
FUNDAMENTA
MATHEMATICAE

182 (2004)

Diagonalization in proof complexity

by

Jan Kraj́ıček (Praha)

Abstract. We study diagonalization in the context of implicit proofs of [10]. We
prove that at least one of the following three conjectures is true:

• There is a function f : {0, 1}∗ → {0, 1} computable in E that has circuit complexity
2Ω(n).

• NP 6= coNP.
• There is no p-optimal propositional proof system.

We note that a variant of the statement (either NP 6= coNP or NE ∩ coNE contains a
function 2Ω(n) hard on average) seems to have a bearing on the existence of good proof
complexity generators. In particular, we prove that if a minor variant of a recent con-
jecture of Razborov [17, Conjecture 2] is true (stating conditional lower bounds for the
Extended Frege proof system EF) then actually unconditional lower bounds would follow
for EF.

The only method for demonstrating unprovability of a Π0
1-sentence in a

theory (containing some amount of arithmetic) is diagonalization. One would
like to adapt this to a non-uniform setting in which theories are replaced
by propositional proof systems and Π0

1-sentences by tautologies. This fails,
at least in the straightforward adaptation. In particular, many strong proof
systems do prove their own consistency by polynomial size proofs (cf. [5,
Chpt. 14]). However, there is a non-uniform setting in first-order theories
where diagonalization gives non-trivial lower bounds.

To explain this we need to fix some notation first. By a theory we shall
mean a set of axioms, not the set of its consequences. We shall assume
(without loss of generality) that the language of all theories in question is
the language of bounded arithmetic theory S1

2 . For a natural number N

2000 Mathematics Subject Classification: Primary 68Q15; Secondary 03F20, 68Q17.
Partially supported by grant # A 101 94 01 of the Academy of Sciences of the Czech

Republic and by project LN00A056 of The Ministry of Education of the Czech Republic.
The author is also member of the Institute for Theoretical Computer Science of the

Charles University. Part of this work was done while he was visiting the Mathematical
Institute at Oxford.

[181]

182 J. Kraj́ıček

the symbol N is the dyadic numeral inductively defined by: 0 := 0, 1 := 1,
2 := (1 + 1), 2k := (2 · k), and 2k + 1 := (2k + 1).

Given a theory T definable in the language of S1
2 , let PrfT (y, x) be a

formula in the language of S1
2 expressing that y is a T -proof of formula x.

There is a canonical formalization of the syntax of logic (terms, formulas,
proofs, etc.) and of the notion of provability (see [13] or [5] for details), and
its usual properties are provable in S1

2 . Assuming that T ⊇ S1
2 , as we shall

do, thus allows us to use this formalization in T too.
Define a diagonal formula A(x) satisfying

A(x) ≡ ∀y, |y| ≤ s(x)→ ¬PrfT (y, dA(ẋ)e),
where s(x) is any term and dAe is a (canonical) number encoding A such that
its length is proportional to the size of A, and ẋ is the formalization of dyadic
numerals. Then, by the standard argument, we have the following theorem.
(The condition that T ∈ NP is technical and implies, in particular, that T
is definable and that the binary relation PrfT (y, x) is in NP and definable
by a Σb

1-formula, and that all its true instances have polynomial size proofs
in S1

2 ; cf. [5, p. 303].)

Theorem 0.1. Let T ⊇ S1
2 be a consistent theory such that T ∈ NP.

Then for any N ≥ 1 the sentence A(N) is true and provable in T but any
T -proof of the sentence must have size at least s(N).

Note that the length of the formulaA(N) isO(logN) and hence the lower
bound is non-trivial, as long as s(N)� log(N). A foremost example of this
reasoning is the Finitistic Gödel theorem of Friedman [3] and Pudlák [13, 14]
(the theorem says that any T -proof of a formula ConT (N) := ∀y, |y| ≤ N →
¬Prf(y, d0 = 1e) expressing the consistency of T with respect to proofs of
length at most N , must have size at least NΩ(1)). Other, quantitatively more
subtle applications, can be found in bounded arithmetic (cf. [5, Chpt. 10]).

One would like to adapt this to propositional proof complexity. The
problem with this is not that we deal with first-order theories (as we know
how to pass between them and propositional proof systems) but with the
fact that A(x) is not a bounded formula and the instances A(N) translate
into propositional formulas of length at least s(N), which is superpolynomial
in the length of N in order to get a non-trivial lower bound in Theorem 0.1.
An idea suggests itself at this point: to use the concept of implicit proofs
from [10]. This is what we investigate in this paper. A variant of the idea of
implicit proofs is recalled in Section 1. In Section 2 we derive the theorem
mentioned in the abstract. Its variant is derived in Section 3 and linked to
proof complexity generators in Section 4.

The paper is self-contained, assuming that the reader has a general
background in bounded arithmetic and proof complexity (only basic things

Diagonalization in proof complexity 183

are assumed); see [5]. Let us just recall the terminology and some more
notation. Time(t(n)) is the class of languages computable in determinis-
tic time O(t(n)), Σi Time(t(n)) is the Σi-level of the time O(t(n)) hier-
archy, NTime(t(n)) = Σ1 Time(t(n)), and E = Time(2O(n)). For a func-
tion f : {0, 1}∗ → {0, 1}, Cf (n) is the circuit complexity of computing
f on {0, 1}n, while Hf (n) is its hardness on average in the sense of [12].
A “proof system” tacitly means a “propositional proof system”: it is a non-
deterministic acceptor of the set of propositional tautologies in the De Mor-
gan language. A proof of a tautology in a proof system is any particular
computation of the proof system accepting the formula. A proof system is
p-bounded iff the proof system accepts all tautologies in a fixed polynomial
time, and it is p-optimal iff it polynomially simulates other proof systems
(cf. [2]). The length of a string w is denoted |w|, and a number is identified
with the string of its bits (i.e. |m| ∼ log(m)).

A prominent proof system is the Extended Frege proof system EF. It is
the usual Hilbert style calculus based on a finite number of axiom schemes
and inference rules (sound and implicationally complete in a complete lan-
guage) that has an additional ability (via the so called Extension Rule) to
abbreviate large formulas occurring in a proof by new atoms (see [2, 5] for
details). Alternatively one can view EF as a Hilbert style calculus operating
with circuits rather than only with formulas. The prominence of EF comes
(at least in our context) from its relation to theory S1

2 .
Finally let us recall a well-known translation of formulas into proposi-

tional formulas, just for the case of A(x). Given N ≥ 1, there is a proposi-
tional 3DNF formula denoted ‖A(x)‖N of size s(N)O(1) that expresses (by
the fact of being a tautology) that A(N) is true. It is constructed as in the
proof of the NP-completeness of satisfiability as follows. Fix a particular
Σb

1-formula (NP-definition) PrfT . The formula ‖A(x)‖N has s(N) atoms
for bits of a potential y, s(N)O(1) atoms for bits of a potential witness z
to the validity of the NP-statement PrfT (y, dA(N)e), and an additional
s(N)O(1) auxiliary atoms. The auxiliary atoms are used for naming bits in
the canonical computation of the truth value of PrfT (y, dA(N)e) with wit-
ness z. The formula ‖A(x)‖N is built by induction on the logical complexity
of A and says that if all local conditions in the computation are satisfied
then PrfT (y, dA(N)e) fails. See [5, Chpt. 9] for details of the translation.

1. Implicit proofs of implicit formulas. The idea of implicit proofs
is to represent a proof in a proof system, a binary string, not by the string
itself but by a circuit that computes any individual bit of the proof knowing
only its position but not the whole proof. A proof can be, in principle,
exponentially larger than a circuit representing it. Hence a proof system
operating with such circuits instead of directly with proofs can be quite

184 J. Kraj́ıček

powerful. This concept has been proposed and studied in [10]. In this paper
we borrow the general idea of representing long proofs (and, in fact, also
long formulas) by small circuits but otherwise we do not use anything from
[10]. Let us now proceed formally.

Let w be a 0-1 string of length 2k. Identify i < 2k with vectors i =
(i1, . . . , ik) ∈ {0, 1}k ordered lexicographically. We say that a circuit
C(x1, . . . , xk) represents w if C(i1, . . . , ik) = wi (the ith bit of w) for all
i < 2k. Similarly, if W is a 0-1 2k × 2k matrix then we say that a circuit
D(x1, . . . , xk, y1, . . . , yk) represents W if D(i, j) = Wi,j for all i, j < 2k.

Let M be a non-deterministic polynomial time machine. For any input w
of length 2l and represented by a circuit C(z1, . . . , zl), for suitable k = O(l)
(given by the time of M) and any 2k×2k matrix W represented by a circuit
D(x1, . . . , xk, y1, . . . , yk) we can write down a propositional formula σMC,D
expressing that W is an accepting computation of M (given by W listing
in its rows all instantaneous descriptions of the computation) on input w.
Moreover, the size of σMC,D is only proportional to the sizes of C and D. Such
a formula can be constructed as follows.

The formula has atoms x1, . . . , xk, y1, . . . , yk, z1, . . . , zl for inputs of D
and C respectively. By using these atoms any local condition imposed on W
by M (there are a finite number of them) can be written by a circuit of size
proportional to the sizes of C and D (as a local condition speaks only about
a constant number of positions in W). This means that the circuit computes
constantly value 1 (for all evaluations of the atoms, i.e. for all positions inW)
iff all local conditions are satisfied on the whole of W . By using additional
auxiliary atoms for values of subcircuits of C and D this can be expressed
by a formula (as in the proof of the NP-completeness of satisfiability). To
summarize: σMC,D is a tautology iff W is indeed an accepting computation of
M on w.

We will need one additional formula, this time first-order. Assume that
a circuit C(x1, . . . , xk) represents a 3DNF formula ϕC (of size at most 2k).
Let dCe be its number code. Then there is a formula BigTaut(x) such that
BigTaut(dCe) formalizes that ϕC is a tautology. This can be expressed with-
out going through ϕC : For any truth assignment y (of length bounded by a
suitable term in C) there is a term in the 3DNF formula represented by C
(this quantifies over inputs of C and not over the whole big formula) satisfied
by y.

We formulate the following lemma for the diagonal formula A(x) only,
but it holds for any formula of a similar logical form.

Lemma 1.1. There is a polynomial time function g(x) such that , for any
N ≥ 1, g(N) is (the number code of) a circuit representing (in the sense as

Diagonalization in proof complexity 185

above) the formula ‖A(x)‖N . Moreover , the valid implication

BigTaut(g(x))→ A(x)

is provable in theory S1
2 .

Proof. The existence of such a function g follows from the high unifor-
mity (for a fixed formula A(x)) of the construction of ‖A(x)‖N as recalled at
the end of the introductory section. In fact, there is a polynomial time func-
tion g∗A(x, y) such that g∗A(N, i) computes the ith bit of ‖A(x)‖N (g(N)
is then the circuit computing g∗A(N, y) for y bounded by a suitable term
NO(1)). The function g∗A is defined by induction on the logical complexity
of A from analogous functions g∗B for subformulas B of A. The claim for the
base case of atomic formulas follows as the local conditions are the same
across the whole computation (of the values of terms in the atomic formula)
and the algorithm computing g∗B just needs to know a position in the compu-
tation tableaux (i.e. the index i) in order to use the appropriate atoms while
writing down the particular local conditions in the propositional translation.

The validity of the implication in the second part of the lemma is clear
from the definition of the propositional translation. To see that it is also
provable in S1

2 , reason as follows. Assume that y is a witness for the failure
of A(x): |y| ≤ x∧PrfT (y, dA(ẋ)e). Then there is a truth assignment f(x, y),
computed from x and y by a polynomial time function f , to atoms of ‖A(x)‖x
that violates the formula (cf. [5, Sec. 9.3] for an analogous statement and a
detailed discussion). We claim that S1

2 proves (from the assumption that y
witnesses the failure of A(x)) that “f(x, y) does not satisfy any term in the
3DNF formula represented by g(x)” (and hence ¬BigTaut(g(x))). This is
showed again by induction on logical complexity of A, the base case being
that of atomic formulas. For them the claim is proved by induction on the
size of circuits computing the terms in the atomic formula, i.e. by length
induction on parameter y.

Note that since g is polynomial time computable, the circuit g(N) has
size at most log(N)O(1).

2. A theorem

Theorem 2.1. At least one of the following three statements is true:

(i) There is a function f : {0, 1}∗ → {0, 1} computable in E that has
circuit complexity 2Ω(n).

(ii) NP 6= coNP.
(iii) There is no p-optimal propositional proof system.

Proof. Before we start with the actual proof let us recall a well-known
technical fact (see e.g. [5, p. 303]) that will be used several times in the

186 J. Kraj́ıček

proof (in steps 2, 9 and 11): Any true Σb
1-sentence has a polynomial size

proof in S1
2 . This is proved by induction on the logical complexity of the

sentence.
Let us begin with the proof proper. We shall assume that all three state-

ments are false and derive a contradiction via Theorem 0.1.

1. Let P be a proof system witnessing that both (ii) and (iii) fail; then P
is p-bounded and also p-optimal. Assume without loss of generality that P
contains EF. Let PrfP (u, v) be a Σb

1-formula formalizing that “u is a P -proof
of formula v”.

2. Define a theory T to be S1
2 augmented by an extra axiom, a form of

reflection principle:

∀x, y, u, PrfP (u, dσPx,ye)→ BigTaut(x).

Note that the antecedent of the implication is a Σb
1-formula because the

(code of the) formula σPx,y is polynomial time computable from x, y (for
fixed P , cf. Section 1). This implies, in particular, that all true instances of
the formula have polynomial size proofs in S1

2 .
3. Let A(x) be the diagonal formula from the introduction, with the

term s(x) being simply x. Consider the propositional formula ‖A(x)‖N . The
formula is a tautology as A(N) is true. The size of the formula is NO(1) but
by Lemma 1.1 there is a circuit CN := g(N) of size nO(1), n := log(N),
representing the formula (in the sense of Section 1).

4. The set of all formulas ‖A(x)‖N , N ≥ 1, is polynomial time decidable
and hence we can use it as axioms in some proof system. By the hypothesis
that P is p-optimal there is a (deterministic) polynomial time algorithm M
computing from the string ‖A(x)‖N a P -proof of ‖A(x)‖N .

5. The output of M is a particular accepting computation of P , i.e. a
2O(n) × 2O(n) matrix WN encoding the computation. As M runs in deter-
ministic polynomial time, WN

i,j as a function of i, j ∈ {0, 1}O(n) is in E .
6. Assuming that also statement (i) fails, there exists a circuit D(i, j) in

two O(n) variables and of size 2δ·n that represents WN , for arbitrarily small
δ > 0. We shall choose a particular δ in step 12.

7. Take an instance of the reflection principle by substituting for x and
y the codes of D and CN respectively:

∀u, PrfP (u, dσPdCNe,dDee)→ BigTaut(dCNe).

8. By Section 1 the size of σPCN ,D is polynomial in the sizes of CN and D,
i.e. it is 2O(δ·n). Now we use the hypothesis that P is also p-bounded. Hence
there is a P -proof e of σPCN ,D of size 2O(δ·n). Note that the constants implicit
in the O-notation are fixed and independent of δ. Substituting dee for u in

Diagonalization in proof complexity 187

the formula in step 7 we get

PrfP (dee, dσPdCNe,dDee)→ BigTaut(dCNe).
9. The antecedent of the formula in step 8 is a true Σb

1-sentence of size
2O(δ·n) and has a proof in S1

2 (and hence in T) of polynomial size, i.e. of size
2O(δ·n).

10. Applying modus ponens to the formulas in steps 8 and 9 we get a
proof of size 2O(δ·n) of the sentence BigTaut(dCNe).

11. We claim that the implication

BigTaut(dCNe)→ A(N)

has an S1
2 -proof of size nO(1). This is because it can be obtained from an

instance of a universal implication (provable in S1
2 by Lemma 1.1)

BigTaut(g(x))→ A(x)

by substituting for x the numeral N , and by proving dCNe = g(N): That is
a true Σb

1-sentence of size nO(1) and has a polynomial size proof in S1
2 .

12. Putting steps 10 and 11 together we get a size 2O(δ·n) proof in T
of A(N). Taking δ > 0 so small that 2O(δ·n) < N (this can be done as the
O-constant is independent of δ) we get a contradiction with Theorem 0.1.

Let us remark that instead of using E and circuit size 2Ω(n) in (i) we
could have used Time(t(n)) and circuit size t(n)Ω(1), as long as there is no
polynomial upper bound for t(n). This follows by a padding argument or by
a simple change to the proof above: Use the diagonal formula for the term
s(x) := t(|x|) instead of s(x) := x in step 3.

3. A variant of the theorem. It is not difficult to see that the property
of a string to be the truth table of a function on {0, 1}n with 2δ·n circuit
complexity, or even 2δ·n hard on average, is in the polynomial time hierarchy
PH. Taking the lexicographically first such strings (at least one exists of
each length 2n, n� 0, by a simple counting) we see that there is such an f
computable in EPH.

If NP = coNP then such an f is in ENP∩coNP = NE ∩ coNE . If, in
addition, E = NE then such an f is in E .

This simple (apparently folklore) argument yields the following theo-
rem (1). We shall use only part (ii) in Section 4 but we state also part (i)
as it is actually a weaker version (if hardness on average is replaced by cir-
cuit size) of Theorem 2.1: It is known, by [11], that the non-existence of a

(1) This argument has been pointed out to me by E. Jeřábek, and has also been noted
by V. Kabanets, and replaces my original proof: A simple modification of the proof of
Theorem 2.1 shows that NP = coNP implies that NE ∩ coNE contains a function with
exponential circuit complexity which was then turned into a function with exponential
hardness on average by the construction from [4].

188 J. Kraj́ıček

p-optimal proof system implies that Time(t(n)) 6= NTime(t(n)) (as long as
t(n) ≤ 2n

O(1)
) and also E 6= NE (the opposite implication is unknown but

Verbitsky [18] constructed a relativized world where it does not hold).

Theorem 3.1. (i) At least one of the following three statements is true:

(a) There is a function f : {0, 1}∗ → {0, 1} computable in E that has
2Ω(n) hardness on average.

(b) NP 6= coNP.
(c) E 6= NE.

(ii) At least one of the following two statements is true:

(a) There is a function f : {0, 1}∗ → {0, 1} computable in NE∩coNE
that has 2Ω(n) hardness on average.

(b) NP 6= coNP.

4. Proof complexity generators. By a proof complexity generator we
mean a map g : {0, 1}n → {0, 1}m, m = m(n) and m > n, whose bits can
be computed in NTime(m(n)O(1)) ∩ coNTime(m(n)O(1)). This assumption
about the computability of the bits is the weakest one allowing us to write
down, for any b ∈ {0, 1}m, a size mO(1) propositional formula τb(g) that
is a tautology iff b 6∈ Rng(g) (see below). (The notation τb(g) is somewhat
misleading as the formula depends on a particular definition of g and not
only on g, but we will ignore this here: The lower bounds conjectured later
should hold for all NTime(m(n)O(1)) ∩ coNTime(m(n)O(1))-definitions.)

A generator is good if for a strong proof system P and with high proba-
bility in choosing a random b ∈ {0, 1}m, the formula τb(g) requires very long
(in particular, superpolynomial) P -proofs. The quality of the generator is
measured by the strength of P and by the probability that b yields a hard
τ -formula. At present it is not ruled out that some generator g works for all
P and all b. Following [17] we shall say that a generator g is hard for P if
all τb(g), for all b’s, require superpolynomial size P -proofs (cf. [17]).

The τ -formulas have been defined in [6] and independently in [1], and
their theory has made first steps in [7, 16, 8, 17]. I shall not describe the
development of the ideas and known lower bound results; this can be found in
the introductions to [8] or [17]. Instead I shall briefly describe one motivation
and why we speak about “generators”.

Proving lower bounds for strong propositional proof systems appears
hard. In fact, we do not know any such lower bounds. A factor contributing
to this is that it is actually not easy to come up with sensible tautologies that
would be good candidates for requiring long proofs even in strong systems
(cf. [8] for a detailed discussion). The τ -formulas seem to be candidates
worth studying in this context.

Diagonalization in proof complexity 189

The word “generator” is used because some of the usual pseudo-random
number generators seem to be good candidates. In particular, a good proof
complexity generator must behave as a hitting set generator with respect to
the NP/poly-test (cf. [8]).

Just as the existence of good pseudo-random generators can be proved
under some computational hardness assumptions (cf. [12, 4]) we may also try
to reduce the existence of good proof complexity generators to a suitable
computational hardness assumption. This is discussed in [9] in a broader
perspective, and in the introduction to [17].

The most studied map in this context is the classic Nisan–Wigderson
generator (cf. [12]). This has been proposed as possibly a good proof com-
plexity generator in [1] and taken up in [8], although the motivations (and,
more importantly, the choice of parameters in the construction and the for-
malization of the notion of hardness of the generators (2)) are different. Let
us first recall the definition of NW-generators (and fix the notation in the
process).

Let A be an m×n 0-1 matrix with l ones per row. Set Ji(A) := {j ≤ n |
Aij = 1}. Let f : {0, 1}l → {0, 1} be a boolean function. Then NWA,f :
{0, 1}n → {0, 1}m is the NW-generator based on A and f : the ith bit of
output is computed by f from the bits of the input that belong to Ji(A).

Assume that f is in NTime(t(n)) ∩ coNTime(t(n)). Given particular
NTime(t(n))-definitions α: ∃v, αε(u, v) (|u| = l, |v| ≤ t(n) and αε p-time) of
f(u) = ε, for ε = 0, 1, the τ -formulas are defined by

ταb :=
∨

i≤m
¬αbi(x ↓ Ji(A), vi),

where b = (b1, . . . , bm) ∈ {0, 1}m, x is an n-tuple of variables and vi are
disjoint t(n)-tuples of variables. Clearly τb ∈ TAUT iff b 6∈ Rng(NWA,f).
Note that the size of ταb is t(n)O(1) ·m(n), and hence we get a size mO(1)

formula as long as t(n) ≤ m(n)O(1).

An idea, formulated in [1] in general terms and then quite specifically in
[17], is that NWA,f forms a good proof complexity generator, as long as A
has suitable combinatorial properties (being an (l, d) combinatorial design in
the sense of [12]: Ji(A)’s have size l and the intersection of any two different
rows has size ≤ d) and as long as f is computationally hard. Specifically,
Razborov [17] has made the following conjecture.

Conjecture 4.1 (A. A. Razborov [17, Conjecture 2]). Any NW-gen-
erator based on a matrix A which is a combinatorial design with the same

(2) I shall describe neither the set-up from [8] nor the conjectured hardness in terms
of pseudo-surjectivity here as this is not relevant to the topic of this paper.

190 J. Kraj́ıček

parameters as in [12] and on any function f in NP ∩ coNP that is hard on
average for P/poly, is hard for EF.

Let us interpret the specifications. The parameters in the main construc-
tion of combinatorial designs in [12, L.2.5] satisfy: d = log(m), log(m) ≤ l ≤
m and n = O(l2) (3). Writing this dually:

m = 2ε·n
1/2
, l = ε · n1/2,(1)

where ε > 0 is a constant (determined by the O-constant in the expression
n = O(l2)). We are taking the maximal value allowed for m by [12, L.2.5]
as that is the chief case in [12], and it also links with [16, 17] studying
“function” generators.

The phrase “hard on average for P/poly” presumably means that the
hardness of f in the sense of [12] is exponential, as needed in [12]:

Hf (l) ≥ 2Ω(l).(2)

The conjecture requires that f ∈ NP∩coNP. We shall relax this condition
to

f ∈ NTime(2O(l)) ∩ coNTime(2O(l)).(3)

By (1) we have 2O(l) = mO(1) so (3) means that f is in NTime(mO(1))) ∩
coNTime(mO(1)). By the earlier discussion this means that the size of the τ -
formula will still be mO(1). Thus this modification of the original formulation
of the conjecture seems quite harmless, and moreover, very much in the
spirit of [12] allowing one to compute the output bits of the generator in
time mO(1) rather than just nO(1).

Nevertheless, (3) is a modification of the original specifications and so
we do not want to talk about Conjecture 4.1 in the next theorem. For this
reason let us formulate the following Statement R:

R Let g be an NW-generator based on an m × n matrix A that is an
(l, log(m)) combinatorial design and on any function f such that the
constraints in (1), (2) and (3) are satisfied. Then g is hard for EF.

Theorem 4.2. Assume that Statement R is true. Then EF is not p-
bounded.

Proof. Assume that EF is p-bounded. We shall arrive at a contradiction
with Statement R. If EF is p-bounded then, in particular, NP = coNP.

By Theorem 3.1(ii) there is a function f in NE ∩ coNE that is expo-
nentially hard on average. Having such an f we may apply Statement R

(3) There is also a construction specific for the application to BPP with parameters
satisfying l = c · log(m) and n = O(c2 · log(m)), where c is a constant (cf. [12, L.2.6]).
That is not good in proof complexity as a trivial proof of the τ -formulas going through
all possible seeds would have a polynomial size.

Diagonalization in proof complexity 191

(suitable matrices A are constructed in [12]) to conclude that EF is not
p-bounded. That is a contradiction.

Note that if we postulate smaller m then although the size of the formula
might not be polynomial in m any more it will still be superpolynomially
smaller than 2O(n), i.e. than a lower bound to the size of the trivial proof
going through all seeds.

An optimist may conclude that one only has to prove a conditional state-
ment in order to prove that EF is not p-bounded. A pessimist may conclude
that if the conclusion of R holds even without its hypothesis then the hypoth-
esis is irrelevant. I think an interesting modification of R may be obtained
by stating it for one particular function f , e.g. the hard bit of the discrete
logarithm, and maybe claiming the lower bound for τb(g) for a random b
with high probability, rather than for all b’s.

Acknowledgements. I thank E. Jeřábek and P. Pudlák for discussions
and suggestions. In particular, P. Pudlák suggested that some variant of
Theorem 2.1 should be relevant to proof complexity generators. I thank the
referee for valuable comments.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson, Pseudorandom
generators in propositional proof complexity , in: Electronic Colloquium on Compu-
tational Complexity, Rep. No. 23, 2000. Extended abstract in: Proc. 41st Annual
Sympos. on Foundation of Computer Science, 2000, 43–53.

[2] S. A. Cook and A. R. Reckhow, The relative efficiency of propositional proof systems,
J. Symbolic Logic 44 (1979), 36–50.

[3] H. Friedman, On the consistency , completeness, and correctness problems, unpub-
lished preprint, 1979.

[4] R. Impagliazzo and A. Wigderson, P = BPP unless E has sub-exponential circuits:
derandomizing the XOR lemma, in: Proc. 29th Annual ACM Symposium on Theory
of Computing, 1997, 220–229.

[5] J. Kraj́ıček, Bounded Arithmetic, Propositional Logic, and Complexity Theory , En-
cyclopedia Math. Appl. 60, Cambridge Univ. Press, 1995.

[6] —, On the weak pigeonhole principle, Fund. Math. 170 (2001), 123–140.
[7] —, Tautologies from pseudo-random generators, Bull. Symbolic Logic 7 (2001), 197–

212.
[8] —, Dual weak pigeonhole principle, pseudo-surjective functions, and provability of

circuit lower bounds, J. Symbolic Logic 69 (2004), 265–286.
[9] —, Hardness assumptions in the foundations of theoretical computer science, Arch.

Math. Logic, to appear.
[10] —, Implicit proofs, J. Symbolic Logic 69 (2004), 387–397.
[11] J. Kraj́ıček and P. Pudlák, Propositional proof systems, the consistency of first order

theories and the complexity of computations, ibid. 54 (1989), 1063–1079.
[12] N. Nisan and A. Wigderson, Hardness vs. randomness, J. Comput. System Sci. 49

(1994), 149–167.

192 J. Kraj́ıček

[13] P. Pudlák, On the length of finitistic consistency statements in first order theories,
in: Logic Colloquium 84, North-Holland, 1986, 165–196.

[14] —, Improved bounds to the length of proofs of finitistic consistency statements, in:
Contemp. Math. 65, Amer. Math. Soc., 1987, 309–331.

[15] A. A. Razborov, Unprovability of lower bounds on the circuit size in certain frag-
ments of bounded arithmetic, Izv. Ross. Akad. Nauk Ser. Mat. 59 (1995), 201–224
(in Russian).

[16] —, Resolution lower bounds for perfect matching principles, in: Proc. 17th IEEE
Conf. on Computational Complexity, 2002, 29–38.

[17] —, Pseudorandom generators hard for k-DNF resolution and polynomial calculus
resolution, preprint, 2003.

[18] O. V. Verbitsky, Optimal algorithms for co-NP sets and the problem EXP =? NEXP,
Mat. Zametki 50 (1991), no. 2, 37–46 (in Russian).

Mathematical Institute
Academy of Sciences
Žitná 25
CZ 115 67 Praha 1, Czech Republic
E-mail: krajicek@math.cas.cz

Received 6 January 2004;
in revised form 6 June 2004

