is any uniform generator g computable in time t(n) and with the3

stretch m(n) > n′(n) which is hard for P , so is U t.4

Proof:5

The construction of U t can be readily formalized in theory PV1 and thus6

the propositional translations of (4.1.2) have p-size EF proofs.7

Hence if some τ -formulas resulting from U t have short P -proofs so do8

some τ(g)-formulas.9

q.e.d.10

Tautologies similar to τ(U t)-formulas using measure KT , a variant of Kt,11

were considered in [91].12

4.2 Strong feasible disjunction property13

and the
∨
-hardness14

Assume we have a generator g with the stretch n + 1. The simplest way15

how to increase the stretch is to compute g at parallel on many independent16

inputs. For t ≥ 1 take map17

t× g : (x1, . . . , xt) ∈ {0, 1}tn → (g(x1), . . . , g(xt)) ∈ {0, 1}t(n+1) . (4.2.1)18

The time to compute t× g is at most t-times longer than the time needed to19

compute g on size n inputs and the input size is tn. Hence irrespective of t20

this map will be p-time too.21

For b = (b1, . . . , bt) ∈ {0, 1}t(n+1) the τ(t × g)b formula looks as the dis-22

junction23 ∨
i≤t

τ(g)bi (4.2.2)24

with all t τ(g) formulas in disjoint sets of atoms.25

We have seen such a disjunction (of two formulas) at the beginning of26

Section 3.3 when introducing the pseudo-surjectivity. What we want is a27

notion of hardness of g, closer to the hardness rather than to the pseudo-28

surjectivity, that would imply that for (some range of t) the disjunction29

(4.2.2) is hard to prove.30
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Definition 4.2.1 (
∨
-hardness, [68])1

Let P be a proof system. Generator g = {Cn}n with stretch m := m(n)2

is
∨
-hard for P iff for any c ≥ 1 only finitely many disjunctions3

τ(gn)b1 ∨ · · · ∨ τ(gn)bt , (4.2.3)4

with n, t ≥ 1 and all bi ∈ {0, 1}m, have a P -proof of size at most mc.5

Note that we bound the size of proofs by a polynomial in m and not in the6

size of the disjunction (which is O(tmO(1))).7

I do not see a reason why the hardness of g ought to imply the
∨
-hardness.8

However, for proof systems with a certain property - to be defined next - this9

will be true. The following notion was introduced in [58] for the purpose10

of an analysis of a particular generator (see also [65, Subsec.17.9.2]). The11

special case of two disjuncts was studied since early 1980s in propositional12

logic with several authors giving incorrect proofs of fdp for various strong13

systems. Later it was considered in [94] in a connection with the feasible14

interpolation method under the name existential interpolation.15

Definition 4.2.2 (strong feasible disjunction property, [58])16

Proof system P has the strong feasible disjunction property (abbre-17

viated strong fdp) iff there exists a constant c ≥ 1 such that whenever a18

disjunction19 ∨
1≤i≤r

αi (4.2.4)20

of r formulas, no two having atoms in common, has a P -proof of size s then21

one of αi has a P -proof of size ≤ sc.22

The fdp without the qualification strong refers to the case of r = 2.23

The strong fdp plays a role in analysis of a proof complexity generator in24

[58] (a remark at the end of Section 8.5, see also [65, Subsec.17.9.2]). Our25

intended use of the property is outlined by the next two lemmas.26

Lemma 4.2.327

Assume a pps P has the strong fdp. Then any generator hard for P is28

also
∨
-hard for P .29
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Lemma 4.2.41

Let g be a generator with stretch n + 1 and assume that it is
∨
-hard for2

a pps P .3

Then for all δ > 0 there is generator g′ with the stretch ≥ n + n1−δ that4

is
∨
-hard for P too.5

Proof:6

Take for g′ := t × g, where t := nc and 1/(c + 1) ≤ δ. It stretches7

n′ := nc+1 bits into ≥ n′ + (n′)1−δ bits.8

q.e.d.9

The lemmas suggest that for proof systems with the strong fdp we can10

always extend a stretch of a hard generator almost to 2n. But the issue is11

that no strong proof systems having the strong fdp are known. In particular,12

it is an open problem ([65, Prob.17.9.1]) whether, for example, EF has the13

(strong) fdp. As a corollary to some proofs of the Feasible interpolation14

theorem for resolution (cf. [48], [65, Chpt.17]) it can be seen that resolution15

R has the strong fdp. On the other hand, a proof systems R(k) of [49], a16

mild extension of R, has no fdp, cf. [26].17

There is, however, a way out if we remember what our main goal is: to18

show that no proof system is p-bounded. It was pointed out in [58] that for19

the purpose of proving lengths-of-proofs lower bounds for some pps P we20

may simply assume w.l.o.g. that P satisfies the strong fdp.21

Lemma 4.2.522

Assume a proof system P has no strong fdp. Then it is not p-bounded.23

Proof:24

As the disjunction (4.2.4) has a proof it is a tautology. This implies, using25

that sets of atoms of different αi are disjoint, that one of αi is a tautology.26

It would have a p-size P -proof if P were p-bounded.27

q.e.d.28

This means that for the purpose of developing the theory and extending29

the stretch we may assume the strong fdp: if the assumption is incorrect30

then we do not need to bother with any theory.31
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Next we give a limitation on the strong fdp, assuming the working con-1

jecture 3.2.2 and hypothesis from [33] underlying universal derandomization.2

We first employ the latter to show that the dWPHP can be witnessed by S-T3

computations with polynomially many rounds by a rather lazy student: he4

does not care what the teacher says.5

Denote by SizeA(s(k)) the class of languages L such that Lk, all k ≥ 1,6

can be computed by a circuit of size ≤ s(k) that is allowed to query oracle7

A.8

Lemma 4.2.6 ([49, Sec.7])9

Assume that there is L ∈ E such that for every NP set A there is ϵ > 010

such that L /∈ SizeA(2ϵk).11

Let g be a p-time generator with the stretch n + 1. Then the formula12

dWPHP(g) can be witnessed by an S-T computation with a p-time student13

within nO(1) rounds and the student does not uses the counter-examples pro-14

vided by the teacher.15

Proof:16

Assume g is computed in time nk. The construction in [33] yields, under
the hypothesis of the lemma, a pseudo-random generator

G : {0, 1}O(logn) → {0, 1}n+1

such that no non-deterministic algorithm running in time O(nk) can distin-
guish random elements of {0, 1}n+1 from pseudo-random ones from rng(G).
In particular, it must holds that

rng(G) ̸⊆ rng(g)

as otherwise the property to belong to rng(g) would yield a discrepancy at17

least 1/2 in the probability of accepting random and pseudo-random ele-18

ments, respectively.19

Hence even a Student unwilling to learn anything from the Teacher may20

simply produce in succession all elements of rng(G) as candidate solutions,21

waiting until the Teacher gives up an accepts one as correct.22

q.e.d.23
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Theorem 4.2.71

Assume that there is L ∈ E such that for every NP set A there is ϵ > 02

such that L /∈ SizeA(2ϵk). Assume also that the working conjecture 3.2.23

holds true for a p-time generator g.4

Then there exists a proof system Q such that no strong proof system P5

that simulates Q has the fdp.6

Proof:7

Take the function G from Lemma 4.2.6 and let its domain be {0, 1}c logn
for definiteness. The fact that rng(G) ̸⊆ rng(g) means that formulas∨

i<c logn

τ(g)bi

where {bi}i<c logn enumerates rng(G) ∩ {0, 1}n+1 are tautologies. Their set8

is p-time a hence we may consider a strong proof system Q that extends EF9

by all these formulas as extra axioms.10

If P simulates Q it has, in particular, p-size proof of these disjunctions.11

If P had also the strong fdp it would mean that one of the disjuncts (for each12

n ≥ 1) has a p-time P -proof. Hence g is not hard for P , contradicting the13

hypothesis.14

q.e.d.15

4.3 The truth-table function16

The first systematic study of circuit complexity (and lower bounds, in par-17

ticular) in weak formal systems is in [95] using first-order formalization in a18

particular formal system related to bounded arithmetic. The propositional19

side of things was emphasized in [51] where the truth-table function was20

considered as a proof complexity generator.21

Note that a circuit with k inputs and of size s ≥ k can be encoded by22

10s log s bits which is less than 2k if s ≤ 2k/10k.23

Definition 4.3.1 (the truth-table function)24

Given parameters 1 ≤ k ≤ s ≤ 2k/10k the truth-table function tts,k
maps {0, 1}n into {0, 1}m where

n := 10s log s < m := 2k
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by interpreting a ∈ {0, 1}n as a description of a size ≤ s circuit C with k1

inputs outputting b := tts,k(a) ∈ {0, 1}m, where b is the truth-table computed2

by circuit C on inputs from {0, 1}k.3

Note that tts,k is indeed a uniform generator in the sense of Definition 3.1.24

as it is computed in time polynomial in m. Note that the dWPHP formula5

for the truth-table function is Σb
2 and not Σb

1 as it is sometimes claimed even6

for as small s as s = O(k).7

The τ -formula τ(tts,k)b expresses that the Boolean function on {0, 1}k8

whose truth-table is b has circuit complexity bigger than s. Proving such9

statements is the holy grail of circuit complexity and this makes these τ -10

formulas attractive.11

The function has a key property related to the dWPHP problem 2.0.1.12

Theorem 4.3.2 ([35, Cor.3.6])13

Let 1 > ϵ > 0 be arbitrary rational and let s := 2ϵk. Then dWPHP(tts,k)14

implies over S1
2(PV1) instances of the dWPHP for all p-time functions.15

The requirement that ϵ is rational allows to define the value of s in the theory.16

The propositional side of things is represented by Theorem 4.3.5 stating17

that the truth-table function is the hardest generator w.r.t. to the pseudo-18

surjectivity.19

To motivate its proof think about a way how to iterate a generator g20

having the minimal required stretch n+ 1. We may apply it first repeatedly21

to first n bits of the output to generate in n rounds 2n bits from its original22

n bits; let g′ be this enhanced generator with the stretch 2n. Then we may23

iterate g′ itself applying it always at parallel to the first n bits and to the last24

n bits of the output, getting in t parallel rounds 2tn output bits. Observe25

that to compute this function we compute g′ locally at nodes of a binary26

tree of depth t (2t − 1)-times, hence we compute the original g n(2t − 1)-27

times. Taking for t := (c−1) log n we can get a generator g′′ with the stretch28

nc. Moreover, to compute any particular bit of a string in rng(g′′) we need29

to compute g′ at most ((c − 1) log n)-times along a particular branch in the30

binary tree underlying the iteration of g′. Similarly, if we want to get a stretch31

m then to compute any bit of any string in the range of such generator will32

need logm calls to g′ and hence n logm calls to original g.33

A general form of such an iteration is captured by the following notion.34
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Definition 4.3.3 (iteration protocol, [51])1

An iteration protocol Θ for circuit C with n inputs and m > n outputs
is a sequence of instructions

C(u1) = v1, C(u2) = v2, . . . , C(ut) = vt

where2

• each ui is an n-tuple of distinct atoms,3

• each vi is an m-tuple of distinct atoms,4

• every atom occurs in at most one ui and in at most one vi,5

• if an atom occurs in some ui, i > 1, then it also occurs in some vj with6

j < i.7

Here atoms u1 are inputs of the protocol and atoms vij that do not occur in8

any ur are outputs of Θ. The size of the protocol is defined to be t.9

Protocol Θ defines a circuit Iter(C/Θ) computed by iterating C along10

protocol θ; its input and output variables are those (atoms) of Θ.11

The following statement is a simplified version of [51, Thm.3.4].12

Theorem 4.3.4 ([51, Thm.3.4])13

Let P be a strong proof system. Assume g = {Cn}n is a generator with14

the stretch m = m(n) that is pseudo-surjective for P . Let Θn := Cn(u
1) =15

v1, Cn(u
2) = v2, . . . , Cn(u

t) = vt be iteration protocols with t ≤ mc, for some16

constant c ≥ 1 and n ≥ 1.17

Then the generator h defined by circuits {Iter(Cn/Θ)}n is pseudo-surjective18

for P too.19

If g is exponentially pseudo-surjective for P and t is sub-exponential,20

t ≤ 2m
o(1), then h is exponentially pseudo-surjective for P .21

Proof:22

Denote the circuit Iter(Cn/Θ) simply Dn, so h = {Dn}n. Assume it is
not pseudo-surjective and, in particular, that P proves in size ≤ mb infinitely
many disjunctions

τ(Dn)B1 ∨ · · · ∨ τ(Dn)Br
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with circuits Bi having the properties as required in Definition 3.3.1. The1

idea is simple: replace everywhere Dn by its definition from Cn via Θ. The2

following claim is utilized to show that the proof after the substitution does3

not increase too much.4

Claim:The formula ¬τ(Dn)y(x) follows from the negations of the formulas5

in Θ by a P -proof of size O(t) where x are the variables u1 and y are the6

output variables of Θ.7

The claim can be established by induction on t (cf. [51, Sec.3]) for details.8

q.e.d.9

We formulate the following statement for strong proof systems as it allows10

for a simpler model-theoretic proof (and strong proof systems are our target).11

This argument illustrates better, I think, what is going on.12

However, the theorem holds for proof systems containing resolution R and13

the reader can find the original proof-theoretic argument for that more gen-14

eral case in [51, Sec.4]. It is also that argument that generalizes to iterability15

in Theorem 4.3.7.16

Theorem 4.3.5 ([51, Thm.4.2])17

Assume P is a strong proof system P . Then the following two statements18

hold:19

1. There exists a generator g with the stretch n+1 which is (exponentially)20

pseudo-surjective for P iff for any 0 < δ < 1, the truth table function21

tts,k with s = 2δk is (exponentially) pseudo-surjective for P .22

2. There exists a generator g with stretch n + 1 which is exponentially23

pseudo-surjective for P iff there is c ≥ 1 such that for s = kc the truth24

table function tts,k is exponentially pseudo-surjective for P .25

Proof:26

The if-parts of both statements are obvious. We shall prove the only-27

if-part of statement 1 for pseudo-surjectivity; the exponential version and28

statement 2 are proved analogously choosing suitable parameters.29

Let g be a p-time generator with the stretch n + 1 which is pseudo-
surjective for P . We shall use Theorem 3.5.3 so let Mm be an arbitrary
small canonical model; the theorem gives us its extension M′ such that

M′ |= T + S1
2(PV) + rng(gn) = {0, 1}n+1
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where T ⊇ PV1 is a true ∀Πb
1-theory corresponding to P .1

Now perform in M′ the iteration of g described before Definition 4.3.3:2

get g′ with the stretch 2n and then g′′ with the stretch nc. As observed there,3

any particular bit of the string in b := g′′(a) for a ∈ {0, 1}n can be computed4

with at most cn log n calls to the original g. That is, for any fixed c ≥ 1 the5

bits of b can be computed using as advice a in time < nd+2 (i.e. by a circuit6

of size ≤ nd+2) for n >> 1, where nd is the time needed to compute g.7

For ϵ > 0 and d ≥ 1 fixed put k := (d+2)(log n)/ϵ and choose c ≥ 1 such
that for s := 2ϵk

nc ≥ 2k .

We want to argue that tts,k is in M′ onto {0, 1}m where m = 2k and hence8

it is (by Theorem 3.5.3) pseudo-surjective.9

To show that tts,k is onto it suffices to show that any string b as above is10

equal to g′′(a), for some a ∈ nn. This is established using induction on t in11

the definition of g′′, quite similarly as it is in the proof of the WPHP in [84].12

The induction is on the length (we have t ≤ O(lonn)) and for a Σb
1-formula,13

hence it can be performed in M′ as that is a model of S1
2(PV).14

q.e.d.15

In general we shy away in these lecture notes from proving results about16

very weak proof systems but we make an exception now and modify the17

preceding theorem so that it can be used (in next section) more readily for18

resolution or alike weak system. The problem with the pseudo-surjectivity19

for weak proof systems is that weak system handle poorly general circuits Bi
20

that appear in Definition 3.3.1. This lead to the following definition.21

Definition 4.3.6 (iterability, [51])22

Assume a proof system P simulates resolution R. A generator g = {Cn}n23

with stretch n + 1 is iterable for P iff it satisfies conditions of Definition24

3.3.1 with the restriction that circuits Bi, 1 ≤ i ≤ t, are just substitutions of25

constants and atoms for atoms.26

Similarly to pseudo-surjectivity we say that g is exponentially iterable for27

P if the lower bound in Definition 3.3.1 is exponential 2m
Ω(1)

28

The following theorem can be proved analogously as the original proof29

of Theorem 4.3.5 in [51, Sec.4] (there are some technicalities about how are30

circuit encoded).31
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Theorem 4.3.71

Theorem 4.3.5 is true for the iterability in place of the pseudo-surjectivity2

too.3

4.4 Hardness of the truth-table function4

The τ(tts,k)-formulas express circuit lower bounds > s(k) and thus the hard-
ness of tts,k means that no such lower bound has a feasible proof for any

specific (function given by) truth-table b ∈ {0, 1}2k . This should not be con-
fused with the provability of the existence of hard function: this is just the
dWPHP(tts,k) formula. For example, a simple counting argument proves
that most functions are hard but even in full ZFC we do not know how to
prove in p-size (any fixed polynomial) any statement

b /∈ rng(tts.k)

for any specific b with k >> 0.5

In this section we present several statements showing that the truth-table6

function is unlikely to be hard for all proof systems but that finding any proof7

system for which it is not hard is likely a very difficult task itself. We shall8

also give unconditional result about resolution R to be used in later chapters.9

Recall that for function s(k) the class Size(s) is the class of languages L10

whose characteristic functions χL on {0, 1}k can be computed by circuits of11

size ≤ s(k). The infinitely-often symbol C ⊆i.o. C ′ used in the next lemma12

means that for all L ∈ C it holds that L ∈i.o. C, and this means that there is13

a language L′ in class C ′ such that Lk = L′
k, the restrictions of the languages14

to input length k, holds for infinitely many lengths k ≥ 1.15

Lemma 4.4.116

Let 1 ≤ k ≤ s = s(k) ≤ 2k/2 and assume that

NE ∩ coNE ̸⊆i.o. Size(s) .

Then there exists a strong proof system for which tts,k is not hard.17

Proof:18

For any specific language L ∈ NE ∩ coNE and its characteristic function19

g := χL, the set of the truth tables of gk, k ≥ 1, is in NP .20
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Define a proof system extending EF whose proofs of a formula φ are1

either EF-proofs or, if φ = τ(tts,k)b for b, the NP-witnesses that φ is the2

truth-table of gk.3

q.e.d.4

Lemma 4.4.25

Let 1 ≤ k ≤ s = s(k) ≤ 2k/2.6

1. If for some proof system and for some s(k) ≥ 2Ω(k) the function tts,k7

is not hard for P then BPP ⊆i.o. NP.8

2. If for some proof system and for some s(k) ≥ kω(1) the function tts,k9

is not hard for P then NEXP ̸⊆ P/poly.10

Proof:11

For the first statement, we can use the hypothesis and modify the con-12

struction of [81, 33] derandomizing BPP a bit:13

1. guess a pair (b, π), where b ∈ {0, 1}2k is the truth-table of a function14

with circuit complexity ≥ s(k) and π is a size mO(1) = 2O(k) P -proof of15

τ(tts,k)b,16

2. use b as in [81, 33].17

To prove the second statement we use that by [31] NEXP ̸⊆ P/poly holds18

if one could certify by p-size strings a super-polynomial circuit complexity of19

a function. This is exactly what the hypothesis guarantees.20

q.e.d.21

Several possibilities how the hypotheses of the two lemmas may arise were22

discussed in [60, Sec.30.1] (Possibilities A, B, and C there).23

We shall now present two results about resolution R as they are going to24

be used in some applications in Chapter 9.25

The following statement is proved analogously as Theorem 3.6.1, using26

the concept of natural proofs of [98] and PRNGs (see Section 3.6).27
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Lemma 4.4.3 ([60, Thm.29.2.3])1

Assume that for some ϵ > 0 there exists a PRNG g with exponential2

hardness H(g) ≥ 2n
ϵ
. Let s(k) ≥ kω(1).3

Then the truth-table function tts,k is hard for any proof system P that4

simulates resolution R and admits feasible interpolation. In particular, the5

function is hard for R.6

The statement was generalized in [90]. In a subsequent development [91] link7

the hardness of the truth-table function for EF to one of the conjectures from8

[99] mentioned at the end of Section 3.6.9

The next theorem follows immediately from Theorem 4.3.7 and Theorem10

5.2.2 to be discussed in Section 5.2.11

Theorem 4.4.412

There is c ≥ 1 such that the truth-table function with s(k) = kc is expo-13

nentially iterable for R.14
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Chapter 51

Nisan-Wigderson generator2

The Nisan-Wigderson generator (NW generator, for short) is a fundamental3

object of computational complexity. It was taken up in [5] as a model for a4

class of generators that could be hard proof complexity generators. A variant5

of the construction was proposed as a non-uniform candidate for a generator6

hard for all proof systems in [51].7

5.1 The definition and its variants8

The Nisan-Wigderson generator is determined by9

• an m×n 0-1 matrix A with ones in row i exactly in positions j ∈ Ji :=
Ji(A) where:

Ji(A) = {j ∈ [n] | Aij = 1} , for i ∈ [m] ,

• an ℓ-ary Boolean function f .10

There is an additional parameter d ≥ 1 and matrix A is required to be a11

(d, ℓ)-design:12

• |Ji| = ℓ, all i ∈ [m],13

• |Ju ∩ Jv| ≤ d for all different u ̸= v ∈ [m].14

Combinatorial designs with various ranges of parameters were shown to exists15

via various arguments in [81, Sec.2].16

61
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The Nisan-Wigderson generator NWA,f (x) maps {0, 1}n into {0, 1}m and
the i-th bit of the output of the generator on x ∈ {0, 1}n is:

f(x(Ji)) , where x(Ji) = xj1 , . . . , xjℓ

for Ji = {j1 < · · · < jℓ}. The role NW generator plays in computational1

complexity theory can be hardly overestimated.2

It was suggested in [5] that the NW generator, when based on a function3

f that is hard to handle in a particular proof system P , could be hard for4

P as a proof complexity generator. The expression that f is hard to handle5

means that f may not be definable by formulas P operates with or, if it is,6

P does not prove its basic properties.7

Some proofs in [5] (and subsequently in [97, 51] too) used extra combi-8

natorial requirements on matrix A.9

A boundary ∂A(I) of a set of rows I ⊆ [m] is the set

{j ∈ [n] | ∃!i ∈ I Aij = 1}

(∃! means exists exactly one). For 1 ≤ r ≤ m and ϵ > 0 any parameters,10

matrix A is an (r, ϵ)-expander iff for all I ⊆ [m], |I| ≤ r, |∂A(I)| ≥ ϵℓ|I|.11

Expanders simulate, in a sense, matrices with disjoint sets Ji(A)’s of the12

maximum size ℓ. In such a case it would hold that |∂A(I)| = ℓ|I|. An13

(r, ϵ)-expander achieves (as long as |I| ≤ r) at least an ϵ-percentage of this14

maximum value.15

The existence of expanders can be proved by a probabilistic argument. A16

matrix A is called ℓ-sparse if each rows contains at most ℓ ones.17

Theorem 5.1.1 ([5, Thm.5.1])18

For every δ > 0 there is an ℓ ≥ 1 such that for all sufficiently large n19

there exists ℓ-sparse n2 × n-matrix that is an (n1−δ, 3/4)-expander.20

Another combinatorial notion is a (r, d)-lossless expander (cf. [97])
requiring that A satisfies for all sets of rows I ⊆ [m]:

|I| ≤ r →
∑
i∈I

|Ji(A)| − |∂A(I)| ≤ d|I| .

Their existence is proved via a probabilistic argument.21
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Theorem 5.1.2 ([97, Thm.2.5])1

For sufficiently small ϵ > 0 and large enough n ≥ 1 there exists an m×n2

matrix A that is an (nΩ(1), O(logm/ log n))-lossless expander and m ≥ 2m
ϵ
.3

A different variant of the NW construction was proposed in [51, Sec.2]4

as a candidate (non-uniform) proof complexity generator hard for EF and5

possibly for stronger systems. Namely, we take constant c ≥ 1 and put6

m := n+ 1 and ℓ := c log n. The proposed generator is NWA,f where A and7

f are chosen at random. A similar construction but of a one-way function8

was proposed earlier in [27]: it uses n× n matrix and c a constant.9

One can view the resulting τ -formulas as stating that a system of random10

sparse equations is unsolvable. The proposal was motivated by my view at11

the time that randomness of the system will play a role.12

5.2 Iterability of NW-like linear maps13

A number of lower bound results for weak proof systems as is R, PC or PCR14

(cf.[65]) were proved in [5, 51, 97] about NW-like maps where the underlying15

function f is the parity function. That is, the generator NWA,f is a linear16

map.17

We will just state two results that we shall use in one of the applications in18

Chapter 9 (Section 9.1, in particular). The proofs use the notion of iterability19

(Definition 4.3.6) and we will not give them as I do not think they can20

be helpful to understanding strong proof systems. The interested reader is21

advised to consult the original sources: [51, L.19.4.4] and [97], respectively.22

Theorem 5.2.1 ([51, Thm.6.6])23

For every δ > 0 there is an ℓ ≥ 1 such that for all sufficiently large n24

there exists an ℓ-sparse n2×n-matrix A such that the linear map NWA,⊕ from25

{0, 1}n into {0, 1}n2
defined by A is an exponentially hard proof complexity26

generator for resolution R.27

The following theorem was proved actually for R(Ω(log log)), a DNF-28

resolution proof system of [49]. The second item is deduced from the first29

one by applying a iteration protocol along a complete binary tree of suitable30

depth as in the proof of the WPHP in bounded arithmetic in [84] or in the31

construction of pseudo-random function generator in [28].32
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Theorem 5.2.2 ([97, Thms.2.10 and 2.12])1

There is an ϵ > 0 such that for n ≥ 1 large enough:2

1. there is a linear map {0, 1}n → {0, 1}2n that is exponentially iterable3

for resolution R,4

2. there is a linear map from {0, 1}n → {0, 1}m with m := 2n
ϵ
which is5

an exponentially hard for R.6

Let us mention an open problem.7

Problem 5.2.3 (Linear generators, [65, Probs.19.4.5 and 19.6.1])8

Is the linear map from Theorem 5.2.1 also (exponentially) hard for AC0-9

Frege systems? Is it, in fact, exponentially iterable for the system?10

5.3 Razborov’s conjecture11

A functionf : {0, 1}∗ → {0, 1} is an NP∩coNP-map iff the language whose
characteristic function f is in NP∩coNP . Note that if f is an NP∩coNP-
map then the complement of the range of a generator g := NWA,f is in
coNP and hence the associated τ -formulas τ(g)b can still be expressed by
propositional tautologies. These are translations of∨

i∈[m]

f(x(Ji(A))) ̸= bi

which can be written as12 ∨
i∈[m]

¬Abi(x(Ji(A)), z
i) (5.3.1)13

where ∃v(|v| ≤ ℓc)Aa(u, v) is an NP-definition of f(u) = a, for a = 0, 1.14

Taking advantage of this [97] made the following conjecture.15

Conjecture 5.3.1 (Razborov’s conjecture [97, Conj.2])16

Any generator NWA,f based on a matrix A which is a combinatorial de-17

sign with the same parameters as in [81] and on any function f in NP ∩18

coNP that is hard on average for P/poly, is hard for EF .19
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An example of function f that can feature in the conjecture is B(h(−1)(y))1

where h is a one-way permutation (OWP) and B is a hard bit of h.2

There are several sets of parameters in [81] but the parameters mentioned3

in the conjecture are, I suppose, those used in [81, L.2.5]:4

d = log(m) , log(m) ≤ ℓ ≤ m , n = O(ℓ2) . (5.3.2)5

The hardness on average of f is measured by the minimum S for which
there is a size ≤ S circuit C such that

Probu∈{0,1}ℓ [f(u) = C(u)] ≥ 1

2
+

1

S
.

The requirement in [81] is that the hardness is 2Ω(ℓ), and they also require6

that it is at least m2.7

Considering all these constrains we are lead to the following set of pa-8

rameters (for any ϵ > 0):9

m = 2n
δ

, d = logm , and ℓ = n1/3 (5.3.3)10

where 0 < δ ≤ 1/3 is arbitrary. The huge size of m w.r.t. n means that11

going through all possible arguments and all possible NP witnesses in the12

definition of f takes quasi-polynomial time in m. This yields the following13

observation.14

Lemma 5.3.215

The τ -formulas attached to any generator NWA,f whose parameters sat-16

isfy (5.3.3) are provable in quasi-polynomial size m(logm)O(1)
in resolution R.17

That leaves rather narrow gap for lower bounds for the τ -formulas.18

There are two issues with the formulation of the conjecture we ought to19

be aware of. The first issue is that generators are, according Definition 3.1.2,20

computed by circuits on finite domains {0, 1}n and this a priori implies that21

they are maps. That is, the syntactic form of the definition implies that.22

This is not the case with g = NWA,f with f an NP∩ coNP-function. Given23

NP-definitions A0, A1 as in (5.3.1) we do not know a priori that they define24

two complementaryNP sets. Clearly, we cannot express propositionally that25

A0 ∪ A1 = {0, 1}∗, i.e. that f is a total function. This is perhaps not such26
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a problem as having only partial f can make the τ -formula only harder to1

prove.2

The disjointness of A0 and A1 is expressed by (a sequence of) tautologies.3

However, we may not be able to prove them shortly, i.e. we may not be able4

to shortly prove that f has unique values. (One can say that in that case5

we already have a lower bound so we do not have to trouble ourselves with6

the τ -formulas.) If we accept this situation the τ formulas could be hard7

irrespective of how hard it is to compute f . Namely, take two disjoint NP8

sets U, V whose disjointness is hard for EF; such a pair exists if EF is not an9

optimal proof system (cf. [70, 65]). Then for any function f separating U10

from V EF cannot prove feasibly that f(u) ̸= b for either b = 0, 1. In fact,11

in this case oen can take simply J1(A) = · · · = Jm(A) and still get hard g.12

If the reader started now to see NP ∩ coNP maps as somewhat opaque13

object (as I did) let us point out that [97, Conj.1] formulates also a conjecture14

about Frege systems where function F is p-time (and has a suitable hardness15

property).16

The second issue with the conjecture is the choice of parameters. Note17

that the size of the τ -formulas will be polynomial in m even if we allow18

f to come from a larger class NTime(mO(1)) ∩ coNTime(mO(1)). However,19

this seemingly innocent change leads to a rather dramatic behavior of the20

conjecture.21

Solely for the purpose of stating the next theorem we formulate separately22

the modification of Conjecture 5.3.1 with the time requirement on f changed.23

Statement (R):24

Assume that for some ϵ > 0 parameters n, d, ℓ,m satisfy (5.3.3). Let25

g = NWA,f where A is an m × n matrix that is an (l, logm)-design and26

function f is in NTime(mO(1)) ∩ coNTime(mO(1)).27

Then g is hard for EF.28

Theorem 5.3.3 ([52, Thm.4.2])29

Assume Statement (R) is true. Then EF is not p-bounded.30

Proof:31

We shall prove the statement contrapositively: assume that EF is p-32

bounded. Then, in particular, NP = coNP .33

By [52, Thm.3.1(ii)] there is then L ∈ NE ∩ coNE that is exponentially34

hard for P/poly. A direct argument: the lexicographically first string in35
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which is a truth table of a function on {0, 1}ℓ with any specific exponential1

hardness on average is in the polynomial-time hierarchy and hence the func-2

tion it defines is in E with an oracle access to the p-time hierarchy. But under3

the hypothesis that NP = coNP the function is, in fact, in NE ∩ coNE .4

Having such function f , assuming Statement (R) a taking a matrix A5

with suitable parameters that is constructed in [81], we derive that EF is not6

p-bounded. That is a contradiction.7

q.e.d.8

The reader inclined to think positively may conclude that in order to prove9

lower bounds for EF we only need to establish conditional lower bounds in10

Statement (R). Less optimistic reader may wonder whether the assumption11

in Statement (R) plays any role at all if the conclusion holds anyway.12

Or perhaps it shows that the parameters in the original conjecture are13

right and play an essential role. I only wish we had any idea what that role14

could be; unfortunately it is not discussed in [97].15

I think that because of the two issues (more values for f and time con-16

straint on f) it may be better to study the conjecture for some specific f17

that avoids both of them. For example, take f to be a hard bit of the RSA18

(e.g. the parity bit), as EF admits p-size proofs of its injectivity, cf. [73] (it19

is proved there in S1
2(PV), use the propositional translations).20

Let us point out that there are some results about the conjecture for21

weaker proof systems than is EF:22

• The conjecture holds for all proof systems which admit feasible inter-23

polation in place of EF (in fact, it holds under weaker assumptions on24

A and f), cf. [85, 86].25

• The variant of the conjecture with the hardness of f replaced by the26

requirement that f needs exponential size depth 2 circuits is true for27

AC0-Frege systems and a particular definition of the τ -formulas, cf.28

[40].29

We do not present the proofs here as they use special properties of the par-30

ticular proof systems and cannot be - even in principle - generalized to strong31

proof systems.32
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5.4 Limitations of NP∩coNP NW-generators1

Statement (R) in the previous section altered the original formulation of2

Conjecture 5.3.1 by allowing more time to compute the function f the NW-3

generator uses. Here we stick to the original formulation but consider whether4

the generator could be actually hard for all proof systems. Such a variant5

of the conjecture was studied in [58, 62] under the name Statement (S). We6

shall study it more in Section 8.5. The construction in [58] uses a simplifying7

technical assumption that the non-deterministic witnesses for (values of) f8

are unique. This can be arranged by taking for f a hard bit of a OWP. We9

incorporate it into the formulation of this variant of the conjecture. Recall10

the notion of the hardness on average for the previous section.11

Statement (S):12

Assume that for some parameters n, d, ℓ,m satisfy (5.3.3), that is:

m = 2n
δ

, d = logm , and ℓ = n1/3

where 0 < δ ≤ 1/3 is arbitrary. Let h be a p-time OWP with exponential
hardness on average and B(x) its hard bit, and assume

f(y) := B(h(−1)(y)) .

Let An be m × n matrices that are (l, logm)-design and such that their i-th13

row Ji is computable in p-time from i and 1(n).14

Then NWAn,f is hard for all proof systems.15

Suitable matrices A having the property required in the statement are16

constructed in [81, L.2.5].17

Recall that the infinitely-often symbol L ∈i.o. C used in the second hy-18

pothesis of the next theorem denotes that there is a language L′ in class C19

such that Lk = L′
k, the restrictions of the languages to input length k, holds20

for infinitely many lengths k ≥ 1. An example of a plausible L satisfying the21

second hypothesis is TAUT.22

Theorem 5.4.1 ([62, L.6.1])23

Assume that:24

• OWP exponentially hard on average exist,25

• there exists L ∈ NE ∩ coNE such that L ̸∈i.o. NP/poly.26
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Then Statement (S) is not true; that is, the generator NWAn,f is not hard1

for all proof systems.2

Proof:3

Assume both hypotheses of the theorem and fo the sake of a contradiction4

also that (S) is true. Setting k := nδ we can think of strings from {0, 1}m as5

of the truth-tables of characteristic function of languages on {0, 1}k; for L a6

language denote by Lk also its characteristic function restricted to {0, 1}k.7

Note that for any L ∈ NE ∩ coNE the set {Lk | k ≥ 1} is in NP . It thus8

follows from (S) that for all L ∈ NE ∩ coNE it holds:9

• For infinitely many n ≥ 1 and k = nδ and m = 2k:

Lk ∈ {0, 1}m ∩ rng(NWAn,f ) .

Now choose L ∈ NE ∩ coNE that satisfies the second hypothesis. Take any10

Lk ∈ {0, 1}m ∩ rng(NWAn,f ) and a ∈ {0, 1}n such that Lk = NWAn,f (a).11

This allows us to compute whether i ∈ L for i ∈ {0, 1}k by evaluating f on12

a(Ji). But by the condition on matrices An the set a(Ji) can be done by a13

p-time algorithm from inputs a, i, 1(n) and f is NP ∩ coNP .14

This is a contradiction.15

q.e.d.16

The proof of this theorem relates to other constructions in [62] that we17

shall discuss in Section 9.2.18
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Gadget generator2

In this chapter we present a p-time generator defined in [57]. It is this3

generator we pin on our hopes for future developments.4

6.1 The definition5

Let

f : {0, 1}ℓ × {0, 1}k → {0, 1}k+1

be a p-time function where ℓ = ℓ(k) depends on k. We shall call any such6

function a gadget function.7

Note that w.l.o.g. we could take for gadget functions the circuit value8

function CV we saw in Section 2.1. Namely, let CVk,a(u, v) be the version of9

CV which for u ∈ {0, 1}k interprets v ∈ {0, 1}a as (a description of a) circuit10

Cv with k inputs and k + 1 and outputs Cv(u) ∈ {0, 1}k+1.11

Definition 6.1.1 (gadget generators, [57])12

Let f be a gadget function. The gadget generator based on f

Gadf : {0, 1}n → {0, 1}m

where

n := ℓ+ k(ℓ+ 1) and m := n+ 1

is defined as follows:13
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1. Input x ∈ {0, 1}n is interpreted as ℓ+ 2 strings

v, u1, . . . , uℓ+1

where v ∈ {0, 1}ℓ and ui ∈ {0, 1}k for all i.1

2. Output y = Gadf (x) is the concatenation of ℓ+1 strings ws ∈ {0, 1}k+1

where ws are defined by the gadget function:

ws := f(v, us) .

Denote by fv the function {0, 1}k → {0, 1}k+1 computed by the gadget
function for fixed gadget v. Using this notation the τ -formulas for Gadf can
be written as

τ(Gadf )b =
∨

s∈[ℓ+1]

τ(fv)bs

where the only common atoms among the formulas τ(fv)bs are those ℓ cor-2

responding to bits of v.3

For another view of the τ -formula define, for e ∈ {0, 1}k+1, an NP set
Ae to be the set

Ae := {v ∈ {0, 1}ℓ | ∃u ∈ {0, 1}kfv(u) = e} .

Then the formula τ(Gadf )b is a tautology iff⋂
s∈[ℓ+1]

Abs = ∅ .

Both these examples show that the
∨
-hardness from Section 4.2 ought to4

play a significant role in analyzing the gadget generator.5

6.2 The
∨
-hardness and gadget size6

Let us denote the gadget generator Gadf based on f = CVk,k2 simply Gadsq.7

As a circuit of size s can be encoded by 10s log s bits the circuits enter-8

ing function Gadsq are of size little bit less than quadratic. Note that the9

generator Gadsq itself is computed in time ≤ n3/2.10

The next theorem shows simultaneously that we can limit the size of the11

gadget and that non-uniformity of generators is not needed when
∨
-hardness12

is used instead of the mere hardness.13
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Theorem 6.2.1 ([57])1

Let P be a strong proof system. Assume that there exists a P/poly gen-2

erator g = {Ck}k that is
∨
-hard for P .3

Then the p-time gadget generator Gadsq based on CVk,k2 is
∨
-hard for P4

too.5

Proof:6

Assume P and g satisfy the hypotheses and that (w.l.o.g.) the stretch of7

g is n+1. Assume that circuits Ck computing gk are encoded by ℓ ≤ ka bits,8

for some constant a ≥ 1.9

Claim 1: Gadf with f := CVk,ka is
∨
-hard for P .10

To see this we use the observation at the end of the last section that11

the formula τ(Gadf )b for b = (b1, . . . , bt) ∈ {0, 1}n+1 is a t-size disjunction,12

t = ka + 1, of τ -formulas for CVk,ka and bi, i ≤ t. Substitute there for the ℓ13

gadget atoms corresponding to v the bits of the code, say e, of Ck.14

EF can prove in p-size (as they are translations of universal formulas
provable in PV1) formulas expressing the equality between two circuit out-
puts

D(e, u) = Ck(u)

where D(v, u) is some canonical circuit computing CVk,ka(v, u) on the par-15

ticular input lengths. Because we assume that P is a strong proof system we16

can use these p-size EF-proofs and transform (using, in particular, item 3 of17

Theorem 2.1) any proof of the original disjunction for Gadf into a polynomi-18

ally longer P -proof of a disjunction of τ(g)-formulas. That is a contradiction19

with the hypothesis that g is
∨
-hard for P .20

Claim 2: Gadsq is
∨
-hard for P .21

Observe that the generator Gadf from Claim 1 is computed in time22

O(k2a) ≤ n2−δ, for some δ > 0, and hence encoded by ≤ k2 bits. We23

can now repeat the construction of Claim 1 but using Gadf instead of g (and24

Gadsq in place of Gadf ).25

q.e.d.26

Note that applying Lemma 4.2.4 we can further extend the stretch to27

n+ n1−δ, any δ > 0, if needed.28
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6.3 Failure of PHP and ideal NW-designs1

Gadget generators (and Gadsq in particular) are hard for many if not all2

proof systems for which super-polynomial lower bounds were shown, cf.[57],3

[60, Chpts.29-30] and [65]. We will now discuss one specific gadget from4

[57] that leads to a generator hard for AC0-Frege systems. It was one of5

the motivations for the generator proposed for the working conjecture 3.2.26

in [51] (see the end of Section 5.1) and subsequently for a specific gadget7

generator in [60, Sec.30.3] whose definition we give bellow.8

A PHP-gadget is a (k + 1) × k 0 − 1 matrix A represented by atoms9

vij. We interpreted A as a graph of a function h : [k] → [k + 1] and use it10

to stretch by one bit each block us of the input to a block ws of the output.11

This will work for a proof system P unless we can rule out in P that h is a12

bijection (i.e. unless we can prove ontoPHP in P ).13

The bits of the output are defined (keeping in mind our interpretation of
A) by 2-DNF formulas:

ws
i :=

∨
j∈[k]

vij ∧ us
j .

The following statement was originally proved in [57] (cf. [60, Thm.29.5.2])14

for the hardness but the proof also shows without much change the
∨
-15

hardness. Although it is a result about a weak proof system we spell the16

proof out explicitly as it motivates Theorem 6.5.1.17

Theorem 6.3.1 ([57])18

The gadget generator based on the PHP-gadget is exponentially
∨
-hard19

for AC0-Frege systems.20

Proof:21

Let g be the gadget generator with the PHP gadget and consider a dis-
juction of τ -formulas ∨

r

τ(g)br

as in the definition of the
∨
-hardness, where each br ∈ {0, 1}n+1 is an (ℓ+1)-22

tuple of br,s ∈ {0, 1}k+1.23

Now substitute in it for all gadgets (i.e. for all gadgets for all r) common24

gadget atoms v. Recall that we write fv for the gadget function with gadget25
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v fixed. Hence after the substitution the disjuction becomes1 ∨
r,s

τ(fv)br,s . (6.3.1)2

It suffices to show that this disjunction requires exponential size AC0-Frege3

proofs.4

This is done by reducing it to the well-known lower bound for the onto5

PHPk formulas in the system, cf. [2, 76, 93] or [65, Chpt.15]. The idea is6

that we can use v to define the inverse map to fv. Assuming that v violates7

the onto PHP, i.e. it is the graph of a bijection between [k] and [k+1], map8

fv is a bijection too and the formula9

us
j :=

∨
i∈[k+1]

vij ∧ ws
i . (6.3.2)10

defines its inverse function.11

Formally: substituting in each disjunct in (6.3.1) for the input atoms ur,s
i

the formulas as (6.3.2) with ws replaced by br,s the τ -formula will express
that

fv(f
(−1)(br,s)) ̸= br,s

which implies (by short constant depth Frege proofs) the onto PHPk formula.12

That is a contradiction with the stated lower bound for PHPk.13

q.e.d.14

Based on Theorem 6.2.1 we adopt as our specific goal to show that gen-15

erator Gadsq satisfies the working conjecture 3.2.2. However, to be able to16

work with it we need more specific gadgets than just general circuits of sub-17

quadratic size. This is supported by the experience with lengths-of-proofs18

lower bounds for weaker proof systems. There it is always instrumental to19

have hard examples with some clear combinatorial structure.20

In order to study the hardness of Gadsq we thus pick gadgets (i.e. sub-21

quadratic circuits) of a particular form. The generators using them are thus22

substitution instances of Gadsq. The gadgets try to emulate PHP-gadgets.23

Saying this dually, we try to look at PHP-gadgets as on ideal NW-designs,24

namely as on (0, 1)-designs. Of course, no such designs exists in reality if25

m > n but we may simply try sparse matrices instead. This leads to the26

concepts described next.27
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The generators were defined in [65, pp.431-2] and denoted nwk,c there.1

Their gadgets are the small and sparse NW-generators discussed at the end2

of Section 5.1. Because of its importance (for us) we give now a formal3

stand-alone definition. We shall use the symbol nwk,c here for the gadget4

and symbol Gadnw for the generator using this gadget.5

Definition 6.3.2 (NW-like gadgets)6

Given 1 ≤ k and 1 ≤ c ≤ log k the gadget nwk,c is given by the following7

data:8

• k + 1 sets J1, . . . , Jk+1 ⊆ [k], each of size c,9

• 2c bits defining the truth-table of a Boolean function h with c inputs.10

Given gadget v = nwk,c and u ∈ {0, 1}k the gadget-function f computes11

w := f(v, u) ∈ {0, 1}k+1 with the i-th bit wi := h(u(Ji)).12

Finally, Gadnw := Gadf for this f .13

Note that the gadget is given by ≤ (k + 1)(log k)c + 2c ≤ O(k(log k)2) ≤ k2
14

bits so Gadnw is indeed an instance of Gadsq.15

Also note that Gadnw is computed by an AC0-formula and that the fol-16

lowing statement is a corollary of (the proof of) Theorem 6.3.1 (originally it17

was deduced in [60] for the hardness).18

Theorem 6.3.3 ([60])19

Gadnw for any 1 ≤ c ≤ log k is exponentially
∨
-hard for AC0-Frege20

systems.21

6.4 Consistency versus existence22

A potential advantage of the NP ∩ coNP generator from Razborov’s con-23

jecture 5.3.1 is that there are non-deterministic witnesses for values of f and24

that could possibly help in devising a lower bound proof.25

Let us a point out an advantage the gadget generator (and the
∨
-hardness)26

seems to have. To express this we take the viewpoint of model theory as ex-27

plained in Section 3.5. There we have a non-standard finite string b ∈ {0, 1}m28

not in the range of the generator and we want to extend the model by adding29

a ∈ {0, 1}n such that Gadf (a) = b in the extension.30
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If we look at Gadf just as on a p-time function then it is like adding a
solution to a fixed equation Gadf (x) = b, fixed meaning that it is in the
ground model already. But we can also look at it as a system of equations
for fv: ∧

i∈[ℓ+1]

fv(u
i) = bi

where b = (b1, . . . , bℓ+1). A potential advantage of this view is that now we1

do not have fv given in advance (i.e. in the ground model) as we can also2

add to the model a new gadget v := c. That is, it suffices to show that it is3

consistent to have a gadget for which the system has a solution.4

We shall study in Chapter 7 a particular construction of extensions of the5

ground model.6

6.5 A conditional hardness for uniform proofs7

To make a better sense of the previous section (and to justify presenting a8

result about a weak proof system in Section 6.3) we now prove a conditional9

statement that a generalization of the gadget generator is hard for all proof10

systems but w.r.t. uniform proofs and τ -formulas.11

The hardness hypothesis concerns the following NP search problem de-12

noted Jc. It is motivated by the principle dWPHP1(f, g) (cf. (2.1.1)) and13

it was defined in [36] with the name WPHPWIT. We use a different name14

as the parameters are somewhat different (and the name is shorter). The15

problem is defined as follows:16

• valid inputs: 3-tuples (1(k), D, C) where17

– D is a size ≤ kc circuit with k inputs x and k + 1 outputs y,18

– C is a size ≤ kc circuit with k + 1 inputs and k outputs,19

• solutions: any y ∈ {0, 1}k+1 such that D(C(y)) ̸= y.20

The hardness hypothesis we shall use is the following one.21

Hypothesis (J):22

There exists a constant c ≥ 1 such that the search problem Jc cannot be23

solved by a p-time function.24



78 Generators

At least half of the strings in {0, 1}k+1 are solutions and hence the hy-1

pothesis of a universal derandomization [33] implies that for any c ≥ 1 there2

is a PRNG with the seed O(log k) such that at least one string in its range3

is a solution, and this contradicts (J). A similar situation is discussed in de-4

tail in Section 8.4. However, popular as it is, the universal derandomization5

hypothesis is only a hypothesis and it cannot harm to see what could hold if6

it is actually false.7

Theorem 6.5.18

The hypothesis (J) implies that the following holds for the gadget gener-9

ator g based on the gadget function CVk,kd, some constant d ≥ 1:10

• There are no strong proof system P and p-time functions Π, B such
that for infinitely many n ≥ 1 it holds that

Π(1(n)) : P ⊢ τ(g)b ,

where b := B(1(n)).11

Proof:12

Let c ≥ 1 be the constant from (J). The gadget generator will take as13

gadgets size ≤ kc circuits D with k inputs and k + 1 outputs; the gadget14

size is thus ℓ := 10ckc(log k) ≤ kc+1 for k >> 1, and the gadget function15

is the circuit value function CVk,kc+1 . To ease on the notation denote the16

generator simply g, so gn : {0, 1}n → {0, 1}m, with n,m determined by k, ℓ17

as in Definition 6.1.1.18

We shall use the model-theoretic criterion for hardness given in Theorem19

3.5.1. Assume for the sake of a contradiction that the conclusion of the20

theorem does not hold for some P,B and Π.21

As we aim at an arbitrary strong proof system P we take T := TPV. Take22

a non-standard model of true arithmetic M. By the overspill there is a non-23

standard n such that π := Π(1(n)) is a P -proof of b := B(1(n)). Let M′ be the24

substructure of the corresponding small canonical model Mn generated by25

1(n); it contains strings b and π. It is still a model of T as that is a universal26

theory. Note that the model is generated also from 1(k) is it determines n in27

the prescribed way.28

Take theory T ′ in the language of TPV augmented by two new constants
C,D and axiomatized by T , the atomic diagram of M′ two axioms:

∀y ∈ {0, 1}m D(C(y)) = y
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and
(1(k)), D,C) is a valid input to Jc .

Claim: T ′ is consistent.1

If T ′ were inconsistent then Herbrand’s theorem would give us a p-time2

function with parameters from M′ that solves the search problem Jc. All3

parameters can be themselves generated by p-time functions from 1(n) and4

hence from the input to the problem. That contradicts (J) in M.5

Let M∗ be a model of T ′. To see that b = w1 . . . wℓ+1 is in the range of6

g in this model we just need to find an element a := vu1 . . . uℓ+1 ∈ {0, 1}n7

such that gn(a) = b. That is done entirely analogously as in the proof of8

Theorem 6.3.1: substitute circuit D for the gadget, v := D, and use circuit9

C to compute the map inverse to that computed by D; that is: ui := C(wi)10

for all 1 ≤ i ≤ ℓ+ 1.11

q.e.d.12

Let us remark that the use of model theory is certainly not needed. How-13

ever, in our view it illustrates well an approach that could work in more14

complicated situations.15

Further note that the argument can be straightforwardly extended to16

show that g is uniformly pseudo-surjective for all strong proof systems17

P by which we mean that that there are no p-time functions Π, S that would18

compute a P -proof of a disjunction (3.3.1) where strings Bi are computed19

by S in the sense of (2.2.4). Just continue to use circuit C to find preimages20

for all Bi (this can be done by one p-time algorithm). This in turn implies21

by Theorem 2.2.3 that S1
2(PV) does not prove dWPHP(g) and hence also22

the negative answer to the dWPHP problem 2.0.1. However, this uses (J)23

and Corollary 2.1.3(2) implies immediately that (J) solves the conservativity24

problem 1.0.1 (and hence also the dWPHP problem) in the negative. Pity25

that (J) is not considered plausible.26
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The case of ER2

This chapter is devoted to the study of a possible way how to prove that a3

generator is hard for Extended Frege system EF, equivalently for Extended4

resolution ER. We shall use the formalism of ER as it has the most rudimen-5

tary definition of all proof systems that are p-equivalent to EF (see Section6

7.1) and some literature we want to quote uses ER.7

ER is a pivotal proof system. In the partitioning of proof systems into8

four levels in [65, Chpt.22] it separates the bottom two levels, Algorithmic9

and Combinatorial, from the top two ones, Logical and Mathematical, sitting10

at the bottom of the Logical level.11

If one succeeded in proving that ER is not p-bounded it would not imply12

- at least it is unknown to imply (i.e. we do not know if ER is optimal proof13

system, cf. [70] or [65, Chpt.21]) - that NP ̸= coNP . But it would be close:14

any super-polynomial lower bound for the length-of-proofs function sER (i.e.15

for any formulas) implies that NP ̸= coNP is consistent with theory S1
2(PV)16

(which contains PV1). The reader can find details in [45], [65] or [47].17

The qualification close seems to be honest not only because S1
2(PV) con-18

tains a significant part of computational complexity theory around P and19

NP but also because of the following scenario. Assume that actually some20

algorithm M solves SAT in p-time and thus P = NP , and that you can21

prove the soundness of M (meaning that if M finds no satisfying assignment22

then none exists) using induction on NP-predicates but not on P-predicates.23

Theory S1
2(PV) proves induction for P predicates but not for NP predicates24

(unless log-space equals to p-time with NP oracles, cf. [43]). This means25

that while the classes P and NP equal, the concepts of of deterministic and26

non-deterministic p-time computations is not equivalent from logical perspec-27
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tive, i.e. one cannot replace the latter by the former in proofs. Establishing1

the consistency of P ≠ NP ≠ coNP with S1
2(PV) would thus amount to a2

form of a logical separation of P , NP and coNP .3

In a more down-to-Earth mood one can view the task to show that some4

generator is hard for ER as a common consequence (conditional in the last5

case) of all three conjectures mentioned so far: the working conjecture 3.2.2,6

the pseudo-surjectivity conjecture 3.3.3 and Razborov’s conjecture 5.3.1. Of7

course, the target is an unconditional result but proving the hardness for ER8

under a hypothesis of a computational nature that is deemed to be plausible9

would be, in my view, a significant advance (cf. [55] for a related discussion).10

The method we shall discuss in Section 7.4 aim at that, cf. the introduction11

to [60].12

7.1 Background on ER and sER13

The underlying Frege system F in the statements below is supposed to use the14

DeMorgan language 0, 1,¬,∨,∧ and have modus ponens among its inference15

rules. This assumption simplifies the formulation of some statements.16

Proof system ER formulated in [103] is p-equivalent not only to Extended17

Frege EF (by [19]) but to a number of other proof systems. Those of a logical18

nature examples are SF (Frege system with the substitution rule going back19

to [24]) by [22, 70], Circuit Frege system CF (cf. Section 3.3) or fragment20

G∗
1 of the quantified propositional calculus G of [71] (cf. [45, L.4.6.3] or21

[65, Thm.4.1.3]). A more exotic example is one of implicit proof systems of22

[R,R∗] (cf. [53] or [65, Sec.7.3] for definition and [104] or [65, L.7.3.4] for23

proofs of the p-equivalence with ER).24

The length-of-proofs function sEF (which is polynomially related to sER

by the p-simulation of [19]) is also related to some other proof complexity
measures. In particular,

kEF (α) ≤ kF (α) ≤ sEF (α) ≤ O(kF (α) + |α|)

and

kF (α) ≤ ℓF (α) ≤ O(kF (α) + |α|) .

here kP (α) is the minimal number of steps in a P -proof of α while ℓP (α) is the25

minimal number of different formulas that need to appear as subformulas in26

a P -proof of α. The number of steps is perhaps the most natural complexity27
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measure from a proof-theoretical point of view while the number of different1

formulas is the measure to which many lower bounds proofs actually apply.2

These inequalities can be found in [19, 46] as well as in [45, 65] (an overview3

of proof complexity measures is, in particular, in [65, Sec.2.5]).4

For our purpose are of interest various characterizations of lower bounds5

for function sER, i.e. various frameworks for proving lower bounds for sER6

that are complete in the sense that they can be used, in principle, to prove7

super-polynomial lower bounds, assuming these are valid. Let us mention a8

few to illustrate the wider picture.9

Extension of models of PV1.10

This was outlined in Section 3.5, another brief overview is in [65, Sec.20.1],11

more detailed in [72] and in [45].12

Forcing expansions of models of V 1
1 .13

This is a variant of an unpublished construction of A.Wilkie. While the14

characterization in the previous item holds for any strong proof system this15

construction was tailored to EF. See [46] or [45, Sec.9.4] for details.16

Note that [100, 101] studied a construction of Boolean-valued models17

of bounded arithmetic aiming at separations of complexity classes; see also18

overview in [77].19

Prover-Liar game.20

This is based on a theorem of [44] that an F -proof can be put into a tree-21

like balanced form without much increase in size or number of steps (cf. also22

[65, Sec.2.2]). In particular, an F -proof with k steps can be transformed into23

a tree-like proof with the underlying proof tree having the height O(log k).24

In the game (defined in [13]) Prover P asks Liar L about truth-values of25

formulas. They start with a formula α: P wants to force L to admit that α26

is true. L can answer in any way she wants. The game stops with P winning27

iff28

• either L says that α is true, or29

• L says that 0 is true or 1 is false, or30

• L’s answers violate the truth-table of one of the connectives ¬,∨,∧.31

If P happen to have a tree-like F -proof π∗ of formula α and π∗ has the height32

h then he has a winning strategy that beats every L in ≤ O(h) rounds.33
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Namely, P asks about the last formula, i.e. about α. He either wins thanks1

to the first item above or L claims α is false. L then asks about the premises2

of the inference. Either L admits that one of them is false or she gets into3

contradiction with the last item. In this way can P navigate through π∗ to an4

instance of an axiom scheme of F , and asking about the values of formulas5

substituted in the scheme forces L into a contradiction.6

This implies that constructing a strategy for L that survives at least t7

rounds against any P yields a lower bound 2Ω(t) on the number of steps in8

any F -proof of α and hence, by one of the inequalities mentioned above,9

some lower bound for sEF (α) too. In fact, the opposite in equality is true10

too: minimal number of rounds P needs in the worst case is proportional to11

the logarithm of kF (α), cf. [13] or [65, L.2.2.3].12

A reduction between NP-search problems.13

This approach is based on a form of a propositional witnessing theorem14

and is from [63] (cf. [9] for a related work).15

Assume you have a Boolean circuit C with no inputs (other than 0, 1)16

and of size s. It is a straight line program how to compute a sequence of17

s constants. Having variables yi for the subcircuits the circuit is defined by18

the set of clauses DefC from the beginning of Section 3.1. It is obviously19

satisfiable and hence non-refutable. In particular, if π were a purported20

R-refutation of DefC there must be some syntactic error in it. The search21

problem we are interested, having a rather non-descriptive name Γ(0, s, k) in22

[63], is essentially the problem above except that C and π are not fixed in23

advance but are inputs to the problem. In particular, Γ(0, s, k) is a set of24

clauses in atoms that describe a potential circuit C of size ≤ s (i.e. describe25

clauses in DefC) and a potential R-refutation of DefC having ≤ k steps. The26

definition in [63, Sec.1] is fairly technical and we shall not repeat it here but27

just note that Γ(0, s, k) has size O(k5) for k ≥ 3s, contains clauses of width28

≤ 3 + 3 log k and is unsatisfiable.29

The use of Γ(0, s, k) is the following. Assume you have another unsatis-30

fiable set of clauses ∆ in n variables disjoint from those of Γ(0, s, k) and all31

clauses of ∆ having the width ≤ w. One can consider a clause reduction32

of ∆ to Γ(0, s, k): a substitution σ of clauses of literals of ∆ for variables of33

Γ(0, s, k) such that the substitution instance of a clause of Γ(0, s, k) is either34

logically valid or contains a clause of ∆. The width of the substitution σ is35

the maximal size of a clause it uses.36

Then it holds:37
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• If δ has an ER-refutation with k′ steps then for some k ≤ O(nk′) and1

s ≤ k/3 there is a clause reduction σ of ∆ to Γ(0, s, k) hawing width2

max(3, w).3

[63, Thm.2.1] formulates this as a proof-theoretic reduction (each clause of4

σ(Γ(0, s, k)) has a short proof from ∆) but can be also stated as a reduc-5

tion between two oracle NP-search problems, oracle giving an assignment6

to variables of ∆ and the task being to find a false clause. The above is7

formulated as a criterion for lower bounds (the non-existence of a reduction8

implies a lower bound for ER) but it can be given as a characterization of9

sER, formulating it in the form demanding that the reduction is provable.10

The details of this approach are quite technical and I refer the interested11

reader to [63].12

Boolean valuations.13

The notion of partial Boolean valuations defined in [46] does not use non-14

standard models as the first two approaches but can be seen as a finitary15

version of forcing (see also [45, Sec.13.3] for some discussion). Below we use16

the same notation as in [46, 45].17

For a set Γ is DeMorgan formulas we say that τ is F -provable within Γ18

iff there is an F -proof π o τ such that all formulas that appear as subformulas19

in π are in Γ. Note that the minimal cardinality of such Γ is precisely ℓF (τ).20

A partial Boolean algebra B(0, 1,¬,∨∧) is a structure where the opera-21

tions may be only partil function but whenever an identity axiomatizing the22

variety of Boolean algebras has both sides defined they must be equal. For23

axiomatization take any standard one, see [45, Def.13.3.1] for one.24

A partial Boolean valuation of Γ is a map

ν : Γ → B

such that constants 0, 1 get mapped to 0, 1 of B, and25

• ν(¬α) = ¬ν(α), if both sides are defined,26

• ν(α ∨ β) = ν(α) ∨ ν(β), if both sides are defined, and analogously for27

∧.28

We shall state the underlying theorem for this method exactly as the ap-29

proach we propose in the next section can be see as an infinitary version of30

it.31
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Theorem 7.1.1 ([46])1

For any tautology τ let nτ be the maximal number n such that for every set2

∆ of at most n formulas and containing τ there is a partial Boolean valuation3

ν : ∆ → B such that ν(τ) ̸= 1B.4

Then:
nτ ≤ O(ℓF (τ)) and ℓF (τ) ≤ nO(1)

τ .

An example of constructions of partial Boolean valuations of large sets of5

constant depth formulas giving to the PHP formula value different from 1B6

is in [45, Sec.13.3].7

7.2 Expansion of pseudo-finite structures8

Bounded arithmetic can be formulated in two different set-ups, one-sorted9

and two-sorted. The one-sorted set-up is the one of PV1, TPV or S1
2(PV):10

elements of structures are numbers (that represent binary strings) and there11

are relations and functions (infinitely many of them when language of PV12

is used) on numbers. In the two-sorted set-up you separate numbers (now13

representing lengths of strings or position of bits in strings) and bounded sets14

(that represent by their characteristic functions binary strings). These set-15

ups are fundamentally equivalent but may be useful in different situations.16

In particular, the two-sorted set-up allows to ignore that strings ought to be17

closed under some functions. A gentle introduction to this issue is in [65,18

Chpt.9], more details are in [45] (however, the reader does not need to know19

this in order to follow the next).20

The models of bounded arithmetics PV1 or S1
2(PV) we discussed earlier21

in the connection to a model-theoretic approach to lengths-of-proofs lower22

bounds are one-sorted in the sense above. They can be replaced by pseudo-23

finite structures (which are two-sorted). We recall this framework and then24

give a novel criterion for ER lower bounds using it. The framework is dis-25

cussed in some detail in [65, Sec.20.2] and in great detail in [64]. Let us note26

that [83] used this framework to equivalently reformulate various conjec-27

tures about mutual relations of basic complexity classes as statements about28

model-theoretic properties of pseudo-finite structures (see [64] for other ex-29

amples and references) and [1, 2] used the framework to a great success for30

inventing a proof of AC0 lower bound for parity or proving lower bound31

for AC0-Frege proofs of the pigeonhole principle tautologies (this is also de-32

scribed in [65, Sec.20.2]).33
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The structures we shall be interested in look as follows. Let M be ar-1

bitrary non-standard model of true arithmetic (in the language of PA for2

definiteness). Let L be a finite first-order language disjoint from the lan-3

guage of M, to avoid a confusion.4

We shall consider non-standard finite L-structures that have as their uni-5

verse some [n], for n ∈ M a non-standard element. We shall denote such an6

L-structure AW where W is an interpretation of L on [n] that is definable in7

M. Note that AW is coded by ≤ nk bits, some standard k, so it is coded by8

an element of M that is bounded above by 2n
k
.9

These structures are main examples of pseudo-finite structures: in-10

finite structures satisfying the L-theory of all finite L-structures. Useful11

equivalent definitions are the following two conditions:12

• an infinite L-structure that is elementary equivalent to a non-standard13

finite L-structure AW definable in a non-standard model of true arith-14

metic M,15

• an infinite L-structure such that every L-sentence true in it is also true16

in a finite L-structure.17

The general form of a problem of expansions of pseudo-finite structures18

related to problems of computational and proof complexity is as follows. Let19

L′ ⊇ L be a finite extension of L and let T ′ be a first-order L′-theory. Recall20

that expansion means to interpret symbols not in the original language L21

over the same universe: no new elements are added. The problem then is:22

• Given an L-structure AW find its L′-expansion B such that B |= T ′.23

Let us remark, informally, that the existence of such an expansion is related24

to which T ′-proofs are definable over AW (in a precise technical sense) and25

for first-order T ′ this relates to propositional translations. For some problems26

it is of interest to have T ′ a Π1
1-theory, cf. [64], and [3, 4] even treats arbi-27

trary r.e. theories (sufficiently strong and consistent T ′) and characterizes28

the existence of expansions of an end-extension of AW (cf. [25] for a more29

conceptual proof).30

For our purposes we want to code by functions and relations in AW

formulas and circuits. If we have a relation

H ⊆ [2]× [n]a × [n]b ,
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a, b ≥ 1 standard, we can interpret it is a CNF formula αH whose atoms1

pi are indexed by i ∈ [n]a, which has ≤ nb clauses Dj indexed by j ∈ [n]b2

and such that atom pi occurs positively (resp. negatively) in clause Dj iff3

H(1, i, j) holds (resp. H(2, i, j) holds). On the other hand, any DNF formula4

with polynomially many (in n) atoms and clauses can be so represented.5

We will use here circuits with unbounded fan-in
∨

and
∧

To represent
such a circuit with input variables xi, i ∈ [n]a, and with ≤ nc nodes yu
indexed by u ∈ [n]c we consider a relation

Ce ⊆ [n]c × [n]c

determining the underlying graph of the circuits, with an edge from node y
to node y′ iff y is one of inputs to y′, together with mappings

Ci : [n]c → [n]a∪̇[2]

that labels nodes with in-degree 0 by inputs variables or by on of the two
constants 0, 1, and

Cg : [n]c → [3]

that labels gates (nodes with non-zero in-degree) by one of the three connec-6

tives ¬,∨ or ∧.7

We shall assume that c ≥ a and that the relation Ce and maps Ci, Cg are8

encoded jointly in one relation C ⊆ [n]3c in some canonical way.9

The final object we need to represent is a sequence of nodes of C of length
≤ nd. A function

S : [n]d → [n]c

represents sequences yu1 , . . . , uut where t = nd, ordered set {1, . . . , t} is iden-10

tified with lexico-graphically ordered [n]d and uv := S(v) for v ∈ [n]d.11

Let us pause and dispose of two technicalities. First, given a relation H12

we only know its arity 1 + a+ b but we do not know what a, b are. This can13

be treated by taking a = b and relations H of odd arity only. Analogously14

remove the same problem for C and S. Second, first-order functions have15

one value and not a tuple of values. However, S can be represented by c16

single-valued d-ary functions computing the individual coordinates of C.17

To summarize let us use symbol LER for any language which has symbols:18

• a relation symbol H and functions symbols C, S (for some parameters19

a, b, c, d as above),20
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• a relation symbol ≤ interpreted in W by the ordering of M,1

• constants 1 and n interpreted in W by 1 and n of M.2

Note that the syntactic forms of H and S guarantee that they represent a3

DNF formula and a sequence (of indices from [n]c) resp., but not all rela-4

tions C represent a valid definition of a circuit. Let TER bye an LER-theory5

axiomatized by:6

1. x ≤ y is a linear ordering with 1 and n being the minimum and maxi-7

mum, resp.,8

2. C is a circuit:9

• if (j, j′) is an edge in Ce then j < j′ in the lexico-graphic ordering,10

• all nodes j that get assigned by Cg connective ¬ have in-degree 1.11

Language L′ of the expansions we shall consider extends LER by a function
symbol E for a Boolean assignment to variables xis and yjs. As these are
represented by [n]a and [n]c, resp., we have:

E : [n]a ∪̇ [n]c → {0, 1}

where ∪̇ denotes the disjoint union. A technicality we shall put aside is that12

there is no 0 in [n] and that E ought to be represented by two functions Ex13

and Ey defined on [n]a and [n]c, respectively.14

We will want that expansions satisfy the following L′-theory T ′:15

1. the assignment E violates formula H:

∀i, j, (H(1, i, j) → E(i) = 0) ∧ (H(2, i, j) → E(i) = 1)

2. E respects all instructions of C (we will skip the long but simple formula16

expressing this),17

3. the image of S in E satisfies induction:

E(S(1)) = 0 ∨ E(S(n)) = 1 ∨ (∃u, u′, suc(u, u′)∧E(u) = 1∧E(u′) = 0)

where suc(u, u′) formalizes that u′ is the successor of u in the lexico-18

graphic ordering and 1 and n are its minimal and maximal elements, r19

espectively.20
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Now we are ready to state our criterion.1

Theorem 7.2.12

Let H ′ ⊆ TAUT be a set of DNF formulas. Then the following three3

statements are equivalent:4

1. Set H ′ is hard for ER.5

2. There exists a non-standard model M of true arithmetic such that ev-6

ery pseudo-finite LER-structure AW ∈ M, AW = ([n], 0, 1,≤, H, C, S),7

satisfying8

• AW |= TER,9

• M |= αH ∈ H ′,10

has an L′-expansion satisfying theory T ′.11

3. Statement 2 for all non-standard models M of true arithmetic.12

Note that the second statement does not say that the expansion is in M (in13

fact, it cannot be).14

Proof:15

Condition 2 is trivially implied by 3 so we need to show that 2 implies 116

and 1 implies 3.17

Condition 2 implies 1.18

We shall assume that condition 1 fails, i.e. thatH ′ is nto hard for ER, and19

we shall show that in any nonstandard model M of true arithmetic there is20

AW |= TER such that M |= αH ∈ H ′ but AW has no expansion B satisfying21

T ′.22

The assumption mean that for som k ∈ N there are arbitrarily large23

β ∈ H ′ with sER(β) ≤ |β|k. By overspill in M there are a formula β ∈ H ′ of24

non-standard length n = |β| and its ER-proof π of size |π| ≤ nk. Construct25

(in M) from β, π an LER-structure AW as follows:26

1. LetH ⊆ [2]×[n]×[n] be a relation coding β. HenceM |= αH = β ∈ H ′.27
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2. String π is an ER-refutation of the CNF ¬β and assume its steps are1

clauses D1, . . . , Dt (where Di = ∅). Assume further that y1, . . . , ye are2

all extension variables introduced in π and that their definitions specify3

circuit C0 whose inputs are variables x of β.4

We now extend C0 to a bigger circuit C which will have unbounded5

fan-in (C0 has fan-in ≤ 2) as follows:6

(a) For each Dj introduce instructions

zj :=
∨
ℓ∈Dj

ℓ

where ℓ stands for literals, and7

(b) further introduce instructions:

wj :=
∧
r≤j

zr .

Note that C has e + 2t ≤ 3n instructions and its inputs are variables8

of β, say x1, . . . , xn.9

3. For sequence S take (w1, . . . , wt).10

The LER-structure AW is ([n], H, C, S).11

We want to show that AW has no expansion B satisfying T ′. Assume for
the sake of contradiction that a map E can be added so thatT ′ is satisfied.
Because Dt = ∅ we have E(wt) = 0. On the other hand, D1 is either a clause
of ¬β or an extension axiom; in both case T ′ implies that E(w1) = 1. Using
the S-induction axiom of T ′ there is some r < t such that

E(wr) = 1 ∧ E(wr+1) = 0 .

Now we calculate using only the properties that E evaluates C correctly (we12

use ⊢ as an abbreviation for one equation being implied by one or more in13

this sense):14

• E(wr) = 1, E(wr+1) = 0 ⊢ E(zr+1) = 015
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• if Dr+1 was deduced in π using Du, Dv, u, v ≤ r, then

E(wr) = 1 ⊢ E(zu) = 1 ∧ E(zv) = 1

and also
E(zu) = 1 ∧ E(zv) = 1 ⊢ E(zr+1) = 1

• but we also have

E(wr) = 1 ∧ E(zr+1) = 1 ⊢ E(wr+1) = 1

which is a contradiction.1

Condition 1 implies 3.2

Assume H ′ is hard for ER, M is an arbitrary non-standard model of true3

arithmetic and AW ∈ M is an LER-structure satisfying TER and M |= αH ∈4

H ′.5

Let m := |αH | and take the small canonical model Mm ⊆e M of theory
PV1 defined in Section 3.5. Its universe is a cut

{u | |u| ≤ mk, some standard k }

and hence αH ∈ Mm. The interpretation of the language of PV is inherited6

from M.7

By the hypothesis that H ′ is hard for ER we have that αH has no ER-8

proof in Mm. Hence by Theorem 3.5.1 the model has an extension M′ to a9

model of PV1 in which αH is falsified by some truth assignment e ∈ M′ to10

its atoms.11

The evaluation e can be in M′ extended to a unique evaluation of circuit12

C of AW (as PV1 holds there). Use this evaluation to define map E: it gives13

the same values to all variables as does e. Because S ∈ Mm ⊆ M′ and PV114

proves open induction, the S-induction axiom of theory t′ is satisfied too.15

q.e.d.16

7.3 A Boolean-valued twist17

The fact that model B in the previous section is supposed to be an expansion18

of AW is used only to guarantee that the LER-reduct of B is elementarily19
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equivalent to AW (as the two structures are even equal). However, this1

property is the only one needed to assure that condition 2 implies 1: we need2

to know that H,C, S of AW still obey TER in the bigger structure. Hence we3

could set-up the construction as follows:4

• first find elementary extension A′ of AW ,5

• then expand A′ to B |= T ′.6

Hence B is an expansion of an elementary extension of AW .7

We need to generalize this further by allowing both A′ and B be Boolean-
valued structures. Such a structure is defined as usual first-order structure
with the truth value of sentences A with parameters determined bottom-
up from truth values of atomic sentences but now these atomic sentences
have truth values from some complete Boolean algebra B. The truth-value
[[A]] ∈ B commutes with the Boolean connectives and quantifiers are treated
using the equations

[[∃xA(x)]] :=
∨
a∈A

[[A(a)]] and [[∀xA(x)]] :=
∧
a∈A

[[A(a)]] .

It is well-known that these structures respect first-order logic. In particular,
all logically valid sentences get the maximal value 1B (it is convenient to
call such sentences valid in the Boolean-valued case too) and if B logically
follows from A1, . . . , Ak then ∧

i≤k

[[Ai]] ≤ [[B]]

where ≤ is the canonical partial ordering of B.8

We shall say that a Boolean-valued structure A′ is an elementary ex-
tension of an ordinary first-order structureA (both with the same language),
A ⪯ A′ in notation, iff for all sentences A with parameters from A it holds:

A |= A ⇒ [[A]] = 1B .

With all this we aim at the following statement that will be useful in the9

next section.10

Theorem 7.3.111
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Let M be a non-standard model of true arithmetic and H ′ ⊆ TAUT a set
of DNF formulas. Assume that for any AW ∈ M satisfying

M |= [AW |= TER ∧ αH ∈ H ′]

the following two conditions hold:1

(A) There is a Boolean-valued LER-structure K such that AW ⪯ K,2

(B) K has a Boolean-valued expansion B by map E such that all axioms of3

T ′ have the truth-value 1B.4

The H ′ is hard for ER.5

Proof:6

The proof is analogous to the proof why condition 2 implies condition7

1 in Theorem 7.2.1. There we needed to use that TER is still true in (the8

LER-reduct of) B which was trivially true (as the reduct was simply AW ).9

Here use instead that AW ⪯ K.10

q.e.d.11

7.4 Random variables12

In this section we recall the method of forcing with random variables from13

[60] and use it to define a fairly general class of Boolean-valued structures14

that aim to play the role of structures K and B in the previous section. We15

outline the method precisely but informally and rather swiftly; the interested16

reader ought to consult [60, Chpt.1] or at least [65, Sec.20.4] for the method17

set-up (the notation is same as the one used in these references).18

We equip the standard model N by a canonical interpretation of language19

Lall having a name for every relation and every function on N (this is for20

a technical convenience). For our non-standard model M we take any ℵ1-21

saturated model of true arithmetic in Lall.22

Let n ∈ M be a fixed non-standard element and let Ln be the language23

consisting of all relations in Lall and all functions in Lall that map [n] into24

itself. In particular, all constants for elements of [n] are in Ln as well as all25

Skolem functions for all formulas on the Ln-structure on [n]. Note also that26

Ln ⊇ LER.27

The structure to play the role of K from the previous section, to be28

denoted K(F ), is determined by:29
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• A sample space Ω which is any infinite set such that Ω ∈ M. Elements1

ω ∈ Ω are samples.2

• A family F ⊆ M of partial functions

α :⊆ Ω → [n]

such that α ∈ M and that satisfy:

|Ω \ dom(α)|
|Ω|

is infinitesimal .

Infinitesimal means smaller than 1/t for some non-standard t. Note that we3

do not require that the family F itself is definable in M. The notation K(F )4

reflects only F as it determines Ω.5

The universe of a Boolean-valued Ln-structure K(F ) is F . All function6

symbols of Ln are interpreted quite naturally by composing them with ele-7

ments from F . For example, for + (truncated at n) (α+β)(ω) = α(ω)+β(ω)8

and it is required that this function α + β is also in F : the terminology is9

that F is Ln-closed.10

Any atomic Ln-sentence A with parameters from F is assigned a subset11

⟨⟨A⟩⟩ ⊆ Ω: the set of all ω ∈ Ω such that all parameters from F in A are12

defined on ω, andA with parameters evaluated at ω is true in the Ln-structure13

on [n].14

The complete Boolean algebra B we need is the quotient of the Boolean15

algebra of M-definable subsets of Ω by the ideal of sets of an infinitesimal16

counting measure, cf. [60, Sec.1.2]. The truth-value [[A]] is the image of ⟨⟨A⟩⟩17

in B in this quotient.18

This completes the definition of the Boolean-valued structure K(F ) once19

we specify family F .20

To expand K(F ) by a k-ary function means to define a function

Θ : F k → F

that has the following property: for all α1, . . . , αk, β1, . . . , βk ∈ F21

[[
∧
i

αi = βi]] ≤ [[Θ(α1, . . . , αk) = Θ(β1, . . . , βk)]] . (7.4.1)22

This property is needed to assure that the equality axioms are valid in the23

expansion.24
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7.5 Tree models1

We are going to describe now a fairly broad class of Boolean valued structures2

constructed from families of random variables of a particular form. Similar3

structures turned out to be quite useful in other contexts of proof complexity4

and bounded arithmetic, cf. [60].5

Assume we have AW , an LER-structure with a non-standard universe [n]6

as in the previous section. We may think of AW also as a structure in the7

bigger language Ln defined there. To define a family F ⊆ M of random8

variables we shall use the following data D ∈ M consisting of objects (sets9

and functions) that are elements ofM and hence finite or non-standard finite:10

• an infinite set Ω os samples (as before),11

• a non-empty set Q of questions,12

• a non-empty set R of replies,13

• a partial reply function r :⊆ Ω×Q → R.14

Given D, the family T ⊆ M of (Q,R)-trees consists of all labeled trees15

T ∈ M such that:16

• T is |R|-ary and has the depth at most (log n)k, for some standard17

k ∈ N,18

• inner nodes are labeled by elements of Q,19

• the |R| edges outgoing from an inner node are labelled by all elements20

of R,21

• leaves are labeled by any elements on [n].22

Any T ∈ T defines naturally a partial function

αT : ⊆ Ω → [n]

in the following way: given ω ∈ Ω travel in T from the root to a leaf, leaving23

a node labelled by q ∈ Q by the edge labelled by r(ω, q). If you reach a leaf24

the value αT (ω) is the label of that leaf; otherwise αT (ω) is undefined. We25

shall denote by the symbol αT (ω) ↑ the fact that the function is undefined26

at the sample.27

The data D define family FD consisting of all partial functions αT , for all28

T ∈ T , assuming that the following Key condition is satisfied:29
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• For every α ∈ FD:

Probω[α(ω) ↑] is infinitesimal ,

i.e. Probω[α(ω) ↑] ≤ 1/ℓ for all standard ℓ ∈ N.1

If the Key condition is not met then D defines no family of random variables.2

The lemmas formulated in the rest of the section are variants of state-3

ments from [60]; to keep the presentation self-contained we outline proofs4

briefly.5

Lemma 7.5.1 ([60, L. 1.4.2 and 5.5.1])6

For every D satisfying the key condition it holds:

AW ⪯ K(FD) .

Proof:7

First note that the definition of the truth-values [[. . .]] immediately implies8

Claim: Every universal Ln-sentence true in AW is valid in K(FD).9

The next observation is that for any existential Ln-formula ∃yB(x1, . . . , xk, y)
(B open) Ln contains a function symbol f(x1, . . . , xk) fo a Skolem function
for the formula, i.e. satisfying in AW the corresponding Skolem axiom:

∀x1, . . . , xk, y, B(x1, . . . , xk, y) → B(x1, . . . , xk, f(x1, . . . , xk)) .

By Claim this is valid in K(FD). Because every Ln sentence is equivalent10

modulo these Skolem axioms to a universal (actually to a quantifier-free)11

sentence we get the lemma.12

q.e.d.13

Our task is to expand K(FD) by a function Θ that will interpret function14

symbol E of L′ (i.e. it will assign to variables of H and C values 0 or 1) such15

that the theory T ′ from Section 7.2 is satisfied.16

We shall assume that Θ is defined in the following way. To ease on the
notation let V ar denote the set of all variables xi of H (inputs to C) and all
variables yu, instructions of C (they were indexed by [n]a∪̇[n]c previously).
Map Θ is determined by a sequence β̂ ∈ M:

β̂ := (βv)v∈V ar

with βv ∈ F computed by trees Tv, all v ∈ V ar. Such Θ is interpreted as a17

function from F to F as follows:18
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• Given αT ∈ F define tree S by:1

– append to every leaf in T labelled by v ∈ V ar tree Tv,2

– to other leafs append nothing.3

Then we define Θ(αT ) := αS.4

Lemma 7.5.25

For all αT ∈ F , Θ(αT ) ∈ F as well. The equality axioms (7.4.1) are valid6

in (K(FD),Θ).7

The following statement shows that we do not need to worry about the8

third axiom of the theory T ′ (the S-induction).9

Lemma 7.5.3 ([60, L.8.3.2])10

For any D satisfying the Key condition the S-axiom of T ′ is valid in11

(K(FD),Θ), i.e. its truth-value is 1B.12

Proof:13

Sequence S in AW is a sequence of ≤ nd nodes of circuit C:

yu1 , . . . , yus , s ≤ nd .

Each Θ(yuj
) is computed by a tree Tuj

that computes the corresponding14

element of β̂. We define tree S as follows:15

1. Start with tree Tu1 : at leaves labeled by 1 go to item 2, and at leaves16

labeled by 0 change the label to i = 1.17

2. To leaves of Tu1 labeled by 1 append tree Tus . At leaves of these ap-18

pended trees labeled by 1 change the label to i = s, and at the leaves19

labeled by 0 go to item 3.20

3. At the leaves referred here from item 2 simulate binary search, using21

trees Tuj
to compute values of yys/2 , etc. until an r is found such that22

Tur computes while Tur+1 computes 0. Then label the leaf by i = r.23

4. Finally change all labels of the form i = t to t.24
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Note that the depth of the tree is ≤ d(log n)d′, where d′ is the maximal depth1

of a tree Tv, v ∈ V ar. Hence S ∈ T .2

Claim:The element αS ∈ F witnesses that the S-induction axiom is valid in3

(K(FD),Θ).4

q.e.d.5

To define Θ we only need to use trees Tv, v ∈ V ar. One may be tempted6

to simplify the data D in the following way, taking in a sense the minimal7

data Dmin needed, defined as follows:8

1. for ω ∈ Ω define

ω∗ := {βv(ω)}v∈V ar ∈ {0, 1, ∗}V ar

where ∗ represents the case when βv(ω) is undefined9

2. new sample space Ω∗ := {ω∗ | ω ∈ Ω}10

3. questions Q∗ := {v =? | v ∈ V ar}11

4. replies R∗ := {0, 1}12

5. reply function r∗ :⊆ Q∗ × Ω∗ → R∗ by

r∗(v =?, ω∗) := ω∗
v

and we take Θ∗ computed by the depth 0 trees asking v =?, for v ∈ V ar.13

The new family FDmin
is smaller and hence there is less opportunity to14

find a 3-term of αH that is satisfied by Θ∗ (i.e. showing that the first axiom15

of T ′ does not hold). On the other hand, if Θ∗ claims that a clause is true16

this smaller family may miss a witness to it, i.e. a true literal in the clause.17

Using the economic Dmin data may also not be best for analyzing prop-18

erties of the corresponding family of random variables. As an example may19

serve PHP-trees where natural trees ask where a pigeon i goes rather than20

just ask if pigeon i goes to hole j, cf. [60, Chpts.20 an 21 ].21
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Chapter 81

Consistency results2

In his chapter we prove several consistency results with theory TPV. All3

are proved by applying the witnessing Theorem 2.2.2, part (a), for Σb
2-4

consequences of TPV and then showing under a hypothesis (some more plau-5

sible than other) that the formula in question cannot be witnessed by an S-T6

computation in a constant number of rounds.7

It is in my view important for further development to prove similar con-8

sistency results for theory S1
2(PV). An analogous approach would be to show9

that dWPHP cannot by witnessed by S-T computations with a polynomial10

number of rounds. However, there the situation is more complex and the11

assumption that it is provable in PV1 that the Student succeeds may be12

crucial; we discuss this in Section 8.4.13

Let us remark that in the relativized case, when we have a function symbol14

for a generator g but not its definition, a number of unconditional consistency15

results are known. For example, we cannot witness by a p-time oracle ma-16

chine with a polynomial advice with an NPR oracle, where R is the graph17

of g, that g is not a bijection between [a] and [2a]. Or even with oracle18

access to functions g, f we cannot witness by a PLS problem defined by a19

p-time machine with oracle access to f, g that dWPHP1(f, g) of Section 2.220

holds. The interested reader can find these and other related results in [45,21

Secs.11.2-3] and in references given there.22

101
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8.1 S-T computations and provability1

Consider a Σb
2-formula as in (2.2.1):

∀x∃y(|y| ≤ |x|c)∀z(|z| ≤ |x|d), A(x, y, z)

Our main (but not only) example is when A is

y < 2x → (z < x → g(z) ̸= y)

and (2.2.1) expresses dWPHP(g).2

To simplify the notation we shall incorporate bounds to y and z into the
formula A, meaning that A has the form

A := |y| ≤ |x|c ∧ (|z| ≤ |x|d → A0(x, y, z)

and the above formula is written simply as3

∀x∃y∀z, A(x, y, z) . (8.1.1)4

The existence of S-T computations witnessing (8.1.1) for A open formula5

can be characterized analogously to Theorem 2.2.3 by provability in a theory.6

Theorem 8.1.17

For formula (8.1.1) with A open the following holds.8

1. The following three conditions are equivalent:9

(a) (8.1.1) can be witnessed by S-T computations in a constant number10

of rounds,11

(b) TPV proves the formula∨
1≤i≤k

A(x, Si(x, z1, . . . , zi−1), zi)

where Si are p-time functions computing the i-th move of S (same12

as in (2.2.3).),13

(c) (8.1.1) is provable in theory TPV.14

2. The following three conditions are equivalent:15
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(a) (8.1.1) can be witnessed by S-T computations in polynomial num-1

ber of rounds,2

(b) TPV proves the formula

z ∈ [x]|x|
k → ∃i < |x|k, A(x,M(x, z|i), zi)

where M is the machine computing S that always finds a witness3

in ≤ nk rounds, and z|i has the same meaning as in (2.2.4),4

(c) (8.1.1) is provable in theory TPV + S1
2(PV).5

Proof:6

Conditions (c) imply conditions (a) by the witnessing theorems alluded7

to in Section 2.2 (cf. [75] and [42]).8

Conditions (a) imply conditions (b) as the formulas in (b) express that9

(8.1.1) can be witnessed in k or nk rounds, respectively, and are universal10

(the formula in 2(b) can be put - provably in PV1 - into a universal form by11

using a p-time algorithm finding i). Hence they are axioms of TPV.12

That condition 1(b) implies 1(c) is obvious. To get from 2(b) to 2(c) we
need to use S1

2(PV) that proves that there is a maximal i < |x|k for which
there is an evaluation of z|(i− 1) such that

∀j < i, ¬A(x,M(x, z|j), zj) .

Then M(x, z|(i− 1) witnesses formula (8.1.1).13

q.e.d.14

The theorem means that showing the unprovability of a formula of the15

form (8.1.1) in theories TPV or TPV+S1
2(PV) is equivalent to a purely compu-16

tational complexity task to show that the formula cannot be witnessed by S-T17

computations with constant or polynomial number of rounds, respectively.18

As the later assertion (for any A) implies, in particular, that P ≠ NP all19

such results have to use some hypothesis. We return to this topic in Section20

10.2.21

8.2 The dWPHP for the truth-table function22

We note first that the truth-table function can be, under an assumption,23

witnessed by a p-time function.24
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Lemma 8.2.11

Assume that there exists L ∈ E such that L /∈i.o. Size(2
ϵk), for some ϵ > 0.2

Then the formula dWPHP(tts,k) with s = 2ϵk can be witnessed by a p-time3

function and hence the theory TPV proves the dWPHP for this function.4

Proof:5

Assume L ∈ E and that Lk := L ∩ {0, 1}k has no size 2ϵk circuits for6

k >> 1. The characteristic function of Lk can be, however, constructed from7

1(2
k) by some p-time function f .8

The second part of the statement follows as the fact that f witnesses the9

dWPHP can be stated as true universal formula, an axiom of TPV.10

q.e.d.11

In this section we give a proof of a conditional result from [66] that theory12

TPV does not prove the dWPHP for the truth-table function. The hypothesis13

the statement uses has to contradict the hypothesis of Lemma 8.2.1. In14

particular, we use the following computational complexity hypothesis.15

Hypothesis (H):16

There exists a constant d ≥ 1 such that every language in P can be decided17

by circuits of size O(nd): P ⊆ Size(nd).18

The hypothesis with d = 1 is often attributed to Kolmogorov although it19

seems he raised it as a possibility and did not present it as a conjecture; see20

the discussion in [38, Sec.20.2].21

As it appears, most experts do not consider it plausible but this should22

not stop us to investigate it. In particular, there are no technical results that23

would speak against (H). It implies that that P ≠ NP as there are languages24

in the polynomial-time hierarchy that have no size O(nd) circuits, cf. [39],25

and moreover implies this by an upper bound rather than by a lower bound as26

does the conventional circuit complexity theory. Already this feature ought27

to attract attention to (H) as we seem to be much better at proving upper28

bounds while proving lower bounds is in a long term a fiasco.29

What some researchers may find less attractive is that (H) also implies30

that E ⊆ Size(2o(n)) (use padding), giving a blow to foundations of universal31

derandomization. Hypothesis (H) is, in my view, good for proof complexity:32

via [52, Thm.2.1] it implies that either NP ̸= coNP or that there is no33

p-optimal proof system.34

No we are ready to formulate the result.35



Consistency 105

Theorem 8.2.2 ([66, Thm.1])1

Assume (H). Then for every 0 < ϵ < 1 and s = s(k) := 2ϵk the formula2

dWPHP(tts,k) cannot be witnessed by an S-T computation with a constant3

number of rounds.4

In particular, the theory TPV does not prove dWPHP(tts,k), i.e. the sen-5

tence:6

∀1(m)(m = 2k > 1)∃y ∈ {0, 1}m∀x ∈ {0, 1}n, tts,k(x) ̸= y (8.2.1)7

(recall where n := 10s log s).8

Proof:9

Assume that TPV proves the formula. By Theorem 2.2.2 the formula can10

be witnessed by an S-T computation with a constant t ≥ 1 number of rounds.11

Assume the t moves of Student are computed by p-time functions12

S1(z), S2(z, w1), . . . , St(z, w1, . . . , wt−1) . (8.2.2)13

Take d the constant guaranteed by (H) and m >> 0 large enough. Using
these define constants δi and mi by:

δi := (2d)−i , for i = 0, . . . , t and mi := mϵδi .

Let us see that the Student cannot succeed in the first round already. Define14

new function Ŝ1 that has mt+k variables and on inputs 1(mt) and i ∈ {0, 1}k15

computes the i-th bit of S1(1
m) (padding by the string 1(mt) makes the new16

function p-time).17

Let C ′
1(z, i) be a circuit (with the same variables as Ŝ1) that computes Ŝ118

guaranteed by hypothesis (H). Define a new circuit C1 by substituting 1(mt)
19

for z in C ′
1 and leaving just the k variables for bits of i. Note that by the20

choice of C ′
1 circuit C1 has size O((mt + k)d) and thus can be encoded by21

≤ mt−1 bits. Further, by its definition, tts,k(C1) = b1 where b1 := S1(1
(m)).22

Now extend the argument to show that S does not succeed in the second23

round either, i.e. that S2 does not compute a suitable b2 := S2(1
(m), C1).24

Define function Ŝ2 that will now take three inputs: string 1(mt−1), circuit C125

(substituted for variables w1) and i ∈ {0, 1}k, and computes the i-th bit of26

S2(1
(m), C1).27

Applying (H) again we get a circuit C ′
2 (now having 2mt−1 + k variables)28

computing Ŝ2, and we define C2 by substituting 1(mt−1) for z and bits defining29
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C1 for w1 into C ′
2. Note that C2 is left just with the k variables for bits of i1

and that it can be encoded by ≤ mt−2 bits and, crucially, tts,k(C2) = b2.2

Continuing in this way we show that Student given by the t-tuple (8.2.2)3

cannot succeed. The final circuit Ct constructed in the process and witnessing4

that the last candidate solution bt is also in rng(tts,k) can be encoded by m05

bits. Hence all circuits Ci have size at most m0 = mϵ = 2ϵk.6

q.e.d.7

8.3 The dWPHP for the circuit value func-8

tion9

In this section we state a variant of Theorem 8.2.2 from [30] where the truth-10

table function is replaced by the circuit value function. The impossibility11

to witness dWPHP for the truth-table function by S-T computation in a12

constant number of rounds implies that impossibility for the circuit value13

function but [30] used different hypotheses than [66], replacing the hypothesis14

(H) by two new hypotheses (I1) and (I2) formulated below.15

Hypothesis (I1) uses the notion of indistinguishability obfuscation of16

[8]. An indistinguishability obfuscator with security (S, ϵ) is a p-time17

randomized algorithm iO that takes as inputs:18

• security parameter λ,19

• a circuit C,20

• a random string r,21

and satisfying two conditions:22

1. For all λ ad C the output iO(1(λ), C) of the algorithm is with the23

probability ≥ 1/|r| a circuit computing the same function as C.24

2. For any λ and any two circuits C,C ′ of size at most ≤ λ that compute
the same function, and for any circuit A of size S(λ) (acting as an
adversary) it holds that:

|Prob[A(iO(1(λ), C)) = 1]− Prob[A(iO(1(λ), C ′)) = 1]| ≤ ϵ(λ)
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Algorithm iO is JLS-secure if it is secure for some S(n) = nω(1) and ϵ(n) <1

2−nΩ(1)
. We refer the reader to [30] for a more detailed introduction to this2

notion.3

The second hypothesis uses the computational complexity class AM, the4

class of languages having a sound and complete Arthur-Merlin protocol, cf.5

[7]. The class is a probabilistic analog of NP and it holds that NP ⊆ AM ⊆6

NP/poly.7

Now we are ready to state the two hypotheses the theorem will assume.8

(I1) There exists an indistinguishability obfuscator iO that is JLS-secure.9

(I2) TAUT ̸∈i.o. AM.10

Theorem 8.3.1 ([30, Thm.21])11

Assume hypotheses (I1) and (I2). Then the formula dWPHP(CV ) cannot12

be witnessed by an S-T computation with a constant number of rounds.13

In particular, the theory TPV does not prove dWPHP(CV ).14

The general idea of the proof is not that difficult but its technical imple-15

mentations is. We explain here the idea and leave it to the interested reader16

to read the details in [30, Thm.21].17

The starting idea of the proof is a construction, assuming that we have a18

feasible way how to witness the dPWPHP for the circuit-value function, of an19

NP algorithm for TAUT. The iO is used to get a cryptographic construction20

of witness encryption whose breaking would involve solving a task about SAT.21

They consider circuit C[φ, y](x) which outputs y if x satisfies formula φ and22

a string of zeros otherwise. Then it is analyzed what happens if the function23

witnessing dWPHP(CV ) is applied to this circuit which is, however, crucially24

first obfuscated by iO; the non-deterministic algorithm accepts only if the25

witness is y itself.26

The analysis is quite technical already but significant further complica-27

tions come as the witnessing function provided by the KPT theorem is only28

computed via an S-T computation in a constant number of rounds. This29

introduces further (besides iO) probabilistic element that leads eventually to30

the need for hypothesis (I2) instead of just TAUT /∈ NP .31

IN particular, assume for the sake of contradiction that dWPHP(CV ) can32

be witness by S-T computations in k rounds. Hence, for some k ≥ 1, there33
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are k p-time functions S1(x), S2(x, z1), . . . , Sk(x, z1, . . . , zk−1) computing the1

moves of the Student such that in one of the rounds S finds a string outside2

the range of a given circuit C (expanding n bits to n < m ≤ nO(1) bits).3

The idea is to show that there are a circuit C and strings a1, . . . , ak ∈4

{0, 1}n and b1, . . . , bk ∈ {0, 1}m such that5

(a) bi = bj → ai = aj, for 1 ≤ i, j ≤ k,6

(b) C(ai) = bi = Si(C, a1, . . . , ai−1), for all 1 ≤ i ≤ k.7

Having C and the two k-tuples clearly allows to show that the particular8

strategies {Si}i≤k do not work.9

The hard part of the proof comes in the construction of these objects and10

here a particular Arthur-Merlin protocol involving iO is constructed, and11

analyzed using (I1) and (I2).12

Let us remark that condition (a) is, in principle, not needed as the student13

has to find a solution even if the teacher answers same questions differently14

each time (but correctly).15

To conclude this section let us discuss the hypotheses used in the theo-16

rem. Both are considered by experts plausible and this is an advantage over17

the hypothesis (H) used in Section 8.2 However, the belief in (I1) is based on18

a heuristic experience in cryptography (it can be deduced from some hard-19

ness assumptions accepted as heuristically verified) rather than from some20

fundamental theoretical assumption. Hypothesis (I2) is fundamental enough21

but it alone implies NP ≠ coNP which is what we are aiming at in the22

first place (at least if you think of the dWPHP problem as a way to get an23

insight how to prove the hardness of some generator). In particular, if we24

think of the results giving the unprovability of dWPHP as weaker versions25

of the hardness of τ -formulas then we would like to see them proved under26

a plausible hypothesis about deterministic (probabilistic) computations and27

stay away from making assumptions relating TAUT and NP (cf. [55] for a28

discussion). Of course, these remarks are not meant to lessen in any way the29

fact how ingenious the construction underlying Theorem 8.3.1 is.30

8.4 Revisiting the dWPHP problem31

The results in Sections 8.2 and 8.3 settle - under computational hypotheses32

- the weaker version of the dWPHP problem 2.0.1 when S1
2(PV) is replaced33
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by PV1. In particular, by Theorem 8.3.1 the hypotheses (I1) and (I2) imply1

that TPV ⊇ PV1 does not prove dWPHP(CV ). This is complemented by2

Lemma 8.2.1 that (under a hypothesis about circuit complexity of languages3

in E) TPV does prove dWPHP(f) for all p-time functions without parameters4

(the uniform case). These two results are not in a contradiction because5

Theorem 2.1.4 holds over S1
2(PV) but not - as these results show - over TPV.6

This is further complemented by the unprovability result for the truth-table7

function in Theorem 8.2.2 under a conflicting hypothesis.8

Note also that these results (conditionally) settle also the version of the9

conservativity problem 1.0.1 when TPV is present: TPV+S1
2(PV)+dWPHP(∆b

1)10

is Σb
1(PV)-conservative over TPV but it is different unless NP ⊆ P/poly (the11

former follows from Lemma 8.2.1 and Theorem 4.3.2 and the latter follows12

from [75]).13

These results say nothing about the original dWPHP problem 2.0.1 and it14

is our view that making an advance on this problem holds the key to further15

advances on the two conjectures 3.2.2 and 3.3.3. In fact, the situation is16

even more interesting because the problem seems to force us to move to17

propositional logic: witnessing theorems alone cannot be used to answer the18

problem in the negative (which is what we expect). This is because, under19

hypotheses, the dWPHP for p-time generators can be actually witnessed by20

S-T computations with a p-time student in polynomially many rounds. We21

have observed this already in Lemma 4.2.6 but let us show this under a22

weaker hypothesis than is used there. First a simple fact.23

Lemma 8.4.124

Assume that the dWPHP for tts,k with any s = 2Ω(k) can be witnessed25

by an S-T computation with a p-time student in polynomially many rounds.26

Then this is true for all p-time generators.27

Proof:28

This follows essentially from the fact that that S1
2 + dWPHP(∆b

1) is ax-29

iomatized over S1
2(PV) by dWPHP(tts,k), any s = 2Ω(k) (Theorem 4.3.2).30

In some detail: the hypothesis implies that the universal formula anal-31

ogous to (2.2.4) expressing that some p-time S solves the witnessing task32

in nk rounds is true and hence it is an axiom of TPV. Hence TPV + S1
2(PV)33

proves dWPHP(tts,k) and by Theorem 4.3.2 it also proves the dWPHP for34

all p-time generators. Thus, by Theorem 2.2.2 (adding true universal theory35

does not change witnessing), all dWPHP(g) are witnessed in the same way.36
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q.e.d.1

The following lemma follows immediately from Lemmas 8.2.1 and 8.4.1.2

Lemma 8.4.23

Assume that there exists L ∈ E such that L /∈i.o. Size(2ϵk), for some4

ϵ > 0. Then the dWPHP for all p-time generators can be witnessed by an5

S-T computation with a p-time student in polynomially many rounds.6

Hence any proof of the unprovability of dWPHP in S1
2(PV) ought to use7

in a substantial way that that the universal formula (2.2.4) expressing that a8

p-time student witnesses dWPHP in polynomially many rounds is provable9

in PV1 by Theorem 2.2.3. This is what lead - via propositional translations10

into EF proofs (Section 2.3)- to the pseudo-surjectivity conjecture 3.3.3. That11

move to propositional logic ignored the additional information that circuits12

computing moves of the student are actually uniform (the non-uniform ver-13

sion relates to extensions of models by Theorem 3.5.3). The uniformity may14

play a significant role; an example is the construction of the hardcore set15

in [61] for S-T computations related to Statement (S) (cf. the remark at16

the end of Section 8.5). Recall also that we noted at the end of Section 6.517

that the hypothesis (J) considered there implies the negative solution to the18

conservativity problem 1.0.1 and hence also to the dWPHP problem 2.0.119

(but (J) is not considered plausible at present).20

8.5 One-way permutations and statement (S)21

We have discussed in Section 5.4 Statement (S) which essentially formalizes22

(modulo some additional technical conditions) that Conjecture 5.3.1 applies23

to all proof systems, and we proved under some hypotheses that it is not24

true, cf. Theorem 5.4.1.25

In this section we use the hypothesis of the existence of strong OWP and26

show that it is actually consistent with theory TPV, following the argument27

in [58]. To ease on technicalities we present here only a sample part of the28

results from [58], and we simplify a bit the conditions posed in (S) on the NW29

generator, to avoid the need to formulate precisely relations among various30

parameters.31

The conditions we shall require from the NW generator are the following:32
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(A1) The parameters n, d, ℓ,m satisfy:1

m(n) = 2n
o(1)

, d = logm , and ℓ = n1/3 .

(A2) Function h be a p-time OWP with exponential hardness on average,2

B(x) is its hard bit, and assume that function f is defined as f(y) :=3

B(h(−1)(y)). In particular, Hf (ℓ) is exponential, i.e. 2
ℓΩ(1)

.4

(A3) Matrices An are m×n and are (l, logm)-designs, and there is a p-time5

algorithm that from i ∈ {0, 1}d and 1(n) computes the i-th row Ji of6

An.7

Let us remark that parts of [58] prove the consistency of a statement with8

finer relations among the parameters and the hardness of h, using the concept9

of the approximating hardness defined there (we shall not present it here).10

The consistency is shown, as the previous two sections, via showing that
a certain computational task cannot be solved by an S-T computation in a
constant number of rounds. The task is related to the formula expressing
the dWPHP for NWA,f :

∃y ∈ {0, 1}m∀x ∈ {0, 1}n∃i ∈ [m] f(x(Ji(An))) ̸= yi

(with parameters n,m,An universally quantified) but it is not the task to11

witness this formula.12

Instead the consistency is deduced via an elementary model-theoretic13

construction utilizing the fact that the following formula14

∀x ∈ {0, 1}n∃i ∈ [m] f(x(Ji(An))) ̸= bi (8.5.1)15

cannot be witnessed by an S-T computation in a constant number of rounds16

for infinitely many n ≥ 1 and b ∈ {0, 1}m, with feasible nonuniform student17

S. It is the use of model theory that forces us to consider non-uniform students18

(i.e. their moves are computed by circuits) rather than just uniform p-time19

students as earlier.20

The relevant computational task is the following one.21

Task (Tb): For a fixed b ∈ {0, 1}m \ rng(NWAn,f ), Tb is the task to find,22

given a ∈ {0, 1}n some i ∈ [m] such that f(a(Ji(An))) ̸= bi.23

Here a counter-example to f(a(Ji(An))) ̸= bi is a witness to f(a(Ji(An))) =24

bi using the NP-definition of f(u), i.e. it is v := h(−1)(a(Ji(An))) such that25

B(v) = bi.26
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Now we state the key lower bound. In its proof we follow closely the pre-1

sentation in [61, Sec.1] to enable the reader to compare it with a more general2

argument given there and leading eventually to a hardcore set. The original3

proof in [58, Thm.3.2] gives a more precise statement using the approximate4

hardness defined there.5

Theorem 8.5.1 ([58, Thm.3.2])6

Assume that the parameters n,m, d, ℓ, the matrices An and the function7

f obey the conditions (A1)-(A3) stated above. Assume also that circuits8

S1(x), S2(x, z1), . . . , Sc(x, z1, . . . , zk−1) compute moves of a student that solves9

task Tb in c rounds for all b ∈ {0, 1}m \ rng(NWAn,f ).10

Then for n >> 1 large enough the total size of S1, . . . , Sc must be expo-11

nential 2n
Ω(1)

.12

Proof:13

Assume that the Student found a solution for x := a ∈ {0, 1}n in the14

k-th round (k ≤ c), producing candidate solutions i = (i1, . . . , ik) (with ik15

being correct). Call the k-tuple i the trace of the computation. Teacher’s16

answers are unique and hence the trace determines them as well. A counting17

argument establishes the following statement.18

Claim 1: There is i ∈ [m]k for some k ≤ c that is the trace of computations19

on at least a fraction of 2
(3m)k

of all inputs from {0, 1}n.20

Fix one such trace i and use it to define for any pair u ∈ {0, 1}ℓ and21

v ∈ {0, 1}n−ℓ string a(u, v) ∈ {0, 1}n putting bits of u into the positions from22

row Jik and then filling the remaining positions by bits of v. An averaging23

argument deduces from Claim 1 the following statement.24

Claim 2: There is e ∈ {0, 1}n−ℓ such that there is at least a fraction of25

1/(3m)k more strings u ∈ {0, 1}ℓ determining string a(u, e) whose trace is26

exactly i than of those u which yield a(u, e) whose trace properly contains i.27

Fix one such e ∈ {0, 1}n−ℓ. The design property that two distinct rows28

intersect in at most logm positions implies that there are, for any row i ̸= ik,29

at most m assignments w to bits in row Ji not determined by e. Any such30

w defines - together with the fixed e - an assignment to variables in Ji and31

hence a string zw ∈ {0, 1}ℓ. Take the set Yi of all preimages of all these zw32

in the permutation h and note that the total size of all strings in Yi is m
O(1).33

We can define now an algorithm for computing f that will use as advice34

the following data:35
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• Set system {Ji}i∈[m],1

• string b,2

• trace i,3

• string e,4

• sets {Yi}i ̸=ik ,5

• circuits S1, . . . , Sc computing the moves of the Student.6

The total size of the advice is s+mO(1), where s :=
∑

j≤c |Sj|.7

To define the algorithm take U ⊆ {0, 1}ℓ, the set of those u for which the8

trace of a(u, e) either equals to i or starts with i. Take b0 ∈ {0, 1} that is the9

majority value of f on {0, 1}ℓ \ U .10

The algorithm operates as follows. On input u ∈ {0, 1}ℓ it simulates11

Student’s moves in the S-T computation on the string a := a(u, e) ∈ {0, 1}n.12

1. If any of the candidate solutions produced in the j-th round, some13

j ≤ k, differs from ij then algorithm halts and outputs b0.14

2. Otherwise (i.e. the trace of the computation follows i), the algorithm15

uses sets Yi in order to simulate Teacher’s replies (we use that these16

are unique and can be tested for their correctness). If the computation17

followed trace i and reached the k-th step then the algorithm outputs18

bit 1− bik .19

Note that the algorithm outputs the bit b0 in all cases except when the20

computation follows the trace i and reaches the k-th step. If the computation21

of the Student were to actually stop at that point then the value 1 − bik is22

indeed the correct value f(u). If the computation were to continue, we do23

not have a way to deduce what f(u) is. But the influence of this case can be24

bounded.25

Namely, by the choice of e after Claim 2 the former case happens for at26

least a fraction of 1
(3m)k

more of all u than the latter case. Hence b0 is the27

correct value for at least half of u /∈ U and the algorithm computes f with28

an advantage over 1/2 at least 1
(3m)k

.29

Using the hypothesis of exponential hardness of f this implies that s has30

to be exponential too.31
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q.e.d.1

Before the next statement recall the notion of a large canonical model2

from Section 3.5: a cut M∗
n in a model of true arithmetic M in the language3

of TPV whose universe is the set of all elements w of M of length |w| ≤ 2n
o(1)

.4

Corollary 8.5.2 ([58, Thm.4.1])5

Assume the parameters n,m, d, ℓ, the matrices An and the function f obey6

the conditions (A1)-(A3) stated above.7

Let M be a non-standard model of true arithmetic in the language TPV, n8

its non-standard element and b ∈ {0, 1}m with m = m(n).9

Then the large canonical model M∗
n has a cofinal extension M′ to a model

of TPV such that

NWA,f (a) = b

for some a ∈ M′.10

Proof:11

This is proved by using elementary model theory and witnessing Theorem12

2.2.2(part 1).13

Take T ⊇ TPV to be the theory in the language of TPV together with14

names for all elements of M∗
n that contains also the atomic diagram of M∗

n15

as axioms. It suffices to show that T does not prove that b /∈ rng(NWAn,f ).16

Assume for the sake of a contradiction that it does, i.e. T proves formula17

(8.5.1). Theorem 2.2.2(part 1) can be applied to T as adding true (here18

true in Mn) universal sentences (here atomic sentences of the diagram) does19

not change the witnessing argument based on the KPT theorem. It yields20

a constant number of terms in the language of T that compute moves of a21

student solving Task Tb in a constant number of rounds. Each term consists22

of p-time function and constants from the model that act as advice strings.23

Hence each move of the student is computed by a circuit of size 2n
o(1)

and24

their total size is thus also bounded above by 2n
o(1)

.25

That contradicts Theorem 8.5.1.26

q.e.d.27

We are ready to state and prove the consistency result.28
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Theorem 8.5.3 ([58, Thm.4.2(3)])1

Assume the parameters n,m, d, ℓ, the matrices An and the function f obey2

the conditions (A1)-(A3) stated above. Assume also that B is an infinite NP3

set that has infinitely many elements of lengths m(n), for n ≥ 1.4

Then it is consistent with theory TPV that

rng(NWAn,f ) ∩B ̸= ∅ .

Proof:5

Assume y ∈ B is defined by ∃z(|z| ≤ |y|c)B0(y, z) with B0 open formula6

(a p-time relation). Assume for the sake of a contradiction that B is disjoint7

with the range of the generator. Take a non-standard model M of true8

arithmetic in the language of TPV and note that B is disjoint with the range9

of the generator there as well.10

By the hypothesis that B has infinitely many elements of the length11

m = m(n), we can take non-standard n such that there is b ∈ {0, 1}m ∩ B.12

Let M∗
n be the large canonical model determined by n. In particular, b ∈ M∗

n13

and a witness to b ∈ B is also in M∗
n.14

By Corollary 8.5.2 M∗
n has a cofinal extension M′ to a model of TPV in

which
NWAn,f (a) = b

for some a ∈ M′. This proves the theorem.15

q.e.d.16

Note that the argument works even if the S-T computation runs in nΩ(1)
17

many rounds for small enough δ > 0 (small w.r.t. Hf (ℓ)), cf. [58]).18

Let us conclude this section with a few remarks. The reader may wonder
why we cannot use the model-theoretic criterion in Theorem 3.5.2 and deduce
that NWAn,f is hard for all proof systems. This is discussed in detail in
[58, Sec.5] but the culprit is the fact that f is only NP ∩ coNP and not
deterministic p-time. The fact that

NWAn,f (a) = b

in the model M′ does not mean that we have a falsifying assignment for the
atoms of the corresponding τ -formula. The τ -formula has the form∨

i∈[m]

αi(x, z
i)
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where αi(x, z
i) formalizes that zi witnesses that the value of f on x(Ji) is1

bi. What we have in the model is that for each i there is ci such that (a, ci)2

satisfies αi but we do not have there necessarily string (a, c1, . . . , cm) that3

aggregates all these individual assignments together. To deduce its existence4

from the existence of individual assignments needs an instance of sharply5

bounded collection scheme (aka axiom of choice) which is (probably) not6

available in TPV by [20]. It is available in theory S1
2(PV) but to extend7

the argument above to that theory requires to prove a lower bound for S-8

T computations with polynomially many rounds. However, as discussed in9

Section 8.4, such a lower bound may not be true without extra assumption10

that the theory PV1 proves that the student always succeeds. This issue is11

also linked with the strong fdp property we used in Section 4.2 as is discussed12

at length in [58, Sec.5].13

We also want to remark that a model playing the same role as the one14

in Corollary 8.5.2 can be constructed via the method of forcing with random15

variables we discussed in Section 7.4. This is the local witness model of [60,16

Chpt.31] (with a corrected constructions of a hardcore set in [61]). It is this17

construction that is not ruled out as a possible approach to arranging that18

that theory S1
2(PV) holds in the model, as it is desirable by the discussion19

above.20

Note that [58, Sec.6] explains in detail how the whole situation around21

the NW generator can be specialized to some proof systems weaker than22

EF; in particular, to those for which we do not have super-polynomial lower23

bounds yet.24

Finally let us point out that the method used in this section found uses25

in other contexts, cf. [89, 92, 80].26

8.6 S-T computations and a gadget generator27

In this section we give a construction generalizing in a sense that of Section28

6.5. The construction entails a conditional consistency with the theory TPV of29

the statement that the range of (a variant of) the gadget generator intersects30

all infinite NP sets.31

In this construction the generator is only a partial function and its graph32

is an NP relation. The construction does not imply the conditional hardness33

of the corresponding τ -formulas for the same reasons as the consistency of34
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Statement (S) does not imply the hardness of the NW-generator, as it is1

discussed at the end of Section 8.5 (a missing collection scheme inTPV).2

We will talk about partial functions defined by non-deterministic circuits:3

any circuitD(x, y, z) with k variables x, k+1 variables y and further variables4

z such that the following formula5

γD := (D(x, y1, z1) ∧D(x, y2, z2) → y1 = y2) (8.6.1)6

is a tautology determines a partial function

hD : ⊆ {0, 1}k → {0, 1}k+1

defined by:
hD(a) = b iff D(a, b, z) ∈ SAT .

Note that the validity of the formula (8.6.1) guarantees that hD is a partial7

function and not only a partial multi-function.8

The hardness hypothesis we shall use says that the following search prob-9

lem cannot be solved by an S-T computation in a constant number of rounds10

and P/poly student. The search problem, denoted K(c, P ), is related to the11

problem J (c) of Section 6.5 and it is defined as follows:12

• valid inputs: 4-tuples (1(k), D, C, p) where13

– D(x, y, z) is a size ≤ kc circuit with k inputs x, k + 1 outputs y14

and further inputs z,15

– p is a P -proof of γD,16

– C is a size ≤ kc circuit with k + 1 inputs and k outputs,17

• solutions: any y ∈ {0, 1}k+1 such that hD(C(y)) ̸= y.18

(This includes the case when hD(C(y)) is undefined.)19

The hardness hypothesis we shall use is the following one.20

Hypothesis (K)21

There exists a constant c ≥ 1 and a proof system P such that for no22

constants d, t ≥ 1 can the search problem K(c, P ) be solved by an S-T com-23

putation in t rounds and with student’s moves computed by circuits of size24

≤ kd, for k >> 1.25
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At least half of the strings in {0, 1}k+1 are solutions and hence, for any1

fixed c ≥ 1, a counting argument yields a size kO(1) set Y ⊆ {0, 1}k+1 con-2

taining a solution for all inputs. However, the student does not seem to have3

a way how to pick a right one in O(1) rounds. Note that if he had a polyno-4

mial number of rounds he could go through all strings in Y one-by-one and5

use the teacher to find a correct solution.6

To formulate the theorem we shall define first a variant of the gadget7

generator. Let c ≥ 1 be a constant. The gadget generator will take as8

gadgets size ≤ kc circuits D(x, y, z) with k inputs and k + 1 outputs; the9

gadget size is thus ℓ := 10ckc(log k).10

The gadget function f : {0, 1}ℓ×{0, 1}k → {0, 1}k+1 will now be a partial
NP-function defined as follows:

f(D, u) = v iff (∃π(|π| ≤ |γD|e) π : P ⊢ γD) ∧D(u, v, z) ∈ SAT .

The existence of π guarantees that at most one v is assigned to (D, u).11

Call the resulting (generalization of the) gadget generator simply gc, so12

gcn : {0, 1}n → {0, 1}m where ℓ = ℓ(k) and hence also n = n(k) andm = m(k)13

depend on k ≥ 1. Note that it is now a partial function only but b /∈ rng(gc)14

is still a coNP property of b and hence the τ(gc)b formulas are well-defined.15

Further note that in the language of TPV the statement that b = b1 . . . bt ∈16

rng(gcn) can be written as17

∃x ∈ {0, 1}n(x = Du1 . . . ut)∀i ∈ [t] f(D, ui) = bi (8.6.2)18

where the NP statement f(D, ui) = bi is a bounded existential formula.19

Theorem 8.6.120

Assume the hypothesis (K) and let B be an NP-set having infinitely many21

elements of size m(k), for k ≥ 1.22

Then it is consistent with TPV that there exists b ∈ B satisfying the formula23

(8.6.2).24

Proof:25

Assume that c ≥ 1 is a constant and P is a proof system guaranteed to26

exist by (K).27

We shall use the model-theoretic criterion given in Theorem 3.5.1. Take28

non-standard model of true arithmetic M. By the hypothesis about B there29
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are (in the model) non-standard k, n = n(k) and b ∈ {0, 1}m ∩ B for m :=1

m(k). Hence b is also in the corresponding small canonical model Mk.2

Take theory T ′ in L′ extending L by three constants C,D, p and consisting3

of T , the atomic diagram of Mk and of the axioms:4

• (1(k), D,C, p) is a valid input for K(c, P ),5

• ∀y ∈ {0, 1}m, hD(C(y)) = y.6

Claim: T ′ is consistent.7

If T ′ were inconsistent then the KPT theorem would give us an S-T8

computation running in t ≥ 1 rounds (t a fixed standard number) and with9

student’s moves computed p-time functions with parameters from Mk, i.e.10

by size kd (some standard d ≥ 1) circuits in M, that will solve the search11

problem K(c, P ) on all valid inputs. That contradicts (K) in M.12

Let M′ be a model of T ′. To see that

M′ |= b ∈ rng(gn)

in the sense of formula (8.6.2) we just need to find a = a1 . . . at ∈ {0, 1}n13

witnessing the formula. That is done analogously as in the proof of Theorems14

6.3.1 or 6.5.1: substitute circuitD for the gadget and use circuit C to compute15

ai := C(bi).16

q.e.d.17

The missing collection scheme would be used to pull together all witnesses18

for all hD(a
i) = bi, i ≤ t.19

8.7 Feasibly infinite NP-sets20

One way how to make the Working conjecture 3.2.2 weaker and hence more21

tractable is to restrict the class of all infinite NP sets featuring in the con-22

jecture to some natural subclass of NP .23

The restriction we shall define poses a condition on how one can witness
that a set is infinite. Take a sound theory T ⊇ PV1 in a language extending
that of TPV. Consider the class of all NP sets A such that the infinitude of
A:

InfA := ∀x∃y(y > x ∧ y ∈ A)
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can be proved in T . Here y ∈ A is defined by a formula in the language of
TPV of the form

∃z(|z| ≤ |y|c)A0(y, z)

with c ≥ 1 a constant and A0 open (and hence A0 defines a p-time relation).1

Note that InfA is an ∀∃-sentence.2

The condition that a particular T proves InfA yields non-trivial informa-
tion about A. For example, for T = TPV Herbrand’s theorem implies that
there is a p-time function f witnessing InfA:

∀x(f(x) > x ∧ f(x) ∈ A) .

We shall call NP sets A for which such p-time function f exists feasibly3

infinite. Note that (using Buss’s theorem instead of Herbrand’s) A is also4

feasibly infinite if S1
2(PV) proves InfA.5

Theorem 8.7.1 ([68, Thm.7.1])6

Assume hypothesis (H) from Section 8.2. Then the Working conjecture7

3.2.2 holds relative to the class of feasibly infinite NP sets: there is a p-time8

generator g whose range intersects every feasibly infinite NP set.9

Proof:10

The proof is a special case of the construction in the proof of Theorem11

8.2.2 and the generator g is the truth-table function tts,k with s = s(k) :=12

2k/2.13

Assume an NP set A is feasibly infinite and that this it is witnessed by a
p-time function f . Take the constant d ≥ 1 from hypothesis (H) and define
parameters:

m := |f(1(n))|, m′ := m1/(3d), k := logm

where n >> 0 is large enough.14

Now take a p-time function f̂ with m′ + k variables and which on inputs15

1(m
′) and i ∈ {0, 1}k computes the i-th bit of f(1(n)). The hypothesis (H)16

gives us a circuit Ĉ(z, i) that computes f̂ . Use Ĉ to define another circuit C17

by substituting 1(m
′) for z in Ĉ. Hence C has only k variables left (for bits18

of i) and its size is O((m′ + k)d) < 2k/2.19

By the definition of C we have tts,k(C) = f(1(n)) and thus

rng(tts,k) ∩ A ̸= ∅

which is what we wanted to show.20
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q.e.d.1

We can use the theorem and formulate a statement about models of theory2

TPV.3

Corollary 8.7.2 ([68, Cor.7.2])4

Assume hypothesis (H). Then there exists a model M of theory TPV in5

which the Working conjecture 3.2.2 holds in the following sense:6

• For g := tts,k with s = s(k) := 2k/2 and any standard NP set A (i.e.
defined without parameters from M) it holds:

M |= rng(g) ∩ A = ∅ → ¬InfA .

Proof:7

For any NP set A the statement rng(g) ∩ A = ∅ is a universl sentence.8

Hence it is true in the standard model N iff it is true in all models of TPV.9

The statement will thus follow if we show the consistency of TPV extended10

by all sentences ¬InfA, for all NP sets A such that rng(g) ∩ A = ∅.11

If it were not consistent then the compactness theorem implies that for12

some NP set A such that rng(g)∩A = ∅ theory TPV proves InfA. This uses13

that a finite number of Ai are all disjoint from rng(g) iff their union is.14

But then A is feasibly infinite and that contradicts Theorem 8.7.1.15

q.e.d.16

Further generalization of (and some problems about) the notion of feasibly17

infinite NP sets are discussed in Section 10.3.18
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Chapter 91

Contexts2

In this chapter I want to bring to the attention of the reader several topics3

to which the theory of proof complexity generators turned out to be related4

by they are not themselves part of the theory. Each of them (except search5

problems treated in the last section) appears in one paper each (either entirely6

devoted to it or describing it as a part of a wider investigation) and it is7

thus easy to study the original text. For this reason the presentation in8

this chapter will differ from earlier ones in that we shall describe precisely9

but informally the underlying idea and key points of proofs or constructions10

involved, as well as the statements, but refer the reader for details to the11

respective source papers.12

A point I wish to stress is that in all cases the relations between the topic13

and the proof complexity generators theory can be, I think, generalized and14

improved, and trying to achieve this may possibly be interesting research15

topics.16

9.1 Essential variables17

This section is based on [56].18

A pseudo-random generator G mapping short strings x to long strings y19

are used to reduce the number of random bits a feasible probabilistic algo-20

rithm uses. In particular, instead of picking random y the algorithm pics21

random x and uses y := G(x) for random bits.22

The idea of the application we shall discuss in this section is that proof23

complexity generators may be used quite analogously in the context of certi-24

123
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fying the unsolvability by feasible proofs. Assume that we have a generator1

g with stretch m(n) that is hard for a proof system P . Let α(y) be a formula2

with m atoms. Now assume that3

1. α(g(x)) has a short P -proof π, but4

2. α(y) /∈ TAUT.5

We can use this situation to prove in P feasibly any τ(g)b for b ∈ {0, 1}m6

falsifying α as follows:7

• Prove ¬α(b) and combine this with proof π to deduce τ(g)b.8

Hence if g is indeed hard for P and short π exists then it follows that α is9

actually a tautology.10

The difference between α(y) and α(g(x)) is that the latter formula has11

a smaller (possibly much smaller) number of essential variables. There are12

more variables in α(g(x)) than just x, namely variables encoding the com-13

putation of g, and their number can be bigger than m, the number of y14

variables. However, the values of all these extra variables are determined15

once16

• we know values of the variables x,17

• we know that α(g(x)) is false.18

The word determine means that if we write α(g(x)) as β(x, z) where z are
the extra variables, then the implication

¬β(x, z) ∧ ¬β(x, z′) → zi ≡ z′i

is true for all extra variables zi, z
′
i and, in fact, it is provable by a linear19

size R-proof if α is a DNF. We do not need to formally define what a set of20

essential variables is as we shall talk in the formal statements below about21

the substitution y := g(x) provided by the generator g.22

In [56] we took for P just resolution R as for this system we have uncon-23

ditionally hard generators (by Theorems 5.2.2 and 4.3.7) which are p-time24

- this seems important if we talk about SAT algorithms - and have a large25

stretch. Note that the condition on having a large stretch, i.e. arranging26

that the number of essential variables is much smaller than the number of all27
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variables, rules out the PHP-gadget generator which is uniform and exponen-1

tially hard for AC0-Frege systems but has a small stretch by Theorem 6.3.12

(here the affirmative answer to Problem 5.2.3 would be useful as it would3

allow to extend the results below unconditionally to AC0-Frege systems.4

Two interesting sets of parameter choices for which the idea works are5

the following two. A note of warning: the parameters k and n of [56] are now6

called n and m in order to conform with our set-up in which we use n for7

the number of input bits and m for the number of output bits of a generator.8

The parameter sets are:9

(A) n := mδ, s := 2m
ϵ
,10

(B) n = (logm)c, s := m(logm)µ ,11

and the formal statement about them reads as follows.12

Theorem 9.1.1 ([56, Thm.2.1])13

1. For any δ > 0 there are parameter ϵ > 0 and a p-time generator g14

stretching n := mδ bits to m bits and such that whenever α(y) is a15

3DNF formula with m atoms and α(g(x)) has an R-proof of size ≤ s,16

s the parameter in (A), then α(y) is a tautology.17

2. There are constants c ≥ 1, µ > 0 and a generator g computable in18

time mO(1) and stretching n := (logm)c bits to m bits and such that19

whenever α(y) is a 3DNF formula with m atoms and α(g(x)) has an20

R-proof of size ≤ s, s the parameter in (B), then α(y) is a tautology.21

A natural question is if one can bound the time of a SAT solver in terms22

of the minimal number of essential variables rather than in terms of the23

number of all variables (we restrict in this discussion to 3DNF formulas24

as in the theorem). It follows from part 2 of the theorem that no SAT25

solver whose computations can be turned efficiently into at most polynomially26

longer R-proofs (e.g. those based on some for of the DPLL procedure even27

augmented by clause learning or restarts of the procedure) can run in time28

subexponential in the number of essential variables. This is because such29

computation would yield p-size R-proofs when choosing parameters (B) above30

and P = NP would follow (or some randomized version of this if the original31

SAT algorithm were randomized). For details and related references see [56,32

Sec.3].33
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Note that the generator g we referred to above via Theorems 5.2.2 and1

4.3.7 is the truth-table function and hence strings not in its range are truth-2

tables of hard Boolean functions. This allows us to employ the notion of3

natural proofs from [98] and observe that even the mere fact that A(g(x)) is4

a tautology has an interesting consequence. Namely, assuming the existence5

of strong pseudo-random generators as in [98], it holds:6

• If A(g(x)) ∈ TAUT then there are at most 2m/mω(1) falsifying truth7

assignments for A(y).8

Again, see [56, Sec.3] for details.9

A problem left open in [56, Sec.3] is whether substitutions like above can10

speed-up proofs. Putting it informally:11

• Are there DNF formulas A(y) and a generator g such that A(y) require12

long R-proofs while the substitution instances A(g(x)) have short R-13

proofs?14

9.2 The optimality problem15

It is an open problem whether there exists an optimal proof system : a16

proof system P such that its length-of-proof function sP has at most poly-17

nomial slow-down over sQ, for any proof system Q. cf.[70] or [65, Optimality18

problem]. It is known that P is not optimal iff there exists a p-time con-19

struable sequence αk of tautologies (i.e. αk can be constructed by a p-time20

algorithm from 1(k)) such that {αk | k ≥ 1} is hard for P . All first super-21

polynomial lower bounds for all proof systems for which some such lower22

bounds are known were proved for such an explicit sequence. However, for23

strong proof systems the only candidate p-time sequences {αk}k we have are24

based on reflection principles and that is not very helpful for lower bounds25

as the formulas refer to provability about which we are supposed to prove26

something, cf.[70, 45, 65].27

In this section we shall outline some ideas and results from [62] where28

the problem to construct such a sequence was approached from the compu-29

tational complexity perspective, utilizing earlier results about the NW gen-30

erator and about Statement (S) of Section 5.4. Two search problems more31
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general than just finding hard formulas were studied there. These prob-1

lems are motivated by the hypothetical situations that we can prove that2

NP ̸= coNP (task Cert) and that we can prove that no optimal proof sys-3

tems exists (task Find). Note the emphasis on prove; that is, not only that4

it is true but that we can prove it.5

To motivate Cert assume that we can prove that NP ≠ coNP is some
theory formalizing mathematics, say ZFC. In particular, we can prove for
any c ≥ 1 that for no proof system P can sP (α) be bounded above by |α|c.
This statement can be formalized by the following sentence in the language
of PV1 (we use the same notation as in [62]):

LBP (c) := ∀1(k)∃β, |β| ≥ k ∧ β ∈ TAUT ∧ ∀π(|π| ≤ |β|c) π : P ̸⊢ β .

Now note that for a strong proof system P (much weaker assumption on P
suffices) if we prove LBP (c) for c ≥ 2 then the soundness of P follows: having
a proof of falsifiable formula allows to prove anything by a linear size proof.
However, a simple use of Gödel’s incompleteness implies that ZFC cannot
prove the soundness of all proof systems. Hence instead of the provability
of LBP formulas we ought to study their provability under the assumption
that P is sound, i.e. the provability of the implications

RefP → LBP (c) .

To witness this statement means to either find a hard formula or to find an6

error of P : a falsifiable formula with a P -proof.7

To have one problem rather than one for each P we shall replace proof8

systems by non-deterministic circuits that are supposed to accept exactly9

TAUT ∩ {0, 1}k.10

Search problem Cert:11

Let D(x, y) be a circuit with k variables x (representing a formula) and12

ℓ := kc variables y (representing a proof). The search task is:13

• Input: a size kc2 circuit D(x, y) with k variables x (representing a14

formula) and ℓ := kc variables y (representing a proof).15

• Output:16

– either a size k falsifiable formula α such that D(α, y) is satisfiable,17

– or a size k tautology β such that D(β, y) is unsatisfiable.18
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Note that the output of Cert(D) certifies that ∃yD(x, y) does not define1

TAUT ∩ {0, 1}k.2

The second search problem, Find, that we shall define is motivated as
follows. Assume you can answer the Optimality problem in the negative and,
in fact, that you can give a uniform construction of stronger proof systems.
In particular, assume that there is an oracle polynomial time machine that
for any proof system P , when having an oracle access to P , defines a stronger
proof system Q(P ) (i.e. sQ(P ) has a super-polynomial speed-up over sP ) such
that we can prove that Q(P ) is a proof system:

RefP → RefQ(P )

and that it is indeed stronger:

RefP → ∀1(k)∀π(|π| ≤ kc) π : P ̸⊢ ||RefQ(P )||k .

(This formalization uses known facts about relations between simulation and3

provability of reflection principles and we refer the reader to either of [45, 65]4

for details.) In particular, any strong proof system simulates Q(P ) if it can5

use ||RefQ(P )||k as extra axioms. In the following search task α represents6

any possible extra axiom.7

Search problem Find:8

Let c1 ≥ c0 ≥ 1.9

• Input: 1(k) and a size ≤ kc0 tautology α.10

• Output: any size k tautology β that has no size ≤ kc1 proof in proof11

system P + α.12

Let us point out that Find can be reduced to Cert for a suitable c depending13

on C0, c1 (cf. the end of [62]).14

The main results in [62] were proved using ideas from [58] discussed in15

Section 8.5 together with a bit wild idea that the NW-generator can be used16

not only as a source of τ -formulas but it can also serve as a proof system. yet17

another search problem was considered in [62] as a technical tool to approach18

Cert and Find. We shall only state results concerning these two problems.19

Theorem 9.2.1 ([62, Cor.4.2])20

Assume that an exponentially hard one-way permutation exists. Then21

there is c ≥ 1 such that no deterministic time 2O(k) algorithm solves Cert on22

all input lengths k ≥ 1.23
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Theorem 9.2.2 ([62, Cor.6.2])1

Assume that an exponentially hard one-way permutation exists and that2

Statement (S) holds.3

Then there is c ≥ 1 such that Cert is only partially defined for infinitely4

many lengths k ≥ 1: there are inputs corresponding to k for which the problem5

has no solution.6

Theorem 9.2.3 ([62, Thm.6.3])7

Assume that an exponentially hard one-way permutation exists and that8

Statement (S) holds.9

Then for any strong proof system P there are constants c1 ≥ c0 ≥ 1 such10

that Find has no solution for infinitely many lengths k ≥ 1.11

The interested reader will find all details in [62]. Note that the implica-12

tions of Statement (S) may seem rather contradictory. On one side it implies13

NP ̸= coNP by its formulation and on the other hand it implies, in particu-14

lar, that TAUT ∈i.o. NP/poly (Theorem 5.4.1). This is caused by the double15

role the NW generator plays in these constructions: a source of hard formulas16

and a strong proof system. Some readers may be quick to dismiss Statement17

(S) as obviously not plausible, citing the second consequence as the reason.18

I think that we know very little about the power of non-uniformity and of19

non-deterministic circuits in particular, to jump to such a conclusion.20

9.3 Structured WPHP21

In this section we shall discuss the idea of structured PHP introduced in22

[49] and studied in the context of proof complexity generators in [54]. The23

general idea is simple. Imagine that in a model M of some theory T you24

have a bijection h : [N ] → [M ] where N ̸= M . You can use it to transport25

structure A with the universe [N ] to structure h(A) with the universe [M ].26

For example, if N = 2k and M = 3 · N and the A is a vector space over27

F2 then it follows that T cannot prove that that the size of a universe of an28

F2-vector space cannot be divisible by 3. Or turning the table around, if you29

can prove in T that some structure cannot have size M while you can define30

in T one of size N , then you also disprove in T the existence of a bijection h.31

Amore delicate variant of the idea involves various small size subsets ofA;32

in the example above take a basisX of the vector space. As any T (containing33

S1
2 , for example) can count sets of logarithmic size and prove that h preserves34
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the size counting (technically: T proves the PHP for logarithmically small1

sets) then even if M was a power of 2, say M = 2k+1, we get a contradictory2

situation. Namely, h(A) has basis h(X) which is smaller than it ought to3

be: |X| = k < logM .4

We talked above about a bijection for simplicity of the picture but if5

N > M and h is an injection then we insert A into a smaller universe [M ],6

and if N < M and h is a surjective map (this is the case of the dWPHP we7

are most interested in) then h can be used to pull a structure B with universe8

[M ] back onto a smaller universe [N ]. We shall now give an example result9

for the dWPHP case.10

In the context of generators we have N = 2n and M = 2m and the uni-11

verses [N ] and [M ] are identified with {0, 1}n and {0, 1}m, respectively. We12

consider relational structures on these universes whose relations are defined13

by p-size (in n or m, resp.) circuits. We shall call such structures P/poly-14

structures.15

A tournament is a directed graph G = (V,E) with exactly one edge
between any two different vertices. A dominating set in G is a set X of its
vertices such that

∀i ∈ V \X∃j ∈ X, (j, i) ∈ E .

Every tournament of size 2m has a dominating set of size m but by a proba-16

bilistic argument [23] showed that there are tournaments of that size having17

no dominating set of size m/2. A P/poly-tournament on {0, 1}m having no18

size m/2 dominating set was constructed in [96]; we shall use name Em for19

a size mO(1) circuit defining the edge relation for such a tournament.20

Now assume we have a generator g : {0, 1}n → {0, 1}m with stretch
m = 2n and we use it to define a P/poly-tournament H = ({0, 1}n, Dn) by

Dn(u, v) := Em(g(u), g(v)) , u, v ∈ {0, 1}n .

TournamentH has a dominating setX of size n and this fact can be expresses
by a formula we shall denote just σn,X , leaving the references to Em and g
implicit:

σn,X :=
∨
u∈X

x = u ∨Dn(u, x)

where x is an n-tuple of atoms.21

Now the observation is that g(X) has size ≤ n and hence cannot be22

dominating in G = ({0, 1}m, Em). If b ∈ {0, 1}m is a vertex that is not23

dominated by any element of g(X) we can prove that it is not in rng(g): if b =24
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g(a) and a is dominated by u ∈ X then b is dominated by g(u). Elaborating1

technical details (to be found in [54]) yields the following theorem.2

Theorem 9.3.1 ([54, Thm.2.2])3

Assume g is (exponentially) hard for a proof system P that contains R.4

Then tautologies σn,X are (exponentially) hard for P too.5

Let us conclude this section by pointing out two further results from [54]6

based on the general idea of structured PHP that could be of interest to the7

reader.8

First, the idea of using a violation of WPHP was used in [49] to link9

proof complexity of WPHP and of Ramsey theorem in DNF-resolution sys-10

tems R(2g) and R(g) (defined in the same paper), and in [59] to obtain11

lower bounds for AC0-Frege proofs of Ramsey theorem with critical param-12

eters. Perhaps more importantly, the idea was used in [54, Sec.4] to show13

that WPHP considered as an NP-search problem can be reduced to RAM,14

an NP-search problem defined there and asking to find a size m homoge-15

neous subgraph in a P/poly-graph on {0, 1}m, and that also breaking RSA16

or finding a collision in a family of hash functions can be reduced to RAM17

too.18

The second example uses the idea of implicit proofs [53] but here these19

are proofs of formulas given themselves implicitly. Such formulas are of20

exponential size but have succint description bit-by-bit by a p-size circuit.21

The implicit formulas in question express that search problems WPHP and22

RAM for P/poly-structures have solutions. The result obtained is that if we23

can prove a suitable bounds for implicit proofs of these formulas, an upper24

bound for RAM and a lower bound for WPHP, in a weak proof systems25

(even as weak as R∗, the tree-like R) then a lower bound for ordinary strong26

proof system (as is EF) can be derived. The details are too technical to even27

outline here in a reasonably small space and we refer the interested reader28

to [54, Secs.5 and 6].29

9.4 Incompleteness phenomenon30

A construction of a p-time generator gT utilizing the provability in a first-31

order theory T was given in [69]. The hardness of the generator for all proof32

systems is an open question and its answer depends on an issue (Problem33
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9.4.2) related to the incompleteness of theories able to formalize the syntax1

of first-order logic. We explain the idea and the statements obtained by it2

but for the details of the proofs the interested reader is referred to [69].3

To avoid discussing how the infinite language of S1
2(PV) is coded by num-4

bers we take as our basic theory S1
2 of [10] in its finite language denoted here5

simply L. Note that S1
2 is finitely axiomatizable and hence its set of axioms6

(considered as a set of binary strings) is easily definable by an L-formula.7

Recall also that Σb
1-formulas define in N exactly NP sets.8

The length |Ψ| of an L-formula Ψ is simply the length of the string en-9

coding the formula. We will consider theories T ⊇ S1
2 in language L that are10

(i.e. the set of strings encoding axioms of T ) p-time. It is a classic observa-11

tion that every r.e. T has a p-time axiomatization (cf. [21]) so this is not a12

restriction on the power of T .13

We shall denote by u ⊆e v the fact that string u is an initial subword of14

string v, and denote by uv the concatenation of u and v. We will also assume15

that formulas are encoded in such a way that Φ ⊆e Ψ never holds for two16

formulas unless they are equal.17

Now we are ready to define generator gT , given a sound and p-time theory18

T ⊇ S1
2 in language L. The instructions for the computation of the function19

are:20

1. Given length n input u find an L formula Φ ⊆e u having one free21

variable x and such that |Φ| ≤ log n. (Our assumption about coding22

of formulas implies that there is at most one such formula.)23

• Output gT (u) := 0 ∈ {0, 1}n+1 if Φ does not exist.24

• Otherwise go to instruction 2.25

2. Go through all w ∈ {0, 1}c+1, for c := |Φ| + 1, in the lexicographic26

ordering and look for a T -proof of size ≤ log n of the following L-27

sentence Φw:28

∃y∀x > y Φ(x) → ¬(w ⊆e x) . (9.4.1)29

• Output gT (u) := 0 ∈ {0, 1}n+1 if a proof is found for all strings w.30

• Otherwise take for w0 ∈ {0, 1}c+1 the first string w for which no31

proof is found, and go to instruction 3.32
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3. Output gT (u) := w0u0 ∈ {0, 1}n+1, where u = Φu0.1

It is clear that gT is p-time generator stretching each input by one bit.2

Theorem 9.4.1 ([69, Thm.2.2])3

Let A ⊆ {0, 1}∗ be an infinite L-definable set and assume that for some4

definition Φ of A theory T proves all true sentences Φw from (9.4.1), for5

w ∈ {0, 1}c+1 where c = |Φ|.6

Then the range of function gT intersects A.7

Note that if we apply the theorem to A := {0, 1}∗ \rng(g) we get a version of8

Gödel’s First Incompleteness theorem: no sound, p-time T ⊇ S1
2 is complete.9

In fact, this shows that for each formula Φ defining the complement of rng(gT )10

some sentence Φw is true but unprovable in T . But this still leaves us a little11

room: the complement of rng(gT ) is in coNP and hence definable by a Πb
112

L-formula but not necessarily by a Σb
1-formula.13

Problem 9.4.2 (NP-definability [69, Prob.2.4])14

For some T as above, can each infinite NP set be defined by some L-15

formula Φsuch that all true sentences Φw as in (9.4.1) are provable in T?16

The affirmative answer together with Theorem 9.4.1 would imply that gT17

satisfies the working conjecture 3.2.2. Note that it is easy to write some18

definition of the set leading to the unprovability but the problem asks whether19

all definitions must lead to it.20

We conclude by noting that the argument can be miniaturized to propo-21

sitional logic and when that is done the following statement can be proved.22

Theorem 9.4.3 ([69, Thm.3.1])23

At least one of the following three statements is true:24

1. there is no p-optimal propositional proof system,25

2. E ̸⊆ P/poly,26

3. there exists function h that stretches all inputs by one bit, is computable27

in sub-exponential time 2O((logn)log logn) and its range intersects all infi-28

nite NP sets.29

The proof can be found in [69].30
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9.5 Search problems1

An important context for the dWPHP problem 2.0.1 and hence for our topic2

are witnessing theorems for theories around dWPHP (and WPHP), and con-3

sequently also results about formalizations of various complexity-theoretic4

and combinatorial notions and constructions in these theories.5

Recall that we have seen in Section 2.2 that witnessing of true sentences6

of the form7

∀x∃y(|y| ≤ |x|c)A(x, y) , (9.5.1)8

with A a bounded formula, is closely related to their provability in various9

theories of bounded arithmetic. These witnessing problems are also called10

(total) search problems. Of a particular interest are the cases when A ∈ Σb
i11

for small i, say i = 1, 2, 3, because for A in low levels of the polynomial-12

time hierarchy the search problems have a more transparent combinatorial13

meaning (with more than two quantifier alternations the problems become14

less clear). In particular, the case i = 1 leads to the well-know total NP-15

search problems (their class is confusingly denoted TFNP with F referring16

to functions).17

In the triangle correspondence among theories, complexity classes and18

proof systems we touched upon in Chapter 2, a bounded arithmetic theory19

relates to specific search problems Si and if a theory proves the totality of20

another problem as (9.5.1) with A ∈ Σb
i then it can be reduced to Si. The21

opposite often holds too as many reductions are usually given very explicitly22

and can be formalized in a suitably weak theory. Proving the totality of23

a search problem often comes down to proving a combinatorial principle24

underlying why the problem has always a solution. In addition, proofs of25

the unprovability of one principle from another that are based on witnessing26

theorems (these do not change when the true universal theory is added) imply27

a non-reducibility between the associated search problems.28

This is all very well established, in some cases for decades. There are29

many precise statements about the (mutual) provability of combinatorial30

principles of various complexities in bounded arithmetic theories in terms31

of witnessing, reducibilities among them (corresponding to provability over32

various weak theories) and complete problems in such classes. In addition,33

there are a number of results formalizing various complexity-theoretic con-34

structions around randomized algorithms, fundamentals of derandomization,35

cryptographic primitives in bounded arithmetic theories utilizing dWPHP or36
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WPHP, and in theories PV1, S
1
2(PV) and S1

2 + dWPHP(∆b
1) in particular.1

Explicit natural search problems related to these results were identified.2

For reasons that I do not quite understand complexity theorists prefer3

to ignore this knowledge and to rediscover (or just reformulate) some of it4

again using a new terminology. This prevents a sensible discussion of a more5

recent research in the TFNP area that may be related to our topic (and6

to the dWPHP in particular) unless you are willing to spend a considerable7

time and to place the more current research into the context of known results8

established in bounded arithmetic. This is outside of the scope of this book.9
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Chapter 101

Further research2

We have mentioned in earlier chapters three conjectures:3

• the working conjecture 3.2.24

• the pseudosurjectivity conjecture 3.3.35

• Razborov’s conjecture 5.3.16

and five specific problems:7

• the conservativity problem 1.0.18

• the dWPHP problem 2.0.19

• the Kt problem 4.1.110

• the linear generators problem 5.2.311

• the NP definability problem 9.4.212

In this concluding chapter we shall discuss various problems and research13

topics that are motivated by the theory and seem to me be interesting but14

were not treated in depth (or at all) so far. The order in which we present15

them is ad hoc and does not reflect the subjective importance we give them.16

137
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10.1 Ordinary PHP1

Having a generator g, at least (1 − 2n−m ≥ 1/2)-part of strings in {0, 1}m2

are outside rng(gn). Intuitively, smaller this part is easier it should be to3

maintain the hardness of proving the τ(g)-formulas. This suggests to look at4

a situation when maybe just one string from {0, 1}m is missing in rng(gn).5

That is, look at dual ordinary PHP:6

• if g : {0, 1}n → {0, 1}n then

∃y ∈ {0, 1}n∀x ∈ {0, 1}n (x ̸= 0 → g(x) ̸= y) .

This principle, to be denoted dPHP, is dual to the ordinary PHP which7

would say that a map from {0, 1}n into {0, 1}n \ {0} cannot be injective in8

the same way dWPHP is dual to WPHP.9

Principle PHP for g implies WPHP for the same g. The principle dWPHP10

is also weaker (over some basic theory) than dPHP. The Introductory chapter11

1 mentioned Macintyre’s problem about the provability of ∆0-PHP in full12

bounded arithmetic and clearly (over the theory) ∆0-PHP and ∆0-dPHP are13

equivalent.14

Furthermore, if we have a generator g we can define g′ : {0, 1}n → {0, 1}n
by restricting the output of g to first n bits. Now assume you could prove
feasibly in a proof system P a formula

τ ′(g′)b′ := ||x ̸= 0 → g′(x) ̸= b||n

for some b′ ∈ {0, 1}n \ rng(g′n), for infinitely many n. Then g cannot be15

hard for P either: to prove in P formula τ(g)b for b = b′b′′ where |b′| = n16

and |b′′| = m − n we can combine a P -proof of τ ′(g′)b′ with an R-proof of17

||x = 0 → b ̸= g(x)||n.18

It thus seems of interest to try to develop a theory around dPHP and the19

τ ′-formulas. There is very little known about Macintyre’s problem (cf. the20

last chapter in [45] for some background). In particular, there do not seem to21

be good candidate function (with a graph in the p-time hierarchy or perhaps22

even a p-time function) that would be a good candidate or a function for23

which PHP or dPHP are not provable in full bounded arithmetic. The well-24

known relativized results of [2, 76, 93] give no hint for this. To investigate25

the (restrictions to {0, 1}n of the ) generators studied in earlier chapters may26

be a good start.27
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10.2 Power of S-T computations1

Various complexity theoretic hypotheses and conjectures entered our discus-2

sion. To mention just some:3

• the working conjecture 3.2.2,4

• Kolmogorov-type hypothesis (H) in Section 8.2,5

• hypotheses (I1) and (I2) in Section 8.3,6

• hypotheses about circuit size of languages in E in Lemmas 4.2.6 and7

8.2.1,8

• the existence of strong OWP at a number of places starting with The-9

orem 3.6.2,10

• hypothesis (J) about the intractability of a search problem in Section11

6.5,12

• the impossibility to witness a formula (e.g. dWPHP or statement (S))13

by S-T computations in O(1) or nO(1) rounds in Chapter 8,14

• hypothesis (K) about unsolvability of a search problem via constant15

round S-T computations in Section 8.6.16

These hypotheses have varying informal standing. Some are considered to17

be quite plausible based on some mental picture about fundamental notions18

that is accepted by a lot of people, some are claimed to be plausible because19

they are useful and there are no counter-examples known at present, and20

some are deemed unlikely. I think that this informal standing ought to be to21

some extent ignored and we should keep an open mind.22

Most of the hypotheses were used in connections with the S-T computa-23

tions and one cannot escape the thought that the resulting statements that24

specific some task can or cannot be solved by S-T computations in a certain25

number of rounds are at least as fundamental - meaning close to fundamental26

concepts - as are some of the hypotheses above.27

I thus think that the power of S-T computations ought to be studied on its28

own right and the statements giving upper or lower bounds on the number of29

rounds ought to be investigated as hypotheses on their own. This has been30
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already started quite some time ago but not really followed up; [74] stud-1

ied the S-T computability of optimization problems in polynomially many2

rounds (the original problem to which the KPT theorem was first applied was3

optimization: finding the largest clique in a graph, cf [75]) and showed that4

the traveling salesperson problem TSP, as well as MAXSAT and MAX3SAT5

problems, are complete under a natural notion of reducibility defined there6

(and the max clique problem is complete among those with small values of7

the objective function), and conjectured that neither of these problems are8

solvable in polynomial number of rounds. The paper also established a hi-9

erarchy theorem for S-T computations determined by the number of rounds,10

cf. [74, Thm.1].11

To give some specific example of a hypothesis of the sort we referred to12

above let us pose the following question:13

• What computational complexity consequences has the hypothesis that14

the dWPHP for p-time generators can be always witnessed by an S-T15

computation with a p-time student in a polynomial number of rounds16

but not always in a constant number of rounds?17

We know that good example generators are the circuit value function CV18

(it has parameters) and the truth-table function tts,k (no parameters) with19

s = 2Ω(k). However, using these functions to get an insight into the problem20

may not be the best choice.21

10.3 Witnessing the infinitude of NP sets22

We have proved (under a hypothesis (H) about circuit size - see Sections 8.223

and 8.7) the consistency of a weakening of the working conjecture 3.2.2 for24

a class of feasibly infinite NP sets.25

This class is defined by a condition posed on the computational complex-
ity of witnessing formula

InfA := ∀x∃y(y > x ∧ y ∈ A)

expressing the infinitude of A. When InfA is provable in a bounded arithmetic26

theory one can bound |y| by |x|O(1) (Parikh’s theorem) and hence witnessing27

InfA is a (total) NP search problem. For all naturally occurring bounded28
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arithmetic theories we have a characterization of their ∀Σb
1-consequences by a1

specific NP search problem attached to the respective theory T . This means2

that if InfA is provable in T it can be witnessed by an NP search problem3

attached to T . For bounded arithmetic background see [45].4

As an example we can take theory T 1
2 of [10] that is based on induction5

axioms for NP sets. If this theory proves InfA then the formula is witnessed6

by a PLS problem (the Buss-K.theorem [12]). Hence we can define the class7

of PLS-infinite NP sets to be those NP sets A for which there is a PLS8

problem R with parameter x such that any solution y to R for x witnesses9

InfA.10

I find the following question interesting:11

• Show (possibly under a reasonable hypothesis) that the working conjec-12

ture 3.2.2 is true for the class of PLS-infinite NP sets.13

Let us point out in a conclusion of this section that we can define a
uniform version of the resultant ResPg (Def.3.2.4) w.r.t. to a theory. Given a
p-time generator g and a theory T ⊇ TPV define ResTg to be the class of NP
sets A such that

T ⊢ rng(g) ∩ A = ∅ .

The hypothesis that g is p-time is used only in order to arrange that the14

theory has a function symbol for g and we do not need to talk about its15

definition.16

A natural question is:17

• Give an example of a p-time generator and a theory T ⊇ TPV such that18

ResTg contains only finite sets.19

This section expanded on a casual remark in [68].20

10.4 Proof search variant21

It was pointed out in [68, Sec.6] that the whole topic of proof complexity22

generators can be modified for (time complexity of) proof search. The mod-23

ification is fairly simple: essentially replace everywhere NP sets by P sets.24

To explain this let us use the definition of a proof search algorithm from [67]:25

a proof search algorithm is a pair (A,P ) such that A is a deterministic26

algorithm finding for every tautology σ some its P -proof A(σ).27
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The minimal time any algorithm (A,P ) needs on σ is measured by the
information efficiency function

iP : TAUT → N+

that plays the role analogous to the lengths-of-proofs function in this con-1

text. The function is defined using algorithmic information and we refer the2

interested reader to [67]. For each pps P there is an optimal proof search3

algorithm (AP , P ) having at most polynomial slow-down over any other al-4

gorithm; the time it needs on σ is 2O(iP (σ)), cf. [67].5

Following [68] we can now define a set H ⊆ TAUT to be search-hard for a6

proof system P analogously how hardness was defined before. H is search-7

hard iff for any c ≥ 1 algorithm AP finds a proof of σ in time bounded above8

by |σ|c for finitely many formulas σ ∈ H only.9

Continuing with the analogy call a p-time generator g with the stretch10

n+1 search-hard for P iff the set of tautologies τ(g)b, b /∈ rng(g), is search-11

hard for P . Then the proof search version of the working conjecture 3.2.212

reads as follows.13

• Conjecture 6.1 of [68]: There exist a p-time function g extending14

each input by one bit such that its range rng(g) intersects all infinite15

P sets.16

It would be interesting, I think, if one could prove some results about this17

conjecture that are not analogous to results about the working conjecture18

3.2.2.19

In a connection with the gadget generator let us point out that the fdp20

(Def. 4.2.2) studied in Section 4.2 can be naturally modified for the proof21

search situation too, cf. [68, Sec.6].22

10.5 Exponential time generators23

Theorem 4.1.3 pointed out that a consequence of the affirmative answer to24

the Kt problem 4.1.1 is the separation of NP and EXP . The same argument25

yields the following more general observation.26

Lemma 10.5.127
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Assume that there is a function g stretching (Def. 3.1.2) with stretch m(n)1

that is computable in exponential time 2m
O(1)

and whose range intersects all2

infinite NP sets.3

Then NP ⊂ EXP.4

Thus even if such a function g may not have proof complexity consequences5

(the τ(g)-formulas are so big that their proofs via exhaustive search is p-size)6

it would still be very interesting to construct such a function unconditionally.7

10.6 Function inversion8

Let g be a p-time generator having (for the simplicity of the subsequent
formulas) the stretch n+1 and assume there is a p-time function h inverting
g. This can be written as a formula

g(h(y)) ̸= y → g(x) ̸= y .

Define a strong proof system P that extends EF by adding as axioms all9

instances of the propositional translations of this formula, i.e. instances of10

||g(h(y)) ̸= y → g(x) ̸= y||n+1 (10.6.1)11

for all n ≥ 1.12

Generator g is not hard for this proof system P . In fact, P admits p-size13

proofs of not just infinitely many formulas τ(g)b, b /∈ rng(g), but for all of14

them. To construct a P -proof of such τ(g)b substitute y := b into (10.6.1),15

prove true sentence ||g(h(y)) ̸= y||n+1(y/b) and use modus ponens.16

It is thus of great interest w.r.t. the working conjecture 3.2.2 (but also in a17

relation to the argument in Theorem 6.5.1) whether such function inversion18

is possible or not. It is not very likely: not only the working conjecture19

would be false but it would also kill pseudo-random generators and one-way20

functions and a lot of cryptography along the way.21

Hence we hope that a general function inversion is not possible with22

feasible h, and this hope is based on an intuition that the exhaustive search23

over the domain of gn cannot be avoided when computing h.24

However, an interesting recent result of [29, 78] shows that the intuition,25

if true, must incorporate into its reasoning also the uniformity of h. Namely,26

they proved that there is always such non-uniform h computed by circuits27

of size 24n/5nO(1) and hence the circuits do avoid the exhaustive search.28
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The non-uniformity of h does not allow us to construct a proof system1

as P above. However, it seems quite important for our topic to understand2

how - if at all - do the underlying constructions relate to proof complexity3

and in which bounded arithmetic theory do these constructions formalize.4
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[44] J. Kraj́ıček, Lower bounds to the size of constant-depth propositional4

proofs, J. of Symbolic Logic, 59(1), (1994), pp.73-86. 835
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[52] J. Kraj́ıček, Diagonalization in proof complexity, Fundamenta Mathe-28

maticae, 182, (2004), pp.181-192. 13, 66, 10429
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[62] J. Kraj́ıček, On the computational complexity of finding hard tau-27

tologies, Bulletin of the London Mathematical Society, 46(1), (2014),28

pp.111-125. 13, 68, 69, 126, 127, 128, 12929
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Special symbols1

Symbol are listed approximately by their order of appearance and are given2

a brief explanation.3

• PHP: pigeonhole principle4

• WPHP: weak PHP5

• dWPHP: dual WPHP6

• PA: Peano arithmetic7

• IΣ1: a subtheory of PA with IND for r.e. sets only8

• ∆0: bounded formulas in the language of PA9

• ∆0PHP: PHP for functions with ∆0-definable graphs10

• ∆0WPHP: WPHP for functions with ∆0-definable graphs11

• I∆0 + Ω1: Parikh’s bounded arithmetic extended by the Ω1 axiom12

• S1
2 : Buss’s most important theory with polynomial induction for NP13

sets14

• NP : non-deterministic polynomial time15

• dWPHP(f): formula stating dWPHP for function f16

• dWPHP(∆b
1): formula dWPHP(f) for all f ∆b

1-definable in S1
217

• BT: theory extending S1
2 by the scheme dWPHP(∆b

1)18

• TAUT: propositional tautologies in the DeMorgan language19
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• [n]: {1, . . . , n}1

• PV1: Cook’s universal theory2

• S1
2(PV): S

1
2 together with PV1 in the expanded language3

• dWPHP(PV): the dWPHP for all p-time algorithms4

• P/poly: deterministic non-uniform time5

• CV (y, x): the circuit value function evaluating circuit y on input x6

• dWPHP(CV ): the dWPHP for CV7

• dWPHP1(CV,CV ): the dWPHP1 for CV8

• ⪯Σb
1
: Σb

1-conservativity9

• E : small exponential time 2O(n)
10

• P ⊢∗ αn: there are p-size P -proofs of formulas αn,11

• π : P ⊢ β : π is a P -proof of β.12

• P ⊇ EF: P extends EF by a p-time set of extra axioms13

• EF + A: EF with extra axioms A14

• RefP and ConP : reflection and consistency formulas for P15

• sP : the lengths-of-proofs function16

• τ(C)b or τ(g)b: τ -formulas17

• DefC : clauses defining the computation of circuit C18

• ResPg : resultant, the class of NP (resp. NP/poly) sets whose disjoint-19

ness with rng(g) have p-size P -proofs20

• CF: circuit Frege system21

• WF: weak (PHP) Frege system22

• Mn,M
∗
n: small and large canonical models23
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• DefC : 3-CNF defining instructions of circuit C1

• Defn,m,s
C : as DefC but specifying the number of inputs, outputs and size2

• τ(C)b: the τ -formulas3

• τFla(g): the set of τ -formulas determined by g4

• ResPg : resultant5

• Kt, Kt: time-bounded Kolmogorov complexity6

• U , U t: time-bounded universal Turing machine7

• KtA: a function measuring the minimal Kt-complexity of strings in A8

• t× g: t independent copies of g9

• fdp: feasible disjunction property10

• tts,k: the truth-table function11

• Iter(C/Θ): the circuit obtained by iterating C along protocol Θ12

• Size(s(k)): the class of languages of circuit complexity ≤ s(k)13

• χL: the characteristic function of L14

• NW: the Nisan-Wigderson generator15

• NWA,f (x): NW generator based on matrix A and function f16

• ∂A(I): boundary of a set I of rows of a matrix17

• OWP: one-way permutation18

• Gadf : gadget generator19

• CVk,a: cuircuit-value function for circuits encoded by ≤ a bits and20

computing a function {0, 1}k → {0, 1}k+1
21

• fv: gadget function with gadget v fixed22

• Gadsq: gadget generator with gadget function CVk,k223
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• ontoPHP: there is no bijection between [k] and [k + 1]1

• nwk,c: NW-like gadgets2

• Gadnw: gadget generator using gadgets nwk,c3

• ∈i.o.: ”infinitely often” (a language is a member of a class for infinitely4

many input lengths)5

• J : a particular NP search problem6

• ER: Extended resolution7

• B: a partial Boolean algebra8

• Γ(0, s, k): a search problem9

• AW : a non-standard finite structure coded in a model of true arithmetic10

• LER: a language of pseudo-finite structures AW related to ER11

• TER: an LER-theory12

• B: a complete Boolean algebra13

• A ⪯ A′: elementary extension of a FO structure by a Boolean-valued14

one15

• D: data used to define family F of random variables16

• αT (ω) ↑: αT is undefined at ω17

• Size(s(n)): the class of languages decidable by circuits of size O(s(n)18

• (H): Kolmogorov’s hypothesis19

• iO: indistinguishability obfuscation20

• Tb: a witnessing task related to the NW generator21

• SizeA(s(k)): the class of languages L such that Lk can be computed by22

a circuit of size ≤ s(k) querying oracle A23

• K(c, P ): a Σp
2-search problem24



Special symbols 161

• InfA: a sentence expressing the infinitude of set A1

• Cert: a search task2

• Find: another search task3

• RAM: an NP-search problem based on Ramsey theorem4

• R∗: tree-like R5

• gT : a generator constructed using provability in theory T6

• TFNP: the class of total NP search problems7

• dPHP: dual (ordinary) PHP8

• τ ′(g′)b′ : modified τ -formulas for dPHP9

• T 1
2 : a theory from [10] based on induction for NP sets10

• ResTg : resultant w.r.t. to theory T11

• iP : the information efficiency function12
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