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I. Introduction 

One of the most important open 
questions in the field of computational 
complexity is the question of whether 
there is a polynomial time decision proce- 
dure for the classical propositional 
calculus. The importance stems from 
theorem 1 in Cook [1971aI, which demon- 
strates the equivalence of this question 
to the question of whether P = NP, and 
from results in Cook [1971a] & Karp [1972] 
which show that an answer either way to 
the question P = NP would have strong 
implications concerning the complexity of 
many combinatorial problems of interest in 
Computer Science. 

The purpose of the present paper is 
to study a question related to the comple- 
xity of decision procedures for the 
propositional calculus; namely, the 
complexity of proof systems for the propo- 
sitional calculus. The fundamental issue 
here is whether there exists any vroof 
system, and a polynomial p(n) such that 
every valid formula has a proof of length 
not exceeding p(n), where n is the 
length of the formula. Theorem 1 below 
helps establish the importance of this 
question. For the purposes of this 
theorem, we give the following definitions. 

A proof system is a function F from 
the set E* of strings on some finite 
alphabet E onto the set of valid proposi- 
tional formulas such that F can be 
computed in polynomial time by a Turing 
machine. If F(w) = A, then w is said 
to be a proof of A in the system. 

All ordinary proof systems for 
tautologies can easily be made to fit this 
definition by regarding the proofs in the 
system as strings on some alphabet, and 
the function F would take a proof into 
the formula proved. If a string w did 
not code a proof, then define 
F(w) = p v ~p. If the system is a refuta- 
tion system for inconsistent formulas, 
then one can regard a refutation of ~A 
as a proof of A. 

Proposition: The set of tautologies is in 
NP if and only if there exists a super 
proof system. 

The proof is almost immediate. If 
there exists a super proof system F, then 
the nondeterministic polynomial time proof 
procedure for the tautologies would consist 
in guessing at the proof w for an input 
formula A, and then checking that 
F(w) = A. Conversely, if the tautologies 
are in NP, then a super proof system can 
be obtained fror~ a nondeterministic polyno- 
mial time procedure for the tautologies by 
letting every accepting computation of an 
input formula A be a proof of A. 

Theorem 1 The class NP is closed under 
complements if and only if there exists a 
super proof system for the tautologies. 

Proof: Suppose NP is closed under 
complements. Since the set of falsifiable 
formulas is in NP, it follows that the 
set of tautologies is in NP, and by the 
above lemma, there exists a super proof 
system. 

Conversely, suppose there exists a 
super proof system. Then the tautologies 
are in NP. Consider an arbitrary set L 
in NP, and let Z be a single tape non- 
deterministic Turing machine which accepts 
L in polynomial time. Given an input 
string w to Z, let A(w) be the propo- 
sitional formula constructed in the proof 
of theorem 1 in Cook [1971a]. Then A(w) 
is satisfiable iff Z accepts w. Hence 

~A(w) is a tautology iff w c L c, where 

L c is the complement of L. Since there 
is a nondeterministic procedure to accept 
the tautologies, and since A(w) can be 
constructed in polynomial time, it follows 

that L c is in NP. 

Thus there are two main reasons for 
studying the complexity of proof systems. 
If we succeed in finding a super proof 
system, then it would follow that NP is 
closed under complements, which would have 
very interesting implications for each of 
the combinatorial problems discussed in 
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Figure 1 The Relative Strengths of Various Proof Systems 
The strongest proof system (i.e. those with shortest proofs) are at the 

top. An arrow ~÷~--~ indicates that system S 1 can simulate system $2, 

in the sense that for some polynomial p(n) (never more than fourth degree), 
for every proof or refutation D in S 1 of a formula A there is a proof 

or refutation D' in S 2 of a suitable translation of A such that 
? 

]D'[ ~ p([D]). A dashed line --:-> indicates it is not known whether there 
is a reverse polynomial simulation. Where no such line is drawn, it is known 
there is no reverse polynomial simulation. Systems appearing in the same box 
can simulate each other in this sense. Systems below the horizontal dashed 
line are known not to be super (i.e. there is no polynomial bound on the 
length of the shortest proof of A as a function of the length of A). 

Karp [19727. (For example, it would show 
the existence of a proof system, such as a 
list of invariants, which would provide a 
short proof that any two non-isomorphic 
graphs are in fact not isomorphic.) If, 
on the other hand, we could show that no 
super proof system exists, we would then 
have a proof that P ~ NP. 

In the remainder of the paper we will 
partially classify according to relative 
strength most of the major proof systems 
that have been proposed for the proposi- 
tional calculus. We will prove (or report 
from other papers) results of two kinds. 
First, we will present lower bounds on the 
minimum proof lengths for some systems. 
These will show that some systems, such as 
Smullyan's analytic tableaux and the 
Davis-Putnam decision procedure (regarded 
as a proof system) are definitely not 
super. Second, we will present polynomial 

simulation results between pairs of proof 
systems. 

Figure 1 presents a summary of our 
results. The unfamiliar terms in the 
figure will be explained later. In parti- 
cular, a Frege System is a general kind of 
proof system which includes many of the 
standard systems appearing in logic 
textbooks, such as Kleene [1952]. 

The major result which emerges from 
this paper is that most major proof systems 
(namely those indicated in the top box in 
figure i) are equivalent, in the sense that 
given any two systems there is a polynomial 
p(n) so that for any proof or refutation 
D of a formula A in the first system 
there is a proof or refutation D' of a 
suitable translation of A in the second 
system such that [D'[ ~ p([D[). (Transla- 
tion of A is only necessary if the 
systems use different logical connectives, 
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or one of the systems is resolution.) In 
particular, any one system in the top box 
is super if and only if all are super. 
Furthermor -, every proof system we have 
come across in the literature specifically 
for proving validity or unsatisfiability 
of propositional formulas (or systems for 
predicate formulas, suitably restricted) 
can be simulated by systems in this equi- 
valence class, with at worst a polynomial 
increase in proof length. Of course 
powerful formal theories, such as 
Zermelo-Fraenkel set theory, can be used 
as proof systems for tautologies, and it 
seems reasonable to guess that these have 
no polynomial simulation by members of the 
equivalence class. 

Nevertheless, the methods incorporated 
in the equivalence class at the top of 
Figure 1 are stable and powerful. None of 
the specific sets of formulas defined in 
this paper or in the papers referred to 
here will show these systems are not 
super. In fact a proof that these systems 
are not super would be a very interesting 
and probably a deep result. 

We propose studying these systems, 
both from the point of view of trying to 
find examples with no short proofs, and by 
trying to find more invariant characteri- 
zations of the proof methods embodied in 
these systems. Another interesting 
research problem is to study proof systems 
for some of the complements of the combi- 
natorial problems in tip listed in Karp 
[1972], and try to find natural proof 
systems for these problems which are 
"equivalent", in an appropriate sense, to 
the powerful systems for the propositional 
calculus. 

We remark that to us the most 
interesting simulation result is that the 
Frege systems, such as the standard system 
in Kleene [1952], can simulate natural 
deduction or Gentzen with cut, with only a 
linear or quadratic increase in proof 
length. The surprise comes because 
natural deduction incorporates the deduc- 
tion theorem as a rule of inference, and 
the standard method of proving the 
deduction theorem for a Frege system seems 
to involve an exponential increase in 
proof length. 

II. Languages for Propositional Calculus 

Consider the language L defined by 
the following grammar. The alphabet for 
L i s  { P , O , l , ( , ) , T , F , - ~ , v , c , = , - , & , [ , ¢ , } , ¢ ,  
+} .  
< a t o m >  ÷ P ,  < a t o m > O ,  < a t o m > l  ( n o t e :  

A ÷ B,C a b b r e v i a t e s  A ÷ B a n d  
A÷C) 

<nullary connective> ÷ T,F 
<unary connective> ÷ 
<v-like connective> ÷ v,c,=,&, J,~,£,+ 
<'-like connective> ÷ -,~ 

<binary connective> ÷ <v-like connective>, 
<.-like connective> 

<connective> ÷ <nullary connective>, 
<unary connective>, <binary connective> 

<atomic formula> ÷ <atom>, <nullary 
connective> 

<formula> ÷ <atomic formula>, <unary 
connective><formula>, (<formula> 
<binary connective><formula>) 

If < is a set of connectives, then L 
K 

is the restriction of L to the alphabet 
(P,0,1,(,)} u <. In what follows, lower 
case letters D,q,r, etc. will represent 
atoms, and upper case letters A,B,C,AI,A 2, 

etc. will represent formulas. 

If A is a non-atomic formula, then 
A has one of the forms ~B or (BoC), 
where B and C are formulas and o is a 
binary connective. The principal 
subformulas of A are B if A is ~B, 
or B and C if A is (BoC). The 
principal connective of A is ~ if A 
is ~B, or o if A is (BoC). The set 
sub(A) of subformulas of A is defined 
inductively by: 

[ 4 (the empty set) if A 
is an atomic formula 

sub(A) = {A} u sub(B) if A is ~B 
sub(B) u sub(C) if A is 

(BoC) 
If S is a set of formulas, then 
sub(S] = u sub(A]. The set at(S) of 

A~S 
atoms of S is sub(S) n (P{O,l}*), the 
set of subformulas of S which are atoms. 

If AI,...,A k are formulas and 

pl,...,p k are distinct atoms, then the 

AI,-..,A k 
substitution ~ = is the mapping 

Pl,...,Pk 
from formulas to formulas such that ~(B) 
(usually written B~) is the formula 
obtained by (simultaneously) replacing all 
occurrences of each Pi in B by the 

corresponding A i. (The result of this 

substitution is necessarily a formula, 
since a formula can appear anywhere that an 
atom can appear in a formula.) The formula 
Bo is said to be an instance of B. If S 
is a set of formulas, then S~ is the set 
of formulas obtained by applying o to 
each formula in S. If AI,...,A k are in 

AI,...,A k 
formulas in L<, then ~ - is 

Pl .... 'Pk 

ql,...,qk 
a substitution in L . If ~ - 

< pl,...,pk' 
ql,...,q k are distinct atoms, and 

{ql ..... qk ) n (at(S)-{p I ..... pk )) = 

(i.e. no qi which is not a pj is an 

atom of S), then g is called a renaming 
(for S). 
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I£ A is a set of atoms, then a 
truth assignment to A is a mapping 

: A + {t,f) from A to the set of 
truth values: t (ture) and f (false). 
If S is a set o~ formulas and ~ is a 
truth assignment to at(S), then T can 
be extended to sub(S) according to the 
following inductive definition: 

(r) = t,~ ~(F) = f 
z(~B) = ~ if z(B) = t 

if • (B) = f 

If A is (3oC) then ~(A) is 
given by this table 

t t 
t f 
f t 
f f 

o ~ (~) : V = 

t t ~ ~  
t t ~  

t ~ t t  

t f t f f 

We no~e that the ten binary connec- 
tives listed represent those ten of the 
sixteen binary truth functions which 
depend on both arguments. The six omitted 
are the two projection functions, the two 
negated projection functions, and the two 
constant functions. These six can be 
represented using unary and nullary 
connectives. 

Truth assignment ~ to at(A) 
satisfies (falsifies) A iff ~(A) = t(f). 
Formula A is satisfiable (falsifiable) 
iff there is a %-~uth assignment which 
satisfies (falsifies) A. Formula A is 
unsatisfiable, also inconsistent (valid, 
also a tautology) iff A is not 
satisfiable (falsifiable). Note that A 
is a valid (inconsistent) iff ~A is 
inconsistent (valid). A formula which is 
both satisfiable and falsifiable is said 
to be contingent. 

Set of formulas S logically implies 
formula A (denoted S ~ A) iff every 
truth assignment to at(Su{A}) which does 
not falsify any formula in S, satisfies 
A. (Note that this definition says that 
for S = ¢, ~ ~ A iff A is a tautology. 

~ A is abbreviated to ~A.) Formulas 
A and B are logically equivalent 
(denoted A ~ B)--- iff A ~ B and B ~ A. 

Let A be a set of atoms where 
IAI = n. Let <pl,...,pn > be the atoms 

of A, ordered lexicographically. There 

is a l-to-I correspondence between 2 n 
distinct truth assignments to A and the 

2 n distinct n-tuples of t and f, 
given by T +-+ <T(pl),...,T(pn)>. A truth 

function of n w riables is a function 

@ : {t,f} n ÷ {t,f] from n-tuples of t 
and f (equivalently, truth assignments 
to a set of n atoms) to {t,f}. There 

are 22n distinct truth functions of n 
variables. If lat(A) l = n, then the 

truth function expressed by A is the 
truth function eA of n variables 

defined by: @A(T) = T(A). If Ao is a 

renaming of A, then @A~ comes from @A 

by some permutation of the arguments. If 

AI,...,A n 
PI'''''Pn where PI' "''Pn are the 

atoms of ~B in lexico~raphic order 

= 0B(°A1 (x) ..... 0A (x)). then @B~(X) n 

Let < be a set of connectives. < 
is adequate iff for every truth function @ 
there is a formula A in L which < 
expresses 0. ~ is minimally adequate iff 
< is adequate and no proper subset of < 
is adequate. It can be shown that there 
are 26 minimally adequate sets of connec- 
tives ({l},{+},{7,v},{7,c},{7,~},{7,&}, 
{7 , ~ } ,  {7 , ~ } ,  ( T , ~ } ,  {T,~ }, { F , c } ,  {F,  ~ }, { c , ~ } ,  
(= ,~ ) ,{~ ,~} ,{~ ,~} , (~ ,~ ) ,{~ ,~} ,  {~,~},{~,~}, 
{ T , v , ~ } , { T , & , ~ } , { F , v , ~ } , { F , & , E } , { v , ~ , ~ } ,  
and  { & , ~ , ~ } )  and 4 m a x i m a l l y  i n a d e q u a t e  
s e t s  o f  c o n n e c t i v e s  ( { T , F , v , & } , { T , F , ~ , H , ~ } ,  
{ T , v , ~ , = , & , ~ } ,  and  ( F , v , & , ~ , ~ , ~ } )  . 

III. Frege Systems 

A rule of inference is a pair (S,B), 
written R = S ÷ B, where S is a 
(possibly empty) finite set of formulas and 
B is a formula. R is said to be a rule 
in L if B and all of the formulas in < 

S are formulas in L . Rule R = S ÷ B < 
is sound iff S ~ B. Observe that for any 
subst-~tion o, S ~ B implies that 
S ~ B . If R = S ÷ B is sound and 

S = ~, then all substitution instances of 
B are tautologies, and B (or R) is 
often called an axiom or axiom scheme. If 
R = {AI,...,A k} +---~---is a rule of inference, 

and C1,...,Ck,D are formulas, then D is 

inferred from CI, .... C k by R iff there 

is a substitution ~ such that 
C 1 = AI~,...,C n = And , and D = B~. If R 

is sound and D is inferred from CI,...,C k 

by R, then CI,...,C k ~ D. 

A deduction system is a pair 
I = (<,R), where < is a set of connec- 
tives and R is a finite set of sound 
rules of inference in L . A derivation in < 
deduction system I = (<,R) of formula B 
from the set of formulas S is a sequence 
D = <AI,...,An > of formulas in L< such 

that for each i, l~i~n, A. is inferred 
i 

from formulas in S u {AI,...,Ai_ I} by 

some rule in R, and A = B. The notation 
n 

S ~I A means there is a derivation in I 

of A from S, and S ~I A via D means 

D is a derivation in I of A from S. 
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Since ~ is a transitive relation, it 
follows that S ~ A whenever S ~I A. 

Deductive system I is complete iff for 
every valid formula A in L<, ?I A. 

System I is implicationally complete iff 
for every S,A in L such that S P A, 

K 

S ?I A. If D is a derivation, then Do 

is the sequence of formulas obtained by 
applying ~ to each formula in D. Since 
rules of inference are transparent to 
substitution, if S 5I A via D and if 

o is in L<, then S~ ?I Ao via D~. 

A Frege system is an implicationally 
complete deduction system F = (<,R) 
where < is adequate. The notion of a 
Frege system is intended to describe the 
essential characteristics of the deductive 
systems found in most textbooks on mathe- 
matical logic. For example, one system 
described by Mendelson [1964] is a Frege 
system M = (<,R), where < = {n,=} and 
S = {÷ (P~ (P0~P))  ,÷ ( (P~ ( P 0 ~ P l ) )  ~ ( (P~P0)  ~ 
( P ~ P l ) ) ) , ÷ ( ( m P ~ n P 0 ) ~ ( P 0 ~ P ) ) , { P , ( P ~ P 0 ) } + P 0 } .  
F r e g e ' s  o r i g i n a l  s y s t e m  ( F r e g e  [ 1 8 7 9 ] )  had 
s i x  axiom schemes  and t h e  r u l e  modus 
p o n e n s :  {P,P~P0} ÷ P0. O t h e r  F r ege  
s y s t e m s  can  be found  i n  H i l b e r t - A c k e r m a n n  
[ 1 9 5 0 ] ,  K l e e n e  [ 1 9 5 2 , 1 9 6 7 ] ,  M e n d e l s o n  
[ 1 9 6 4 ] ,  and S c h o e n f i e l d  [ 1 9 6 7 ] .  The 
i n t e r e s t i n g  f a c t  a b o u t  F r ege  s y s t e m s  i s  
t h a t  a l l  F rege  s y s t e m s  a r e  s u p e r  (when 
v i ewed  as p r o o f  s y s t e m s  f o r  t a u t o l o g i e s )  
i f  and o n l y  i f  any  one p a r t i c u l a r  F r e ge  
s y s t e m  i s  s u p e r .  T h i s  f a c t  w i l l  be p r o v e d  
i n  t h e  f o l l o w i n g  d e v e l o p m e n t .  

Let  F 1 (< I ,R1 )  and F 2 = (<2,R2)  
be two F rege  s y s t e m s ,  and s u p p o s e  S bF1 A 

v i a  D 1. In  t h e  c a s e s  where  e i t h e r  <1 

contains neither ~ nor ~ or <2 

contains E or ¢, there is a direct way 
of translating formulas in L and L 

<I <2 
such that td(A) (the direct translation 
of A) is logically equivalent to A, 
has length proportional to the length of 
A, and has approximately the same sub- 
formula structure as A. When such a 
translation exists, there is a derivation 
D2, whose length is bounded by a constant 

times the square of the length of DI, 

such  t h a t  t d ( S )  HF2 td (A)  v i a  D 2. When 

<i contains ~ or ~ and <2 does not 

contain either E or ¢, there is no 
direct translation with the three necessary 
properties, so an indirect type of trans- 
lation must be used. Whereas td(A) ~ A, 
ti(A) (the indirect translation of A) 
only has the property that ti(A) is 
valid if and only if A is valid. In 
this indirect case, all that can be said 
is that if pFl A via DI, there is a 

derivation D2, whose length is bounded by 

a constant times the fourth power of the 
length of DI, such that 5F2 ti(A) via 

D 2 • 

To make the above informal discussion 
more precise, several notions of length 
will be defined. If A is a formula, then 
IAI is the number of symbols in A, and 

IAla is the number of occurrences of atoms 

in A. If D = <AI,...,Az> is a deriva- 

n 

tion, then ID = ~ IAil, 
i=l 

n 

IDIa = [ IAi a' IDI~ = ~' and 
i=l 

I DIs = Isub(D) , the number of distinct 

subformulas which occur in formulas in D. 

Direct Translation 

Let < be any adequate set of connec- 
tives. Let <' = < u {T,F,~}, and let 
+ 

< = all connectives if < contains E or 
~, or all connectives except E and 
if < does not contain either E or ~. 
A direct translation from <i to <2 is 

defined to be a function td : {formulas in 
L } ÷ {formulas in L } which satisfies: 
<i <2 

I. td(A) - A 
2. Itd(A) I s c[AI, for some constant 

c independent of A 

3. td (A~)  = td (A)  tdp(B) 

4. Vp • a t ( A ) :  t h e  number  o f  o c c u r -  
r e n c e s  of  p i n  t d (A)  e q u a l s  
t h e  number  o f  o c c u r r e n c e s  o f  p 
i n  A. 

The f o l l o w i n g  f a c t s  a r e  e a s i l y  v e r i f i e d  f o r  
any  a d e q u a t e  s e t  o f  c o n n e c t i v e s  <. 

a .  The r e  i s  a f o r m u l a  T i n  L 
K < 

w i t h  T ~ T. (Le t  T be t he  s h o r t e s t  
K < 

t a u t o l o g y  i n  L<. For  e x a m p l e ,  

T{[} = ( ( P l P )  l P ) . )  

b. There is a formula F in L 
K < 

with F ~ F. (Let F be the shortest 
E < 

inconsistent formula in L . For example, 
K 

F{]} ( ( ( P I P )  IP) 1 ( ( P I P )  IP))  . )  

c .  The re  i s  a f o r m u l a  N i n  L 
< < 

w i t h  o n l y  one o c c u r r e n c e  o f  P0 such  t h a t  
N< ~ nP0.  (For  e x a m p l e ,  N{I } = ( ( ( P i P ) ] P )  

i 

IP0) .) 
d. < contains some v-like 

connective: o. 
e. For every v-like connective x, 

there is a £ormula B x in L , with one 
< < 

occurrence each of P0 and P1 such that 

B x ~ (P0xPI). (If A 0 means A and A 1 
< 
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means ~A, then there are 0 ~ ~i,~2,~ 3 

~ e2)~ 3 
1 such that (P0 loP1 ~ (P0xPI). 

For example, (P0zPI) ~ (P01nPI) = B~I}. ) _  

f. If < contains E or ~, then 
for any E-like connective x, there is 

a formula BxK in L<, with one occurrence 

each of P0 and Pl such that 

B x ~ (P0xPl) (This comes from the equi- 

valences (P0~Pl) ~)~(POEPI) and 
(PO~P1) ~ = ( P O t P 1 ] .  

U s i n g  t h e s e  f a c t s  i t  i s  e a s y  t o  show t h a t  
the following recursive definition defines 

+ 
td' to be a direct translation from 

K 

to <'" 
td~(p) = p for any atom p 

t d i ( T )  = T 

t d ~  (F)  = F 

t d ~ ( ~ B )  = ~ t d ~ ( B )  

otd~(A) td~(B) 
t d ~ ( A o B )  = B K P0 P l  

T h e n  t d "  i s  a d i r e c t  t r a n s l a t i o n  f r o m  
K 

<' to K, when td" is defined by: 
< 

t d "  (p)  = p 
K 

t d "  ( r )  = T 
K 

td"(F) = F 
K < 

t d ~ ( g )  
t d " ( n B )  = N - - -  

< < PO 
t d " ( A o B )  = t d " ( A )  o t d ~ ( B )  < < " 

Finally, since the composition of two 
direct translations is a direct transla- 
tion, if td is defined by 

K 

t d < ( A )  = t d " ( t d ~ ( A ) )  t h e n  t d  i s  a 
+ 

d i r e c t  t r a n s l a t i o n  f r o m  < t o  <. 

T h e o r e m  2 L e t  F 1 = ( < I , R 1 )  and  

F2 = ( < 2 ' R 2 )  be  F r e g e  s y s t e m s  w i t h  
+ 

E1 ~ <2" T h e n  t h e r e  i s  a c o n s t a n t  c 

s u c h  t h a t  w h e n e v e r  S ~F1 A v i a  D 1 

t h e r e  i s  a d e r i v a t i o n  D 2 s u c h  t h a t  

td<2(S ) ~F2 td<2(A) via D 2 where 

ID21 n s cIDII n and ID21 s c[DII n. 

2 (IDll + [ IAI) ~ c(IDII+Isl)  
AeS 

Proof: The notion of translation is 
eas--ffg-fTy extended to the translation of 
inferences. Suppose R = {A 1 .... ,A n } ÷ B 

is a rule of R I. Then AI,...,A n ~ B, 

and since F 2 is implicationally complete, 

let td<2(Al) ..... td<2(A n) pF2 td<2(B) 

A 1 , •.. ,A k 
via D R . If ~ = PI'''''Pk is a substitu- 

tion in LK1, define td 2(~) = 

td<2 (A I) .... ,td<2 (A n ) 
so that 

Pl ' " " " 'Pn 

td 2(A~) = td<2(A)td<2(~ ). Now to translate 

the given derivation DI, for each formula 

A i in D 1 which is inferred from previous 

formulas in oD~ and formulas in S by 
substitution ~i in rule Ri, replace 

A i by DRitd<2(~i). The resulting 

derivation D 2 is a derivation such that 

td<2(S ) ,UF2 tdK2(A) via D 2. Since IDRI n 

is a fixed constant for each R, it is 
clear that ID21 n -< C[Dll n. If 

A 1 ,... ,A k k 
-Pl "''Pk' define l~I = [ IAil. 

'" i=l 
Since IDRI a is a fixed constant for each 

R, there is a constant c R such that 

IDRU I -< CRla I. Now, if A i is inferred in 

D i by substitution of ~i in rule Ri, 

then, since the number of atoms in R. is 
i 

fixed, and since each formula in u. must 
i 

be a subformula of some formula in S or 
D I, there is some constant c' such that 

I~il -< c'(IDiI + [ IAI). Finally, since 
AES 

translation causes no more than linear 
expansion of formulas summation of the 
relation IDR ~il -< ciIDll + [ IAI) for 

i A~S 
all formulas A i in D 1 yields 

IDzl-< ClDlln(IDi[ + [ IA/). Q . E . D .  
AeS 

Indirect Translation 

If <I contains ~ or ~ and <2 

contains neither 5 nor ~, then the 
above type of direct translation will not 
work, since there can be no formula in L 

<2 
with no more than one occurrence each of 
P0 and P1 which is logically equivalent 
to either (POEPI) or (P0~PI). In this 
situation, the following indirect 
translation will suffice. 

Let S be a set of formulas in L 
with [Sls= s. To each distinct formula 

A in sub(S) for which ~ is not the 
principal connective, associate a unique 
atomic formula £s(A). This association 

can be made in such a way that £s(T) = T, 

£s(F) = F, and for each A e sub(S) 
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]gs(A)[ ~ I + Llog2(s)]. For formulas in 

sub(S) of the form nA, set 

~s(~A) = ~S-~K)-, where p = N p~ and 

N P~-ff0 = p" This assigns a literal (atom 

or negation of an atom) of length 
]ks(A) ] ~ 1 + INN] + ~og2(s)J to each 

subformula in sub(S), with distinct 
(after removal of double negations) 
formulas being assigned distinct literals, 
and complementary formulas being assigned 
complementary literals. 

For each binary connective o, let 
o 

E be a formula in L such that 

o ~ ' = max IE ° I E< (P~(P0oPl)), and l e t  c< < 
o 

For  e a c h  f o r m u l a  AoB in  s u b ( S )  whose 
p r i n c i p a l  c o n n e c t i v e  i s  b i n a r y ,  d e f i n e  

~(Aog) = E ° Zs(A°B) ~s(A) Zs(B) n o t i n g  
kS < P PO Pl ' 

t h a t  [£%(A°B) I ~  ~ c ~ ( l + l N < l + K l o g ~ ( s ) J )  

c < L l o g 2 ( s )  j .  F i n a l l y ,  l e t  

d e f ~ ( S )  = td  ( ( A o B ) ~ s u b ( S )  Z~(AoB) ) ,  
where  t h e  p a r e n t h e s i z a t i o n  o f  t h e  l a r g e  
c o n j u n c t i o n  i s  done  in some s t a n d a r d  way.  
(For  e x a m p l e ,  t h e  ( A o B ) ' s  a r e  o r d e r e d  
l e x i c o g r a p h i c a l l y ,  and t h e  g r o u p i n g  i s  
frum left to right: ((...((EI&E2)&Es) & 

...)&Es).) If C ¢ sub(S), then 

def~(C) = td<(CAoB)~subCC) Z~CAoB)). 
There is a constant d such that 

K 

I d e f  S (C) I ~ d< [ c[ s k l°gz I st s ] • Note  t h a t  
t h e r e  i s  a r e n a m i n g  s u b s t i t u t i o n  p such  

t h a t  d e f ~ ( C )  = d e f ~ ( C ) p .  A l s o ,  i f  

A 1 , . . . , A  k 
= , and C = Ba, then there 

Pl,...,Pk 
is a renaming p sUChkthat 

d e f ~ ( C )  ~ ( d e f B ( B ) P & ( i ~ l  d e f ~ ( A i ) ) ) .  T h a t  
i s ,  i f  C i s  a s u b s t i t u t i o n  i n s t a n c e  o f  
B, t h e n  t h e  c o n j u n c t s  o f  t h e  d e f i n i t i o n  
o f  C a r e  t h e  c o n j u n c t s  o f  t h e  d e f i n i t i o n s  
o f  t h e  f o r m u l a s  s u b s t i t u t e d  i n t o  B p l u s  
a r e n a m i n g  o f  t h e  c o n j u n c t s  o f  t h e  
definition of C. 

The following lemmas show how 

def~(C) captures the important properties 

of C. Let PS be the renaming induced by 

£S on the atoms of S, (i.e. 

£S (P l )  • . .  ~S (Pk) 
PS = Pl'''Pk , where {pl,...,pk } 

are the atoms of S.) Clearly SPs is 

is satisfiable (falsifiable) iff S is 

satisfiable (falsifiable) . Also, £S can 

be chosen so that for every A in sub(S) 
lAps! -< IAI, by c h o o s i n g  

f p  if ]P[ -< 1 + Llog 2 ( s ) j  
k s ( p )  = ~ s o m e  new p '  s . t .  ] p ' [  -< 1 + 

Llog 2 ( s ) J  o t h e r w i s e  

Lemma 1 T satisfies E ° iff 
< 

T(P) = T(p0opI). 

Proof Immediate from the definition of E °. < 

Lemma 2 T satisfies £~(AoB) iff 

T ( ~ s ( A o B ) )  = ~ ( ~ s ( A ) o ~ s ( B ) ) .  

P r o o f  S u b s t i t u t e  d e f i n i t i o n  o f  ~.s(AoB) 
i n t o  lemma 1. 

Lemma 3 T satisfies def~ (S) iff 

VAcsub(S) : T(APs ) = T(Zs(A)). 

Proof 
=>--TJ--rnduction on the number of subformulas 

of A. 
basis: A is an atomic formula. 

If A is atomic, then 
APs = £s(A)' so 

T(APs ) = T ( £ s ( A ) ) .  
i n d u c t i o n  s t e p :  Suppose  

T(Ap S) = ~ ( Z s ( A ) )  and 

T(BPs ) = ~(~s(B)). Then 

(nA)p S = n(APs ) and 

(AoB)p S = (APsOBPs).  

( ~  i f  T(APs ) = ~ )  
I) r(nAPs ) = i f  T(APs ) 

= ( f  i f  T ( ~ s ( A ) )  = t ) 

t i f  T ( ~ s ( A ) )  f 

= T ( ~ £ s ( A ) )  = T(ZS(-TA)).  

2) Since ~ satisfies def~(S), 

satisfies each of its conjuncts, 

<(AoB) in particular. By lemma 
£S 
2, T (£ s (AoB) )  = T (Zs(A) oZs (B) )  , 
and by the induction hypothesis 
T(£s (A)  oZs (B) )  = T ( ( A o B ) p s )  , so 

T ( (AoB)Ps )  = T ( ~ s ( A o B ) ) .  
<=) Suppo'se t h a t  g A c s u b ( S )  : 

~(APs ) = ~ ( £ s ( A ) ) .  Then f o r  e a c h  
(AoB) ¢sub (S) , 
~ ( ( A P s o B p $ ) )  = r ( ~ s ( A o B ) ) ,  

• (APs) = r ( ~ s ( A ) ) ,  and 
r ( B P s  ) = ~ ( ~ s ( B ) ) .  By t h e  d e f i n i t i o n  
o f  e x t e n s i o n  o f  a t r u t h  a s s i g n m e n t ,  
T ( ( A p s o B P s ) )  = r ( ~ s ( A )  o B s ( B ) ! ,  so t h a t  
T ( £ s ( A o B ) )  = ~ (~s (A)  o B s ( B ) ) .  Then ,  by 
lemma 2, T s a t i s f i e s  ~ ( A o B )  . 

F i n a l l y ,  s i n c e  T s a t i s f i e s  e a c h  
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conjunct of def~(S), T satisfies 

def~(S). 

Lemma 4 A c sub(S) is falsifiable iff 

td<(def~(S)~s(A)) is falsifiable. 

Proof 
=>--~uppose ~ falsifies A. 

Then T' = falsifies ~Ps APs" 
((~a)(B) = ~(S~)) 
Extend T' to T" which assigns 
arbitrary truth values to the atoms of 
SPs not in APs. Then extend T" to 

T'" such that VB ~ sub(S), 
• '"(Zs(B)) = ~"(BPs). Such an extension 

is possible, since each distinct 
B c sub(S) (after removal of double 
negations) has a distinct ks(B ) . Now, 

by lemma 3, ~'" satisfies def~(S) 

with ~'"(£s(A)) = T'"(APs) = f. But 

this means that T'" falsifies 

t d <  ( d e f ~  (S) ~£S (A))  . 

<=) Suppose ~ falsifies 

td< (def~(S) =£S (A)) . 

Then ~(def%(S)) = t and 

• (Zs(A)) = f. By lemma 3, 

T(APs)  ~ I T ( Z s ( A ) )  = f .  But  t h e n  

• ' = Tp S ( r e n a m i n g s  a r e  s u r e l y  

invertible) falsifies A. 
Define an indirect translation to be 

ti~(A) = t d < ( d e f ~ ( S ) n ~ s ( A )  ) .  Also define 

s , = ~' 
t i <  (S) u { t i  (A)} 

AeS 

T h e o r e m  3 Le t  F 1 ( < I , R 1 )  and  

F 2 = ( < 2 , R 2 )  be  two a r b i t r a r y  F r e g e  

s y s t e m s .  Then  t h e r e  i s  a c o n s t a n t  c 
such that whenever S PFI A via D I 

there is a set S' with A E S and a 
derivation D 2 such that 

.S v 
ti S (It) via D 2 where 

tl<2(S) ~f 2 <2 

]D21 n ~ ClDlln. IP]USIs and  ID21 

) 2 ' l o g 2 ( l D 1 U S l s )  ClDlln'([VlUSl s 

c(IDlUS]) 4. 
Proof The proof  of th i s  theorem is based 
on-n--f~e fo l low ing  two lemmas. 

Lemma 5 Suppose R = {AI,...,A k} ÷ g is 

a sound rule of inference. Then 

((p&def~(A 1)) =£S (A1)) . . . . .  ((p&def~ (Ak)) 

~s(Ak)),k((p&def~ B))~s(B)) where 

s = {A 1 ..... A k) u {B). 

Proof Suppose ~ satisfies ((p&def~(Al)) 

~£S (AI)) ..... ( (p&def~ (Ak)) =ZS (Ak)). 2 
cases arise: 

I) T satisfies deF~(S) and p. 

Then, by lemma 3, T(£~(AI)) = T(AIPs) , 

.... T(£s(An)) = T(AnPs) , and 

T(Zs(B)) = T(BPs). Since R is sound, 

AI,...,A n = B, so AIPs,...,AnP S b Bp S. 

Since T satisfies def~(S) and 

ti~(Ai) l~i~n, T satisfies AiP S 

l~i~n. But then T satisfies BPs, 

since AlPs,...,AnP S ~ BPs , so 

T(£S(B)) = t and T satisfies ti~(B). 

2) T falsifies ((p&def~(S)). 

Then T satisfies (def~ (S) =£S (B)) 

ti~ (B). 

ti~(Al) ..... ti~(An) > ti~(B). 

Lemma 6 For any Frege system P = (<,R) 
t-]Yere exist constants c I and c 2 such 

that given any set S 1 of n formulas in 

L<, a set S 2 of m formulas from SI, 

A), D = td (A~S 2 A) and C = td<( A S1 < , 

atom p, there is a serivation D such 
that tdK((C&D)=P) PF tdK(C=P) via D and 

Ip[n ~ clmn and for each formula A ~ P 

IAI ~ CmlCr. 
Proof Since each conjunct of D is a 
conjunct of C, C ~ C&D. 
The details of the rest of the proof are 
rather tedious but straightforward. In a 
Frege system F', designed for easy mani- 
putations of conjunctions and implications, 
a derivation P' : ((C&D) np) ~F' (Cnp) via 

< cmn is derived. Then a D' w i t h  ] D ' l n  - 

d i r e c t  t r a n s l a t i o n  o f  D' y i e l d s  t h e  
d e s i r e d  d e r i v a t i o n  D. 

Now, t o  p r o v e  t h e  i n d i r e c t  t r a n s l a t i o n  
t h e o r e m ,  s e t  S '  = S u D a n d  s e t  

D = d e f S ' ( s ' ) .  C o r r e s p o n d i n g  t o  e a c h  
< 2 

f o r m u l a  B i n  D1,D 2 c o n t a i n s  a d e r i v a t i o n  

o f  t i S ' ( B ) .  To be  s p e c i f i c  s u p p o s e  t h a t  
<2 

i n  D1, B i s  i n f e r r e d  f rom A 1 , . . . , A  k by  

s u b s t i t u t i o n  a i n  r u l e  R = {A~ . . . . .  A~} ÷ 

B'  Thus  A 1 = A~a . . . . .  A n = A k a ,  and  
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B = B'~. As induction hypotheses, assume 
! 

S u D 2 already contains ti~ (AI),... , 
2 

! 

ti~2(Ak). Let D R be the derivation 

whose existence is implied by lemma 5. 

Let S R (A~ ... A' B' = ' ' k' }" Then as was 

previously observed, there is a renaming 

p such that every conjunct of def~_(A~)p 
S K 

is a conjunct of def~,(S'). Thus 

tdK(((def~,(S')&def;R(A~)P)~£s,(Al))), 

...,tdK(((def~,(S')&def~R(Ak)P)=£s,(A~))) 

~F2 td<(((def~,( S')&def< (B)p)~s,(B))) 
S R 

def~,(S') 
via DRP P 

Clearly, since (A=P) # ((A&B)=P), there 

are derivations in F 2 of tdK(((def~,(S' ) 

&def;R(A~)p)=Zs,(Ai))) from 

td ((def~,(S')=Zs,(Ai)) each with a fixed 

number of lines proportional in length to 

[def~,(S')[. By lemma 6, there is a 

derivation of td<((def~,(S')~s,(B)) 

from tdK(((def~,(S')&def~R(B)p)=Zs,(B)) ) 

which has no more than Cl]S'[s]SR[s 

lines of length bounded by 
c21S'[sLlog2|S']s j. Since D R is fixed 

and ]SR|s is fixed, this entire deriva- 

tion that serves in D 2 to replace B has 

~cIS'|s lines each of length 

~c|S'|slOglS']s. Finally, summing these 

bounds for each formula B in DI, 

|D2] n ~ C]Dl]nlDlUSls and 

ID21 s c]DiIn(IDlUSls)21og2([DlUS]s ) 

c(IDll+lsl) 4. 

IV. Other Powerful Proof Systems 

Other systems that have been proposed 
for proving validity or unsatisfiability 
of propositional formulas include natural 
deduction (Fitch [19523, Kleene[1967]), 
Gentzen systems (Wang [1960], Kleene 
[1967]), and extended resolution (Tseitin 
[19687). All of these types of systems 
turn out to be equivalent to Frege systems 
in the sense that any one such system is 
super if and only if all such systems and 
all Frege systems are super. 

Natural Deduction 

Natural deduction systems are often 
derived from Frege systems by the addition 
of a derived rule, the deduction theorem: 

• ~ D B if AI,...,A n F B then AI, ..,An_ 1 . A n . 

All Frege systems have a deduction 
theorem, so each Frege system gives rise to 
a natural deduction system• A line in a 
natrual deduction system is a sT-~g of the 
form AI,...,A n ~ B, where the A i and B 

are formulas. Such a line is considered 
equivalent to ((AI&...&An)=B). A rule of 

inference in such a system has the form 
{~l,...,~k) ÷ ~', where the h i and ~' 

are lines of the form A,AI,...,A k ~ B. (4 

appears in every line of the rule.) The 
rule is sound iff ZI,...,~ k # Z' To 

obtain an instance of such a rule, apply 
any substitution ~ to AI,...,Ak,B, and 

replace A by any list of formulas. A 
derivation in such a system is a sequence 
of lines, each of which is obtained from 
previous lines (or hypotheses) by a rule of 
inference. 

Every Frege system is a natural deduc- 
tion system, if we just read rule 
{AI,...,A n) ÷ B as {~bAI,...,ArA n} ÷ &bB. 

In fact, in such a system, nothing will 
ever be substituted for A. 

Theorem 4 If N and N' are implica- 
tionally complete natural deduction systems, 
there is a polynomial p such that for any 
derivation D in N there is a derivation 
D' in N' of a translation of the conclu- 
sion of D from the translation of the 
hypotheses of D of length ]D'[ ~ p(IDl). 

Proof The proof of this theorem follows 
the same lines as previous proofs. 

Each line of D is simulated by a short 
derivation of the translation of that line. 

Gentzen Systems 

We shall outline a version of these 
systems as adapted from Kleene [19677. A 
sequent is an ordered pair (A,A) of sets 
o--~ormulas, written A ÷ A. We shall 
assume that A and A are true sets, so 
that order of occurrence and multiplicity 
of occurrence in A and A have no 
meaning. A sequent AI,...,A m ÷ BI,...,B n 

is valid iff the formula (AI&...&Am) 

(BlV...VBn) is valid, and the sequent 

takes on the same truth value under a truth 
assignment ~ as the formula 
(AI&...&Am) = (BlV...VBn). Corresponding 

to each of the connectives ~,&,v,~,~ 
there are two rules of inference, one for 
introduction and one for elimination of the 
connective• The rules for ~ and ~ are 
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introduction elimination 

A,r + ® r ÷ @,A 
F ÷ ~,~A ~A,F ÷ 

= A,F ÷ O,B F ÷ ~,A B,F ÷ ~) 
F ÷ ~,A=B A~B,F ÷ 

Here upper case Greek letters stand for 
sets of formulas, upper case latin letters 
stand for formulas, and the notation A,F, 
for example, means {A} u F. 

The final rule is called 

A ÷ A,C C,F + 
cut: 

A,F ÷ A,O 

This rule is not necessary for complete- 
ness, but it seems to allow proofs to be 
considerably shortened in general. 

The Gentzen axioms are sequents of 
the form C,F ÷ ~,C. 

A proof of a sequent A ÷ A in a 
Gentzen system is usually defined to be a 
rooted tree whose nodes are labelled with 
sequents, whose root is labelled with 
A ÷ A, whose leaves are labelled with 
axioms, and such that each internal node 
is a consequence by a rule of inference of 
its daughter node(s). For our purposes, 
it is better to assume that either the 
proof has a linear format or that it is an 
acyclic digraph, so that once an interme- 
diate sequent in a proof has been derived, 
it does not have to be derived again if it 
is used twice. 

A proof of a formula A in a Gentzen 
system is a proof of the sequent ÷A, and 
a proof that A is inconsistent is a 
proof of the sequent A+. 

The idea of a Gentzen system can be 
extended to any system with rules for 
deriving sequents. In this sense, natural 
deduction systems are Gentzen systems in 
which the second set A of the sequent 
A ÷ A is always a singleton set, and 
Frege systems are Gentzen systems where A 
is empty and A is a singleton. 

A Gentzen system that is implica- 
tionally complete is called a Gentzen 
system with cut. Note that the above 
system is complete (for ~ = (~,=)) 
without the cut rule, but that it is not 
implicationally complete unless the cut 
rule is included. 

Theorem 5 Let G be a Gentzen system, 
and let G' be a Gentzen system with cut. 
Then there is a polynomial p(.) such 
that given any derivation D in G, there 
is a derivation D' in G' of the trans- 
lation of the conclusion of D from the 
translations of the hypotheses of D such 
that ]D'[ ~ p([D[) .  

Proof The proof of this theorem follows 
t e--~--previous pattern. Each line of D is 
replaced in D' by a short derivation in 
G' of the translation of that line. 

Resolution with Extension 

An operation called consensus was 
introduced by Quine [1955] as a method to 
help find the minimum normal disjunctive 
form for a formula. It was adapted by 
Dunham [1962] as a computer method for 
establishing the validity of formulas in 
normal disjunctive form. 

Resolution was introduced by Robinson 
[1965] as a proof method for the predicate 
calculus. When resolution is restricted to 
the propositional calculus, it is just the 
dual of consensus, and provides a method 
for establishing the inconsistency of a 
formula in normal conjunctive form. In 
resolution terminology, a literal is an 
atom or a negation of an atom, and a clause 
is a finite disjunction of literals. We 
will think of a clause as a set of literals, 
so that ordering and repetitions of 
literals in a clause does not make sense. 
The complement of a literal ~ is denoted 

by ~, and is defined by p = 7p, ~-p = p. 
The resolvent of clauses A v ~ and ~ v B 
is A v B, where it is understood that if 
a literal occurs in both A and B, the 
two occurrences are merged in A v B. A 
resolution refutation of a set S of 
clauses is a finite sequence of clauses 
each of which is either a number of S or 
a resolvent of two earlier clauses in the 
sequence, and such that the last clause is 
the empty clause H. One can prove that a 
set S of clauses is inconsistent if and 
only if S has a resolution refutation. 

Tseitin [19687 introduced a rule, 
called extension, to be used in conjunction 
with extension, and which seems to allow 
for considerably shorter refutations of 
some sets of clauses. This rule allows the 
introduction of new atoms, and new clauses 
which force the new atoms to be equivalent 
to any truth-function of the original atoms. 

Extension Rule: (for a set S of 
clauses). If ~ is a literal such that 
neither ~ nor ~ occurs in S, then the 
three clauses ~ v ~ v y, ~ v 8, a v y 
may be added to S, for any literals S 
and y. 

Notice that the conjunction of these 
clauses is equivalent to the formula 

The extension rule may be applied any 
number of times to a set S of clauses, 
provided the new variable ~ introduced is 
distinct for each application. The 
resulting augmented set is consistent if 
and only if the original set S is consis- 
tent. Thus a refutation using resolution 
with extension consists of a sequence of 
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extensions followed by a sequence of 
resolvents. 

Resolution with extension can be made 
into a proof system for tautologies A 
with any connectives by using the methods 
described under the section on indirect 
translation of Frege systems. If we let 
< = {~,&,v} and S = {A), then 

e~(BoC) may as well be in conjunctive 

normal form, and hence can be regarded as 
a set of clauses; (there will be at most 
four clauses, with at most three literals 
per clause). Then let def(A) be the 

union of e~(BoC) over all subformulas 

(BoC) of A. Then def(A) is a set of 
clauses with the property that 
def(A) ~ Z(A) iff A is a tautology. 
Further, there exists a derivation using 
resolution of the unit clause ~(A) from 
the clauses def(A) iff A is a tauto- 
logy. If we allow use of the extension 
rule in the derivation, then we will 
regard such a derivation D as a proof of 
A using resolution with extension. The 
length [D I of D is the total number of 
symbols encoding the clause of the proof, 
under a suitable encoding. 

Theorem 6 There is Frege system F and a 
constant c such that any proof D of a 
formula A in resolution with extension 
can be transformed to a proof D' of A in 

with ID'[ ~ clDl 3, and the same with F 
"F" and "resolution with extension" 
interchanged. 

The idea of the proof is this. The 
system F will include all connectives, 
and rules will be suitable for simulating 
resolution with extension. A proof D of 
A using resolution with extension is a 
sequence of clauses representing a deriva- 
tion of Z(A) from def(A). If we now 
substitute for each literal in each clause 
the formula defined by that literal (i.e. 
substitute B for Z(B)), the result 
will be a sequence of tautologies ending 
in A. This can be expanded into a proof 
in E by including axiom schemas in F 
which make the substitution instances of 
< 

es(BoC) just defined into instances of 

axioms. The other rules needed in F are 
the rule "cut" {A v ~B, B v C} ÷ A v C, 
to simulate resolution, and rules imple- 
menting the associativity and commutativity 
of v, and double negation cancellation. 

Conversely, given a proof 
D = <A 1 .... ,An> of A in F, a derivation 

of Z(A) from def(A) can be constructed 
by using the extension rule to introduce 
literals £(B) for every subformula B 
of every A. such that B is not a i 
subformula of A. Clauses defining 
literals associated with the subformulas 
of A are already available in def(A). 

Then the sequence of unit clauses 
~(AI) .... ,£(An) = ~(A) can be expanded 

into a derivation using resolution with 
extension. 

We do not know whether a result 
similar to the theorem holds when "resolu- 
tion with extension" is replaced by 
"resolution", but the result of Tseitin on 
regular resolution (described later) casts 
doubt on such a proposition. 

V. Weaker Systems and Lower Bounds 

Analytic Tableaux. These were 
introduced by Smullyan, and described in 
Smullyan [19681. They were inspired by 
Gentzen systems and other similar systems, 
and provide a proof system which is elegant 
in principle, and satisfying to apply on 
short examples. However, since a tableau 
proof is defined to be a labelled tree, and 
since it cannot so readily be put in a 
linear form or the form of an acyclic 
digraph, examples can be found which 
require much duplication in the construction 
of a tableau proof. Here is a class of 
hard examples: Let 

+_2 +i~3 m {±plv_v v_,±±v...vP±...±} where +P T m 
means P and -P means ~P, and the 

subscript of pi is a string of i-I + 
or -'s corresponding to the sequence of 

signs of the preceding pO, j < i. Thus 

T is a set of 2 m clauses and has 
m 

20 + 21 + ... + 2 m-I = 2 m - 1 atoms. For 

example, T 2 = {plvp~, plv~p~, -plvp z,_ 

mplvzp2}. If we let S m be the conjunction 

of all disjunctions in T m, then S m has 

length about (2m) 2 m, but one can show 
that any closed tableau for S m has at 

least 22cm nodes, where c > 0 is some 
constant independent of m. (We remark 
that there is a resolution refutation of 

T with length only 2m-l.) 
m 

Davis-Putnam Procedure. Davis and 
Putnam [1960] introduced a decision proce- 
dure which amounts to determining whether 
a set of clauses is consistent. This 
procedure can be formulated in terms of 
resolution as follows: 

Select a literal g from the set S of 
clauses. From all possible resolvents 
of pairs of clauses from S in which 
is the literal resolved upon (i.e. all 
pairs of the form A v 6, ~ v B). If 
the empty clause is thus formed, S is 
inconsistent. From the set of resolvents, 
delete all clauses which have both a 
literal and its complement, and let S' 
be the remaining resolvents, together 
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with all members of S which contain 
neither ~ nor ~. If S' is empty, 
then S is consistent. Now repeat the 
whole procedure (for a different literal 
~) for S' instead of S. (Note that 
S' is consistent if and only if S is 
consistent, and S' contains one less 
atom than S.) 

Thus we can think of the Davis-Putnam 
procedure as a procedure for generating 
resolution proofs of a certain restricted 
form. In Cook [1971b3, examples are given 
which show the length of the resulting 
proofs depend heavily on the order in 
which the literals ~ are eliminated. 

Also, the Davis-Putnam procedure as 
originally stated, and as stated above, 
omits "subsumption". This rule allows us 
to delete every clause A which is a 
super set of another clause B also 
present. Subsumption can be applied before 
applying the Davis-Putnam procedure, and 
it can be applied during the procedure 
every time a resolvent is generated. 
Examples given in Cook [197167 and Simon 
[1971] for which there is no polynomial 
bound on the number of clauses generated 
by the Davis-Putnam procedure, no matter 
in what order the atoms are eliminated. 
However, if the subsumption rule is 
applied, all the examples generated only 
a few clauses under Davis-Putnam. The 
status of the Davis-Putnam procedure is 
definitely settled by a result in Tseitin 
[1968]. 

Regular Resolution. Tseitin [19683 
defines a resolution refutation to be 
irregular iff there is some subsequence of 
formulas AI,...,A k from the proof such 

that each A. is one of the parent i 
clauses in forming the resolvent Ai+ I, 

1 ~ i ~ k - i, and such that there is some 
literal g which appears in A 1 and Ak, 

but is not presenz in some intermediate 
clause A-. Thus ~ is removed by reso- 

1 

lution, and then reintroduced by another 
branch of the proof (so it must be moved 
again if the empty clause is formed). The 
refutation is regular if it is not irregu- 
lar. 

Theorem 7 (Tseitin) For infinitely many 
integers n there is an inconsistent set 
of n clauses whose minimum regular 
resolution refutation has length exceeding 

2/~" 

The proof, which appears in Tseitin 
[1968], is long but elegant. 

Corollary: For infinitely many integers 
n there is an inconsistent set of n 
clauses such that the Davis-Putnam proce- 
dure with subsumpzion generates at least 

2 Cn clauses, no matter in what order the 

atoms are eliminated. 

The corollary shows that neither the 
Davis-Putnam procedure, nor any obvious 
variation of the procedure, is a super 
proof system. It also shows that no 
obvious variation is a polynomial time 
decision procedure. The proof of the 
corollary amounts to the easy observation 
that every Davis-Putnam refutation (even 
with subsumption) correspond to a regular 
resolution refutation. 

It is not known whether theorem 7 
applies to resolution in general (as 
opposed to regular resolution). 

Semantic Trees. These were discussed 
in Robinson [19683 and Kowalski-Hayes 
[19693 as a general method for analysing 
mechanical proof procedures for the predi- 
cate calculus. We shall present a special 
version useful as a refutation system for 
the propositional calculus. 

A partial truth assignment to a set 
S of formulas is a map Q : at(S) ÷ {t,f,u} 
(u is for "undefined"). The map Q can 
be extended to sub(S) by the recursive 
equations Q(T) = t, Q(F) = f, 

f t if Q (A)  = f 
Q ( ~ A )  = , f if Q(A) = t ,  

L u  if Q ( A )  = u 
Q ( ( A o B ) )  = Q(A )  o Q ( B ) ,  w h e r e  Q ( A )  o Q ( B )  
is given by the truth table in section II 
if Q(A) ~ u and Q(B) ~ u, and if just 
one of Q(A), Q(B) ~ u, then Q(A) oQ(B) 
is t or f if this can be determined 
without knowing the value of the other, 
and otherwise Q(A) oQ(B) = u. For example, 
if o is &, then f&u = f, u&f = f, 
but t&u = u&t = u&u = u. 

A semantic tree for a set S of 
formulas is a finite binary rooted tree, 
with the pair of edges leading out from 
each node labelled P and ~P respectively, 
for some P in at(S), and such that no 
branch (i.e. path from root to a leaf) has 
a complementary pair of literals on it. A 
branch determines a partial truth assign- 
ment Q by the conditions Q(p) = t if p 
labels some edge on the branch, Q(p) = f 
if ~p is on the branch, and Q(p) = u 
if neither p nor ~p is on the branch. 
The branch is closed for S iff the 
partial truth asslgnment determined by the 
branch falsifies some formula is S. The 
tree is closed for S iff every branch is 
closed. 

Theorem 8 A set S of formulas is 
inconsistent iff there is some closed 
semantic tree for S. 

The proof can be adapted from results 
in Robinson [1968]. An example of a closed 
semantic tree for S = {pvq, pv~q, ~pvr, 
7pv~r} is 
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Tree Resolution and Semantic Trees 

A tree resolution refutation of a set 
S of clauses is a finite binary rooted 
tree whose nodes are labelled with clauses, 
such that the leaves are labelled with 
clauses from S, the root is labelled 
with the empty clause D, and the clause 
labelling any internal node is the resol- 
vent of the clauses labelling the two 
parent nodes of the node. It follows from 
the completeness of resolution that S 
has a tree resolution refutation iff S 
is inconsistent. However, the number of 
nodes on the smallest tree resolution 
refutation of S might be much greater 
than the number of nodes in an (ordinary) 
resolution refutation of S, because no 
resolvent formed on the tree can be used 
more than once. 

Here is a tree resolution refutation 
for the set S = {pvq, pv,q, npvr, npvnr} 
mentioned above 

pvq pvTq ipvr 7pv,r 

P ~P 

D 

Theorem 9 Every closed semantic tree for 
a set of clauses S can be converted to a 
tree resolution refutation (of the same 
size and shape) by suitably changing 
labels, and conversely. 

The ideas needed for the proof are in 
Robinson [1968] and Kawalski-Hayes [1969]. 
As a result of this, we can conclude the 
following. 

Theorem I0 There is a constant c > 0 
such that for infinitely many n there is 
an inconsistent set of n clauses whose 
smallest tree resolution refutation and 
smallest closed semantic tree both have at 

2 
c ( l o g 2 n )  

l e a s t  2 n o d e s .  

The result for tree resolution refu- 
tations follows from theorem 4 of Tseitin 
[1968], and the result for closed semantic 
trees follows from the theorem above. 

Other Simulation Results 

Theorem Ii For every closed analytic 
tableau T for a set S of clauses there 
is a closed semantic tree S with at most 
twice as many nodes as T. 

Proof Using a depth-first search of the 
c o--~d tableau, construct a semantic tree 
so that corresponding to every open path 
of the tableau which has literals 
LI,...,L k labelling nodes, the semantic 

tree will have (among other labels) edges 
labelled LI,...,L k. Every edge L will 

have a mate labelled L, which accounts 
for the factor of two. The semantic tree 
branches will always close before the 
tableau branches. 

A very strong counter-example to the 
converse of this theorem is provided by the 
sets T described in section on analytic 

m 
tableaux. These sets are exponential for 
tableaux, but linear for semantic trees. 

Theorem 12 (Tseitin) There is a constant 
c such that given a cut-free proof of ÷A 
Gentzen's system £ of n lines there is 
a resolution refutation (without extension) 
of def(A) u {~(-A-)-} of length at most cn. 

The proof is outlined in section 1 of 
Tseitin [19687. 
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