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I. INTRODUCTION

However difficult the fundamental problems of
theoretical computer science may seem, there is
very little to suggest that they are anything more
than knotty combinatorial problems. So, when we
lTook for reasons for our inability to resolve
P = NP and related questions, we most 1ikely find
them dealing with a lack of understanding of par-
ticular computational problems and their Tower
bounds. This is the sense of Hopcroft's predict-
ion: "...within the next five years, nobody will
prove that %ny of these problems takes more than
let's say n¢ time. I think that's a reasonably
safe conjecture and it also illustrates how little
we know about Tower bounds." [MT]. Hopcroft's
guess is uncanny in its accuracy -- after six
years and considerable effort by many researchers,
his conjecture remains unchallenged.

The results in this paper offer a possible
explanation for our failure to resolve these prob-
lems. Roughly, the main result of the sequel
links lower bounds and a branch of mathematical
logic known as model theory. In particular, we
prove that the existence of nonpolynomial lower
bounds is equivalent to the existence of nonstan-
dard models of a sizable fragment of arithmetic.
Since these are deep logical issues and there
are very few techniques for handling them, and
since the nonstandard models in question are non-
effective, it seems plausible that this Tinking
of complexity theory and Togic explains our fail-
ure to obtain nontrivial lower bounds.

One of the aims of mathematical logic is to
clarify the relation between mathematical theories
and their interpretations -- or models. In logic,
a theory is simply a collection of statements and
all of their logical consequences, that is, a
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collection of (nonlogical) axioms closed under the
relation "}— ". Models are the structures in
which theories are interpreted.

Plane geometry is such a mathematical theory.

In antiquity, the relation between Euclidean geom-
etry and its models was considered obvious, and
this relationship was even further clarified by

the arithmetization of geometry. It was therefore
a shock to the mathematical world when, in 1868,
Beltrami announced that geometry can have more than
one model -- a very strange one at that since in
his model the parallel postulate is false. Since
the parallel postulate is certainly true in the
standard model of geometry, its negation is not
provable -- the parallel postulate is consistent
with Euclidean geometry. On the other hand, since
the negation of the parallel postulate is also true
in a (nonstandard) model, its negation (i.e., the
parallel postulate itself) is not provable. More
recently, Cohen [Co] proved that both the axiom of
choice and generalized continuum hypothesis cannot
be proved from the remaining axioms of set theory
-- Cohen introduced a radically new concept called
forcing to construct nonstandard models with pre-
scribed properties. The first such result for
formal arithmetic was obtained by Paris and Harr-
ington [PH]. They proved that a modest generali-
zation of the finite Ramsey theorem of combina-
torics is not decided by Peano arithmetic. Shep-
erdson [Sh] discusses the unprovability of induc-
tion schemes and such statements as Fermat's Last
Theorem, for the case n = 3, from weak fragments
of arithmetic.

This property of statements of a theory is
called independence: a statement is independent
from a theory T if the statement cannot be proved
or disproved within T. Of course, Gldel proved
that every sufficiently powerful theory must
leave infinitely many statements unresolved in
this way. In current terminology, however, a qual-
itative distinction is usually drawn between for-
mal undecidability and interesting independence
theorems. In the GYdel-style formal undecidabil-
ity theorems, one explicitly formulates a
diagonalizing statement and using the properties
of the axiom system in question, encodes that
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statement as a formal statement of the theory. In
independence results whatever diagonalization is
present in the proof, is well-hidden. One begins
with a fixed (true) formal statement -- whose
formalization has not been obtained with a know-
ledge of the axioms to be used -- and using model
theoretic techniques, shows an interpretation in
which the statement fails to hold (cf. [DL] for a
survey of these results). Therefore, independence
results seem to exhibit the following character-
istics.

(1) There is no direct diagonalization. That
is, the statements whose independence is
to be proved do not refer explicitly to,
say, halting computations.

The independent statements are interesting
in their own right. In set theory, for
instance, independent statements often
represent useful infinitary combinatorial
principles.

The independence of a statement is sensi-
tive to the underlying theory. In formal
undecidability results one can add addi-
tional axioms to the theory, encode the
independent statement for the new theory
and retain its undecidability. In inter-
esting independent theorems, however, the
independence of the statement from a set
of axioms characterizes the power of the
axioms; changing the underlying theory by
adding more axioms decides the statement
in the expanded theory.

(2)

(3)

Except for the discussion of Hopcroft and
Hartmanis [HH] and the results of Lipton [Li], we
are aware of no other results that relate the
basic issues of complexity theory to independence
or nonstandard models. The impact of our results
is that proving Tower bounds on certain computa-
tional problems is as hard as showing that a cer-
tain true sentence §s independent from a powerful
theory. In particular, we show that for certain
S, S#P (i.e., S is intractible) exactly when a
particular true sentence A-S related to S must be

false in a nonstandard model of arithmetic. Fur-
thermore, this model must be noneffective. The
various proofs of this result yield existential
proof techniques for showing that problems are
solvable in polynomial time. An interesting
aspect of this result is that it apparently does
not generalize much beyond polynomial time compu-
tation. That is, it does not relativize in any
obvious way, nor is it possible to formally sub-
stitute many other time classes for P in the
statement of the theorem.

I1. DEFINITIONS

The definitions from complexity theory are
standard [BL]. P denotes the set of problems solv-
able in deterministic polynomial time. NP denotes
the problems solvable in nondeterministic poly-
nomial time, and coNP denotes the set of problems
whose complements 1lie within NP. The inclusions

P < NP n coNP c NP
are obvious. Although it is widely believed that

both inclusions are strict, the results to be quo-
ted below are interesting even if, say,
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P = NP n coNP.
Tater.

We will return to this point

Our logical notation is standard (see [Ba]).
Our Tanguage is any acceptable first order lang-
uage with arithmetical symbols and quality. We
use ¥ for universal quantification and 3 for ex-
istential quantification. Among other symbols,
X,Y,2z are used for variables, and the infix sym-
bols + and x and - are used for addition and
multiplication and subtraction,  suc and pred for
the successor and predecessor functions, and 0
for the constant zero.

- Let T be a set of formulas, then T |- ¢ in-
dicates that ¢ is a Togical consequence of T. A
theory is simply the set of formulas which are
Togical consequences of T. Since the set of
theorems of the theory is uniquely characterized
by T, we identify the two. A theory is consist-
ent if 0=1 is not among its theorems. A formula
¢ is independent of the theory if neither ¢ nor
g is a theorem. If T is a theory, T+¢ denotes
the result of adjoining ¢ as an axiom, Thus ¢ is
independent of T if both T+¢ and T+uwp are con-
sistent. A model of a theory T is an interpre-
tation of the individuals, functions and relations
of the underlying Tanguage such that each ¢ e T
is trye. A set of formulas has a model if and
only if it is consistent. In addition to this
basic fact, we will use the

Compactness Theorem [BS]: Let T be a set of
formulas. T has a model iff every finite subset
of T has a model.

We will deal with a subtheory of (complete)
arithmetic. O0f course the standard model of this
theory is the integers N = {0,1.2,...} with the
remaining symbols interpreted in the obvious way.
Any model *N (with + interpreted as *+, etc.)
which is not isomorphic to N is said to be non-
standard. Since *N may be uncountable it {is not
surprising that nonstandard models of arithmetic
can exist, Skolem [Sk], however, showed that
countable nonstandard models are possible. We
will discuss these more fully in Section IV. For
now it will be sufficient to note that if *N is a
countable nonstandard model of arithmetic *N-N
consists of nonstandard objects which are infin-
ite relative to N; i.e., if a € *N-N, a* » n, for
each M e N. Henceforth *N (or *NO’*NI) always

denotes such a model.

We will now define a particular theory PT.
The language for PT includes symbols for all the
functions and predicates which are computable in
polynomial time. The axioms of PT are all true
sentences of the form

(3x) (vy)A(x,y),

where A is quantifier-free (as usual x and y may
denote several occurrences of bound variables).

A formula with such a quantifier is called an EA
formula. Similarly an AE formula contains the
quantifier prefix ¥3. The theory PT is quite
powerful. It includes the theory studied by
Skolem [Sk1] -- which he felt represented an im-
portant part of constructive number theory. Hil-



bert, Herbrand, Kreisel and Scott [Sc] have also
studied systems much weaker than PT [Sh]. Perhaps
more relevant to our discussion, the PV system of
Cook [Ckl, Ck2] is also weaker than PT. The axi-
oms of PT include all the recursive equations that

define the functions and predicates included in PT.

Moreover, PT contains the induction axiom
A(0) A (W)[A(X) ~ A(x+1)] ~ (Vy)A(y).

where A is a quantifier-free.
note that (*) is equivalent to

() (wy)[MA(0) v (A(x) A~A(x+1)) V A(y)].

For model-theoretic purposes the axioms PT can be
replaced by their universal members without chang-
ing the degree of the theory: both axiomatiza-
tions are equivalent. The theory which Skolem
studied can be formed by (*) and the recursive
definitions of the functions successor, addition,
multiplication, subtraction and integer division.
Cook's PV theory is related to PT, but notice that
PT is not even recursively enumerable (inclusion
of an axiom depends upon its truth), so that PT is
a vastly more powerful theory. Indeed it is not
obvious how to deal with independence from PT us-
ing other than model-theoretic techniques -- since
PT is not recursively enumerable, it is not clear
how diagonalization can work at all!

(*)

To see this just

ITI. MAIN RESULT

Our main result is that the intractability of
any S € NP n coNP is equivalent to the existence

of a nonstandard model for PT in which a certain
sentence AS’ related to S, fails; i.e., PT + mAS

is a consistent theory.

Let S be fixed and let A(x,y), B(x,y) be de-
fined as follows:

(ay)Alx,y) iff x € S,
and

(2y)B(x,y) iff x £ S.
Now form AS(A,B):

Ag(R,B) = (yx)[(3¥)A(x,y) V (32)B(x,2)]

Notice that, when interpreted in N, N AS(A,B)
(ME¢ iff ¢ is true in M) since in N

AS(A,B) <~ {yx)(xeS Vxgs).

Theorem. Let S & NP n coNP. Then the following
statements are equivalent:
(1) SeP.
(2) PT | AS(A,B), for some A,B in the lang-
uage of PT.

Proof of (1) = (2): I1f S ¢ P, there are polynom-
ial time predicates A,B so that x € S iff A(x) and
X ¢S iff B(x).

Hence
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(vx)[(3y)A(x) v (3z)B(x)]

is an axiom of PT.

Proof of (2) = (1):

We will present three proofs of the converse.
What is needed in all three cases is to pass from
PT | AS(A,B) to a true formula

(50 _AGx400) VT B0y ()
i= i=

where the terms fi’gi are in the language of PT.
Hence x € S is decided by checking

n
Vv A(x,fi(x)) (3)
i=1

and

m
V B(x,g,(x)) (4)
i=

1

If (3) is true x € S and if (4) is true x # S,
and since all terms and predicates are polynom-
jal time computable, S € P.

Proof A:

Let (¥x)(3y)r(x,y) denote AS(A,B), so that
PT | (¥x)(3y)T{x,y), and suppose that
n

PT | (¥x}Y ]I‘(x,fi(x)), n=1,2,...
‘|=

where f1,f2,... are terms of PT. Define the

theory T* by
T = PT + al(c,f(x)) +...4 ar(c,f (x)) +...

where ¢ is a new constant, not appearing in PT.
We first claim that T is consistent, for if not

PT + mr(c,f](c)) +.+ wF(c,fm(c)) F 0=1

by compactness and hence

PT | v ]F(c,fi(c))
1:

which implies

m
PT + (wx) \/11‘(x,f1-(x)),
1=

establishing the claim. Choose any model M for T
and let Mc be the submodel generated by c. Since

PT is open, M. F PT and thus M, F (3y)r(c.y).
But by our choice of ¢ M. E (Yy)r(c,y). SeP
now follows as described above.

=]



Proof B:

We need to recall the following fact, often
called the Kleene-Herbrand-Gentzen Theorem [K1].

Lemma If T is a consistent collection of EA form-
uTas and T | (¥x)(3y)¢(x,y) where ¢ is open, then
for some terms over the terms of T, their compo-

sitions and definition by cases, say f],...,fm,

m
V o(x.f,(x))
i=1

is true.

Roughly speaking, this allows us to make the
existential quantifiers explicit in a quiet con-
structive fashion. Without the restriction on T
the Temma is easily seen to be false. Since PT
satisfies the hypothesis for T and AS(A,B) is AE,

S € P follows as described above.
m]

Proof C:

The application of the Kleene-Herbrand-Gent-
zen Theorem can be replaced by an application of
the "pure" Herbrand Theorem [St1] as in Proof B
to conclude PT |-"S e P".

=]

Notice that Proof A is nonconstructive and
involves compactness arguments. ‘The provability
of AS(A,B) in this setting constitutes a "pure"

existence proof for polynomial time algorithms.
The provability of AS(A,B) in the setting of

Proofs B and C constitutes a constructive exis--
tence proof for polynomial time algorithms. (The
apparent simplicity of Proof B compared to Proof A
1ies in the great power of Herbrand's Theorem,
which has played a basic role in various con-
sistency proofs in logic. The proof of Herbrand's
Theorem is based on a very careful analysis of how
T can prove (¥x)(3y)é(x,y)). However, the runn-
ing times of polynomial time algorithms produced
in this way may be very bad indeed. In fact, the
best known bound is of order
2
o (5)
2
n2

where the depth of nesting of the stack of 2's is
bounded by the number of inferences in the short-
est proof of AS(A,B) in PT. These upper bounds

are the best known to Togicians, although the
Tower bound literature is very sparse (Statman
has.obtained this polynomial as a lower bound [St]
although for a theory much less relevant to com-
plexity theorists). It has been often noticed
that, although there are problems with very large
pélynomial running times, the only naturally
occuring problems in P have "small" polynomial
complexity. This gap has helped to sustain a
certain feeling that membership in P is sufficient
for computational tractability. If indeed the
polynomial bounds (5) cannot be locally reduced,
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this is compelling evidence that P is much too
extensive.

The theorem above does not apply to arbitrary
complexity classes. It is apparently rather high-
1y specialized for polynomial-1ike complexity
classes. At concrete levels, the theorem can be
made to work for the following complexity classes:

2po]y—]og

Tinear
+
n] €

En1og(k)n

How about those problems for which, lower bound
proofs have already been supplied? The theorem
does not hold for any elementary lower bound
(functions which consist of bounded nestings of
exponentials do not have the closure properties
required by Herbrand's Theorem). On the other
hand the AS sentence for those sets which have

provable nonelementary lower bounds [MS] are false
in the standard model of T, and so the issue of
independence does not even arise for those prob-
lems. In short, the theorem cannot apply to a
class of lower bounds F if the functions in F are
not closed under composition and definition by
cases, or if determinism and nondeterminism are
not distinguished at complexity F.

By identical arguments we can show that PT is
also related to "P = NP." Let us say that a
theory T can verify that NP is closed under com-
plements if for S £ NP

TF "S e coNP."
Corollary. PT can verify that NP is closed under

complements iff P = NP.

By "checking" the theorem against the well-
known problems which Tie in NP n coNP (e.g.,
Primes, Linear Programming, Breaking Public Key
Cryptosystem [Ri]), a great deal of information
can be obtained about the nonstandard models
whose existence is so intimately connected to
lower bounds. We have the corollaries:

Corollary. If Primes is not in P, then there is a
nonstandard model of PT in which primes need not
have primitive roots [Pr].

Corollary. If Linear Programming is not in P,
then there is a nonstandard model of PT in which
for some point y and some point-set X whose
convex hull does not contain y, there is no sep-
arating hyperplane through y [Do].

Since both of these corollaries negate prop-
erties which hold in the standard integers, it is
difficult to imagine the models in which they
fail. Moreover, the classical techniques for con-
structing nonstandard models do not work at the

TThis issue was raised by R. E. Tarjan.



simple level of A.(A,B). For example, forcing is
S

a technique that can be applied to formulas very
high in the analytical hierarchy [Bu]. It is
generally acknowledged by logicians that there are
few techniques for constructing such nonstandard
models, yet the theorem cited above asserts that a
byproduct of any Tower bound proof is an existence
proof for such nonstandard models.

Finally, we note that although we are unable
to extend these results to full Peano Arithmetic,
we can extend the theory PT slightly to include
theories with the property that all terms which
grow slowly are easy to compute. Thus we have
corresponding independence results for theories of
+, x and polynomially honest functions. For in-
stance, suitable theories are theories of

+1
+, X, X! and +,X,xy

IV. NONSTANDARD MODELS

In this section we will describe a result,
due to R. Solovay, showing that from the stand-
point of constructing nonstandard models the
theory PT is almost as strong as Peano Arithmetic
(PA, for short). We begin with a digression on
the nature of nonstandard models of PA and frag-
ments of arithmetic.

The classical observation of Skolem was that
a countable nonstandard model of PA could be ob-
tained simply by applying compactness to the set
of formulas

PA + (a>0) + (a>1) + (a>2) + ...

It is consistent to assume, then, that there

exists a "nonstandard object" a which is greater
than all standard integers. Such a model *N con-
tains N as an initial segment and has an ordering
*< extending < to *N-N. The global structure of

*N is remarkable. Define for x,y € *N x=y to mean
that x and y differ by a standard integer, i.e.,
for some n ¢ N:
x¥-y = n or y*-x.= n.
*N/= is a set of equivalence classes called blocks
(each is order isomorphic to N). N §s a blotk.
Also *< totally orders blocks 1ike the rationals
(i.e., blocks are densely ordered). Nonstandard
integers cannot be described by formulas of PA
and any formula true of infinitely many integers
must also hold at some b ¢ *N-N.

Nonstandard models for fragments of arithme-
tic also contain infinite, nonstandard objects
but may have vastly simpler structure. Consider
the (infinite) axiom system: for all n, me N,

sucm(0)+0"= suc™0),
sucm(0)+suc(suc'Y0)) = suc(sucm+n(0)),

suc(0)x0 = 0,
suc(0)xsuc(suc™(0)) = sucn(O)xsucm(0)+sucn(0),

suc™(0) # suc™0), for m # n,
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Twx) (x < suc™(0) <>V x = suc’(0)),
O<i<m
{(w){x < suc™0) V suc™(0) < x).

A nonstandard model for this theory is
*N=Nu {w, wé¢ Nwith *suc(w) = 0,

*suc(m) = suc(m) for all M e N and *+, *x defined
by the following tables

X Ix=w xeN
Y=w
yeN

0 XXy

As another example, take the open theory of
suc,pred,+, , and - together with the induction
axiom

A(0) A (Vi) [A(x) = A(suc(x)] > A(x), A open

A nonstandard *N consists of all nonnegative ele-
ments Q(t) of the ring of polynomials
p-1

Zap_]tp'i/q + b,

i=0

Where b,p,q ¢ N, a. ¢ R are algebraic and
Q(t) *< Q'(t) is détermined by Tetting t - w.

This model is quite important since it contains a
nonstandard element t3vZ such that

(t3/2)3 = 3 + ¢3,

so that Fermat's Last Theorem for n=3 fails in
*N (see [Sh] for details).

An important aspect of these weak fragments
of arithmetic is that they can have "effective"
nonstandard models, such as the two models des-
cribed above. That is, there is a recursive
definition of *+ and *x in terms of an enumer-
ation of the universe.

The possibility of independence from PT
would be less intriguing if PT turned out to be
one of these weak fragments. That is, if a *N
such that *N | «AS(A,B) could be found in which
*+ and *x could be“explicitly defined by finite
combinatorial means. In fact, PT has no effective
nonstandard models, so that proofs of lower bounds
are necessarily connected with the existence of
nonrecursive objects. We now sketch Solovay's
proof of this fact.

We first need the corresponding result for
PA, known as Tannenbaum's Theorem (cf. [Co] and
[EK]): Tet *N be a nonstandard model of PA; then
at Teast one of *+ and *x must be nonrecursive
The key idea of the proof is to find a nonstand-
ard object y which effectively encodes the in-
finite membership information regarding a non-
recursive set S. This can be done as follows.
It is possible in PA to define an RE nonrecursive
set S. In *N, S is *S. If p; is the ith prime

in *N, the Chinese Remainder Theorem holds for the
system



y = b, mod p;, Py <ce*N (6)

Let ¢ € *N-N and define the bi in (6) by:

0, ifies
by =\, ifigs
Information in y about *S is decoded as follows:
search *N for a z such that Pz =Y (i.e., n e *S)

or p,z = y-1 (i.e., n¢g *S). If *N is effective,

this procedure is effective and so *S an N is a re-
cursive set. It is not hard to see that S < *S n N;
a contradiction is reached by constructing a
specific S which cannot be so extended.

Solovay's argument begins by noticing that
although PT is weaker than PA, the only thing that
PT lacks is the ability to "talk about" growth
arguments. But, let *N be any nonstandard model
of PT and let ¢ € *N-N be a nonstandard integer.
In the initial segment beneath ¢ there is a sub-
model with enough "room" for the argument above to
be carried out. To see how this can happen let

", = {xe*N|Togkc > x for all keN}.

*NC is closed under polynomial time functions. For
example suppose X ¢ *Nc' Then

k+1

log” ‘¢ > x, for all k e N

and so

1ogkc > 2% > x2.

Surprisingly, *NC is also a model of PT+ exponen-
tial. This follows as above: if x ¢ *NC

1ogk+2c > x, for all k ¢ N.
Thus
X
1ogkc > 22 > 2%

implies X e *Nc'

Continuing ir this manner, it is possible to
build a model *M < *N which is closed under enough
of the PA definable functions to let the proof of
Tannenbaum's Theorem be carried out. But then the

recursiveness of *N contradicts the nonrecursive-
ness of *M,

V. FURTHER DISCUSSION

_The results presented above show that lower
bound proofs are exactly as difficult as indepen-
dence proofs. This in itself leads to interesting
speculations, but we feel the real force of these
results lies in the Tink they create between the
relatively new (and rather concrete) problems of
computer science and some classical questions at
;he foundations of mathematics. We will mention
%qsﬁ a few possibilities which ensue from such a

ink.
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(1) 1t is possible that the methods of mathe-
matical logic may help us resolve such
questions as whether or not P = NP.

(2) Since lower bound proofs are equivalent to
independence proofs, it is possibie that
the Tower bound statements themselves are
independent from PA or similar theories.
We make the following conjecture: "P = NP"
is independent of PT.

{3) Following the reasoning of (2), a viable
approach to lower bounds might be to look
for consistency with theories such as PA
and PT.

(4) It is possible that a nontrivial lower
bound will be proved, providing an entirely
new method of building nonstandard models
for arithmetics.

(5) It is possible that T |- AS(A,B) implying

the existence of a polynomial but quite
useless algorithm for S.

(6) The main result of Section III together
with Solovay's result comes very close to
explaining the difficulty in obtaining
Tower bounds: any such proof must impli-
citly construct a noneffective system.
This makes it seem far less 1ikely that the
finite combinatorial methods of the sort
which have been applied in extant lower
bound proofs will be able to prove non-
trivial lower bounds on NP-complete
problems.
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