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However d i f f i c u l t  the fundamental problems of 
theoretical computer science may seem, there is 
very l i t t l e  to suggest that they are anything more 
than knotty combinatorial problems. So, when we 
look for reasons for our inab i l i t y  to resolve 
P = NP and related questions, we most l i ke ly  find 
them dealing with a lack of understanding of par- 
t icu lar  computational problems and their  lower 
bounds. This is the sense of Hopcroft's predict- 
ion: " . . .w i th in  the next f ive years, nobody w i l l  
prove that ~ny of these problems takes more than 
le t 's  say n ~ time. I think that's a reasonably 
safe conjecture and i t  also i l lustrates how l i t t l e  
we know about lower bounds." [MT]. Hopcroft's 
guess is uncanny in i ts accuracy -- after six 
years and considerable ef fort  by many researchers, 
his conjecture remains unchallenged. 

The resul ts in th is  paper o f fe r  a possible 
explanation for  our f a i l u re  to resolve these prob- 
lems. Roughly, the main resu l t  of the sequel 
l inks lower bounds and a branch of mathematical 
log ic  known as model theory. In par t i cu la r ,  we 
prove that the existence of nonpolynomial lower 
bounds is equivalent to the existence of nonstan- 
dard models of a sizable fragment of ar i thmet ic .  
Since these are deep logical  issues and there 
are very few techniques for  handling them, and 
since the nonstandard models in question are non- 
e f fec t i ve ,  i t  seems plausib le that th is  l i nk ing  
of complexity theory and logic  explains our f a i l -  
ure to obtain non t r i v ia l  lower bounds. 

One of the aims of mathematical logic is to 
c la r i fy  the relation between mathematical theories 
and their interpretations -- or models. In logic, 
a theory is simply a collection of statements and 
al l  of their  logical consequences, that is, a 
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co l lec t ion  of  (nonlogical)  axioms closed under the 
re la t ion  "~-- ". Models are the structures in 
which theories are interpreted. 

Plane geometry is such a mathematical theory. 
In an t i qu i t y ,  the re la t ion  between Euclidean geom- 
etry and i t s  models was considered obvious, and 
th is  re la t ionsh ip  was even fu r ther  c l a r i f i e d  by 
the ar i thmet izat ion of  geometry. I t  was therefore 
a shock to the mathematical world when, in 1868, 
Beltrami announced that geometry can have more than 
one model - -  a very strange one at that since in 
his model the para l le l  postulate is fa lse.  Since 
the para l le l  postulate is ce r ta in l y  true in the 
standard model of geometry, i t s  negation is not 
provable - -  the para l le l  postulate is consistent 
with Euclidean geometry. On the other hand, since 
the negation of the para l le l  postulate is also true 
in a (nonstandard)model, i t s  negation ( i . e . ,  the 
para l le l  postulate i t s e l f )  is not provable. More 
recent ly ,  Cohen [Co] proved that both the axiom of  
choice and generalized continuum hypothesis cannot 
be proved from the remaining axioms of set theory 
- -  Cohen introduced a rad i ca l l y  new concept cal led 

f o r c ~ t o  construct nonstandard models with pre- 
scribed propert ies. The f i r s t  such resu l t  for  
formal ar i thmet ic was obtained by Paris and Harr- 
ington [PH]. They proved that a modest general i -  
zation of the f i n i t e  Ramsey theorem of combina- 
to r ics  is not decided by Peano ar i thmet ic .  Shep- 
erdson [Sh] discusses the unprovab i l i ty  of induc- 
t ion  schemes and such statements as Fermat's Last 
Theorem, for  the case n = 3, from weak fragments 
of ar i thmet ic .  

This property of statements of a theory is 
cal led independence: a statement is independent 
from a theory T i f  the statement cannot be proved 
or disproved w i th in  T. Of course, G~del proved 
that every s u f f i c i e n t l y  powerful theory must 
leave i n f i n i t e l y  many statements unresolved in 
th is  way. In current terminology, however, a qual- 
i t a t i v e  d i s t i nc t i on  is usual ly drawn between for -  
mal undec idab i l i t y  and in teres t ing  independence 
theorems. In the G6del-style formal undecidabi l-  
i t y  theorems, one e x p l i c i t l y  formulates a 
d iagonal iz ing statement and using the properties 
of the axiom system in question, encodes that 
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statement as a formal statement of the theory. In 
independence resul ts  whatever d iagonal izat ion is 
present in the proof, is wel l -hidden. One begins 
with a f ixed ( t rue) formal statement - -  whose 
formal izat ion has not been obtained with a know- 
ledge of the axioms to be used - -  and using model 
theoret ic  techniques, shows an in te rpre ta t ion  in 
which the statement f a i l s  to hold (cf .  [DL] for  a 
survey of these resu l ts ) .  Therefore, independence 
resul ts  seem to exh ib i t  the fo l lowing character- 
i s t i c s .  

( I )  There is no d i rec t  d iagonal izat ion.  That 
i s ,  the statements whose independence is 
to be proved do not re fer  e x p l i c i t l y  to,  
say, ha l t ing  computations. 

(2) The independent statements are in te res t ing  
in t he i r  own r igh t .  In set theory, fo r  
instance, independent statements often 
represent useful i n f i n i t a r y  combinatorial 
p r inc ip les .  

(3) The independence of a statement is sensi- 
t i ve  to the underlying theory. In f ~ l  
u ~ c i d a b i l i t y  resul ts  one can add addi- 
t ional  axioms to the theory, encode the 
independent statement for  the new theory 
and re ta in  i t s  undec idab i l i t y .  In i n te r -  
est ing independent theorems, however, the 
independence of the statement from a set 
of axioms characterizes the power of the 
axioms; changing the underlying theory by 
adding more axioms decides the statement 
in the expanded theory. 

Except for  the discussion of Hopcroft and 
Hartmanis [HH] and the resul ts  of Lipton [ L i ] ,  we 
are aware of no other resul ts  that re la te  the 
basic issues of complexity theory to independence 
or nonstandard models. The impact of our resul ts  
is that proving lower bounds on certa in computa- 
t ional  problems is as hard as showing that a cer- 
ta in  true sentence T s - T n a ~ d e n t  from a powerful 
theory. In pa r t i cu la r ,  we show that for  cer ta in 
S, S ~ P ( i . e . ,  S is i n t r a c t i b l e )  exact ly  when a 
pa r t i cu la r  true sentence &S related to S must be 

fa lse in a nonstandard model of ar i thmet ic .  Fur- 
thermore, th is  model must be noneffect ive. The 
various proofs of th is  resu l t  y i e l d  ex is ten t ia l  
proof techniques fo r  showing that problems are 
solvable in polynomial time. An in teres t ing  
aspect of th is  resu l t  is that  i t  apparently does 
not generalize much beyond polynomial time compu- 
ta t ion .  That i s ,  i t  does not r e l a t i v i z e  in any 
obvious way, nor is i t ' poss ib l e  to formal ly sub- 
s t i t u t e  many other time classes for  P in the 
statement of the theorem. 

I f .  DEFINITIONS 

The de f in i t i ons  from complexity theory are 
standard [BL]. P denotes the set of problems solv- 
able in determin is t ic  polynomial time. NP denotes 
the problems solvable in nondeterminist ic poly- 
nomial time, and coNP denotes the set of problems 
whose complements l i e  w i th in  NP. The inclusions 

P c NP n coNP c NP 

are obvious. Although i t  is widely believed that  
both inclusions are s t r i c t ,  the resul ts  to be quo- 
ted below are in teres t ing  even i f ,  say, 

P : NP n coNP. We w i l l  return to th is  point  
la te r .  

Our log ica l  notat ion is standard (see [Ba]).  
Our language is any acceptable f i r s t  order lang- 
uage with ar i thmet ical  symbols and qua l i t y .  We 
use V for  universal quan t i f i ca t ion  and 3 fo r  ex- 
i s t en t i a l  quan t i f i ca t ion .  Among other symbols, 
x ,y ,z  are used for  var iables,  and the i n f i x  sym- 
bols + and x and ~ are used for  addi t ion and 
mu l t i p l i ca t i on  and subt~aot ion ,  suc and pred for  
the successor and predecessor funct ions,  and 0 
for  the constant zero. 

• Let T be a set of  formulas, then T J- ~ in -  
dicates that  ~ is a log ica l  consequence of  T. A 
theor~ is simply the set of formulas which are 
To'gical consequences of  T. Since the set of  
theorems of the theory is uniquely characterized 
by T, we i den t i f y  the two. A theory is consist -  
ent i f  0:I  is not among i t s  theorems. A formula 

is independent of  the theory i f  nei ther  ~ nor 
~ is a theorem. I f  T is  a theory, T+@ denotes 
the resu l t  of  adjoining ¢ as an axiom, Thus ~ is 
independent of T i f  both T+~ and T+'~ are con- 
s is tent .  A model of  a theory T is an in terpre-  
ta t ion  of the ind iv idua ls ,  funct ions and re la t ions 
of  the underlying language such that  each ¢ c T 
is t rue. A set of formulas has a model i f  and 
only i f  i t  is consistent,  In addi t ion to th is  
basic fac t ,  we w i l l  use the 

Compactness Theorem [BS]: Let T be a set of 
formulas, T has a model i f f  every f i n i t e  subset 
of T has a model. 

We w i l l  deal wi th a subtheory of (complete) 
ar i thmet ic ,  Of course the standard model of th is  
theory is the integers N = ~ , . , . }  wi th the 
remaining symbols interpreted in the obvious way. 
Any model *N (with + interpreted as *+, e tc . )  
which is not isomorphic to N is said to be non- 
standard. Since *N may be uncountable i t  i s -not  
surpr is ing  that nonstandard models of ar i thmet ic  
can ex is t ,  Skolem [Ski ,  however, showed that  
countable nonstandard models are possible. We 
w i l l  discuss these mere f u l l y  in Section IV. For 
now i t  w i l l  be s u f f i c i e n t  to note that i f  *N is a 
countable nonstandard model of ar i thmet ic  *N-N 
consists of nonstandard objects which are i n f i n -  
i t e  relative to N; i .e, ,  i f  a c *N-N, a*~ n, for 
each M c N. Henceforth *N (or *No,*N I) always 

denotes such a model. 

We will now define a particular theory PT. 
The language for PT includes symbols for all the 
functions and predicates which are computable in 
polynomial time. The axioms of PT are all true 
sentences of the form 

(3x)(Vy)A(x,y) ,  

where A is qqan t i f i e r - f ree  (as usual x and y may 
denote several occurrences of  bound var iab les) .  
A formula with such a quan t i f i e r  is cal led an EA 
formula. S imi la r ly  an AE formula contains the 
quan t i f i e r  p re f i xV3 .  The theory PT is qui te 
powerful. I t  includes the theory studied by 
Skolem [Skl ]  - -  which he f e l t  represented an im- 
portant part of construct ive number theory. H i l -  
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bert, Herbrand, Kreisel and Scott [Sc] have also 
studied systems much weaker than PT [Sh]. Perhaps 
more relevant to our discussion, the PV system of 
Cook [Ckl, Ck2] is also weaker than PT. The axi- 
oms of PT include al l  the recursive equations that 
define the functions and predicates included in PT. 
Moreover, PT contains the induction axiom 

A(O) A (Vx)[A(x) ÷ A(x+l) ]  ÷ (Vy)A(y). (*) 

where A is a quantif ier-free. To see this just 
note that (*) is equivalent to 

(3x)(vy)[~A(O) V (A(x) A~A(x+I))  V A(y) ] .  

For model-theoretic purposes the axioms PT can be 
replaced by their universal members without chang- 
ing the degree of the theory: both axiomatiza- 
tions are equivalent. The theory which Skolem 
studied can be formed by (*) and the recursive 
definit ions of the functions successor, addition, 
mult ipl icat ion, subtraction and integer division. 
Cook's PV theory is related to PT, but notice that 
PT is not even recursively enumerable (inclusion 
of an axiom depends upon i ts  t ruth),  so that PT is 
a vastly more powerful theory. Indeed i t  is not 
obvious how to deal with independence from PT us- 
ing other than model-theoretic techniques -- since 
PT is not recursively enumerable, i t  is not clear 
how diagonalization can work at all~ 

I I I .  MAIN RESULT 

Our main resul t  is that the i n t r ac tab i l i t y  of 
any S ~ NP n coNP is equivalent to the existence 
of a nonstandard model for  PT in which a certain 
sentence A S , related to S, f a i l s ;  i . e . ,  PT + ~A s 
is a consistent theory. 

Let S be fixed and let  A(x,y), B(x,y) be de- 
fined as follows: 

(3y)A(x,y) i f f  x ~ S, 

and 

(3Y)B(x,y) i f f  x ~ S. 

Now form As(A,B): 

As(A,B) : (Vx)[(3y)A(x,y) V (3z)B(x,z) ]  

Notice that,  when interpreted in N, N F As(A,B) 
(MF@ i f f  @ is true in M) since in N 

As(A,B) ~ ~Vx)(xeS Vx~S). 

Theorem. Let S s NP n coNP. Then the following 
statements are equivalent: 

(1) S~P.  
(2) PT ~ As(A,B ), for some A,B in the lang- 

uage of PT. 

Proof of (1) => (2): I f  S c P, there are polynom- 
ial time prediCates A,B so that x c S i f f  A(x) and 
x ~ S i f f  B(x). 

Hence 

(Vx)[(3y)A(x) V (3z)B(x)] 

is an axiom of PT. 

Proof of (2) => (1): 

We w i l l  present three proofs of the converse. 
What is needed in al l  three cases is to pass from 
PT ~ AsiA,B) to a true formula 

• n m 

(Vx)(V=iA(x , f i (x ) )  v v  B(x ,g i (x ) ) )  
i=l 

where the terms f i , g  i are in the language of PT. 

Hence x s S is decided by checking 

n 
y=iA(x,fi(x)) (3) 

and 

m 
y:iB(x,gi(x)) (4) 

I f  (3) is true x e S and i f  (4) is true x ~ S, 
and since al l  terms and predicates are polynom- 
ial time computable, S s P. 

Proof A: 

Let (Vx)(3y)P(x,y) denote As(A,B), so that 

PT ~ (Vx)(3y)F(x,y), and suppose that 
n 

PT ~ (Vx)Cy=Ir(x,f i (x)),  n,=l,2 . . . .  

where f l , f 2  . . . .  are terms of PT. Define the 
theory T* by 

T* = PT + ~ r (c , f l ( x ) )  +...+ ~r(C,fn(X)) +...  

where c is a new constant, not appearing in PT. 
We f i r s t  claim that T is consistent, for i f  not 

PT + ~ r ( c , f l ( c ) )  + . . .+  ~r(C,fm(C) ) ~ 0:I 

by compactness and hence 
m 

PT ~-V r ( c , f i ( c ) )  
i=l 

which implies 
m 

PT ~ (Vx) y = i r ( x , f i ( x ) ) ,  

establishing the claim. Choose any model M for T 
and let  M c be the submodel generated by c. Since 

PT is open, M c F PT and thus M c F (3y)F(c,y). 

But by our choice of c M c F (Vy)~F(c,y). S e P 

now follows as described above. 
[] 
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Proof B: 

We need to recall the following fact, often 
called the Kleene-Herbrand-Gentzen Theorem [Kl] .  

Lemma I f  T is a consistent collection of EA form- 
ulas and T ~- (Vx)(3y)@(x,y) where @ is open, then 
for some terms over the terms of T, their  compo- 
sit ions and def ini t ion by cases, say f l '  . . . .  fm' 

m 
V @(x,fi (x)) 
i=l 

is true. 

Roughly speaking, this allows us to make the 
existential quantifiers exp l ic i t  in a quiet con- 
structive fashion. Without the restr ict ion on T 
the lemma is easily seen to be false. Since PT 
satisfies the hypothesis for T and As(A,B) is AE, 

S e P follows as described above. 
[ ]  

Proof C: 

The application of the Kleene-Herbrand-Gent- 
zen Theorem can be replaced by an application of 
the "pure ~ Herbrand Theorem [St l ]  as in Proof B 
to conclude PT ~"S ~ P". 

Notice that Proof A is nonconstructive and 
involves compactness arguments. ~he provabil i ty 

• " ~ " " ure' of As(A,B) in this setting constltutes a P 

existence proof for polynomial time algorithms. 
The provabil i ty of As(A,B) in the setting of 

Proofs B and C constitutes a constructive ex i s -  
tence proof for polynomial time algorithms. (The 
apparent simplicity of Proof B compared to Proof A 
l ies in the great power of Herbrand's Theorem, 
which has played a basic role in various con- 
sistency proofs in logic. The proof of Herbrand's 
Theorem is based on a very careful analysis of how 
T can prove (Vx)(3y)~(x,y)). However, the runn- 
ing times of polynomial time algorithms produced 
in this way may be very bad indeed. In fact, the 
best known bound is of order 

2 
(s) 

n 22 

where the depth of nesting of the stack of 2's is 
bounded by thenumber of inferences in the short- 
est proof of As(A,B) in PT. These upper bounds 

are the best known to logicians, although the 
lower bound l i terature is very sparse (Statman 
has obtained this polynomial as a lower boumd [St] 
although for a theory much less relevant to com- 
plexity theorists). I t  has been often noticed 
that, although there are problems with very large 
polynomial running times, the only naturally 
occuring problems in P have "small" polynomial 
complexity. This gap has helped to sustain a 
certain feeling that membership in P is suf f ic ient  
for computational t rac tab i l i ty .  I f  indeed the 
polynomial bounds (5) cannot be local ly reduced, 

this is compelling evidence that P is much too 
extensive. 

The theorem above does not apply to arbitrary 
complexity classes. I t  is apparently rather high- 
ly  specialized for polynomial-like complexity 
classes. At concrete levels, the theorem can be 
made to work for the following complexity classes: 

2Poly-log 

l inear 

n 1 +e 

• nlog(k)n 

How about those problems for which.lower bound 
proofs have already been supplied? T The theorem 
does not hold for any elementary lower bound 
(functions which consist of bounded nestings of 
exponentials do not have the closure properties 
required by Herbrand's Theorem). On the other 
hand the A S sentence for those sets which have 

provable nonelementary lower bounds [MS] are false 
in the standard model of T, and so the issue of 
independence does not even arise for those prob- 
lems. In short, the theorem cannot apply to a 
class of lower bounds F i f  the functions in F are 
not closed under composition and def ini t ion by 
cases, or i f  determinism and nondeterminism are 
not distinguished at complexity F. 

By identical arguments we can show that PT is 
also related to "P = NP." Let us say that a 
theory T can veri fy that NP is closed under com- 
plements i f  for S e NP 

T ~ "S e coNP." 

Corollary. PT can veri fy that NP is closed under 
complements i f f  P = NP. 

By "checking" the theorem against the well- 
known problems which l ie  in NP n coNP (e.g., 
Primes, Linear Programming, Breaking Public Key 
Cryptosystem [Ri ] ) ,  a great deal of information 
can be obtained about the nonstandard models 
whose existence is so intimately connected to 
lower bounds. We have the corollaries: 

Corollary. I f  Primes is not in P, then there is a 
nonstandard model of PT in which primes need not 
have primitive roots [Pr]. 

Corollary. I f  Linear Programming is not in P, 
then there is a nonstandard model of PT in which 
for some point y and some point-set X whose 
convex hull does not contain y, there is no sep- 
arating hyperplane through y [Do]. 

Since both of these corollaries negate prop- 
erties which hold in the standard integers, i t  is 
d i f f i c u l t  to imagine the models in which they 
f a i l .  Moreover, the classical techniques for con- 
structing nonstandard models do not work at the 

tThis issue was raised by R. E. Tarjan. 
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simple level of As(A,B). For example, forcing is 

a technique that can be applied to formulas very 
high fn the analy t ica l  hierarchy [Bu]. I t  is 
generally acknowledged by logicians that there are 
few techniques for  constructing such nonstandard 
models, yet the theorem cited above asserts that a 
byproduct of any lower bound proof is an existence 
proof for  such nonstandard models. 

Finally, we note that although we are unable 
to extend these results to fu l l  Peano Arithmetic, 
we can extend the theory PT sl ight ly to include 
theo~es with the property that a l l  terms which 
grow slowly are easy to compute. Thus we have 
corresponding independence results for theories of 
+, x and polynomially honest functions• For in- 
stance, suitable theories are theories of 

+,x,x~ and +,x,x y+I 

IV. NONSTANDARD MODELS 

In this section we wi l l  describe a result, 
due to R. Solovay, showing that from the stand- 
point of constructing nonstandard models the 
theory PT is almost as strong as Peano Arithmetic 
(PA, for short). We begih with a digression on 
the nature of nonstandard models of PA and frag- 
ments of arithmetic. 

The classical observation of Skolem was that 
a countable nonstandard model of PA could be ob- 
tained simply by applying compactness to the set 
of formulas 

PA + (a>O) + (a>l) + (a>2) + . . .  

I t  is consistent to assume, then, that there 
exists a "nonstandard object" a which is greater 
than a l l  standard integers. Such a model *N con- 
tains N as an i n i t i a l  segment and has an ordering 
*<_extending~ to *N-N. The global structure of 

*N is remarkable. Define for  x,y ~ *N xzy to mean 
that x and y d i f f e r  by a standard integer,  i . e . ,  
for some n ~ N: 

x*-y = n or y*-x  : n. 

*N/z is a set of equivalence classes cal led blocks 
(each is order isomorphic to N). N is a bloc . ~  
Also *< t o t a l l y  orders blocks l i ke  the rat ionals  
( i .e . , -b locks  are densely ordered). Nonstandard 
integers cannot be described by formulas of PA 
and any formula true of i n f i n i t e l y  many integers 
must also hold at some b ~ *N-N. 

Nonstandard models for  fragments of arithme- 
t i c  also contain i n f i n i t e ,  nonstandard objects 
but may have vast ly simpler structure. Consider 
the ( i n f i n i t e )  axiom system: for  a l l  n, m ~ N, 

sucm(o)+o= sucm(o), 

sucm(o)+suc(suc~O)) = suc(sucm+n(o)), 

sucn(o)xO = O, 

sucn(o)xsuc(sucm(o)) = sucn(o)xsucm(o)+sucn(o), 

sucn(o) I sucm(o), for m # n, 

~Vx)(x < sucm(o) ~ V x : sucl(O)),  
w 

O<i<m 

(vx) (x  _< sucm(o) v sucm(o) _< x) .  

A nonstandard model for  th is theory is 
*N = N u {m}, m# N with *suc(m) = O, 
*suc(m) = suc(m) for  a l l  M e N and *+, *x defined 
by the fo l lowing tables 

y=~ ~ y=~ 0 

yEN x+y yEN xxy 

As another example, take the open theory of 
suc,pred,+, , and • together with the induction 
axiom 

A(O) A (Vi)[A(x) ÷ A(suc(x)] ÷ A(x), A open 

A nonstandard *N consists of al l  nonnegative ele- 
ments Q(t) of the ring of polynomials 

p-l 

~ap_ltP-i/q + b, 
i=O 

Where b,p,q ~ N, a~ e ~ are algebraic and 
Q(t) *~ Q'(t) is d~termined by let t ing t + ~. 

This model is quite important since i t  contains a 

nonstandard element t3v~such that 

(t3v,~) 3 = t 3 + t 3, 

so that Fermat's Last Theorem for n=3 fa i ls  in 
*N (see [Sh] for details). 

An important aspect of these weak fragments 
of arithmetic is that they can have "effective" 
nonstandard models, such as the two models des- 
cribed above. That is, there is a recursive 
definit ion of *+ and *x in terms of an enumer- 
ation of the universe. 

The possibi l i ty of independence from PT 
would be less intriguing i f  PT turned out to be 
one of these weak fragments. That is, i f  a *N 
such that *N i = ~As(A,B) could be found in which 
*+ and *x could be exp l ic i t l y  defined by f i n i te  
combinatorial means. In fact, PT has no effective 
nonstandard models, so that proofs of lower bounds 
are necessarily connected with the existence of 
nonrecursive objects. We now sketch Solovay's 
proof of this fact. 

We f i r s t  need the corresponding result for 
PA, known as Tannenbaum's Theorem (cf. [Co] and 
[EK]): le t  *N be a nonstandard model of PA; then 
at least one of *+ and *x must be nonrecursive 
The key idea of the proof is to find a nonstand- 
ard object y which effectively encodes the in- 
f i n i te  membership information regarding a non- 
recursive set S. This can be done as follows. 
I t  is possible in PA to define an RE nonrecursive 
set S. In *N, S is *S. I f  Pi is the i th prime 

in *N, the Chinese Remainder Theorem holds for the 
system 

157 



y ~ b i mod Pi '  Pi < c e *N (6) 

Let c ~ *N-N and define the b i in (6) by: 

~ i  O, i f  i c S 
bi = , i f  i ~ S 

Information in y about *S is decoded as fo l lows:  
search *N for  a z such that pn z = y ( i . e . ,  n ~ *S) 

or pn z = y - I  ( i . e . ,  n ~ *S). I f  *N is e f fec t i ve ,  

th is  procedure is e f fec t i ve  and so *S n N is a re- 
cursive set. I t  is not hard to see that S c *S n N; 
a contradic t ion is reached by construct ing 
spec i f ic  S which cannot be so extended. 

Solovay's argument begins by not ic ing that 
although PT is weaker than PA, the only thing that 
PT lacks is the a b i l i t y  to " ta lk  about" growth 
arguments. But, l e t  *N be any nonstandard model 
of PT and l e t  c e *N-N be a nonstandard integer.  
In the i n i t i a l  segment beneath c there is a sub- 
model wi th enough "room" for  the argument above to 
be carr ied out. To see how th is  can happen l e t  

*Nc = {x~*Nllogkc > x fo r  a l l  kEN}. 

*N c is closed under polynomial time funct ions. 

example suppose x e *N Then 
c" 

logk+Ic > x, for  a l l  k ~ N 

For 

and so 

logkc > 2 x > x 2. 

Surpr is ing ly ,  *N c is also a model of PT+ exponen- 

t i a l .  This fo l lows as above: i f  x ~ *N c 

logk+2c > x, for  a l l  k ~ N. 

Thus 

l o g k c  > 2 2x > 2 x 

i m p l i e s  2 x e *N . 
c 

Continuing in th is  manner, i t  is possible to 
bu i ld  a model *M c *N which is closed under enough 
of  the PA definable funct ions to l e t  the proof of 
Tannenbaum's Theorem be carr ied out. But then the 
recursiveness of *N contradicts the nonrecursive- 
ness of  *M. 

V. FURTHER DISCUSSION 

The results presented above show that lower 
bound proofs are exactly as d i f f i c u l t  as indepen- 
dence proofs. This in i t se l f  leads to interesting 
speculations, but we feel the real force of these 
results l ies in the l ink they create between the 
re lat ively new (and rather concrete) problems of 
computer science and some classical questiOns at 
the foundations of mathematics. We w i l l  mention 
just a few possibi l i t ies which ensue from such a 
l ink.  

( I )  I t  is possible that the methods of mathe- 
matical log ic  may help us resolve such 
questions as whether or not P = NP. 

(2) Since lower bound proofs are equivalent to 
independence proofs, i t  is possible that 
the lower bound statements themselves are 
independent from PA or similar theories. 
We make the following conjecture: "P = NP" 
is independent of PT. 

(3) Following the reasoning of (2), a viable 
approach to lower bounds might be to look 
for consistency with theories such as PA 
and PT. 

(4) I t  is possible that a nontr ivial  lower 
bound wi l l  be proved, providing an ent i rely 
new method of building nonstandardmodels 
for arithmetics. 

(5) I t  is possible that T ~ As(A,B) implying 

the existence of a polynomial but qui te 
useless algori thm for  S. 

(6) The main resu l t  of Section I I I  together 
wi th Solovay's resu l t  comes very close to 
expla in ing the d i f f i c u l t y  in obtaining 
lower bounds: any such proof must imp l i -  
c i t l y  construct a noneffect ive system. 
This makes i t  seem far  less l i k e l y  that the 
f i n i t e  combinatorial methods of the sort  
which have been applied in extant lower 
bound proofs w i l l  be able to prove non- 
t r i v i a l  lower bounds on NP-complete 
problems. 
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