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This is a draft of a �rst part of leture notes on Propositional proof om-

plexity. It is roughly the ontent of my ourse at the Charles University in

Spring'03. This �rst part is almost omplete and there will be only a few

additions. Most notably: in�nitary riteria for lower bounds in tree-like and

general resolution, on Ramsey theorem in resolution, the link between mod-

ular ounting priniples and algebrai proof systems, the separation between

depth d and d+1 Frege systems, and the de�nition and few fats about the

onstant depth Frege systems with modular ounting gates. There may be

also missing referenes.

Next part will roughly orrespond to a ourse I plan for Fall'04; it should

inlude: links with bounded arithmeti, �nitisti onsisteny statements and

p-simulations, a onstrution of hard tautologies, NP -pairs and links to

ryptography, automatizability of proof systems, some upper bounds (that

an be proved via bounded arithmeti muh more easily than diretly), and

a part on the urrent projet of � -formulas based on pseudo-random gener-

ators.

The eventual leture notes will inlude also some topis not overed in

either of the two ourses. In partiular, this should inlude auxiliary proof

systems like algebrai proof systems (Nullstellensatz, polynomial alulus, a

proof system based on a �nitely presented group, et.) or geometri proofs

systems (utting planes and their extensions to Lovasz-Shrijver system and

to the 1st order theory of disretely ordered rings) or links with model theory

(e.g. the notion of overing lasses and Euler strutures), and perhaps some

other less familiar topis.

Some referene in the urrent text are just ??; they refer to future parts.
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Chapter 1

Basi onepts and

motivations

Propositional proof omplexity studies the omplexity of proving that a

propositional formula is a tautology. For a de�niteness we �x set TAUT

of tautologies in the DeMorgan language with onstants 0, 1 (the truth

values FALSE and TRUE) and propositional onnetives: unary : (the

negation), and binary ^ and _ (the onjuntion and the disjuntion). (The

language also ontains various auxiliary symbols like brakets or ommas.)

The formulas are built, using the onnetives, from the onstants and from

atoms p

0

; p

1

; : : : ; p

n

; : : :.

We onsider all �nite objets enoded in a �nite alphabet and , in fat, in

the binary alphabet f0; 1g. In partiular, we onsider TAUT as a subset of

f0; 1g

�

and so the length of a formula ' is denoted j'j. A minor point to note

(and then ignore) is that the length of an atom p

n

is not 1 but jp

n

j � logn,

as the index n has to be enoded in binary. But we shall ignore this as the

logarithmi fator is irrelevant in our omputations.

Consider any one of the usual text-book examples of propositional aluli

working with DeMorgan formulas that is based on a �nite number of axiom

shemes (like A_:A, or similar) and a �nite number of inferene rules (like

the modus ponens A;:A _ B=B, or similar)

1

. Any suh system is alled a

Frege system and denoted F . Two properties the system has are:

1. A formula � has a proof in F i� � 2 TAUT (the if-diretion is the

ompleteness and the only-if-diretion is the soundness of F ).

1

What the quali�ation similar means will be explained in Setion 3.1.
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2. The relation w is an F -proof of � is a p-time deidable relation of w

and � .

These two properties lead to the following abstrat de�nition of a proof

system.

De�nition 1.0.1 (Cook-Rekhow[14℄) A propositional proof system ( a

pps, shortly) is any p-time omputable funtion P : f0; 1g

�

! f0; 1g

�

suh

that Rng(P ) = TAUT .

Any w 2 f0; 1g

�

suh that P (w) = � is alled a P -proof of � .

A pps P is polynomially bounded if there exists a polynomial p(x) 2 N[x℄

suh that any � 2 TAUT has a P -proof w of size jwj � p(j� j).

It is easy to see that F an be seen as a pps in this abstrat setting too.

Just de�ne a funtion P

F

by:

P

F

(w) =

(

� if w is an F -proof of �

1 otherwise

Any of the usual logi systems for propositional logi an be similarly rep-

resented, be it the sequent alulus, the natural dedution system, the �rst-

order prediate logi or even �rst-order theories. For example, a less usual

pps is:

P

ZFC

(w) =

8

>

<

>

:

� if w is a proof in set theory ZFC of the formalization

of the statement � 2 TAUT

1 otherwise

based on set theory.

The following is the main theorem showing that proof omplexity relates

to omputational omplexity.

Theorem 1.0.2 (Cook-Rekhow[14℄) There exists a polynomially bounded

pps i� NP = oNP.

Proof :

If P is a p-bounded pps with the polynomial bound p(x) then

9w(jwj � p(jxj));P (w) = x

is an NP-de�nition of TAUT , a oNP-omplete set.
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On the other hand, if 9u(juj � q(jxj));A(u; x) is suh a de�nition (with

A a p-time relation) then the funtion

P (w) =

(

� if w = (u; x) and juj � q(j� j) ^A(u; �) holds

1 otherwise

is a polynomially bounded pps.

q.e.d.

Hene, if we believe that NP 6= oNP , no pps is p-bounded. A large

part of proof omplexity ativity is entered around proving that partiular

pps' are not p-bounded (or even subexponentially bounded). The onjeture

NP 6= oNP itself would be unlikely proved in this inremental manner as a

way to prove a universal statement is rarely proving all its instanes. But we

may hope to unover hidden "omputional hardness assumptions" in these

lower bounds and thus to redue the onjeture to some intuitively more

rudimentary one. (More on this in the introdutions to [29, 40℄ or in [30℄.)

However, there is another less illusorymotivation for proving lower bounds

for onrete pps' that I shall explain now.

Consider a �rst-order sentene in, say, the language of direted graphs:

=, a binary relation R(x; y) and a onstant whih we shall denote 0. As an

example

2

I take the pigeonhole priniple PHP:

9x8y;:R(x; y) _ [9x

1

; x

2

; y;x

1

6= x

2

^R(x

1

; y) ^R(x

2

; y)℄ _

[9x; y

1

; y

2

; y

1

6= y

2

^R(x; y

1

) ^R(x; y

2

)℄ _ 9x;R(x; 0) :

Assume that R(x; y), a relation on some universe M , does not satisfy any

of the �rst three disjunts. Then it is a graph of an injetive funtion

f :M !M . The last disjunt must then be true, i.e. 0 must be a value. In

other words, PHP says that an injetive funtion is surjetive. The priniple

is valid for all �niteM . For any n � 1 we an translate PHP into a proposi-

tional formula hPHP i

n

as follows: Replae 9 and 8 by the disjuntion and

the onjuntion respetively over all elements of [n℄, leave the propositional

onnetives in plae, replae true resp. false atomi sentenes i 6= j by 1

resp. by 0, and translate atomi sentenes R(i; j) by new atoms r

ij

, one for

2

This is not a random hoie. We shall see that the PHP - in various forms - is the

most important priniple studied in proof omplexity.
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every pair i; j 2 [n℄. The formula hPHP i

n

, often denoted just PHP

n

, is

then:

_

i

^

j

;:r

ij

_ [

_

i

1

<i

2

;j

r

i

1

j

^ r

i

2

j

℄ _

[

_

i;j

1

<j

2

r

ij

1

^ r

ij

2

℄ _

_

i

r

i0

:

Here it is already simpli�ed a bit, deleting disjunts whih are 0 (like (0^r

ij

^

r

ij

)), and deleting also multiple ourenes of some disjunts (like (r

i

1

j

^r

i

2

j

)

and (r

i

2

j

^ r

i

1

j

)). In fat, PHP

n

is usually simpli�ed yet more. By allowing

j to range only over [n℄ n f0g we get rid of the last disjunt in the formula:

_

i

^

j

;:r

ij

_ [

_

i

1

<i

2

_

j

r

i

1

j

^ r

i

2

j

℄ _ [

_

i

_

j

1

<j

2

r

ij

1

^ r

ij

2

℄ :

The truth assignments to r

ij

' orrespond to relations on [n℄. As PHP is

valid in all strutures of size n, PHP

n

is satis�ed by all truth assignments,

i.e. it is a tautology.

In general this translation an be de�ned for any �

1

1

�rst order sentene

�. If � is valid in all �nite strutures then the resulting sequene of formulas

h�i

n

, n < !, is a sequene of tautologies.

The seond important motivation for studying lengths of proofs in par-

tiular pps' is the following fat: To any "usual"

3

�rst-order theory T it is

possible to attah a pps P

T

suh that h�i

n

, n < !, have short (usually poly-

nomial or quasipolynomial size) P

T

-proofs if T proves �. Hene a suÆiently

strong lower bound to the length of suh proofs implies the unprovability of

� in T . A partiular formula � to whih the onstrution applies an be,

for example, a onsisteny statement. Consisteny statements are the most

important formulas used in a alibration of the strength of theories (for very

good proof-theoreti reasons).

Although we an desribe P

T

for T being Peano Arithmeti PA or set

theory ZFC, nobody has a lue how to prove any lower bound for suh P

T

.

However, for some theories of interest in logi (in partiular, for the so alled

Bounded Arithmeti theories) the situation is muh better and we have even

exponential lower bounds for some of the P

T

' arising in these ases.

We onlude the hapter by a natural notion of quasi-ordering of pps' by

their strength.

3

This topi will be studied in Chapter ?? where we de�ne the quali�ation usual.
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De�nition 1.0.3 (Cook-Rekhow[14℄) Let P;Q be two pps'. Pps P p-

simulates Q, P �

p

Q in symbols, i� there is a p-time omputable funtion

g : f0; 1g

�

! f0; 1g

�

suh that for all w 2 f0; 1g

�

:

P (g(w)) = Q(w) :

In other words, g translates Q-proofs into P -proofs of the same formula.

As g is p-time, the length of the P -proofs is at most polynomially longer

than the length of the original Q-proofs.
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Chapter 2

Resolution

We start our investigation of partiular pps' with the resolution proof system

R. It is the simplest pps for whih it is not easy to prove a lower bound. The

proof system has been introdued by Blake [9℄ and made prominent some

thirty years later in its use in automated theorem proving, f. Davis-Putnam

[18℄ and Robinson [44℄.

2.1 De�nition, soundness and ompleteness

Resolution is a proof system, denoted simply R, for proving formulas in a

DNF form. In general, transforming a formula into an equivalent one in the

DNF form may inrease its size exponentially. However, we don't really need

an equivalent formula, we only need that the original formula is a tautology

i� the onstruted DNF formula is too. This an be done by a simple trik,

the so alled limited extension, that is desribed in Exerise 2.9.1. A literal

is an atom or its negation. A lause is a disjuntion of literals `

1

_ : : : _ `

k

,

possibly empty. As there are no other onnetives or formulas in resolution,

the lause is written simply as a set f`

1

; : : : ; `

k

g. The only inferene rule in

R is the resolution rule:

C [ fp

i

g D [ f:p

i

g

C [D

The atom p

i

is alled the resolved atom. There are no restrition on our-

renes of p

i

or :p

i

in C and D, but it is easy to see that we an assume

w.l.o.g. that neither p

i

nor :p

i

our in C [D.

An assignment satis�es a lause if it makes true at least one literal in the

lause. In partiular, the empty lause annot be satis�ed. The resolution

11
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rule is sound: If both lauses in the hypothesis of an inferene are satis�ed

by an assignment then the assignment satis�es the onlusion too.

Let A be a formula in a DNF form

W

i2I

B

i

, with B

i

=

V

j2J

i

`

i

j

and `

i

j

literals. De�ne lauses C

i

:= f:`

i

j

j j 2 J

i

g, for i 2 I. A resolution proof of

A is a sequene D

1

; : : : ;D

t

of lauses suh that:

1. Eah D

u

is either one of initial lauses C

i

, i 2 I, or it is derived using

the resolution rule from D

v

1

and D

v

2

, some v

1

; v

2

< u.

2. The end-sequent D

t

is the empty lause ;.

The proof of A is also often alled the refutation of C

1

; : : : ; C

k

as its existene

erti�es that C

i

' are not simultaneously satis�able.

Theorem 2.1.1 A DNF formula is provable in R i� it is a tautology.

Proof :

Let A be a DNF formula and let C

i

's be the lauses obtained as above.

Any truth assignment satisfying all C

i

' would have to satisfy, by the sound-

ness of the resolution rule, all lauses in any resolution refutation of C

1

; : : : ; C

k

.

In partiular, also the end lause - the empty lause - would have to be sat-

is�ed. But that is impossible as there is nothing to satisfy in ;. This proves

the only-if part of the theorem.

For the opposite diretion assume that C = fC

1

; : : : ; C

k

g is unsatis�able.

Let p

1

; : : : ; p

n

;:p

1

; : : : ;:p

n

be the literals appearing in C. We shall prove

by indution on n that for any suh C there is a resolution refutation of C.

If n = 1 there is nothing to prove: C must ontain lauses fp

1

g and f:p

1

g

and their resolvent is the empty lause. Assume n > 1, and partition C into

four disjoint sets: C

00

[ C

01

[ C

10

[ C

11

, of those lauses whih ontain no

p

n

and no :p

n

, no p

n

but do ontain :p

n

, do ontain p

n

but not :p

n

and

ontain both p

n

;:p

n

respetively.

Now form new set of lauses C

0

by

1. Delete all lauses from C

11

.

2. Replae C

01

[ C

10

by the set of all lauses that are obtained by the

resolution rule applied to all pairs of lauses C

1

[ f:p

n

g from C

01

and

to C

2

[ fp

n

g from C

10

.
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Note that the new lauses introdued in the 2nd step do not ontain either

p

n

or :p

n

. More importantly, the new set of lauses C

0

is also unsatis�able.

This is beause any assignment �

0

: fp

1

; : : : ; p

n�1

g ! f0; 1g satis�es either all

lauses C

1

suh that C

1

[f:p

n

g 2 C

01

, or all lauses C

2

suh that C

2

[fp

n

g 2

C

01

(otherwise we ould �nd C

1

[C

2

2 C

0

not satis�ed by �

0

). Hene �

0

an be

extended, by giving a suitable value to p

n

, to a truth assignment � satisfying

C, whih is a ontradition.

q.e.d.

Obviously, the proof onstruted in the ompleteness part of the argu-

ment an be sometimes exponentially long (see Exerise 2.9.2). However, this

does not mean that there annot be some other, muh shorter, R-proofs. The

�rst superpolynomial (and, in fat, exponential) lower bound for R-proofs

has been proved only in 1985 by Haken [20℄. We shall give, in the oming

setions, several exponential lower bounds for R.

2.2 Tree-like resolution

An R-proof � = (D

1

; : : : ;D

t

) is tree-like i� eah D

i

is used at most one as

a hypothesis of an inferene in the proof. If one draws the proof-graph of �,

a direted graph with nodes being the lauses and the edges going from the

onlusion of an inferene to the two hypothesis, then the ondition tree-like

preisely says that the graph is a tree (a proof-tree).

The proof system allowing exatly tree-like R-proofs is alled tree-like

resolution and denoted R

�

. In this setion we give an exponential lower

bound on the size of R

�

-proofs of PHP

n

.

With an unsatis�able set of lauses C = fC

1

; : : : ; C

k

g we may assoiate

the following searh problem: Given a truth assignment � to the atoms of C

�nd C

i

2 C false under �. This searh problem an be solved by a branhing

program, a simple onept from Boolean omplexity.

A branhing program is a direted ayli graph with one in-degree 0

node (the soure), and with all other nodes of out-degree either 2 (the inner

nodes) or 0 (the leaves). The inner nodes are labelled by atoms and the

two edges leaving a node are labelled by 0; 1 respetively. The leaves are

labelled by elements of a some set X. Any evaluation � of atoms determines

a path through the branhing program: The path starts at the soure and

in every node labelled by p

i

uses the edge labelled 1 i� �(p

i

) = 1. In this

way a branhing program omputes a funtion f(p

1

; : : : ; p

n

) : f0; 1g

n

! X
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assigning to � 2 f0; 1g

n

the label of the leaf on the path determined by �.

The size of a branhing program is the number of nodes.

An important speial ase of branhing programs are deision trees,

branhing programs that are trees with the edges direted from the root

towards the leaves. We speak about the the height of a deision tree, mean-

ing the maximum length of a path through it.

Now bak to our searh problem of �nding unsatis�ed lauses from C.

Assume that we have an R

�

-refutation � of C. We shall use � as a deision

tree for solving the searh problem as follows. The underlying tree of the

deision tree is the proof-tree of �. The soure is the end-lause. A node

orresponding to a lause D derived in � by resolving atom p

i

is labeled by

p

i

. The edge from the node towards the node orresponding to a hypothesis

of the inferene is labelled by 1 (resp. by 0) i� the hypothesis ontains :p

i

(resp. it ontains p

i

). The leaves of the tree orrespond to initial lauses in

� and they are labelled by the initial lauses themselves.

Lemma 2.2.1 Assume � is an R

�

-refutation of C. Then the deision tree

de�ned from � as above solves the searh problem: Given a truth assignment

� �nd an unsatis�ed lauses in C.

In partiular, the height of the deision tree is the same as the height of

the proof tree of �.

Proof :

It is enough to observe that the lauses orresponding to the nodes on

the path determined by an � are all falsi�ed by �.

q.e.d.

Now we an prove our �rst, quite modest, lower bound.

Theorem 2.2.2 Every R

�

-proof of PHP

n

must have the height at least

n� 1.

Proof :

By Lemma 2.2.1 it suÆes to show that any deision tree solving the

searh problem attahed to PHP

n

must have the height at least n� 1.

The searh problem an be interpreted as follows: Given a truth assign-

ment �, whih we may identify with a relation � [n℄ � ([n℄ n f0g), �nd one

of:
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1. A pigeon i 2 [n℄ that is mapped (by the funtion whose graph � is

supposed to be) nowhere, i.e. i suh that 8j 2 [n℄ n f0g;:�(i; j).

2. Pigeons i

1

< i

2

and a hole j suh that both i

1

and i

2

are mapped into

j: �(i

1

; j) ^ �(i

2

; j).

3. A pigeon i and two holes j

1

< j

2

suh that i is mapped to both the

holes: �(i; j

1

) ^ �(i; j

2

).

Let g :� [n℄! [n℄ n f0g be a partial 1-to-1 map. The map g determines

a partial truth assignment �

g

by:

1. �

g

(r

ij

) = 1 i� g(i) is de�ned and equal to j.

2. �

g

(r

ij

) = 0 i� g(i) is de�ned but di�erent from j, or for some k 6= i,

g(k) = j.

3. �(r

ij

) is unde�ned in all other ases.

A partial truth assignment fores a lause true i� it assigns 1 to a literal

in the lause, and it fores a lause false i� it assigns 0 to all literals in the

lause. In partiular, a partial assignment annot fore a lause false without

giving a value to all literals ourring in it. The following is straightforward.

Claim: Let g :� [n℄ ! [n℄ n f0g be a partial 1-to-1 map of ardinality

< n� 1. Then the partial truth assignment �

g

annot fore false any lause

of :PHP

n

, i.e. any initial lauses in an R

�

-proof of PHP

n

.

Assume that we have a deision tree of the height h solving the searh

problem. We walk through the tree reating at step ` a partial 1-to-1 map

g

`

: [n℄ ! [n℄ n f0g suh that jg

`

j � `, and suh that �

g

`

gives values to

all atoms at the nodes of the path up to the `th step, and the values are

onsistent with the path.

At the beginning put g

0

:= ;. Assume we have g

`

and the atom at the

node we need to deide in the (`+1)st step is r

ij

. If j 6= 0 and g

`

[f(i; j)g is

a partial 1-to-1 map, de�ne g

`+1

:= g

`

[ f(i; j)g. Otherwise put g

`+1

:= g

`

.

It is easy to verify that the maps g

`

' have the required properties.

By the laim, the last map must have the size at least n � 1. That is,

the path has to ontinue for at least n� 1 steps, i.e. the height of the tree

is at least n� 1.

q.e.d.
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A binary tree of height n may have, if it is very unbalaned, the size just

2n+ 1 and that gives a very poor lower bound (even the number of lauses

in PHP

n

is bigger: O(n

3

)). Hene we need to modify the argument a bit

in order to get a lower bound for the size of R

�

-proofs of PHP

n

. In fat,

we will estimate from below the number of lauses in any suh proof (that

number is obviously a lower bound to the size).

First we prove a simple lemma about binary trees. We shall think of

binary trees as ordered upwards from the root (the minimal element) up

towards the leafs. Let us denote the ordering by a generi symbol �. For a

binary tree T and a node a in T , denote by T

a

the subtree of T onsisting

of nodes b suh that b � a. By T

a

denote the tree (T n T

a

) [ fag, i.e. it

onsists of nodes b suh that b 6> a. By jT j denote the size of a tree T .

Lemma 2.2.3 (Spira [45℄) There is a node a 2 T suh that:

(1=3)jT j � jT

a

j; jT

a

j � (2=3)jT j :

Proof :

Walk a path through T , starting at the root and always walking to the

bigger subtree (if the two subtrees have the same size, hoose arbitrarily one).

The size s of a urrent subtree an derease in one step only to s

0

�

s�1

2

.

Continue in this fashion until we reah the �rst node a suh that the

subtree T

a

has the size � (2=3)jT j. The key observation is that then also

(1=3)jT j � jT

a

j. This is beause the immediately previous subtree an have

the size (by the bound to s

0

above) at most s � 2jT

a

j+ 1: If it were jT

a

j <

(1=3)jT j then the previous subtree had the size � (2=3)jT j and the proess

should have stopped then.

As jT

a

j = jT j � jT

a

j+ 1, the inequalities (1=3)jT j � jT

a

j � (2=3)jT j hold

too.

q.e.d.

Reall the de�nition of a partial truth assignment �

g

from the proof of

Theorem 2.2.2.

Theorem 2.2.4 Any R

�

-proof of PHP

n

must have the size at least (3=2)

n�2

.

Proof :

Let k be the number of lauses in some R

�

-proof � of PHP

n

. We shall

onstrut a 4-tuple g

u

, D

u

, E

u

and S

u

where:
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1. g

u

:� [n℄! [n℄ n f0g is a partial 1-to-1 map suh that jg

u

j � u.

2. D

u

is a set of lauses (in the literals of PHP

n

) eah of whih is fored

true by �

g

u

.

3. E

u

is a lause fored false by �

g

u

.

4. S

u

is an R

�

-proof of E

u

from lauses of PHP

n

and D

u

.

5. jS

u

j � (2=3)

u

k.

Put g

0

:= ;, S

0

:= �, D

0

:= ; and E

0

:= ;. Assume we have g

u

, D

u

,

E

u

, S

u

. Find, using Lemma 2.2.3, a node a 2 S

u

splitting S

u

in the 1=3 -

2=3 fashion of the lemma. Let D be the lause at the node a. Consider two

ases:

(a) D an be fored true by some h � g

u

, a partial 1-to-1 map from [n℄

into [n℄ n f0g.

(b) There is no suh h.

In Case (a) note that suh h need to extend g

u

by at most one pair (i; j);

i.e. we may assume that h n g

u

j � 1. This is beause to make a lause true

it suÆes to make one literal true. Take any suh h and de�ne:

� g

u+1

:= h.

� D

u+1

:= D

u

[ fDg.

� E

u+1

:= E

u

.

� S

u+1

:= (S

u

)

a

, i.e. the nodes in S

u

that are not > a.

In Case (b) put g

u+1

:= g

u

, D

u+1

:= D

u

, E

u+1

:= D and S

u+1

:= (S

u

)

a

.

It is easy to verify that the properties 1. - 4. required from the 4-tuples

are maintained in the onstrution.

Now assume that ` is so large that S

`

is just one lause E

`

, i.e. jS

`

j = 1.

By the onstrution E

`

is fored false by g

`

. Hene it annot be a lause

from D

`

and must be from PHP

n

. But then, identially as in the proof of

Theorem 2.2.2, it must hold that jg

`

j � n� 1, i.e. that ` � n� 1.

The lower bound is obtained by ombining this inequality with the esti-

mate that ` � dlog

3=2

(k)e is suÆient to enfore jS

`

j = 1 (by jS

`

j � (2=3)

`

k):

dlog

3=2

(k)e � n� 1 , so k � (3=2)

n�2

:
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q.e.d.

Although the onstrution looks formally di�erent from the argument in

Theorem 2.2.2, it is not really. We leave it as an Exerise 2.9.3 to turn the

onstrution into a onstrution of an 9-deision tree, a deision tree that

branhes aording to the truth value of a lauses rather than of an atom.

Another diretion to whih it is possible to generalize this bound is to

onsider a proof system that operates not only with lauses formed from lit-

erals but with lauses formed from small onjuntions of literals (f.[28℄).We

shall get bak to this in ??.

2.3 E�etive interpolation: A general set-up

Assume that U and V are two disjoint NP-sets (subsets of f0; 1g

�

). By the

proof of the NP-ompleteness of satis�ability there are sequenes of proposi-

tional formulasA

n

(p

1

; : : : ; p

n

; q

1

; : : : ; q

t

n

) andB

n

(p

1

; : : : ; p

n

; r

1

; : : : ; r

s

n

) suh

that the size of A

n

and B

n

is n

O(1)

and suh that

U

n

:= U \ f0; 1g

n

= f(�

1

; : : : ; �

n

) 2 f0; 1g

n

j 9�

1

; : : : ; �

t

n

A

n

(�; �) holdsg

and

V

n

:= V \ f0; 1g

n

= f(�

1

; : : : ; �

n

) 2 f0; 1g

n

j 9�

1

; : : : ; �

s

n

B

n

(�; �) holdsg :

The assumption that U \ V = ; is equivalent to the statement that the

impliations

A

n

�! :B

n

are all tautologies. By the Craig interpolation theorem [16, 17℄ (see Exer-

ise 2.9.6) there is a formula I

n

(p) built only from atoms p suh that both

impliations:

A

n

! I

n

and I

n

! :B

n

are tautologies. This means that the set de�ned by I

n

:

W :=

[

n

f� 2 f0; 1g

n

j I

n

(�) holds g

separates U from V :

U �W and W \ V = ; :

Hene a lower bound to a omplexity of interpolating formulas is also a lower

bound on the omplexity of sets separating disjoint NP-sets. We annot
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really expet to polynomially bound the size of a formula or a iruit de�ning

suitable W from the length of the impliation A

n

! :B

n

. This would

immediately imply, as observed by Mundii [35, 36, 37℄, that NP \ oNP �

NC

1

=poly or � P=poly (just take U and V two omplementary NP-sets).

The idea of e�etive interpolation (disussed �rst in Kraj���ek [24℄) is

more subtle: For a given propositional proof system P , try to estimate the

iruit-size of an interpolant of an impliation in terms of the size of the

shortest proof of the impliation.

De�nition 2.3.1 A pps P admits e�etive interpolation

1

i� there is a poly-

nomial p(x) 2 N[x℄ suh that any impliation with a P -proof of size m has

an interpolant of a iruit size � p(m).

Exerise 2.9.7 shows why it is neessary to onsider the iruit size and

not just the formula size of the interpolant.

To start with, we have at least one example when this learly works (we

shall enounter LK in 3.4).

Example 2.3.2 Cut-free propositional sequent alulus LK admits e�etive

interpolation.

The interpolating iruit is onstruted by an obvious indution on the

number of sequents in an LK-proof. (This is the base ase in the usual

proof-theoreti proof of Craig's interpolation theorem via ut-elimination,

see, for example, [25, 4.3℄.)

The point of the e�etive interpolation method is that by establishing a

good upper bound for a proof system P in the form of the e�etive interpo-

lation we prove lower bounds on the size of P -proofs. Namely:

Theorem 2.3.3 Assume that U and V are two disjoint NP-sets suh that

U

n

and V

n

are inseparable by a set of iruit omplexity � s(n), all n � 1.

Assume that P admits e�etive interpolation.

Then the impliations A

n

! :B

n

require P -proofs of size � s(n)

�

, some

� > 0.

1

This is sometimes alled feasible interpolation. I prefer the original name as in some

appliations the interpolant is not feasible (in the usual meaning of the term as beeing -

uniform or nonuniform - p-time) but it is still in some sense e�etive.
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Proof :

By the e�etive interpolation, a proof of the impliation of size � s yields

an interpolant of iruit size � p(s), some �xed polynomial. Pik � > 0 suh

that p(s

�

) � s for all s � 1.

q.e.d.

An apriori diÆulty with this strategy how to get proof omplexity lower

bounds is that no non-trivial iruit lower bounds are known.

We shall overome the diÆulty by onsidering the monotone version of

the e�etive interpolation. This will work beause strong lower bounds to

monotone iruits are known.

In the monotone version we onsider separations of two NP-sets U and

V as earlier but now we assume that U is losed upwards:

u 2 U

n

^ u � u

0

! u

0

2 U

n

where the ordering u � u

0

on f0; 1g

n

means that u

i

� u

0

i

, for all bits i � n.

If U \V = ; and U is losed upwards then U and V an be separated by W

that is also losed upwards (e.g. by U itself). The same onlusion is true

if we assume instead that V is losed downwards - we shall not disuss this

dual ase.

The propositional version of the monotone interpolation is the following

statement.

Lemma 2.3.4 (Lyndon's theorem) Assume that A(p; q) ! B(p; r) is a

tautology, and that the atoms p

i

' our only positively (i.e. in the sope of

an even number of negations) in A.

Then there is a monotone interpolant I(p) of the impliation, an inter-

polant in whih all p

i

' also our only positively.

De�nition 2.3.5 A pps P admits monotone e�etive interpolation i� there

is a polynomial p(x) 2 N[x℄ suh that any impliation with a P -proof of size

m has a monotone interpolant of a monotone iruit size � p(m).

Similarly as Theorem 2.3.3 we get

Theorem 2.3.6 Assume that U and V are two disjoint NP-sets with U

losed upwards. Assume that U

n

and V

n

are inseparable by a set losed

upwards and of monotone iruit omplexity � s(n), all n � 1. Assume that

P admits monotone e�etive interpolation.
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Then the impliations A

n

! :B

n

require P -proofs of size � s(n)

�

, some

� > 0.

Now we give an example of two NP-sets U and V , U losed upwards (and

also, in fat, V losed downwards) for whih it is known that any monotone

separating set must be de�ned by a large monotone iruit.

In the next de�nition we denote the set of two-element subsets of f1; : : : ; ng

by the suggestive symbol

�

n

2

�

.

De�nition 2.3.7 Let n; !; � � 1. The set Clique

n;!

(p; q) is a set of the

following lauses in the atoms p

ij

, fi; jg 2

�

n

2

�

, and q

ui

, u = 1; : : : ; ! and

i = 1; : : : ; n:

1.

W

i�n

q

ui

, all u � !,

2. :q

ui

_ :q

vi

, all u < v � ! and i = 1; : : : ; n,

3. :q

ui

_ :q

vj

_ p

ij

, all u < v � ! and fi; jg 2

�

n

2

�

.

The set Color

n;�

(p; r) is the set of the following lauses in the atoms p

ij

,

fi; jg 2

�

n

2

�

, and r

ia

, i = 1; : : : ; n and a = 1; : : : ; �:

1.

W

a��

r

ia

, all i � n,

2. :r

ia

_ :r

ib

, all a < b � � and i � n,

3. ℄ :r

ia

_ :r

ja

_ :p

ij

, all a � � and fi; jg 2

�

n

2

�

.

Truth assignments to atoms p

ij

an be identi�ed with undireted graphs

with the vertex set [n℄. Truth assignments to q

ui

suh that Clique

n;!

(p; q) is

satis�ed an be identi�ed with 1-to-1 maps from the set [!℄ onto a lique (i.e.

a omplete subgraph) in the graph determined by p, and truth assignments

to r

ia

suh that Color

n;�

(p; r) is satis�ed an be identi�ed with olorings of

the graph by � olors. The set

fp j 9q Clique

n;!

(p; q)g

is the set of graphs on [n℄ with a lique of size � !, while the set

fp j 9r Color

n;�

(p; r)g

is the set of graphs on [n℄ olorable by � � olors.
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Note that the atoms p

i

' our only positively in lauses in Clique and

only negatively in Color and, indeed, the two sets are losed upwards and

downwards respetively.

The impliation

^

Clique

n;!

! :

^

Color

n;�

is obviosuly a tautology if ! > �.

The following theorem just restates the bound from [5℄

2

.

Theorem 2.3.8 (Alon-Boppana[5℄) Assume that 3 � � < ! and

p

�! �

n

8 log n

. Then the impliation

^

Clique

n;!

! :

^

Color

n;�

has no interpolant of the monotone iruit-size smaller than:

2


(

p

�)

:

A suitable hoie of parameters is � := d

p

ne and ! := � + 1. The lower

bound provided by the theorem is then 2


(n

1=4

)

.

2.4 Communiation omplexity interlude

We shall prove in Setion 2.5 that R admits both monotone and nonmono-

tone e�etive interpolation. First we need to reall, in this setion, few

notions and fats from ommuniation omplexity. This will be a base of a

universal method for proving e�etive interpolation.

Let U

n

; V

n

� f0; 1g

n

be two disjoint sets. Karhmer-Wigderson game on

U

n

, V

n

(introdued in [21℄) is played by two players A and B. Player A

reeives u 2 U while B reeives v 2 V . They ommuniate bits of infor-

mation (following a protool previously agreed on) until both players agree

on the same i 2 [n℄ suh that u

i

6= v

i

. A measure of the omplexity of the

game is the minimum (over all protools) of the number of bits they need to

ommuniate in the worst ase. This minimum is alled the ommuniation

omplexity of the game and it is denoted by C(U

n

; V

n

).

2

One needs to replae the lass of graphs without a lique of size � used in [5℄ by the

smaller lass of �-olorable graphs. It is the bound to monotone iruits separating these

two lasses what is atually proved in [5℄.
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Assume that we have a propositional formula (in the DeMorgan lan-

guage) '(p

1

; : : : ; p

n

) that is onstantly 1 and 0 on U

n

and V

n

respetively.

We say that suh ' separates U

n

from V

n

. Applying the DeMorgan rules if

neessary, we may assume that the negations in ' are applied only to atoms.

The players an use suh a formula as follows. They start at the top

onnetive, i.e. at the whole formula, and will work down to smaller and

smaller subformulas until reahing a literal. The property they will preserve

is that the urrent subformula gives value 1 on u and 0 on v. This is true at

the beginning, by the hypothesis. If the top onnetiv is a onjuntion the

player B indiates to A, by sending one bit, whih of the two subformulas

yields value 0 on v. If the top onnetive is a disjuntion, analogously A

indiates to B whih of the two subformulas is 1 on u. This argument

proves a half of the following simple but important statement (for the other

half see Exerise 2.9.8).

In the monotone version of the game U

n

is assumed to be losed upwards,

and the players searh for i suh that u

i

= 1 ^ v

i

= 0 (and not just u

i

6=

v

i

). Any monotone formula separating U

n

from V

n

an be used by the

players as a protool, identially as above. LetMC(U

n

; V

n

) be the monotone

ommuniation omplexity of the game.

Theorem 2.4.1 (Karhmer-Wigderson[21℄) Let U

n

; V

n

� f0; 1g

n

be two

disjoint sets. Then C(U

n

; V

n

) is equal to the minimal depth of a DeMorgan

formula separating U

n

from V

n

.

The same is true in the monotone ase: MC(U

n

; V

n

) is equal to the

minimal depth of a monotone DeMorgan formula separating U

n

from V

n

.

If the players had a iruitC separating U

n

from V

n

instead of the formula

' they ould use the same ommuniation protool. But the ommuniation

omplexity would be still bounded only by the depth of C whih really says

nothing about the size of C. To apture the omplexity of protools omming

from iruits we need to use a more general notion of protool. The de�nition

is a variant of a notion from [39℄ that used PLS-problems.

De�nition 2.4.2 ([27℄) Let U

n

; V

n

� f0; 1g

n

be two disjoint sets. A pro-

tool for the Karhmer-Wigderson game on the pair (U

n

; V

n

) is a labelled

direted graph G satisfying the following onditions:

1. G is ayli and has one soure denoted ;.

The nodes with the out-degree 0 are leaves, all other are inner nodes.
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2. Leaves are labelled by one of the following formulas:

u

i

= 1 ^ v

i

= 0 or u

i

= 0 ^ v

i

= 1

for some i = 1; : : : ; n.

3. There is a funtion S(u; v; x) (the strategy) suh that S assigns to a

node x and a pair (u; v) 2 U

n

� V

n

an edge leaving from the node x.

Fixing a pair (u; v) 2 U

n

� V

n

the strategy de�nes for every node x a

direted path P

x

uv

= x

1

; : : : ; x

h

in G: Start at x and go towards a leaf x

h

,

always going from x

i

using the edge S(u; v; x

i

).

4. For every (u; v)� 2 U

n

� V

n

there is a set F (u; v) � G satisfying:

(a) ; 2 F (u; v).

(b) x 2 F (u; v)! P

x

u;v

� F (u; v).

() The label of any leaf from F (u; v) is valid for u; v.

Suh a set F is alled the onsisteny ondition.

A protool is alled monotone i� every leaf in it is labelled by one of the

formulas u

i

= 1 ^ v

i

= 0, i = 1; : : : ; n.

The ommuniation omplexity of G is the minimal number t suh that for

every x 2 G the players (one knowing u and x, the other one v and x) deide

whether x 2 F (u; v) and ompute S(u; v; x) with at most t bits exhanged in

the worst ase.

See Exerise 2.9.9 about the onsisteny ondition.

Now let us observe that this notion naturally formalizes protools formed

from a iruit (as desribed above). Assume that C is a iruit separating U

n

from V

n

. Reverse the edges in C, take for F (u; v) those subiruits di�ering

in the value on u and v, and de�ne the strategy and the labels of the leaves

in an obvious way. This determines a protool for the game on (U

n

; V

n

)

whose ommuniation omplexity is 2. The next theorem says that there

is a onverse onstrution. The theorem reformulates a statement from [39℄

but we give it a new proof whih then applies to generalizations in ??.

Theorem 2.4.3 ([39℄) Let U

n

; V

n

� f0; 1g

n

be two disjoint sets. Let G be

a protool for the game on U

n

; V

n

whih has k nodes and the ommuniation

omplexity t.
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Then there is a iruit C of size k2

O(t)

separating U

n

from V

n

. Moreover,

if G is monotone so is C.

On the other hand, any (monotone) iruit C of size s separating U

n

from

V

n

determines a (monotone) protool G with s nodes whose ommuniation

omplexity is 2.

Proof :

The seond part of the theorem was explained already, so let us onen-

trate on the �rst part. Let G be a protool satisfying the hypothesis. For a

node a and w 2 f0; 1g

t

, let R

a;w

be the set of pairs (u; v) 2 U

n

�V

n

suh that

the ommuniation of the players deiding a 2

?

F (u; v) evolves aording to

w and ends with the aÆrmation of the membership. It is easy to see that

R

a;w

is a retangle, i.e. of the form R

a;w

= U

a;w

� V

a;w

for some U

a;w

� U

n

and V

a;w

� V

n

.

For a node a denote by k

a

the number of nodes in G that an be reahed

from a by a (direted) path. So k

a

= 1 for a a leaf, while k

;

= k for the

soure ;.

Claim 1: For all a 2 G and w 2 f0; 1g

t

there is a iruit C

a;w

separating

U

a;w

from V

a;w

and of size � k

a

2

O(t)

.

(The onstant in the O(t) is independent of a.) This implies the theorem

taking for a the soure (whih is in all F (u; v)).

The laim is proved by indution on k

a

. If a is a leaf the statement

is lear. Assume a is not a leaf and let w 2 f0; 1g

t

. For u 2 U

a;w

let

u

�

2 f0; 1g

4

t

be a vetor whose bits u

�

!

are parametrized by ! = (!

1

; !

2

) 2

f0; 1g

t

� f0; 1g

t

and suh that u

�

!

= 1 i� there is a v 2 V

a;w

suh that

the ommuniation of the players omputing S(u; v; a) evolves aording to

!

1

and the omputation of S(u; v; a) 2

?

F (u; v) evolves aording to !

2

.

De�ne v

�

!

2 f0; 1g

4

t

dually: v

�

!

= 0 i� there is a u 2 U

a;w

suh that the

ommuniation of the players omputing S(u; v; a) evolves aording to !

1

and the omputation of S(u; v; a) 2

?

F (u; v) evolves aording to !

2

.

Let U

�

a;w

and V

�

a;w

be the sets of all these u

�

and v

�

respetively.

Claim 2: There is a monotone formula '

a;w

(in 4

t

atoms) separating U

�

a;w

from V

�

a;w

of size 2

O(t)

.

Claim 2 follows from Theorem 2.4.1 as there is an obvious way how the

players an �nd a bit ! in whih u

�

!

= 1 and v

�

!

= 0: They simply ompute

S(u; v; a) (this gives them !

1

) and then deide S(u; v; a) 2

?

F (u; v) (this

gives them !

2

).
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Let us resume the proof of Claim 1. For !

1

2 f0; 1g

t

let a

!

1

be the node

S(u; v; a) omputed for some u; v with ommuniation !

1

. De�ne a iruit:

C

a;w

:= '

a;w

(: : : ; y

!

1

;!

2

=C

a

!

1

;!

2

; : : :)

that is, we substitute the iruit C

a

!

1

;!

2

in the position of the (!

1

; !

2

)-th

variable in '

a;w

.

As k

a

!

1

< k

a

, the indution hypothesis implies that all C

a

!

1

;!

2

work

orretly on all U

a

!

1

;!

2

� V

a

!

1

;!

2

. The iruit C

a;w

works then orretly by

the de�nition of the formula '

a;w

.

This onludes the proof of the general ase. But the same proof gives

also the monotone ase (as '

a;w

is monotone).

q.e.d.

2.5 E�etive interpolation for resolution

In this setion we prove the e�etive interpolation for resolution.

Theorem 2.5.1 (Kraj���ek[27℄) Assume that the set of lauses

fA

1

; : : : ; A

m

; B

1

; : : : ; B

`

g

where:

1. A

i

� fp

1

;:p

1

; : : : ; p

n

;:p

n

; q

1

;:q

1

; : : : ; q

s

;:q

s

g, all i � m

2. B

j

� fp

1

;:p

1

; : : : ; p

n

;:p

n

; r

1

;:r

1

; : : : ; r

t

;:r

t

g, all j � `

has a resolution refutation with k lauses.

Then the impliation:

^

i�m

(

_

A

i

) �! :

^

j�`

(

_

B

j

)

(where

W

C denotes the disjuntion of the literals in a lause C) has an

interpolant I(p) whose iruit-size is kn

O(1)

.

Moreover, if all atoms p

i

' our only positively in all A

i

then there is a

monotone interpolant whose monotone iruit-size is kn

O(1)

.

Before we prove the theorem let us note a orollary of the theorem and

Theorems 2.3.6 and 2.3.8, our �rst exponential lower bound for R.
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Corollary 2.5.2 ([27℄) There is a onstant  > 0 suh that whenever 3 �

� < ! and

p

�! �

n

8 log n

the following holds.

Any R-proof of the impliation

^

Clique

n;!

! :

^

Color

n;�

must have at least n

�

2

�

1=2

lauses.

In partiular, if n


(1)

� � < ! < n

2=3

then any suh refutation must

have 2

n


(1)

lauses.

Proof of Theorem 2.5.1:

Assume that � is an R-refutation with k lauses of fA

1

; : : : ; A

m

; B

1

; : : : ; B

`

g,

a set of lauses satisfying the hypothesis of the theorem. Let U and V be

the subsets of f0; 1g

n

de�ned by

U := fp 2 f0; 1g

n

j 9q 2 f0; 1g

s

;

^

i

_

A

i

g

and by

V := fp 2 f0; 1g

n

j 9r 2 f0; 1g

t

;

^

j

_

B

j

g

respetively. Eventually we shall show how to transform � into a protool

for the Karhmer-Wigderson game on U , V , of size k + 2n and of the om-

muniation omplexity O(log n). But we start with a less formal argument.

Assume that � = D

1

; : : : ;D

k

. For D a lause let

~

D denote the set of all

truth assignments satisfying D.

Assume player A gets u 2 U and player B gets v 2 V . A �xes some

q

u

2 f0; 1g

s

suh that

VW

A

i

(u; q

u

) holds, and similarly B piks some r

v

2

f0; 1g

t

, a witness of the membership of v in V .

The players will onstrut a path P = S

0

; : : : ; S

h

through �, from the

endsequent (= S

0

) to one of the initial sequents. The property they will

try to maintain is that the truth evaluations (u; q

u

; r

v

) and (v; q

u

; r

v

) do not

satisfy the lauses on the path, i.e. are not in

~

S

a

, a = 0; : : : ; h.

Assume the players reah S

a

whih was dedued in � by the inferene:

X Y

S

a

:

They �rst determine whether (u; q

u

; r

v

) 2

~

X and (v; q

u

; r

v

) 2

~

X, and then

ontinue depending on a possible outome:
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1. (u; q

u

; r

v

) 2

~

X ^ (v; q

u

; r

v

) 2

~

X.

2. (u; q

u

; r

v

) =2

~

X ^ (v; q

u

; r

v

) =2

~

X.

3. Exatly one of (u; q

u

; r

v

); (v; q

u

; r

v

) is in

~

X .

In the �rst ase none of the two tuples an be in

~

Y and the players put

S

a+1

:= Y . In the seond ase they take S

a+1

:= X. It is the third ase whih

is most interesting: Neessarily u 6= v and the players stop onstruting the

path and enter a protool aimed at �nding i � n suh that u

i

6= v

i

.

As eah initial sequent is satis�ed by either (u; q

u

; r

v

) or by (v; q

u

; r

v

),

the players must sooner or later enter the third possibility and thus �nd

i � n suh that u

i

6= v

i

.

For this to work we need to show that eah of the three tasks:

1. Deide whether (u; q

u

; r

v

) 2

~

D.

2. Deide whether (v; q

u

; r

v

) 2

~

D.

3. If (u; q

u

; r

v

) 2

~

D 6� (v; q

u

; r

v

) 2

~

D �nd i � n suh that u

i

6= v

i

.

where D is a lause, has small ommuniation omplexity. But this is easy:

The �rst two an be deided by eah player sending one bit (the truth value

of the part of the lause he an evaluate), the third task needs log n bits by

a binary searh.

Let us now de�ne the protool G formally. G has (k + 2n) nodes, the k

lauses of � together 2n extra verties. These extra verties are labelled by

formulas u

i

= 1 ^ v

i

= 0 and u

i

= 0 ^ v

i

= 1, i = 1; : : : ; n.

The onsisteny ondition F (u; v) is formed by those lauses D

j

that are

not satis�ed by (v; q

u

; r

v

), and also by those of the extra 2n nodes whose

label is valid for the pair u; v.

The strategy funtion S(u; v;D

j

) (for D

j

derived from X and Y ) is de-

�ned as follows:

1. If (u; q

u

; r

v

) =2

~

D

j

then

S(u; v;D

j

) :=

(

X if (v; q

u

; r

v

) =2

~

X

Y if (v; q

u

; r

v

) 2

~

X (and hene (v; q

u

; r

v

) =2

~

Y ).

2. If (u; q

u

; r

v

) 2

~

D

j

then the players use binary searh for �nding i � n

suh that u

i

6= v

i

. S(u; v;D

j

) is then the one of the two nodes labelled

by u

i

= 1 ^ v

i

= 0 and u

i

= 0^ v

i

= 1 whose label is valid for the pair

u; v.
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Note that the strategy funtion S(u; v; x) as well as the membership

relation x 2 F (u; v) an be determined by the players exhanging at most

log n bits. As G has (k+2n) nodes, Theorem 2.4.3 yields a iruit separating

U from V and having the size at most (k + 2n) � 2

O(log n)

= kn

O(1)

.

Now we turn to the monotone ase, whih requires a modi�ation. As-

sume that the atoms p

j

' our only positively in all A

i

's. Note that this

means that U is losed upwards but even a bit more: If u 2 U and q

u

is a

witness for this, and u � u

0

, then q

u

also witnesses the membership u

0

2 U .

The protool in the monotone ase will have only (k + n) nodes, the

k lauses of � plus n extra nodes labelled by formulas u

i

= 1 ^ v

i

= 0,

i = 1; : : : ; n. The onsisteny ondition F (u; v) is de�ned as before.

The strategy funtion hanges a bit. In the third ase of the onstrution

of the path above assume that (u; q

u

; r

v

) 2

~

X while (v; q

u

; r

v

) =2

~

X. Then

the players, instead of using the binary searh for �nding the bit in whih u

di�ers from v, they either �nd i � n suh that

u

i

= 1 ^ v

i

= 0

or learn that there is some u

0

satisfying

u

0

� u ^ (u

0

; q

u

; r

v

) =2

~

X

This an be done by the player A only, in fat, and hene he just need to

ommuniate log n bits identifying i to B.

Formally, in the �rst ase they de�ne

S(u; v;D

j

) :=

(

X if (v; q

u

; r

v

) =2

~

X

Y if (v; q

u

; r

v

) 2

~

X.

In the seond ase S(u; v;D

j

) is simply the additional node with the label

u

i

= 1 ^ v

i

= 0.

By the monotoniity ondition assumed about A

1

; : : : ; A

m

, for every u

0

ourring above it holds:

(u

0

; q

u

; r

v

) 2

\

j�m

A

j

:

This implies that the players again have to, sooner or later, enter the option

leading to i � n suh that u

i

= 1 ^ v

i

= 0.

So we get (k + n) � 2

O(t)

= kn

O(1)

bound to the size of a monotone

separating iruit (by Theorem 2.4.3).

q.e.d.
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2.6 Generalizations and limitations of e�etive in-

terpolation

Note that the proof of Theorem 2.5.1 does not really use any partiular

information about the syntax of R; it works with the sets of satisfying as-

signments. This means that we an generalize e�etive interpolation to a

more general situation whih is grasped by the following onept.

De�nition 2.6.1 ([27℄) Let N � 1.

1. The semanti rule allows to infer from two subsets A;B � f0; 1g

N

a

third one:

A B

C

i� C � A \B.

2. A semanti derivation of the set C � f0; 1g

N

from sets A

1

; : : : ; A

m

�

f0; 1g

N

is a sequene of sets B

1

; : : : ; B

k

� f0; 1g

N

suh that B

k

= C,

and suh that eah B

i

is either one of A

j

' or derived from two previous

B

i

1

; B

i

2

, i

1

; i

2

< j, by the semanti rule.

3. Let X � exp(f0; 1g

N

) be a family of subsets of f0; 1g

N

. A semanti

derivation B

1

; : : : ; B

k

is an X -derivation i� all B

i

2 X .

Derivability in semanti derivations, without a restrition to some X ,

would be rather trivial: C is derivable from A

i

's i� C �

T

i

A

i

. But when the

family X is not a �lter on f0; 1g

N

, the notion of X -derivability beomes non-

trivial. For example, a family formed by the subsets of f0; 1g

N

de�nable by a

lause yields a non-trivial notion. The following tehnial de�nition abstrats

a property of sets of truth assignments used in the proof of Theorem 2.5.1.

De�nition 2.6.2 Let N = n + s + t be �xed and let A � f0; 1g

N

. Let

u; v 2 f0; 1g

n

, q

u

2 f0; 1g

s

and r

v

2 f0; 1g

t

.

The ommuniation omplexity of A, CC(A), is the minimal number of

bits two players (one knowing u; q

u

and the other one knowing v; r

v

) need to

exhange in the worst ase in solving any of the following three tasks:

1. Deide whether (u; q

u

; r

v

) 2 A.

2. Deide whether (v; q

u

; r

v

) 2 A.

3. If (u; q

u

; r

v

) 2 A 6� (v; q

u

; r

v

) 2 A �nd i � n suh that u

i

6= v

i

.
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The monotone ommuniation omplexity w.r.t. U of A, MCC

U

(A), is

the minimal t � CC(A) suh that the next task an be solved ommuniating

� t bits in the worst ase.

4. If (u; q

u

; r

v

) 2 A and (v; q

u

; r

v

) =2 A either �nd i � n suh that

u

i

= 1 ^ v

i

= 0

or learn that there is some u

0

satisfying

u

0

� u ^ (u

0

; q

u

; r

v

) =2 A

Note that proofs in any of the usual propositional aluli based on bounded

arity inferene rules translate into semanti derivations: Replae a lause,

(a sequent, a formula, an equation, et.) by the set of its satisfying truth

assignments. The soudness of the inferene rules implies that they translate

into instanes of the semanti rule.

The point of this generalization is that we an lift the e�etive interpo-

lation from R to this ontext. Let N = n + s + t be �xed for now. For

A � f0; 1g

n+s

de�ne the set

~

A by:

~

A :=

[

(a;b)2A

f(a; b; ) j  2 f0; 1g

t

g

where a; b;  range over f0; 1g

n

, f0; 1g

s

and f0; 1g

t

respetively, and similarly

for B � f0; 1g

n+t

de�ne

~

B:

~

B :=

[

(a;)2B

f(a; b; ) j b 2 f0; 1g

s

g :

Theorem 2.6.3 Let A

1

; : : : ; A

m

� f0; 1g

n+s

and B

1

; : : : ; B

`

� f0; 1g

n+t

.

Assume that there is a semanti derivation � = D

1

; : : : ;D

k

of the empty set

; = D

k

from the sets

~

A

1

; : : : ;

~

A

m

;

~

B

1

; : : : ;

~

B

`

.

If the ommuniation omplexity of all D

i

, i � k, satis�es CC(D

i

) � t

then the two sets

U = fu 2 f0; 1g

n

j 9q

u

2 f0; 1g

s

; (u; q

u

) 2

\

j�m

A

j

g

and

V = fv 2 f0; 1g

n

j 9r

v

2 f0; 1g

t

; (v; r

v

) 2

\

j�`

B

j

g
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an be separated by a iruit of size at most (k + 2n)2

O(t)

.

Further, if the sets A

1

; : : : ; A

m

satisfy the following monotoniity ondition

w.r.t. U :

(u; q

u

) 2

\

j�m

A

j

^ u � u

0

! (u

0

; q

u

) 2

\

j�m

A

j

andMCC

U

(D

i

) � t for all i � k, then there is a monotone iruit separating

U from V of size at most (k + n)2

O(t)

.

The proof is idential to the proof of Theorem 2.5.1.

Theorem 2.6.3 an be used to give exponential lower bounds for various

proof systems of "geometri nature" (see Exerises 2.9.10, 2.9.11 and Chap-

ter ??). A partiular proof system of this type that has been studied in the

onnetions with the linear programming is the utting planes proof system

CP , introdued in [15℄. This system operates with integer linear inequalities

of the form a

1

x

1

+ : : : a

n

x

n

� b, with x

i

representing the truth values of

atoms. CP has some obvious rules: adding two inequalities, multiplying an

inequality by a positive onstant, but also a less obvious one, the division

rule:

a

1

x

1

+ : : : a

n

x

n

� b

a

1



x

1

+ : : :

a

n



x

n

� d

b



e

provided that  > 0 and ja

i

, all i (the rounding up is what makes the system

omplete). CP has also two initial inequalities: x � 0, �x � �1. It is a

refutation system whih derives from an unsatis�able system of inequalities

the inequality 0 � 1. The term unsatis�able means that the system has no 0-

1 solution. It is sound and omplete and polynomially simulates resolution,

see [15℄ or [25, 13.1℄.

We shall disuss e�etive interpolation for CP in Chapter ??, together

with a generalization of ommuniation omplexity from the Boolean frame-

work to the so alled real ommuniation omplexity. .

Finally, let us disuss an apriori limitation to the monotone e�etive

interpolation method. Assume that

Clique

n;!

[ Color

n;�

were satis�able. The satisfying assignment then de�nes a map from [!℄

into [�℄ that is 1-to-1 (omposing the map from [!℄ onto a lique with the

oloring restrited to the lique). More formally, we an de�ne propositional

formulas E

au

for a 2 [!℄ and u 2 [�℄ (built from the atoms p; q; r) and derive
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from Clique

n;!

[ Color

n;�

by a p-size R-proof that E

au

's de�ne a graph

of an injetive funtion from [!℄ into [�℄. Hene whenever a proof system

an prove the instane of the pigeonhole priniple saying that no suh map

exists, it also shortly proves the unsatis�ability of Clique

n;!

[ Color

n;�

and

hene annot admit monotone e�etive interpolation. Suh instanes of the

pigeonhole priniple are provable in F and even in very weak subsystems of

F (see Chapter ??).

One an also prove limitations to non-monotone e�etive interpolation

but only modulo unproven ryptographial onjetures (like the seurity of

RSA). More on this in ??.

2.7 Width of resolution proofs

For a lause C, the width of C, denoted w(C), is the number of literals in C.

For a set C of lauses de�ne w(C) := max

2C

w(C). In partiular, the width

of a proof �, w(�), is the maximal width of a lause in the proof.

Our aim in this setion is to prove that a short R-proof an be trans-

formed into a narrow proof. This will allow us to prove lower bounds for the

size by proving suÆiently strong lower bounds on the width.

We shall use partial truth assignments alled simply restritions. The

following notation will be handy. For ` a literal and � 2 f0; 1g de�ne:

`

�

:=

(

` if � = 1

:` if � = 0

Further, for ` and � as above and C a lause de�ne the restrition of C by

` = � to be the lause:

C # ` = � :=

8

>

<

>

:

C if neither ` nor :` our in C

f1g if `

�

2 C

C n f`

1��

g if `

1��

2 C.

Similarly, for a set of lauses C put C # ` = � := fC # ` = � j C 2 Cg.

Consider the e�et a restrition, say p = �, has on a resolution inferene:

X [ fqg Y [ f:qg

X [ Y

If p = q then the inferene trasnforms into

X f1g

X [ Y

or

Y f1g

X [ Y
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whih is not a resolution inferene. But it is an instane of a weakening rule:

Z

1

Z

2

provided that Z

1

� Z

2

that is obviously sound. Moreover, a restrition of a weakening is again an

instane of a weakening.

If p 6= q and p

�

2 X [ Y then the inferene beomes

X # p = � [ fqg Y # p = � [ f:qg

f1g

whih is again not a resolution inferene. But we an simulate it by allowing

f1g as a new initial lause (axiom) in proofs.

Let R

0

be a proof system extending R by the weakening rule and by the

new axiom. The point is that a restrition of an R

0

-proof is again an R

0

-proof

(after transforming resolution inferenes as desribed above). Clearly, lower

bounds on R

0

-proofs apply, in partiular, to R-proofs too.

The last piee of a usefull notation is w(C ` A), denoting the minimal

width of an R

0

-derivation of a lause A from C, and C `

k

A whih stands for

k � w(C ` A).

Lemma 2.7.1 If C # p = 0 `

k

A then C `

k+1

A [ fpg.

If C # p = 1 `

k

A then C `

k+1

A [ f:pg.

Proof :

We prove only the �rst part as the proof of the seond part is idential.

Assume that � = D

1

; : : : ;D

t

is an R

0

-derivation of A from C # p = 0 having

the width k. Put E

i

:= D

i

[fpg, for all i � t. We laim that �

0

= E

1

; : : : ; E

t

is essentially an R

0

-derivation of A [ fpg. The quali�ation essentially will

be lear in a moment.

Assume �rst D

i

2 C # p = 0, say D

i

= C # p = 0 for some C 2 C.

Consider three ases:

1. :p 2 C: Then D

i

= f1g and so E

i

= f1; pg an be derived from the

axiom f1g by a weakening.

2. p 2 C: Then D

i

= C n fpg and hene E

i

= C is an initial lause from

C.

3. C \ fp;:pg = ;: Then D

i

= C and so E

i

= C [ fpg an be derived

from C by a weakening.



Proof omplexity - draft: do not distribute 35

Note that the extra line in the derivations of E

i

' has the width bounded

above by the width of lauses already in �

0

.

The ase when D

i

is derived in � by a resolution rule was already dis-

ussed when we motivated the extension of R to R

0

. The ase when D

i

is

obtained by the weakening rule is trivial.

q.e.d.

Lemma 2.7.2 For � 2 f0; 1g, assume that

C # p = � `

k�1

; and C # p = 1� � `

k

; :

Then

w(C ` ;) � max(k;w(C)) :

Proof :

By Lemma 2.7.1 the �rst part of the hypothesis implies C `

k

fp

1��

g.

Resolve fp

1��

g with all C 2 C ontaining fp

�

g; the width of all these

inferenes is bounded by w(C). Therefore eah lause D 2 C # p = 1� � has

an R

0

-derivation from C of the width at most max(k;w(C)).

This, together with the seond part of the hypothesis of the lemma,

onludes the proof.

q.e.d.

Theorem 2.7.3 (Ben-Sasson and Wigderson[8℄) Let C be an unsatis�-

able set of lauses in literals p

i

;:p

i

, for i � n. Assume that C has a tree-like

R

0

-refutation with � 2

h

lauses.

Then:

w(C ` ;) � w(C) + h :

Proof :

We shall proeed by a double indution on n and h. If n = 0 or h = 0

then neessarily ; 2 C and there is nothing to prove. Assume that for h

0

� 0

the statement is true for all h � h

0

and for all n � 0. We shall prove that

this is true also for h

0

+1 by indution on n. By the above, we may assume

that n > 0, hene there is a literal in C.

Assume the last inferene in a refutation � (having � 2

h

0

+1

lauses) has

been:
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fpg f:pg

;

Hene one of the subproofs has the size � 2

h

0

. Assume that it is the subproof

�

0

ending with fpg. Restrit �

0

by p = 0; it beomes an R

0

-refutation of

C # p = 0. By the indution hypothesis for h

0

:

w(C # p = 0 ` ;) � w(C # p = 0) + h

0

Similarly, the restrition of the subproof �

1

ending with f:pg by p = 1

beomes a refutation of C # p = 1. It has, of ourse, � 2

h

0

+1

lauses but it

has � n� 1 atoms. So the indution hypothesis for n� 1 implies:

w(C # p = 1 ` ;) � w(C # p = 1) + h

0

+ 1

Applying Lemma 2.7.2 onludes the proof.

q.e.d.

Note that this immediately yields a lower bound to the size in terms of

a lower bound to the width.

Corollary 2.7.4 Every tree-like R

0

refutation of any C mus have the size

� 2

w(C`;)�w(C)

Muh more interesting is the following statement that shows that one

an derive a lower bound to the size from one to the width even for general,

not neessarily tree-like, R

0

-proofs.

Theorem 2.7.5 (Ben-Sasson and Wigderson [8℄) Let C be an unsatis-

�able set of lauses in literals p

i

;:p

i

, for i � n.

Then every R

0

-refutation must have the size at least

2


(

(w(C`;)�w(C))

2

n

)

:

Proof :

Let k be the number of lauses in an R

0

-refutation � of C. Let h � 1 be

a parameter. Later we shall speify that h := d

p

2n log(k)e but this atual

value is not used in the argument; it is only used at the end to optimize the

bound.
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We shall prove that

w(C ` ;) � w(C) +O(

q

n log(k)) :

If n = 0 then ; 2 C and there is nothing to prove.

Suppose n > 0. Call a lause C in � wide if w(C) > h. Let s :=

(1�

h

2n

)

�1

.

By double indution on n and on t we prove that if the number of wide

lauses in � is < s

t

then

w(C ` ;) � w(C) + h+ t :

Assume t = 0. Then there is no wide lause, i.e w(�) � h � w(C) + h.

Now assume t > 0. One of the 2n literals, say `, has to appear in at

least

s

t

h

2n

wide lauses. Restrit � by ` = 1. The lauses ontaining ` will

be eliminated (they transform to f1g). Hene, in � # ` = 1, a refutation of

C # ` = 1, there remain less than

b �

s

t

h

2n

= s

t�1

wide lauses. By the indution hypothesis for t� 1:

w(C # ` = 1 ` ;) � w(C # ` = 1) + h+ t� 1 :

Now apply to � the dual restrition ` = 0. This produes a refutation

� # ` = 0 of C # ` = 0 where the number of wide lauses is still < s

t

but

where the number of atoms is n� 1. Hene, by the indution hypothesis for

n� 1:

w(C # ` = 0 ` ;) � w(C # ` = 0) + h+ t :

By applying Lemma 2.7.2 we get:

w(C ` ;) � w(C) + h+ t :

The partiular value of the parameter h yields the wanted upper bound

(using the estimate trivial t � log

s

(k)).

q.e.d.

In order to be able to prove via this theorem some lower bounds on the

size of resolution proofs, we need unsatis�able sets of lauses of small width

(perhaps even onstant) whih require wide R-proofs. We shall onstrut

suh sets of lauses in Setion 2.8.
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2.8 Random sparse linear systems

Consider an m� n matrix A over the two-element �eld F

2

.. We all suh a

matrix `-sparse i� eah row ontains at most ` non-zero entries.

Let J

i

:= fj 2 [n℄ j A

ij

= 1g (hene jJ

i

j � ` if A is `-sparse). The linear

map from F

2

n

into F

2

m

de�ned by A is omputed as:

(A � x)

i

=

X

j

A

ij

x

j

=

M

j2J

i

x

j

:

Assume m > n. Hene Rng(A) is a proper subset of F

2

m

. Let b 2 F

2

m

be

any vetor outside of the range of A. In other words, the linear system:

A � x = b

has no solution (in F

2

). This unsolvability an be expressed as a tautology

�

b

(A) in a DNF as follows (we skip A from the notation of �

b

as we always

onsider only one matrix at a time):

�

b

:=

_

i2[m℄

_

�2f0;1g

jJ

i

j

;�

j2J

i

�

j

=1�b

i

^

j2J

i

x

�

j

j

Here we use the notation x

�

from setion 2.7. The formula says that there is

some bit i suh that the ith bits of A �x and b di�er, whih itself is expressed

by saying that there is an evaluation � to bits x

j

of x that belong to J

i

whih

determines the ith bit of A � x as 1� b

i

, i.e. as di�erent from b

i

.

Note that the size of the formula is bounded above by O(m2

`

`), and that

the lauses of :�

b

have the width � `.

For the next de�nitions and statements let us �x parameters 1 � n < m

and ` � m, and an `-sparse m�n matrix A. The next de�nition is a speial

ase of a de�nition [1, Def.2.1℄.

De�nition 2.8.1 A boundary of a set of rows I � [m℄, denoted �

A

(I), is

the set of j 2 [n℄ suh that exatly one entry A

ij

equals 1 for i 2 I.

Let 1 � r � m and � > 0 be any parameters. Matrix A is an (r; �)-

expander i� for all I � [m℄, jIj � r, j�

A

(I)j � �`jIj.

Expanders simulate, in a sense, matries with disjoint J

i

's and of the

maximal size `. In suh a ase it would hold that j�

A

(I)j = `jIj. An (r; �)-

expander ahieves (as long as jIj � r) at least an �-perentage of this maximal

value.
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We do not have any expliit matrix A that has suitable expansion prop-

erties but the existene of suh a matrix an be proved by a probabilisti

argument.

Consider the following random proess yielding an `-sparse matrix A.

For every i 2 [m℄ and u � ` let j

i;u

be hosen independently and uniformly

at random from [n℄. Let J

i

� [n℄ be the set of these values for �xed i, and

de�ne A

i;j

= 1 i� j 2 J

i

.

The following theorem is a speial ase of [1, Thm.5.1℄.

Theorem 2.8.2 For every Æ > 0 there is an ` � 1 suh that for all suÆ-

iently large n the random `-sparse n

2

�n-matrix is an (n

1�Æ

; 3=4)-expander

with probability approahing 1.

Proof :

Let r � n

2

and ` � 1 be yet unspei�ed but �xed parameters; we shall

speify the values later. Let A be an `-sparse n

2

� n-matrix onstruted in

the random proess desribed above (so m = n

2

). We want to show that

Prob[A is not an (r; 3=4)-expander℄ �! 0 :

For t � r let p

t

be the probability that any one �xed set I of t rows in A

falsi�es the expansion property. Then

Prob[A is not an (r; 3=4)-expander℄ <

r

X

t=1

 

n

2

t

!

p

t

�

r

X

t=1

n

2t

p

t

:

Fix one suh I, jIj = t. Then:

j

[

i2I

J

i

j � j�

A

(I)j+ 1=2[(

X

i2I

jJ

i

j)� j�

A

(I)j℄

as any j 2

S

i2I

J

i

n �

A

(I) belongs to at least two rows in I. The right hand

side is bounded above by 1=2(j�

A

(I)j + t`) and hene if it were j�

A

(I)j <

(3=4)`t then also

j

[

i2I

J

i

j < (7=8)`t :

Consequently,

p

t

� Prob[j

[

i2I

J

i

j < (7=8)`t℄ :

The right hand side is simply the probability that in piking t` elements of

[n℄ independently of eah other we selet less than (7=8)t` elements. If this
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happens then there must be a set of (1=8)t` steps among the t` steps when

we pik a point already seleted; the later event has a probability bounded

above by

t`

n

. Hene:

p

t

� Prob[j

[

i2I

J

i

j < (7=8)`t℄ �

 

t`

(1=8)t`

!

[

t`

n

℄

t`

8

� [O(

`r

n

)

`=8

℄

t

Putting all these inequalities together we see that the probability that A is

not an (r; 3=4)-expander is bounded above by a �nite geometri sum

r

X

t=1

n

2t

[O(

`r

n

)

`=8

℄

t

=

r

X

t=1

[n

2

O(

`r

n

)

`=8

℄

t

Substituting n

1�Æ

for r and taking ` � 1 large enough onstant (so that

Æ`=8 > 2) the base of the progression [n

2

O(

`r

n

)

`=8

℄ beomes bounded above

by n

�
(1)

. Hene the sum approahes 0 as n >> 0.

q.e.d.

For the next few de�nitions and lemmas assume that A is an `-sparse

m � n-matrix that is an (r;

3

4

)-expander. For a set of rows I � [m℄ let

J(I) :=

S

i2I

J

i

, and let A

I

be the (m� jIj) � (n� jJ(I)j)-matrix obtained

from A by deleting all rows in I and all olumns in J(I).

The next lemma slightly generalizes [1, L.4.6℄.

Lemma 2.8.3 For any set of rows I � [m℄ of size jIj � r=2 there is

^

I � I,

j

^

Ij � 2jIj, suh that

(�) For any i =2

^

I, jS

i

n

S

u2

^

I

S

u

j � `=2.

Moreover, for any

^

I of size j

^

Ij � r having this property (�), A

^

I

is an (r;

1

4

)-

expander. Furthermore, there exists the smallest (w.r.t inlusion) suh an

^

I.

Proof :

Assume jIj � r=2. Put I

0

:= I. Add in onseutive steps t = 0; : : : to I

t

any one row i as long as

(�) jJ

i

\

[

k2I

t

J

k

j > `=2 :
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We laim that this proess stops before t reahes jIj. Assume not, and let

I

0

= I

jIj

. Then, by (�), it holds

�

A

(I

0

) < `jIj+ (`=2)jIj = (3=4)`jI

0

j

This ontradits the expansion property of A, as jI

0

j � r.

Let

^

I be the last I

t

in the proess, so t < r=2 and j

^

Ij � 2jIj.

^

I learly has property (�). Thus we only need to verify the expansion

property of A

^

I

. Let K be a set of � r rows in A

^

I

. Then

�

A

^

I

(K) = �

A

(K) n

[

i2

^

I

J

i

(A)

As for all i 2 K n

^

I we have jJ

i

(A)\

S

k2

^

I

J

k

(A)j � `=2, this equality implies

that

j�

A

^

I

(K)j � j�

A

(K)j � (`=2)jKj � (3=4)`jKj � (`=2)jKj � (1=4)jKj :

q.e.d.

The next de�nition and lemma are from [29℄.

De�nition 2.8.4 1. Any I satisfying the ondition (�) from Lemma 2.8.3

is alled a safe set of rows.

2. A partial assignment � :� fx

1

; : : : ; x

n

g ! f0; 1g is alled safe i�

dom(�) =

S

i2I

J

i

, for some safe I.

We pik any suh I and all it the support of �, denoted supp(�).

3. Let b 2 f0; 1g

m

. A safe partial assignment � with support I is a safe

partial solution of A � x = b i� for all J

i

�

S

u2I

J

u

,

L

j2J

i

�(x

j

) = b

i

.

4. For � a safe partial solution with support I, b

�

is an (m � jIj)-vetor

with the ith oordinate being b

i

�

L

j2J

i

\dom(�)

�(x

j

), for i suh that

J

i

6� dom(�).

Vetor x

I

onsists of those variables not in J(I).

Note that if � is a safe solution with support I, and � is a solution of

A

I

� x

I

= b

�

, then � [ � is a solution of A � x = b.
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Lemma 2.8.5 Let I � I

0

� [m℄ be two safe systems, with jI

0

n Ij � r.

Assume that � is a safe assignment with support I. Let 

i

2 f0; 1g, i 2 I

0

nI,

be arbitrary.

Then � an be extended to a safe assignment �

0

with support I

0

suh that

L

j2J

i

�

0

(x

j

) = 

i

, for all i 2 I

0

n I.

Proof :

By Lemma 2.8.3, A

I

is an (r;

1

4

)-expander. By the expansion property,

every subset of I

0

n I has a non-empty border in A

I

and hene, in partiular,

annot onstitute a linearly dependent set of rows of A

I

. Thus the linear

system

M

j2J

i

ndom(�)

x

j

= 

i

�

M

j2J

i

\dom(�)

�(x

j

)

has a solution �. Put �

0

:= � [ �.

q.e.d.

Theorem 2.8.6 (Kraj���ek[29℄) Assume that A is an `-sparse m� n ma-

trix that is an (r; 3=4)-expander. Let b =2 Rng(A).

Then every R-proof of �

b

(A) must have the width at least � r=4.

Proof :

Let � be a resolution refutation of A � x = b, i.e. a proof of �

b

(A). Let w

denote the width of �.

We shall onstrut a sequene of lauses C

0

; : : : ; C

e

ourring in � and

a sequene of partial safe assignments �

t

:� fx

1

; : : : ; x

n

g ! f0; 1g for t =

0; : : : ; e, suh that the following onditions are satis�ed:

1. C

0

:= ; is the end lause of �. Eah C

t+1

is a hypothesis of an inferene

in � yielding C

t

, and C

e

is an initial lause.

2. If x

j

ours in C

t

then x

j

2 dom(�

t

).

3. C

t

is false under the assignment �

t

.

4. jsupp(�

t

)j � 2w.

Put �

0

:= ;. Assume we have C

t

and �

t

, and that C

t

has been inferred

in � by:
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D

1

[ fx

j

g D

2

[ f:x

j

g

C

t

(= D

1

[D

2

)

Let I

0

� supp(�

t

) be a minimal safe set with some row ontaining j. It

exists, by Lemma 2.8.3, as long as jsupp(�

t

)j+ 1 � r=2; as jsupp(�

t

)j � 2w

this inequality follows if w < r=4.

By Lemma 2.8.5 there is a partial safe solution �

0

� �

t

. Take for �

t+1

�

�

0

a minimal safe assignment obeying onditions 2. Finally, take for C

t+1

the lause among D

1

[ fx

j

g, D

2

[ f:x

j

g made false by �

t+1

.

Now note that onditions on C

e

and �

e

lead to a ontradition. C

e

is an initial lause and so �

e

makes true its negation whih is one of the

onjuntions

V

j2J

i

x

�

j

j

in �

b

. In partiular, �

j2J

i

�

j

= 1 � b

i

. But that

violates the assumption that �

e

satis�es all equations of A � x = b evaluated

by �

e

.

We have onstruted the sequene under the assumption that w < r=4.

Hene w � r=4.

q.e.d.

Corollary 2.8.7 ([29℄) Assume that A is an `-sparse m�n matrix that is

an (r; 3=4)-expander. Let b =2 Rng(A). Then every R-proof of �

b

(A) must

have the size at least � 2


(

(r=4�`)

2

n

)

.

In partiular, for every Æ > 0 there is an ` � 1 suh that for all suÆiently

large n there exists an `-sparse n

2

� n-matrix A suh that �

b

(A) requires R-

proofs of size at least � 2


(n

1�Æ

)

.

Proof :

Apply Theorem 2.8.2 for Æ=2, to get ` � 1 and an `-sparse n

2

�n-matrix

A whih is an (n

1�Æ=2

; 3=4)-expander. By Theorem 2.8.6 every R-proof of

�

b

(A) must have the width at least 
(n

1�Æ=2

).

The width-size relation given in Theorem 2.7.5 it follows that the size of

any suh proof must be at least exp(
(

(n

1�Æ=2

�`)

2

n

)), as ` bounds the width

of the initial lauses. This is 2


(n

1�Æ

)

.

q.e.d.
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2.9 Exerises

Exerise 2.9.1 Limited extension is a way how to translate formulas into

DNF formulas and preserving (un)satis�ability. It is analogous to the redu-

tion of the general satis�ability problem to the satis�ability of sets of lauses.

Let A be any formula built from atoms p

1

; : : : ; p

n

. Introdue for eah subfor-

mula B of A (inluding A itself) a new atom q

B

. Let Ext(A) of all lauses

of the form:

1. fq

B

;:p

i

g; f:q

B

; p

i

g, if B is atom p

i

.

2. fq

B

; q

C

g; f:q

B

;:q

C

g if B = :C.

3. f:q

B

; q

C

1

; q

C

2

g; fq

B

;:q

C

1

g; fq

B

;:q

C

2

g if B = C

1

_ C

2

.

4. f:q

B

; q

C

1

g; f:q

B

; q

C

2

g; fq

B

;:q

C

1

;:q

C

2

g if B = C

1

^ C

2

Compute the total length of all formulas in Ext(A) and prove that Ext(A)[

fq

A

g is satis�able if and only if A is satis�able.

Exerise 2.9.2 Analyze the argument in Theorem 2.1.1, and give an upper

bound on the number of lauses in a resolution refutation of any unsatis�able

set of k lauses formed from literals build from n atoms.

Exerise 2.9.3 Let an 9-deision tree be a deision tree branhing aording

to the truth value of a lause. Transform the proof of Theorem 2.2.4 into a

onstrution of an 9-deision tree (from �) and a lower bound to the height

of suh trees solving the searh problem assoiated with PHP

n

.

Exerise 2.9.4 Show that Lemma 2.2.1 an be reversed: Turning a deision

tree upside down gives, essentially, an R

�

-refutation of C.

Show that a general, non-tree-like, R-refutation of C yields a branhing

program solving the searh problem, but not vie versa.

Prove the following theorem, showing that even in the ase of non-tree-

like proofs we an get, under speial onditions, a orrespondene between

branhing programs and R-proofs.

Theorem 2.9.5 ([34℄) The minimal number of lauses in a regular reso-

lution refutation of C, (where \regular\ means that on every path through the

refutation every atom is resolved at most one) equals to the minimal num-

ber of nodes in a read-one branhing program solving the searh problem

assoiated with C (where \read-one \ means that on every path through the

branhing program every atom ours at most one as a label of an node).
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A proof an be found in [25, Chpt.4℄ but let me give a sketh. For the

hard diretion (from a program to a proof) assoiate with every node v in

the read-one program a lause C

v

having the property that every assignment

determining a path going through v falsi�es C

v

. If v is a leaf then C

v

is the

lause from C labelling v in the program. Assume that the node v is labelled

by atom p

i

and the edge (v; v

1

) is labelled by 1, and (v; v

0

) by 0.

We laim that C

v

1

does not ontain p

i

and C

v

0

does not ontain :p

i

.

This is beause � is read-one and so no path reahing v (and at least one

path does reah v as s is minimal possible) determines the value of p

i

. Hene

we ould prolong suh path by giving to p

i

value 1 if p

i

2 C

v

1

or value 0 if

:p

i

2 C

v

0

. This new path would satisfy C

v

0

or C

v

1

respetively, ontraditing

the assumption above.

It follows that either one of the lauses C

v

1

; C

v

0

ontains none of p

i

;:p

i

,

or that C

v

0

ontains p

i

but not :p

i

and C

v

1

ontains :p

i

but nor p

i

. In the

former ase de�ne C

v

to be the lause ontaining none of p

i

;:p

i

, and in the

latter ase de�ne C

v

to be the resolution of lauses C

v

1

and C

v

0

w.r.t. atom

p

i

.

It is easy to verify (using an argument similar to the one above) that no

path through v satis�es C

v

.

The root of � has to be assigned the empty lause as all paths go through

it. Hene the onstruted objet is a regular resolution refutation.

Exerise 2.9.6 Prove the Craig interpolation theorem for propositional logi,

as well as its monotone version (Lyndon theorem).

Exerise 2.9.7 Given a iruit C of size s formalize the statement that C

has a unique omputation on an input p. The formalization is a family of

impliations (one for eah output bit). Show that eah of these impliations

has a resolution proof of size O(s).

Exerise 2.9.8 Prove Theorem 2.4.1.

Exerise 2.9.9 Show that in order for Theorem 2.4.3 to hold we annot

replae the onsisteny ondition in De�nition 2.4.2 by a simpler one: For

all u; v the label of the leaf in P

;

u;v

is valid for u; v.

Exerise 2.9.10 De�ne a linear equational alulus (LEC) to be a proof

system working with linear equations

a

1

x

1

+ : : : + a

n

x

n

= b
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over a �nite �eld. The rules allow to add two equations and to multiply

an equation by an element of the �eld. An LEC-refutation of equations

E

1

; : : : ; E

m

is an LEC-derivation of the equation 0 = 1 from E

1

; : : : ; E

m

.

Let the "size" of an equation be the number of non-zero oeÆients. LEC is

sound and omplete (by Gauss elimination), if by ompleteness we mean that

every system of equations unsolvable in F is refutable. When ompleteness is

onsidered only w.r.t. the systems with no 0-1 solution then LEC is omplete

only for the two-element �eld F

2

. But not even all Boolean funtions an

be represented by a onjuntion of linear equations and so LEC annot be

onsidered, even for F

2

, as a full propositional proof system in the sense of

[14℄.

Prove all these fats and prove the e�etive interpolation for LEC.

Exerise 2.9.11 Prove a bound to the interpolantion for CP . Express the

bound in terms of n and M , a bound to the absolute values of oeÆients

ouring in a derivation.



Chapter 3

Frege systems and stronger

systems

In this hapter we depart from resolution towards partiular stronger systems

(general systems will be studied in Chapter ??). The most important among

them are Frege systems F and Extended Frege systems EF . We shall also

disuss in this hapter the Substitution Frege systems SF and the Quanti�ed

propositional alulus G.

3.1 Frege systems

The notion of a Frege system formalizes the usual alulus for propositional

logi everybody learns at shool. It has a language omplete for propositional

logi and is based on �nitely many axiom shemes (like A_:A) and inferene

rules (like modus ponens A; A! B = B).

De�nition 3.1.1 (Cook-Rekhow[14℄) Let L be any �xed �nite language

omplete for propositional logi (that is, all boolean funtions an be de�ned

in L).

A Frege rule (taitly in L) is a k + 1-tuple of formulas A

0

; : : : ; A

k

in

atoms p

1

; : : : ; p

n

written as:

A

0

; : : : ; A

k�1

A

k

;

suh that any truth assignment � : fp

1

; : : : ; p

n

g ! f0; 1g satisfying all for-

mulas A

0

; : : : ; A

k�1

satis�es also A

k

.

47
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A Frege rule in whih k = 0 is alled a Frege axiom sheme.

An instane of the rule is obtained by a simultaneous substitution of

arbitrary formulas B

i

for all p

i

.

The ondition posed on a Frege rule in the de�nition is the soudness of

the rule.

De�nition 3.1.2 (Cook-Rekhow[14℄) Let F be a �nite olletion of Frege

rules.

1. A Frege proof (an F -proof briey) of formula � from formulas �

1

; : : : ; �

u

is a �nite sequene �

1

; : : : ; �

k

of formulas suh that �

k

= �, and suh

that every �

i

is either one of �

1

; : : : ; �

u

, or is inferred from some earlier

�

j

's (j < i) by a rule of F .

2. F is impliationally omplete if and only if any � an be F -proved

from any set f�

1

; : : : ; �

u

g if every truth assignment satisfying all �

i

's

satis�es also � (i.e. � is a semantial onsequene of �

i

's).

3. F is a Frege proof system if and only if it is impliationally omplete.

One of the main features of Frege system is the robustness of the de�ni-

tion. We may vary the language, the proof format (tree-like or sequene-like),

and even pass to natural dedution or sequent alulus formalizations, and

we always get a polynomially-equivalent (in the sense of polynomial simula-

tion) proof system. I shall not disuss the p-equivalene to sequent alulus

or natural dedution as we do not disuss the formalizations muh in this

hapter (see Exerise 3.5.1 or [14℄). The �rst two statements made above

are the ontent of the following two theorems.

In the next theorem we shall on�ne ourselves to Frege systems whose

language ontains the DeMorgan language. The reason is that we have

de�ned in De�nition 1.0.1 proof systems using the set TAUT of DeMorgan

tautologies. If the language of a system does not ontain the DeMorgan

language we would have to speify a partiular translation of DeMorgan

tautologies into the language and this is just obsures things.

Theorem 3.1.3 (Rekhow [41℄) Assume that F and F

0

are two Frege sys-

tems and that the languages of both ontain the DeMorgan language.

Then F and F

0

polynomially simulates eah other.

Moreover, the p-simulations an be hoosen so that both the number of

steps and the size of proofs inrease at most proportionally and the depth

inreases by a onstant.
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The only full published proof of the theorem I am aware of is in [25,

Chpt.4℄. I shall not repeat the proof here but I shall outline the main diÆ-

ulty and the main idea how to overome it.

Obviously it is enough to prove that any Frege system F in the DeMorgan

language p-simulates any Frege system F

0

in a language L ontaining the

DeMorgan language. If L were in fat just the DeMorgan langauge then the

p-simulation ould be done easily. In any F

0

-rule �

0

; : : : ; �

k

the formula �

k

semantially follows from �

0

; : : : ; �

k�1

. By the impliational ompleteness of

F there is an F -proof � of �

k

from �

0

; : : : ; �

k�1

. Thus whenever we would

see an appliation of the rule in an F

0

-proof we ould simulate it in F by

(an instane of) proof �. It is easy to omputate that this inreases the size

as well as the number of steps only proportionally.

When the langueg of F

0

is bigger than the DeMorgan language the nat-

ural approah would be to �rst represent all onnetives in L by DeMor-

gan formulas and then proeed as before. However, a diÆulty may arise.

Assume that L ontains the equivalene onnetive �. In the DeMorgan

language we may de�ne p � q by (p ^ q) _ (:p ^ :q). If we translate inthis

way the formula

p

1

� (p

2

� (p

3

� : : : (p

n�1

� p

n

) : : :)

we obtain a formula of size 
(2

n

).

The way how to overome this diÆulty is the following. Note that if

the nesting of �'s in a formula is k then the translation will have size O(2

k

).

Hene if we manage �rst to modify the original F

0

-proof (that we attempt

to p-simulate) so that every formula in it has only logarithmi depth then

the translation will work. In fat, this an be done. See [25, Lemma 4.4.14℄

for a detailed proof.

De�nition 3.1.4 A Frege proof �

1

; : : : ; �

k

is tree-like if and only if every

step �

i

is a hypothesis of at most one inferene in the proof.

Frege proof system F using only tree-like proofs is denoted F

�

.

Theorem 3.1.5 (Kraj���ek[24℄) F

�

p-simulates F . In fat, any F -proof

of size m, with k steps, of depth d an be transformed into a tree-like proof

of the same formula that has size O(mk log(k)), O(k log(k)) steps and the

depth d+O(1).

Proof :
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Let �

1

; : : : ; �

k

be an F -proof of � . Derive onseutively (in a tree-like

fashion) formulas �

i

:= �

1

^ : : :^ �

i

(brakets balaning the onjuntion into

a binary tree of depth at most O(log(i))).

We laim that �

i+1

has a tree-like proof from �

i

with a O(i � log(i))

number of steps, size O(i � j�

i

j) and of the depth d + O(1). Obviously, the

following is suÆient:

Claim For j � i, any �

j

an be proved from �

i

by a tree-like proof with

O(i � log(i)) steps, size O(log(i) � j�

i

j) and depth dp(�

i

) +O(1).

q.e.d.

No strong lower bounds are known for Frege systems. The following is

the best one.

Theorem 3.1.6 (Kraj���ek[23℄) Any F -proof of :: : : : 1, the negation o-

uring 2n-times, must have the size at least 
(n

2

) (the onstant impliit in


 depends on the partiular system F ).

This theorem is a simple orollary of a general statement about the stru-

ture of proofs, even in prediate logi, from [22℄. We state it only for Frege

systems.

Theorem 3.1.7 (Kraj���ek[22℄) For every Frege system F there is a on-

stant  > 0 suh that the following holds.

If A has an F -proof � = B

1

; : : : ; B

k

with k steps there is another F -proof

C

1

; : : : ; C

k

suh that:

1. The logial depth of formulas C

i

is bounded by  � k, all i � k.

2. There is a substitution � of formulas for atoms in C

i

's suh that:

�(C

i

) = B

i

all i � k.

3.2 Substitution Frege systems

Instane of Frege rules are obtained by substitutions but the substitution it-

self is not a valid inferene rule in Frege systems. Substitution Frege systems

extend Frege systems by allowing the rule.
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De�nition 3.2.1 The substitution rule allows to substitute simultaneously

formulas for atoms:

A(p

1

; : : : ; p

n

)

A(B

1

; : : : ; B

n

)

:

A Frege system F augmented by the substitution rule is denoted SF .

We an eliminate an appliation of the substitution rule by repeating the

part of the proof before the inferene, with B

i

's substituted everywhere for

p

i

s. In suh a transformation these repetitions an be nested and the proof

may grow exponentially.

In fat, this exponential inrease in the number of steps is neessary. This

fat is due to Tseitin-Cubarjan [46℄. A simpler example than their original

one is provided by the following statement.

Lemma 3.2.2 ([23℄) Let F and SF be a frege and a Substitution Frege

systems respetively.

The formula :

(2

n

)

(1) has an SF -proof with O(n) steps but every F -proof

requires 
(2

n

) steps.

Proof :

De�ne A

n

:= :

(2

n

)

(1) with :

(k)

denoting k ourrenes of :. Let B

k

=

p! (:)

2

k

(p).

SF -derives B

k

from B

k�1

ina onstant number of steps utilizing the

substitution rule: Substitute (:)

2

k�1

(p) for p in B

k�1

and apply modus

ponens. B

0

has a onstant size proof, so every B

k

has an SF -proof with

O(k) steps.

For the seond part of the statement assume that A

n

has an F -proof

with k steps. By Theorem 3.1.7 there is an F -proof of some formula B suh

that, in partiular, the logial depth of B is O(k) and A

n

is a substitution

instane of B.

As B is a tautology, neessarily B = A

n

. Hene 
(2

n

) � k.

q.e.d.

Note that this statement does not exponentially separate F from SF ; the

point is that the speed-up it ahieved on a formula that has itself exponential

size. In fat, no lower bounds at all are known for SF .



52 J. Kraj���ek

3.3 Extended Frege systems

There is another way how to augment Frege systems to apparently stronger

proof systems. The idea is to allow the proof system to abbreviate (possibly

large) formulas by new atoms.

De�nition 3.3.1 (Cook-Rekhow[14℄) Let F be a Frege system. An ex-

tended Frege proof is a sequene of formulas A

1

; : : : ; A

k

suh that every A

i

is either obtained from some previous A

j

's by an F - rule or has the form:

q � B

with the following onditions satis�ed:

1. Atom q does appear neither in B, nor in any A

j

for j < i.

2. Atom q does not appear in A

k

.

(If � is not in the language of F we use any �xed formula de�ning it.) A

formula of this form is alled an extension axiom, q is alled an extension

atom.

An extended Frege system EF is the proof system whose proofs are ex-

tended Frege proofs.

The possibility to introdue extension axiom in an extended Frege proof

is sometimes alled the "Extension rule" although it is not a rule in the

earlier sense.

Similarly as with the Substitution rule we an eliminate the extension

rule by onseutively replaing all extension atoms by their de�ning for-

mulas. However, extension atoms may our in de�ning formulas of other

extension atoms (introdued later in the proof) and this nesting an ause

an exponential inrease in size in this transformation. But if we have the

substitution rule this works well.

Lemma 3.3.2 A Substitution Frege system SF polynomially simulates any

Extended Frege system EF .

Proof :

Let q

1

� B

1

; : : : ; q

r

� B

r

be the extension axioms introdued in an EF -

proof in this order. In fat, we may learly assume that these r extension

axioms form the �rst r steps of the proof.
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Now transform the original proof with steps A's into a new proof with

steps

q

r

� B

r

! (q

r�1

� B

r�1

! (: : : (q

1

� B

1

) : : :)! A :

This transformation uses only Frege rules.

Next apply to the last formula of this form the substitution rule by

substituting B

r

for q

r

, then B

r�1

for q

r�1

et.. This eliminates (applying

modus ponens with formulas of the form C � C) the part

q

r

� B

r

! (q

r�1

� B

r�1

! (: : : (q

1

� B

1

) : : :)! : : :

It is easy to ompute that the size of the original proof inreases at most

quadratially in this proess.

q.e.d.

Considerably more diÆult is the opposite simulation. We shall give

its proof in Chapter ?? using bounded arithmeti. A diret ombinatorial

p-simulation an be found in [31℄ or in [25, Se.4.5℄.

Theorem 3.3.3 ([19, 31℄) Any extended Frege system EF polynomially

simulates any Substitution Frege system SF .

The following four fats summarize further elementary but important

properties of Extended frege systems (see Exerises 3.5):

1. Extended Frege systems satisfy the analogue of Rekhow's Theorem

3.1.3.

2. There is no di�erene in measuring the omplexity of EF -proofs by the

size or by the number of steps: Any formula A having an EF -proof

with k steps has also an EF -proof of size O(k + jAj).

3. The minimal numbers of steps in a F -proof and in an EF -proof of a

formula are proportional to eah other.

4. Allowing the extension rule (see Exerise 3.5.4 for a preise formula-

tion) in resolution reates a proof system p-equivalent to EF .

5. EF is p-equivalent to "Frege systems operating with iruits".



54 J. Kraj���ek

I left to the end of the setion the sad issue of lower bouds for EF :

No lower bounds, even super-linear, are known. Cook and Rekhow [14℄

originally suggested that the pigeonhole priniplePHP

n

(see Chapter 1) may

separate EF from F . However, this is not true, the priniple has polynomial

size proofs in both EF and F . The upper bound in EF is simple and the

proof just formalizes a straightforward proof by indution on n. The upper

bound in F is muh harder and requires to show that Frege system "an

ount". We give here only the proof of the �rst upper bound; the proof of

the seond will be given in Chapter ?? via bounded arithmeti.

Theorem 3.3.4 (Cook-Rekhow[14℄) The pigeonhole priniple PHP

n

has

an EF -proof of size polynomial in n.

Proof :

Let p

ij

be the atoms of PHP

n

; i 2 [n℄ and j 2 [n� 1℄. De�ne, using the

extension rule, new atoms q

uv

, for u 2 [n� 1℄ and v 2 [n� 2℄ by:

q

uv

:= p

uv

_ [p

nv

^ p

u(n�1)

℄

It is easy to see that there is a size n

O(1)

EF -derivation of :PHP

n�1

ex-

pressed in atoms q

uv

from :PHP

n

(expressed in atoms p

ij

).

Iterating this proes dedues :PHP

2

from :PHP

n

by p-size EF -proof.

But :PHP

2

has a refutation (of a onstant size).

q.e.d.

Theorem 3.3.5 (Buss[10℄) The pigeonhole priniple PHP

n

has an F -proof

of size polynomial in n.

The issue of whih tautologies form plausible andidates as being hard

for EF will be disussed in Chapter ?? (see also [25, 26, 29℄).

3.4 Quanti�ed propositional alulus

It is most onvenient to de�ne the quanti�ed propositional logi G over

Gentzen's sequent alulus LK (we onsider only its propositional fragment

here).

The lines in a sequent alulus proof are not formulas but sequents, an

ordered pair of two �nite (possibly empty) sequenes of formulas written as:

A

1

; : : : ; A

u

�! B

1

; : : : ; B

v

:
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Formulas A

1

; : : : ; A

u

form the anteedent and formulas B

1

; : : : ; B

v

form the

suedent of the sequent. Letters �;�;�; : : : will denote �nite sequenes of

formulas, alled also edents.

The truth de�nition is extended from formulas to sequents as follows: A

truth assignment � to the atoms in a sequent � �! � satis�es the sequent

if and only if � either satis�es a formula from the suedent � or it satis�es

the negation of a formula from the anteedent �.

Note that, in partiular, the empty sequent ; �! ; (written also simply

�!) annot be satis�ed. The empty sequent plays in LK the role of the

empty lause in R.

De�nition 3.4.1 An LK-proof is a sequene of sequents in whih every

sequent is either an initial sequent, a sequent having one of the forms:

p �! p; 0 �!; �! 1

with p an atom, or is derived from previous sequents in the proof by one of

the following rules:

1. weakening rules

left

� �! �

A;� �! �

and right

� �! �

� �! �; A

2. exhange rules

left

�

1

; A;B;�

2

�! �

�

1

; B;A;�

2

�! �

and right

� �! �

1

; A;B;�

2

� �! �

1

; B;A;�

2

3. ontration rules

left

�

1

; A;A;�

2

�! �

�

1

; A;�

2

�! �

and right

� �! �

1

; A;A;�

2

� �! �

1

; A;�

2

4. : : introdution rules

left

� �! �; A

:A;� �! �

and right

A;� �! �

� �! �;:A

5. ^ : introdution rules

left

A;� �! �

A ^B;� �! �

and

A;� �! �

B ^A;� �! �

and right

� �! �; A � �! �; B

� �! �; A ^B
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6. _ : introdution rules

left

A;� �! � B;� �! �

A _B;� �! �

and

right

� �! �; A

� �! �; A _B

and

� �! �; A

� �! �; B _A

7. ut rule

� �! �; A A;� �! �

� �! �

Every rule exept the ut rule introdues a new formula; suh a formula

is alled the prinipal formula of the rule and theformulas from whih it is

inferred are alled the minor formulas of the rule. All other formulas in the

rule are alled the side formulas.

For a formula in � or � in the lower sequent of a rule, the same our-

rene in the upper sequent(s) is alled the immediate anestor of the formula.

The immediate anestor(s) of a prinipal formula of a rule are the minor for-

mulas of the rule.

An anestor of a formula is any formula obtained by repeating the im-

mediate anestor step.

The following is well-known (and left as an Exerise 3.5.7).

Theorem 3.4.2 The system LK is sound and omplete. That is, all prov-

able sequents are satis�ed by all truth assignments and whenever a sequent

� �! � is satis�ed by all truth assignments then it has an LK-proof. More-

over, this proof does not need to use the ut-rule.

Quanti�ed propositional alulus is formed from the sequent alulus LK

by introdution of propositional quanti�ers: 8xA(p; x) (meaning A(p; 0) ^

A(p; 1), and 9xA(p; x) (meaning A(p; 0) _A(p; 1).

Of ourse, any quanti�ed propositional formula an be equivalently writ-

ten without the quanti�ers. However, the quanti�er-free formula may be

exponentially longer. For example,

W

�

A(�) with � ranging over f0; 1g

n

has

size 
(2

n

jAj) but an equivalent quanti�ed formula 9x

1

: : : 9x

n

A(x) has size

only O(n) + jAj.

De�nition 3.4.3 Quanti�ed propositional alulus G extends LK by allow-

ing quanti�ed propositional formulas in sequents and by augmenting LK by

the following four quanti�er rules:
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1. 8:introdution

left

A(B);� �! �

8xA(x);� �! �

and right

� �! �; A(p)

� �! �;8xA(x)

2. 9:introdution

left

A(p);� �! �

9xA(x);� �! �

and right

� �! �; A(B)

� �! �;9xA(x)

where B is any formula. The atom p must not our in the lower sequents

of 8:right and 9:left.

Proof system G p-simulates SF and is presumably stritly stronger. But

we do not know how to prove this.

Lemma 3.4.4 G p-simulates SF .

Proof :

The SF -proof is transformed into a G-proof line by line. A line onsisting

of a formula A is represented by the sequent �! A.

We shall only show how G simulates an appliation of the substitution

rule:

A(p

1

; : : : ; p

n

)

A(B

1

; : : : ; B

n

)

:

the rest being obvious (f. Exerise 3.5.8).

To �! �(p

1

; : : : ; p

n

) apply n-times 8:right to derive

�! 8x

1

: : : 8x

n

A(x

1

; : : : ; x

n

) :

The sequent

A(B

1

; : : : ; B

n

) �! A(B

1

; : : : ; B

n

)

has a short G -proof. Hene

8x

1

: : : 8x

n

A(x

1

; : : : ; x

n

) �! A(B

1

; : : : ; B

n

)

follows by n appliations of 8:left. Then infer, via ut-rule, the wanted

sequent:

�! A(B

1

; : : : ; B

n

) :

q.e.d.

The proof system G an be strati�ed into subsystems G

�

1

; G

1

; G

�

2

; G

2

; : : :

and interesting relations between the subsystems an be proved. This will

be done in Chapter ?? using bounded arithmeti.
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3.5 Exerises

The next �ve exerises ask for proofs of �ve statements, all from [14℄.

Exerise 3.5.1 Prove that F and LK (De�nition 3.4.1) p-simulate eah

other.

Exerise 3.5.2 Prove the analogue of Theorem 3.1.3 for Extended Frege

systems.

Exerise 3.5.3 Prove that any formula A having an EF -proof with k steps

has also an EF -proof of size O(k + jAj).

Exerise 3.5.4 De�ne Extended resolution ER as the resolution proof sys-

tem R augmented by all lauses from Ext(�), for all formulas �, as extra

initial lauses (f. Exerise 2.9.1).

Prove that ER and EF polynomially simulate eah other.

Exerise 3.5.5 Prove that the minimal numbers of steps in a F -proof and

in an EF -proof of a formula are proportional to eah other. Hene measuring

the size of EF -proofs is the same as measiring the number of steps in F -

proofs.

Exerise 3.5.6 De�ne a notion of "a Frege system operating with iruits"

and prove thatit is p-equivalent with EF .

Ciruit Frege systems are de�ned in [?℄. Somewhat di�erent formalization

is in [29℄.

Exerise 3.5.7 Prove that the sequent alulus de�ned in 3.4.1 is sound

and omplete (even without the ut-rule).

Exerise 3.5.8 Complete the details in the proof of Lemma 3.4.4.



Chapter 4

Constant depth Frege

systems

Constant depth Frege systems are natural subsystems of Frege systems. Res-

olution an be seen as depth 0 or 1 (depending on the formulation) Frege

system. The interest in these systems is two-fold. First, these are the most

interesting and, essentially, the strongest proof systems for whih we an

prove strog lower bounds. Seondly, formulas h�i

n

produed in the trans-

lation of a �rst-order priniple � (f. Chapter 1) have the depth bounded

by a onstant. In fat, proofs in some theories of bounded arithmeti of

suh � yield a family of onstant-depth Frege proofs for h�i

n

's (f.Chapter

??). Thus lower bounds for onstant depth Frege proofs imply independene

results for suh theories.

4.1 De�nition of the systems and the PHP lower

bound

We shall onsider a Frege system F in the language 0, 1, : and _. The

depth of a formula is the maximum number of bloks of disjuntions and of

negations when going from the formula to atomi subformulas. The indutive

de�nition is as follows.

De�nition 4.1.1 The depth of a formula A, denoted dp(A), is de�ned by

the following onditions:

1. dp(0) = dp(1) = dp(p) = 0, for any atom p.

59
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2. dp(:A) := dp(A), if A starts with :, and dp(:A) := 1 + dp(A) other-

wise.

3.

dp(A_B) =

8

>

>

>

<

>

>

>

:

max(dp(A); dp(B)) if both A and B start with _

1 +max(dp(A); dp(B)) if both A and B start with :

max(1 + dp(A); dp(B)) if B starts with _ and B does not

max(dp(A); 1 + dp(B)) if A starts with _ and B does not

A subsystem of F using only formulas of depth at most d is denoted F

d

.

Reall the pigeonhole priniple formulas PHP

n

from Chapter 1. We

shall onsider it in the form saying that a relation annot be a graph of a

bijetion between n + 1 and n. It will be onvenient to onsider instead

of proofs of PHP

n

refutations of the set :PHP

n

of the following formulas

where i's ranger over [n+ 1℄ while j's range over [n℄:

�

W

j

p

ij

, one for eah i.

�

W

i

p

ij

, one for eah j.

� :p

i

1

j

_ :p

i

2

j

, one for eah triple i

1

< i

2

and j.

� :p

ij

1

_ :p

ij

2

, one for eah triple i and j

1

< j

2

.

We are ready to state a major lower bound in proof omplexity, perhaps

the most important of all. We give the proof of the theorem at the end of

Setion 4.4 after developing some mahinery.

Theorem 4.1.2 ([33, 38℄) Let d � 2 and 0 < Æ < 5

�d

be arbitrary. Then

for suÆiently large n � 1, in any F

d

-refutation of :PHP

n

must our at

least 2

n

Æ

di�erent formulas as subformulas. In partiular, any suh proof

must have the size at least 2

n

Æ

.

It was M. Ajtai[2℄ who �rst proved that there are no polynomial size F

d

proofs PHP

n

. The �rst exponential lower bound for F

d

's have been atually

proved for di�erent formulas in Kraj���ek [24℄ (f. Setion ??). Subsequently

Ajtai's lower bound have been strenghten to the exponential one by inde-

pendent proofs in [33℄ and [38℄.
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4.2 PHP -deision trees

Let �(x

1

; : : : ; x

n

) be a propositional formula. Its truth value on a given truth

assignment an be determined by a deision tree (f. Setion 2.2). A deision

tree branhes at a node aording to the truth value of a variable. Hene

as we travel in the tree from the root to a leaf we ollet bigger and bigger

information about the assignment until the truth value of � is determined.

In priniple the depth of suh a tree must be n, the number of all variables

(f.Exerise 4.8.1).

We want to somehow simulate a non-existing truth assignment satisfying

:PHP

n

, and we will do it using a modi�ation of deision trees. These new

trees will not have labels attahed to leaves.

De�nition 4.2.1 Let D � [n + 1℄ and R � [n℄. A PHP -tree over D;R is

indutively de�ned as follows:

1. A single node, a root, is a PHP -tree over any D;R.

2. For every i 2 D the following is a PHP -tree over D;R: The tree

branhes at the root aording to all j 2 R, and at a son of the root at

the branh j ontinues by a PHP -tree over D n fig; R n fjg.

3. For every j 2 R the following is a PHP -tree over D;R: The tree

branhes at the root aording to all i 2 D, and at a son of the root at

the branh i ontinues by a PHP -tree over D n fig; R n fjg.

A PHP -tree is a PHP -tree over [n+1℄; [n℄. (We shall often say just "a

tree" instead of "a PHP -tree".) The height of a tree T is denoted jjT jj. A

tree of the height � k is alled also a k-tree.

We think of the tree as branhing aording to queries f(i) =? and

f

(�1)

(j) =?, where f is a name for a (non-existing) bijetion between [n+1℄

and [n℄. Every path in a tree determines a partial 1-to-1 map between [n+1℄

and [n℄; we identify the path with the partial map and the tree with the set

of all suh maps orresponding to all paths.

Consider the simplest example; a tree of depth 1 branhing aording to

all answers to f(i) =?. A formula

W

j

p

ij

, an axiom of :PHP

n

, is intuitively

true at every leaf of the tree beause at any leaf one p

ij

is made true. On

the other hand, if we think of f as everywhere de�ned (and, in partiular, as

f(i) being de�ned) then the tree desribes all possibilities. Hene the formula
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W

j

p

ij

is "true" in the sense that it holds in all possibilities desribed by the

tree.

Now onsider formula :p

ij

_ :p

ik

for j 6= k, another axiom of :PHP

n

.

A suitable tree to use for the formula is a tree branhing �rst aording to

f

(�1)

(j) =? and then, at a branh orresponding to any u 2 [n+1℄, aording

to f

(�1)

(k) =? with answers from [n+ 1℄ n fug. At every path through the

tree either f(i) 6= j or f(i) 6= k and hene the formula is satis�ed. As

before, thinking of f as an injetive map that is onto, the branhing of the

tree desribes all possibilities. Hene again the formula is "true" in the sense

of being true in all situations desribed by a tree.

Our preliminary strategy is thus the following. We assign to all formulas

a tree and a subset of (the set of paths in) the tree where the formula is true.

A diÆulty arises: As there is no bijetion f , no tree an deide the truth

of all atoms. This implies that formulas may have di�erent trees attahed to

them and we need a way how to ompare them. Explaining more informally

would rather obfusate things so we launh into a formal treatment.

De�nition 4.2.2 1. M is the set of all partial bijetions between [n+1℄

and [n℄. Maps from M are denoted �; �; ; : : :. The size of � is the

size of its domain and it is denoted j�j.

2. � and � are inompatible, � ? � in symbols, i� � [ � =2 M. The fat

that � and � are ompatible will be denoted �jj�.

3. Let H � M and let T be a tree (taitly a PHP -tree). Tree T re�nes

set H, H / T in symbols, i� for all � 2 T either 8� 2 H;� ? � or

9 2 H;  � �.

4. For T , S trees, T �S := f�[� j � 2 T; � 2 Sg. It is alled a ommon

re�nement of T and S.

5. For H �M and S a tree, the projetion of H on S is the set S(H) :=

f� 2 S j 9 2 H;  � �g.

We shall often use the de�nition of re�nment in the following form: H/T

i� whenever an � 2 T is ompatible with some � 2 H then it ontains some

 2 H.

Throughtout this setion letters H;K; : : : will denote subsets ofM while

letters S and T are reserved for trees. As stated earlier, Greek letters �; �; : : :

denote elements of M.
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Lemma 4.2.3 If jÆj � n� jjSjj then 9 2 S; jjÆ.

Proof :

Walk through the tree S answering queries aording to Æ whenever it

applies, and arbitrarily but onsistently with Æ otherwise. The assumption

that jÆj � n � jjSjj implies that we do not run into a ontradition before

reahing a leaf of S. Map  is the map determined by the partiular path.

q.e.d.

Lemma 4.2.4 Assume jjSjj + jjT jj � n and H / S / T . Then also H / T .

Proof :

Assume Æ 2 T is ompatible with some � 2 H. We want to show that Æ

ontains some element of H.

By Lemma 4.2.3 9

0

2 S; 

0

jjÆ. By this, and by S/T , 9 2 S;  � Æ. Suh

 is neessarily ompatible with � and hene, by H / S, 9�

0

2 H;�

0

� .

Hene �

0

� Æ too.

q.e.d.

Lemma 4.2.5 Assume jjSjj + jjT jj � n. Then S � T is a PHP -tree suh

that jjS � T jj � jjSjj+ jjT jj, and suh that S / S � T and also T / S � T .

Proof :

The bound to the height of S � T is obvious. We prove that S / S � T ,

the seond statement is proved identially.

Assume that � [  2 S � T , with � 2 S and  2 T , is ompatible with

some � 2 S. Then neessarily � = �, i.e. � [  ontains an element of S.

q.e.d.

Lemma 4.2.6 Assume jjSjj + jjT jj � n and H / S / T . Then

1. T (S(H)) = T (H).

2. T (S) = T .

3. S(H) = S i� T (H) = T .
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Proof :

The inlusion T (S(H)) � T (H) follows from the de�nition. For the

opposite inlusion assume that � 2 T (H) beause � �  for some  2 H.

Using Lemma 4.2.3 S / T implies that 9� 2 S; � � �. Suh � is then

ompatible with  and hene, as H / S, 9

0

2 H; 

0

� �. So we have



0

� � � � and so � 2 T (S(H)). This proves part 1.

Part 2. follows from part 1. by taking H := f;g. For part 3. assume

�rst S(H) = S. By parts 2. and 1.: T (S) = T , and T (S(H)) = T (H). So

T = T (H).

Finally, assume that T (H) = T . Let � 2 S. By Lemma 4.2.3 there

is � 2 T ompatible with �. By the assumption also � 2 T (H) and so

9 2 H;  � �. But suh  is ompatible with � and hene, by H / S,

9

0

2 H; 

0

� �. So � 2 S(H) as we wanted to show.

q.e.d.

Lemma 4.2.7 1. S(

S

i

H

i

) =

S

i

S(H

i

).

2. If H

0

;H

1

� T and H

0

\H

1

= ; then T (H

0

) \ T (H

1

) = ;.

3. If S / T , jjSjj+ jjT jj � n and H � S then T (S nH) = T n T (H).

Proof :

The �rst two propositions follow diretly from de�nitions. By Lemma

4.2.6 T (S) = T , hene the last proposition follows from the �rst two.

q.e.d.

4.3 k-evaluations

We ontinue with some �xed (and large enough) n � 1 and we shall also �x

a parameter 1 � k � n. Let � be a set of formulas in the atoms of PHP

n

that is losed under subformulas.

De�nition 4.3.1 A k-evaluation of � is a map

� 2 � �! H

�

� S

�

assigning to a formula � 2 � a k-tree S

�

and its subset H

�

, suh that the

following four onditions are satis�ed:
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1. S

0

:= S

1

:= f;g, i.e. the tree onsisting of the root only. Further

H

0

:= ; and H

1

:= S

1

.

2. S

p

ij

is the depth 2 tree that �rst branhes aording to f(i) =? and

then aording to f

(�1

(j) =?. H

p

ij

:= f(i; j)g, the only path in S

p

ij

of

length 1.

3. S

:�

:= S

�

and H

:�

:= S

�

nH

�

, whenever :� 2 �.

4. Assume � =

W

i

�

i

is in � (where the big disjuntion abbreviates arbi-

trarily braketet binary disjuntions). Then

[

i

H

�

i

/ S

�

and H

�

:= S

�

(

[

i

H

�

i

)

If H

�

= S

�

we say that � is "true" w.r.t. to the k-evaluation, (or simply

that it is "true" if the evaluation is �xed).

Lemma 4.3.2 Assume that (H;S) is a k-evaluation of all formulas ouring

as subsformulas in an axiom of :PHP

n

, and that k � n� 2.

Then the axiom is "true" with respet to the evauation.

Proof :

Consider an axiom of the form � =

W

j

p

ij

for some �xed i 2 [n+ 1℄. By

De�nition 4.3.1 H

p

ij

= f(i; j)g and S

�

must re�ne the set H = f(i; j) j j 2

[n℄g. Note that H itself is a 1-tree and that H(H) = H.

Hene T (H) = T holds also in the ommon re�nment of H and S

�

by

Lemma 4.2.6, and by the same lemma again also S

�

= S

�

(H) = H

�

.

We leave the other axioms to Exerise 4.8.2.

q.e.d.

Now we prove that Frege rules are sound even for the notion of "true"

w.r.t. a k-evaluation.

Lemma 4.3.3 There exists a onstant 

F

� 1 suh that if (H;S) is k-

evaluation of all formulas ouring as subformulas in an instane of an F -

rule, k � n=

F

, and all hypotheses of the instane of the rule are "true"

w.r.t. the evaluation then also the onlusion of the rule is "true".

The onstant 

F

depends only on the partiular rules in F .
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Proof :

Consider an F -rule of the form

A

1

(q

1

; : : : ; q

t

); : : : ; A

s

(q

1

; : : : ; q

t

)

A

s+1

(q

1

; : : : ; q

t

)

Let r be a number bigger than the number of subformulas in the rule.

Assume that (H;S) is a k-evaluation of formulas ouring in some in-

stane

A

1

(B

1

; : : : ; B

t

); : : : ; A

s

(B

1

; : : : ; B

t

)

A

s+1

(B

1

; : : : ; B

t

)

of the rule, and suh that k � n=r. We also assume that all

A

1

(B

1

; : : : ; B

t

); : : : ; A

s

(B

1

; : : : ; B

t

)

are "true" with respet to the evaluation, i.e.

H

A

i

(B

1

;:::;B

t

)

= S

A

i

(B

1

;:::;B

t

)

; for 1 � i � s :

Let � be all formulas ouring in the instane, and �

0

its subset onsisting

of formulas C of the form A

0

(B

1

; : : : ; B

t

) where A

0

is a subformula of some

A

i

, i � s+ 1.

By the hoie of r, j�

0

j < r, and so there is a ommon re�nement T of

all S

C

, and jjT jj �

r�1

r

n (by Lemma 4.2.5). In partiular, jjT jj+ jjS

C

jj � n

for all C 2 �

0

.

Claim: The map de�ned by C 2 �

0

! T (H

C

) is a map of formulas in �

0

into the Boolean algebra of subsetes of T suh that:

(a) The negation orresponds to the omplement: T (H

:C

) = T nT (H

C

).

(b) The disjuntion orrespinds to the union: T (H

C_D

) = T (H

C

) [

T (H

D

).

() All hypotheses C = A

i

(B

1

; : : : ; B

t

), i � s, of the instane of the rule

get the value 1 in the Boolean algebra: T (H

C

) = T .

For part (a): If :C 2 �

0

, H

:C

= S

C

nH

C

, and hene T (H

:C

) = T n T (H

C

)

by Lemma 4.2.7.

For part (b) let C _ D 2 �

0

. We need to onsider ases distinguished

by the form of C and D; we shall treat only the hardest ase when both C

and D are themselves disjuntions. Assume C =

W

u

C

u

and D =

W

v

D

v

. By

Lemma 4.2.7:

H

C_D

= S

C_D

(

[

u

H

C

u

) [ S

C_D

(

[

v

H

D

v

)
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hene by Lemmas 4.2.6 and 4.2.7:

T (H

C_D

) = T (S

C_D

(

[

u

H

C

u

)) [ T (S

C_D

(

[

v

H

D

v

)) =

T (

[

u

H

C

u

) [ T (

[

v

H

D

v

) =

T (S

C

(

[

u

H

C

u

)) [ T (S

D

(

[

v

H

D

v

)) =

T (H

C

) [ T (H

D

) :

Part () follows by Lemma 4.2.6:

T (H

A

i

(B)

) = T (S

A

i

(B)

) = T

for i � s.

The lemma follows noting that any Frege rule is valid in any Boolean

algebra (f.Exerise 4.8.3).

q.e.d.

Our strategy for proving Theorem 4.1.2 is now lear. Having an al-

leged F

d

-refutation of :PHP

n

we take a k-evaluation (with small enough

k) of the set of all formulas ouring in the refutation. This would lead

to ontradition by Lemmas 4.3.2 and 4.3.3. Hene if we manage to on-

strut a k-evaluation of any small set of formulas we an onlude that no

F

d

-refutation of :PHP

n

an be small.

4.4 The existene of k-evaluations

This setion is devoted to the onstrution of k-evaluations of small sets of

formulas. The quali�ation small will mean of size at most 2

n

Æ

, for suitable

Æ > 0.

It is quite easy to �nd small sets whih have no k-evaluation with k < n,

f. Exerise 4.8.4, and that is insuÆient for the key Lemmas 4.3.2 and 4.3.3.

This fores us to employ a simpli�ation proedure before trying to �nd a

k-evaluation with small k. The simpli�ation will be done by a partial truth

assignment.

We shall think of the set M as of the set of partial bijetions between a

subset of domain D and range R. D = [n+1℄ and R = [n℄ at the beginning,

as earlier.
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De�nition 4.4.1 Let �; � 2M. De�ne the restrition of � by � to be:

�

�

=

(

� n � if �jj�

undefined if � ? �

Further de�ne:

1. H

�

:= f�

�

j � 2 Hg.

2. D

�

:= D n dom(�).

3. R

�

:= R n rng(�).

4. n

�

:= jR

�

j(= n� j�j).

Our strategy in the onstrution of a k-evaluation of a set � will be the

following. We onstrut the evaluation in steps. We start by de�ning the

evaluation for atoms and onstants in �: that is anonial by De�nition 4.3.1.

At every step we extend the k-evaluation to negations and to disjuntions

of formulas for whih it is already de�ned (hene the number of steps is

bounded by the maximal depth of a formula in �). The ase of negations is

again anonial and only the ase of disjuntion will ause us a problem. To

extend the de�nition to disjuntions we will need to apply a restrition by

some �. The following lemma essentialy says that the part of the evaluation

already onstruted will still work after the restrition.

We ontinue using the onvention that S; T; : : : denote PHP -trees.

Lemma 4.4.2 Let � 2M be arbitrary. Then:

1. If H / S then H

�

/ T

�

.

2. If j�j+ jjSjj � n then S

�

is a PHP -tree over D

�

and R

�

.

3. If H / S then S

�

(H

�

) = (S(H))

�

.

We leave the proof to the Exerise 4.8.5. The next lemma is the key

tehnial step in the onstrution of k-evaluations.

Lemma 4.4.3 Let 0 < Æ < � < 1=5. Let H

i

� M, for i � s. Assume that

jjH

i

jj � k for all i � s. Assume that

k � n

Æ

and s � 2

k

and that n is large enough. Then there exists � 2M suh that n

�

= n

�

and

suh that there exist PHP -trees S

i

, i � s, over D

�

and R

�

, satisfying
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1. H

�

i

/ S

i

,

2. jjS

i

jj � k.

Proof :

Assume �rst that we have just one H; we shall onsider the ase of having

s sets H

i

at the end.

We shall desribe a game played by two players with the set H. In the

proof it will be played with H

�

atually but we onsider only H �rst not to

ompliate the notation.

At the beginning player I pik an h

1

2 H. Player II replies my some

Æ

1

2 M suh that dom(h

1

) � dom(Æ

1

), rng(h

1

) � rng(Æ

1

), and suh that

no proper submap of Æ

1

has this property. It may be that Æ

1

= h

1

or

that at least Æ

1

� h, some h 2 H: In that ase the game ends. Otherwise

neessarily Æ

1

? h

1

and the game moves to the next round. Generally, before

round t � 2, the players have onstruted sequenes h

1

; : : : ; h

t�1

(the moves

of I) and Æ

1

� : : : � Æ

t�1

(the moves of II). At the t-th steps player I

piks some h

t

2 H ompatible with Æ

t�1

; if no suh h

t

exists the game stops.

Player II then extends Æ

t�1

to some Æ

t

2 M suh that dom(h

t

) � dom(Æ

t

),

rng(h

t

) � rng(Æ

t

), and suh that no proper submap of Æ

t

ontaining Æ

t�1

has this property. If Æ

t

ontains some h 2 H then the game stops, otherwise

the players move to the next round.

The use of this game is desribed in the following laim whih follows

immediately from the de�nition when the game stops.

Claim 1: For any �xed strategy of the player I onsider the set

S := fÆ

t

j Æ

1

� : : : � Æ

t

is a �nished play in some strategy of II g

Then the set S is a PHP -tree and H / S.

To simplify things we shall �x one strategy of I: We �x an ordering h

1

; h

2

; : : :

of H and player I always piks in his move the �rst h in the ordering ompat-

ble with the previous move of II. We shall all player I using this startegy

I

fix

.

Let us all the set of all pairs (i; j) in all h

`

n Æ

`�1

the ritial pairs of

the play. These are exatky the pairs for whih II is required to speify f(i)

and f

(�1)

(j). If the number of ritial pairs in all �nished games against

I

fix

is bounded by r then learly jjSjj � 2r. Hene we would like to show

that the number of ritial pairs is bounded by k=2. However, it is easy to

onstrut a set of small maps from M suh that any �nished game must
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ontain � n=2 ritial pairs (f. Exerise 4.8.6). This is the plae where we

employ a restrition by suitable �.

Assume we �x � 2 M and restrit �rst H by �, and play the game on

H

�

(we ontinue to use the same ordering of elements of H for I

fix

). This

is the same as if we de�ned Æ

0

:= � and required h

1

and Æ

1

to ontain Æ

0

.

Claim 2: There exists � 2M, n

�

= n

�

, suh that every play (taitly against

I

fix

) on H

�

ontains at most k=2 ritial pairs.

We shall prove the laim by ontradition. Assume that there is no suh

�. Hene for every � there is a play, resulting in the moves Æ

1

� : : : � Æ

t

of II, that ontains at least k=2 + 1 ritial pairs. In fat, we will trunate

the play when it reahes the (k=2 + 1)-st ritial pair, so we shall assume

that there are exatly k=2 ritial pairs (this is only for a simpli�ation of a

omputation). Fix one suh play for eah �.

Now onentrate on one �xed � and the assoiated �xed play. Note that

all ritial pairs are disjoint, and are also also disjoint from �. Hene the

set � ontaining � and all ritial pairs is atually an element of M, and

j� j = j�j+ k=2.

Having � we annot a priori determine � but we an determine the �rst

move h

�

1

of I

fix

: It is the �rst h

�

2 H

�

that is ompatible with � .

Now note that we an atually enode by a small information the ritial

pairs in h

�

1

and the �rst move Æ

1

of II: Critial pairs from h

�

1

form one of its

� 2

k

subsets (here we use that jjHjj � k), and the move of II is determined

by giving a value (resp. inverse value) of f for every i (resp. j) ouring in

the ritial pairs in h

�

1

. There is � 2(k=2) = k suh i's and j's, and at most

n

�

values to hoose from: This is beause the values II hooses must be

outside the domain (resp. the range) of � and n� j� j � n� j�j = n

�

. Hene

there are at most (n

�

)

k

possibilities of II's ation on the ritial pairs. All

together, we an enode II's �rst move Æ

1

by a number � (2n

�

)

k

.

One we know Æ

1

we replae in � by Æ

1

all ritial pairs in h

�

1

, getting

some �

0

. But know we an reonstrut also the seond move h

�

2

of I

fix

: It is

the �rst h

�

2 H

�

ompatible with �

0

. Hene we proeed as before: Enode

the II's seond move by a number � (2n

�

)

k

, and replae in �

0

all ritial

pairs in h

�

2

by Æ

2

, et.

There are at most k=2 moves before we get k=2 ritial pairs. Hene the

whole (trunated) play an be enoded by � togerther with a k=2-tuple of

numbers � (2n

�

)

k

, i.e. by a number � (2n

�

)

k

2

=2

.

Beause � together with the auxiliari information determines �, the num-
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bers

a := the number of di�erent � of size n� n

�

=

 

n+ 1

n

�

! 

n

n

�

!

(n� n

�

)!

and

b := the number of di�erent � of size n� n

�

� k=2 =

 

n+ 1

n

�

� k=2

! 

n

n

�

� k=2

!

(n� n

�

� k=2)!

must satisfy the inequality:

a � b � (2n

�

)

k

2

=2

All this argument was for one set H. However, if we had s of them we

just enode by a number � s whih of the sets is the one in whih we have,

for a given �, a play with at least k=2 ritial pairs. Hene, if no suitable �

existed, we would have to have

a � s � b � (2n

�

)

k

2

=2

It is not diÆult to ompute that this inequality does not hold if the param-

eters satisfy the hypotheses of the lemma.

q.e.d.

Now we are going to use a restrition � in order to onstrut a k-

evaluation. We will need a notion of a formula restrited by � de�ned as

follows.

p

�

ij

=

8

>

<

>

:

1 i 2 dom(�) ^ �(i) = j

0 f(i; j)g ? �

p

ij

otherwise

and then take for �

�

the formula � with all atoms p

ij

replaed by p

�

ij

.

Lemma 4.4.4 Let 0 < Æ < � < 5

�d

. Then for suÆiently large n � 1 every

set � of size at most 2

n

Æ

and losed under subformulas there exists a map �,

j�j = n� n

�

, and an n

Æ

-evaluation of �

�

.
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Proof :

Let s = 2

n

Æ

and k = n

Æ

. Assume that j�j � s. Pik �

0

> 0 suh

that 0 < Æ < �

d

0

< �

0

< 5

�d

. We shall onstrut the restrition � and the

k-evaluation of �

�

in d steps.

Put �

0

:= ; and let �

0

be the anonial (by De�nition 4.3.1) 2-evaluation

of the depth 0 formulas in �, i.e. of the onstants and the atoms. In step

1 � t � d we assume that we already have restritions �

0

� : : : � �

t�1

with

n

�

`

= n

�

`

0

and a k-evaluation �

t�1

of all depth � t� 1 formulas in �

�

t�1

.

To extend the evaluation to depth t formulas we apply Lemma 4.4.3

with n := n

�

t�1

and the parameters Æ and �

0

�xed earlier. This will give

us a restrition on the universe [n + 1℄ n dom(�

t�1

), [n℄ n rng(�

t�1

), i.e. a

restrition �

t

� �

t�1

on [n+1℄, [n℄. By Lemma 4.4.2, �

�

t

t�1

will still work for

the depth � t� 1 formulas and this evaluation is extended to an evaluation

�

t

of depth � t formulas in �

�

t

by the virtue of Lemma 4.4.3.

The �nal � := �

d

and � := �

d

satisfy the requirements of the lemma with

� := �

d

0

.

q.e.d.

Proof of Theorem 4.1.2:

We are now ready to prove the theorem. For the sake of ontradition

assume that � is an F

d

-refutation of :PHP

n

with less than 2

n

Æ

di�erent

formulas. Let � be the set of all formulas ouring in � as subformulas.

Take the � and the k-evaluation (with k := n

Æ

) of �

�

provided by Lemma

4.4.4. For large enough n it holds that n

Æ

< n=

F

, where 

F

is the onstant

from Lemma 4.3.3. By Lemmas 4.3.2 and 4.4.2, the axioms of (:PHP

n

)

�

=

:PHP

n

�

are "true" w.r.t. the evaluation. By Lemma 4.3.3 all steps in �

are "true" too. But the last formula, the onstant 0, is not "true". That is

a ontradition.

4.5 Counting priniples

The PHP -priniple says that there is no pairing between sets of sizes dif-

fering by 1. More general priniples an be onsidered. Fix m � 2. The

ounting modulo m priniple says that a set with n elements annot be par-

titioned into m-element bloks unless its size is divisible by m.
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The propositional formulation of the priniple will use atoms q

e

, one for

eah m-element subset e of [n℄. The set of m-element subsetes of [n℄ will be

denoted simply

�

[n℄

m

�

.

De�nition 4.5.1 The axioms of the :Count

n

m

are:

1. :q

e

_ :q

f

, whever e; f 2

�

[n℄

m

�

are inompatible (denoted e ? f); e 6=

f ^ e \ f 6= ;.

2.

W

e:i2e

q

e

, for all i 2 [n℄.

Count

n

m

is the disjuntion of the negations of all axioms of :Count

n

m

.

We shall leave it as an advaned Exerise (see 4.8.7) for the reader to

modify the mahinery of PHP -trees and k-evaluations to Count

n

m

. In par-

tiular, Count

m

-trees over [n℄ branh aoring to queries i 2?, eah branh

orresponding to one e 2

�

[n℄

m

�

ontaining i and onsistent with bloks on the

path to the node. Everything will then work analouglsy as in the proof of

Theorem 4.1.2 and we get the following lower bound.

Theorem 4.5.2 For any m � 2 and d � 3 there is Æ > 0 suh that for all

suÆiently large n not divisible by m, in any F

d

-refutation of :Count

n

m

must

our at least 2

n

Æ

di�erent subformulas. In partiular, any suh refutation

must have the size at least 2

n

Æ

.

4.6 Relation of PHP and Count

m

priniples

By Theorems 4.1.2 and 4.5.2 neither PHP priniple nor Count

m

priniples

have subexponential F

d

-proofs. It is thus natural to study the strength of

F

d

when augmented by all instanes (of a priori bounded depth) of either

PHP or Count

m

as extra axioms.

Lemma 4.6.1 For any m � 2 there are d � 2 and  � 1 suh that for all

n � 1 there are F

d

-proofs of size n



of PHP

n

from instanes of the Count

m

priniple.

Proof :

Consider the set N onsisting of disjoint opies of [n + 1℄ and [n℄, and

further m� 2 disjoint opies of [n℄. Hene jN j = m � n+ 1. Assume f is a

bijetion between [n+ 1℄ and [n℄. Then the set of all bloks of the form

fi; f(i); : : : ; f(i)g
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with i 2 [n+1℄ and f(i)' taken from all m� 1 opies of [n℄, form a partition

of [N ℄ into m-element bloks. This violates an instane of the Count

N

m

-

priniple.

This informal argument an be made formal quite easily (f. ?? or Ex-

erise 4.8.8).

q.e.d.

The opposite diretion is muh more interesting.

Theorem 4.6.2 ([42, 7℄) Let m � 2 be �xed. For any d � 2 there exists

Æ > 0 suh that for all n � m large enough and not divisible by m the

following holds:

In any F

d

-proof of Count

n

m

from instanes of PHP must our at least

2

n

Æ

di�erent subformulas. In partiular, any suh proof must have the size

at least 2

n

Æ

.

Proof :

First it is easy to see that several instanes of PHP are equivalent, over

F

d

by short proofs, to just one instanes: Just de�ne the instane by de�niton

by ases; it is the �rst instane in the list for whih PHP -fails, or something

trivial otherwise.

Let this one instane be the instane for PHP

N

for formulas  

ij

(built

from the atoms of Count

n

m

) replaing the atoms p

ij

of PHP

N

. In partiular,

i 2 [N + 1℄ and j 2 [N ℄.

Let � be all formulas ouring in an F

d

-proof of Count

n

m

from the instane

of PHP

N

. If � were small there would be � (a partialm-partition of [n℄) and

a k-evaluation (H;S) of all formulas in �

�

making all axioms of :Count

n

�

m

"true". Hene also the :PHP

N

( 

ij

)

�

is "true".

Let T be a Count

m

-tree re�ning all trees S

 

�

ij

, and de�ne the map:

(i; j) 2 [N + 1℄� [N ℄! A

ij

:= T (S

 

�

ij

)

We think of A

ij

simply as of sets of partial m-partitions of n

�

.

Claim: The following identities hold:

S

j

A

ij

= T ,

S

i

A

ij

= T , A

i

1

j

\A

i

2

j

=

; if i

1

6= i

2

, and A

ij

1

\A

ij

2

= ; if j

1

6= j

2

.

The laim follows from the fat that the instanes of the PHP is "true"

w.r.t. the k-evaluation.
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The laim leads to a ontradition as ounting the size of

S

ij

A

ij

�rst by

rows or by olumns leads to two di�erent values: (N + 1) � jT j and N � jT j.

Hene no suh k-evaluatin an exists and onsequently the proof annot

ontain only a small number of formulas. The partiular values of parameters

are the same as in Theorems 4.1.2 or 4.5.2.

q.e.d.

The mutual relation of ounting priniples with di�erent moduli m is

more ompliated.

4.7 Mutual relations of ounting priniples

We shall look at mutual relations between ounting priniples in this setion.

The �rst statement simpli�es a bit what moduli we need to onsider.

Lemma 4.7.1 Let m � 2 and let p

1

; : : : ; p

k

be all prime divisors of m.

There there are d � 2 and  � 1 suh that

1. Count

n

m

, n not divisible by m, an be derived by an F

d

-proof of size n



from instanes of Count

p

i

, all i � k.

2. Any Count

n

p

i

, n not divisible by p

i

, an be derived by an F

d

-proof of

size n



from an instane of Count

m

.

We shall not prove the lemma here,as it is muh easier to formalize via

bounded arithmti, f. ??.

The lemma means that when studying the mutual relation we an onen-

trate just on ounting priniples with moduli that are primes. The following

theorem has be �rst prove inthe form of the non-existene of polynomial

upper bound in [4, 6, 43℄.

Theorem 4.7.2 ([11℄) Let p; q � 2 be two �xed di�erent primes. For any

d � 2 there exists Æ > 0 suh that for all n � q large enough and not divisible

by q the following holds:

In any F

d

-proof of Count

n

q

from instanes of Count

p

must our at least

2

n

Æ

di�erent subformulas. In partiular, any suh proof must have the size

at least 2

n

Æ

.

The proof will not be given in this draft.
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4.8 Exerises

Exerise 4.8.1 Show that any formula � deidable by a deision tree of

depth k is equivalent to a k-DNF, i.e. a formula whih is a disjuntion of

onjuntions, eah of size at most k, and that the same holds for :�.

On the other hand, show that if both � and :� are expressible as k-DNF

then � an be deided by a deision tree of depth � k

2

.

Exerise 4.8.2 Prove that all axioms of :PHP

n

are "true" w.r.t. a k-

evaluation, as long as k � n� 2. (f. Lemma 4.3.2)

Exerise 4.8.3 Prove that any Frege rule is sound in any Boolean alge-

bra B: If hypotheses of an instane of the rule get value 1

B

then also the

onlusion of the rule gets value 1

B

.

Exerise 4.8.4 Find small sets, say of size n

O(1)

, of formulas that have no

k-evaluation with k < n.

Exerise 4.8.5 Prove Lemma 4.4.2.

Exerise 4.8.6 Construt a set of onstant size maps from M suh that

any �nished game must ontain � n=2 ritial pairs (f. Lemma 4.8.3).

Exerise 4.8.7 De�ne the notion of Count

m

-tree and the orresponding

notion of k-evaluations, and prove Theorem 4.5.2.

Exerise 4.8.8 Prove Lemma 4.6.1.
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