
On the Lengths of Proofs in the
Propositional Calculus

Preliminary Version

Stephen Cook and Robert Reckhow
University of Toronto

I. Introduction

One of the most important open
questions in the field of computational
complexity is the question of whether
there is a polynomial time decision proce-
dure for the classical propositional
calculus. The importance stems from
theorem 1 in Cook [1971aI, which demon-
strates the equivalence of this question
to the question of whether P = NP, and
from results in Cook [1971a] & Karp [1972]
which show that an answer either way to
the question P = NP would have strong
implications concerning the complexity of
many combinatorial problems of interest in
Computer Science.

The purpose of the present paper is
to study a question related to the comple-
xity of decision procedures for the
propositional calculus; namely, the
complexity of proof systems for the propo-
sitional calculus. The fundamental issue
here is whether there exists any vroof
system, and a polynomial p(n) such that
every valid formula has a proof of length
not exceeding p(n), where n is the
length of the formula. Theorem 1 below
helps establish the importance of this
question. For the purposes of this
theorem, we give the following definitions.

A proof system is a function F from
the set E* of strings on some finite
alphabet E onto the set of valid proposi-
tional formulas such that F can be
computed in polynomial time by a Turing
machine. If F(w) = A, then w is said
to be a proof of A in the system.

All ordinary proof systems for
tautologies can easily be made to fit this
definition by regarding the proofs in the
system as strings on some alphabet, and
the function F would take a proof into
the formula proved. If a string w did
not code a proof, then define
F(w) = p v ~p. If the system is a refuta-
tion system for inconsistent formulas,
then one can regard a refutation of ~A
as a proof of A.

Proposition: The set of tautologies is in
NP if and only if there exists a super
proof system.

The proof is almost immediate. If
there exists a super proof system F, then
the nondeterministic polynomial time proof
procedure for the tautologies would consist
in guessing at the proof w for an input
formula A, and then checking that
F(w) = A. Conversely, if the tautologies
are in NP, then a super proof system can
be obtained fror~ a nondeterministic polyno-
mial time procedure for the tautologies by
letting every accepting computation of an
input formula A be a proof of A.

Theorem 1 The class NP is closed under
complements if and only if there exists a
super proof system for the tautologies.

Proof: Suppose NP is closed under
complements. Since the set of falsifiable
formulas is in NP, it follows that the
set of tautologies is in NP, and by the
above lemma, there exists a super proof
system.

Conversely, suppose there exists a
super proof system. Then the tautologies
are in NP. Consider an arbitrary set L
in NP, and let Z be a single tape non-
deterministic Turing machine which accepts
L in polynomial time. Given an input
string w to Z, let A(w) be the propo-
sitional formula constructed in the proof
of theorem 1 in Cook [1971a]. Then A(w)
is satisfiable iff Z accepts w. Hence

~A(w) is a tautology iff w c L c, where

L c is the complement of L. Since there
is a nondeterministic procedure to accept
the tautologies, and since A(w) can be
constructed in polynomial time, it follows

that L c is in NP.

Thus there are two main reasons for
studying the complexity of proof systems.
If we succeed in finding a super proof
system, then it would follow that NP is
closed under complements, which would have
very interesting implications for each of
the combinatorial problems discussed in

135

All Frege Systems,
Natural Deduction,
Gentzen with cut,

Resolution with extension

I Resolution
...... without

?i extension

+ . / - +
I
I

Gentzen
without ?:

cut

t r e e r e s o l u t i o n
[and
leman___~t ic___t r e e___~s

/(for sets of clauses)

Analytic
Tableaux

Systems below
this line are
known not to
be super

%

i
Davis

Putnam
Procedure

Figure 1 The Relative Strengths of Various Proof Systems
The strongest proof system (i.e. those with shortest proofs) are at the

top. An arrow ~÷~--~ indicates that system S 1 can simulate system $2,

in the sense that for some polynomial p(n) (never more than fourth degree),
for every proof or refutation D in S 1 of a formula A there is a proof

or refutation D' in S 2 of a suitable translation of A such that
?

]D'[~ p([D]). A dashed line --:-> indicates it is not known whether there
is a reverse polynomial simulation. Where no such line is drawn, it is known
there is no reverse polynomial simulation. Systems appearing in the same box
can simulate each other in this sense. Systems below the horizontal dashed
line are known not to be super (i.e. there is no polynomial bound on the
length of the shortest proof of A as a function of the length of A).

Karp [19727. (For example, it would show
the existence of a proof system, such as a
list of invariants, which would provide a
short proof that any two non-isomorphic
graphs are in fact not isomorphic.) If,
on the other hand, we could show that no
super proof system exists, we would then
have a proof that P ~ NP.

In the remainder of the paper we will
partially classify according to relative
strength most of the major proof systems
that have been proposed for the proposi-
tional calculus. We will prove (or report
from other papers) results of two kinds.
First, we will present lower bounds on the
minimum proof lengths for some systems.
These will show that some systems, such as
Smullyan's analytic tableaux and the
Davis-Putnam decision procedure (regarded
as a proof system) are definitely not
super. Second, we will present polynomial

simulation results between pairs of proof
systems.

Figure 1 presents a summary of our
results. The unfamiliar terms in the
figure will be explained later. In parti-
cular, a Frege System is a general kind of
proof system which includes many of the
standard systems appearing in logic
textbooks, such as Kleene [1952].

The major result which emerges from
this paper is that most major proof systems
(namely those indicated in the top box in
figure i) are equivalent, in the sense that
given any two systems there is a polynomial
p(n) so that for any proof or refutation
D of a formula A in the first system
there is a proof or refutation D' of a
suitable translation of A in the second
system such that [D'[~ p([D[). (Transla-
tion of A is only necessary if the
systems use different logical connectives,

136

or one of the systems is resolution.) In
particular, any one system in the top box
is super if and only if all are super.
Furthermor -, every proof system we have
come across in the literature specifically
for proving validity or unsatisfiability
of propositional formulas (or systems for
predicate formulas, suitably restricted)
can be simulated by systems in this equi-
valence class, with at worst a polynomial
increase in proof length. Of course
powerful formal theories, such as
Zermelo-Fraenkel set theory, can be used
as proof systems for tautologies, and it
seems reasonable to guess that these have
no polynomial simulation by members of the
equivalence class.

Nevertheless, the methods incorporated
in the equivalence class at the top of
Figure 1 are stable and powerful. None of
the specific sets of formulas defined in
this paper or in the papers referred to
here will show these systems are not
super. In fact a proof that these systems
are not super would be a very interesting
and probably a deep result.

We propose studying these systems,
both from the point of view of trying to
find examples with no short proofs, and by
trying to find more invariant characteri-
zations of the proof methods embodied in
these systems. Another interesting
research problem is to study proof systems
for some of the complements of the combi-
natorial problems in tip listed in Karp
[1972], and try to find natural proof
systems for these problems which are
"equivalent", in an appropriate sense, to
the powerful systems for the propositional
calculus.

We remark that to us the most
interesting simulation result is that the
Frege systems, such as the standard system
in Kleene [1952], can simulate natural
deduction or Gentzen with cut, with only a
linear or quadratic increase in proof
length. The surprise comes because
natural deduction incorporates the deduc-
tion theorem as a rule of inference, and
the standard method of proving the
deduction theorem for a Frege system seems
to involve an exponential increase in
proof length.

II. Languages for Propositional Calculus

Consider the language L defined by
the following grammar. The alphabet for
L i s { P , O , l , (,) , T , F , - ~ , v , c , = , - , & , [, ¢ , } , ¢ ,
+} .
< a t o m > ÷ P , < a t o m > O , < a t o m > l (n o t e :

A ÷ B,C a b b r e v i a t e s A ÷ B a n d
A÷C)

<nullary connective> ÷ T,F
<unary connective> ÷
<v-like connective> ÷ v,c,=,&, J,~,£,+
<'-like connective> ÷ -,~

<binary connective> ÷ <v-like connective>,
<.-like connective>

<connective> ÷ <nullary connective>,
<unary connective>, <binary connective>

<atomic formula> ÷ <atom>, <nullary
connective>

<formula> ÷ <atomic formula>, <unary
connective><formula>, (<formula>
<binary connective><formula>)

If < is a set of connectives, then L
K

is the restriction of L to the alphabet
(P,0,1,(,)} u <. In what follows, lower
case letters D,q,r, etc. will represent
atoms, and upper case letters A,B,C,AI,A 2,

etc. will represent formulas.

If A is a non-atomic formula, then
A has one of the forms ~B or (BoC),
where B and C are formulas and o is a
binary connective. The principal
subformulas of A are B if A is ~B,
or B and C if A is (BoC). The
principal connective of A is ~ if A
is ~B, or o if A is (BoC). The set
sub(A) of subformulas of A is defined
inductively by:

[4 (the empty set) if A
is an atomic formula

sub(A) = {A} u sub(B) if A is ~B
sub(B) u sub(C) if A is

(BoC)
If S is a set of formulas, then
sub(S] = u sub(A]. The set at(S) of

A~S
atoms of S is sub(S) n (P{O,l}*), the
set of subformulas of S which are atoms.

If AI,...,A k are formulas and

pl,...,p k are distinct atoms, then the

AI,-..,A k
substitution ~ = is the mapping

Pl,...,Pk
from formulas to formulas such that ~(B)
(usually written B~) is the formula
obtained by (simultaneously) replacing all
occurrences of each Pi in B by the

corresponding A i. (The result of this

substitution is necessarily a formula,
since a formula can appear anywhere that an
atom can appear in a formula.) The formula
Bo is said to be an instance of B. If S
is a set of formulas, then S~ is the set
of formulas obtained by applying o to
each formula in S. If AI,...,A k are in

AI,...,A k
formulas in L<, then ~ - is

Pl 'Pk

ql,...,qk
a substitution in L . If ~ -

< pl,...,pk'
ql,...,q k are distinct atoms, and

{ql qk) n (at(S)-{p I pk)) =

(i.e. no qi which is not a pj is an

atom of S), then g is called a renaming
(for S).

137

I£ A is a set of atoms, then a
truth assignment to A is a mapping

: A + {t,f) from A to the set of
truth values: t (ture) and f (false).
If S is a set o~ formulas and ~ is a
truth assignment to at(S), then T can
be extended to sub(S) according to the
following inductive definition:

(r) = t,~ ~(F) = f
z(~B) = ~ if z(B) = t

if • (B) = f

If A is (3oC) then ~(A) is
given by this table

t t
t f
f t
f f

o ~ (~) : V =

t t ~ ~
t t ~

t ~ t t

t f t f f

We no~e that the ten binary connec-
tives listed represent those ten of the
sixteen binary truth functions which
depend on both arguments. The six omitted
are the two projection functions, the two
negated projection functions, and the two
constant functions. These six can be
represented using unary and nullary
connectives.

Truth assignment ~ to at(A)
satisfies (falsifies) A iff ~(A) = t(f).
Formula A is satisfiable (falsifiable)
iff there is a %-~uth assignment which
satisfies (falsifies) A. Formula A is
unsatisfiable, also inconsistent (valid,
also a tautology) iff A is not
satisfiable (falsifiable). Note that A
is a valid (inconsistent) iff ~A is
inconsistent (valid). A formula which is
both satisfiable and falsifiable is said
to be contingent.

Set of formulas S logically implies
formula A (denoted S ~ A) iff every
truth assignment to at(Su{A}) which does
not falsify any formula in S, satisfies
A. (Note that this definition says that
for S = ¢, ~ ~ A iff A is a tautology.

~ A is abbreviated to ~A.) Formulas
A and B are logically equivalent
(denoted A ~ B)--- iff A ~ B and B ~ A.

Let A be a set of atoms where
IAI = n. Let <pl,...,pn > be the atoms

of A, ordered lexicographically. There

is a l-to-I correspondence between 2 n
distinct truth assignments to A and the

2 n distinct n-tuples of t and f,
given by T +-+ <T(pl),...,T(pn)>. A truth

function of n w riables is a function

@ : {t,f} n ÷ {t,f] from n-tuples of t
and f (equivalently, truth assignments
to a set of n atoms) to {t,f}. There

are 22n distinct truth functions of n
variables. If lat(A) l = n, then the

truth function expressed by A is the
truth function eA of n variables

defined by: @A(T) = T(A). If Ao is a

renaming of A, then @A~ comes from @A

by some permutation of the arguments. If

AI,...,A n
PI'''''Pn where PI' "''Pn are the

atoms of ~B in lexico~raphic order

= 0B(°A1 (x) 0A (x)). then @B~(X) n

Let < be a set of connectives. <
is adequate iff for every truth function @
there is a formula A in L which <
expresses 0. ~ is minimally adequate iff
< is adequate and no proper subset of <
is adequate. It can be shown that there
are 26 minimally adequate sets of connec-
tives ({l},{+},{7,v},{7,c},{7,~},{7,&},
{7 , ~ } , {7 , ~ } , (T , ~ } , {T,~ }, { F , c } , {F, ~ }, { c , ~ } ,
(= ,~) ,{~ ,~} ,{~ ,~} , (~ ,~) ,{~ ,~} , {~,~},{~,~},
{ T , v , ~ } , { T , & , ~ } , { F , v , ~ } , { F , & , E } , { v , ~ , ~ } ,
and { & , ~ , ~ }) and 4 m a x i m a l l y i n a d e q u a t e
s e t s o f c o n n e c t i v e s ({ T , F , v , & } , { T , F , ~ , H , ~ } ,
{ T , v , ~ , = , & , ~ } , and (F , v , & , ~ , ~ , ~ }) .

III. Frege Systems

A rule of inference is a pair (S,B),
written R = S ÷ B, where S is a
(possibly empty) finite set of formulas and
B is a formula. R is said to be a rule
in L if B and all of the formulas in <

S are formulas in L . Rule R = S ÷ B <
is sound iff S ~ B. Observe that for any
subst-~tion o, S ~ B implies that
S ~ B . If R = S ÷ B is sound and

S = ~, then all substitution instances of
B are tautologies, and B (or R) is
often called an axiom or axiom scheme. If
R = {AI,...,A k} +---~---is a rule of inference,

and C1,...,Ck,D are formulas, then D is

inferred from CI, C k by R iff there

is a substitution ~ such that
C 1 = AI~,...,C n = And , and D = B~. If R

is sound and D is inferred from CI,...,C k

by R, then CI,...,C k ~ D.

A deduction system is a pair
I = (<,R), where < is a set of connec-
tives and R is a finite set of sound
rules of inference in L . A derivation in <
deduction system I = (<,R) of formula B
from the set of formulas S is a sequence
D = <AI,...,An > of formulas in L< such

that for each i, l~i~n, A. is inferred
i

from formulas in S u {AI,...,Ai_ I} by

some rule in R, and A = B. The notation
n

S ~I A means there is a derivation in I

of A from S, and S ~I A via D means

D is a derivation in I of A from S.

138

Since ~ is a transitive relation, it
follows that S ~ A whenever S ~I A.

Deductive system I is complete iff for
every valid formula A in L<, ?I A.

System I is implicationally complete iff
for every S,A in L such that S P A,

K

S ?I A. If D is a derivation, then Do

is the sequence of formulas obtained by
applying ~ to each formula in D. Since
rules of inference are transparent to
substitution, if S 5I A via D and if

o is in L<, then S~ ?I Ao via D~.

A Frege system is an implicationally
complete deduction system F = (<,R)
where < is adequate. The notion of a
Frege system is intended to describe the
essential characteristics of the deductive
systems found in most textbooks on mathe-
matical logic. For example, one system
described by Mendelson [1964] is a Frege
system M = (<,R), where < = {n,=} and
S = {÷ (P~ (P0~P)) ,÷ ((P~ (P 0 ~ P l)) ~ ((P~P0) ~
(P ~ P l))) , ÷ ((m P ~ n P 0) ~ (P 0 ~ P)) , { P , (P ~ P 0) } + P 0 } .
F r e g e ' s o r i g i n a l s y s t e m (F r e g e [1 8 7 9]) had
s i x axiom schemes and t h e r u l e modus
p o n e n s : {P,P~P0} ÷ P0. O t h e r F r ege
s y s t e m s can be found i n H i l b e r t - A c k e r m a n n
[1 9 5 0] , K l e e n e [1 9 5 2 , 1 9 6 7] , M e n d e l s o n
[1 9 6 4] , and S c h o e n f i e l d [1 9 6 7] . The
i n t e r e s t i n g f a c t a b o u t F r ege s y s t e m s i s
t h a t a l l F rege s y s t e m s a r e s u p e r (when
v i ewed as p r o o f s y s t e m s f o r t a u t o l o g i e s)
i f and o n l y i f any one p a r t i c u l a r F r e ge
s y s t e m i s s u p e r . T h i s f a c t w i l l be p r o v e d
i n t h e f o l l o w i n g d e v e l o p m e n t .

Let F 1 (< I ,R1) and F 2 = (<2,R2)
be two F rege s y s t e m s , and s u p p o s e S bF1 A

v i a D 1. In t h e c a s e s where e i t h e r <1

contains neither ~ nor ~ or <2

contains E or ¢, there is a direct way
of translating formulas in L and L

<I <2
such that td(A) (the direct translation
of A) is logically equivalent to A,
has length proportional to the length of
A, and has approximately the same sub-
formula structure as A. When such a
translation exists, there is a derivation
D2, whose length is bounded by a constant

times the square of the length of DI,

such t h a t t d (S) HF2 td (A) v i a D 2. When

<i contains ~ or ~ and <2 does not

contain either E or ¢, there is no
direct translation with the three necessary
properties, so an indirect type of trans-
lation must be used. Whereas td(A) ~ A,
ti(A) (the indirect translation of A)
only has the property that ti(A) is
valid if and only if A is valid. In
this indirect case, all that can be said
is that if pFl A via DI, there is a

derivation D2, whose length is bounded by

a constant times the fourth power of the
length of DI, such that 5F2 ti(A) via

D 2 •

To make the above informal discussion
more precise, several notions of length
will be defined. If A is a formula, then
IAI is the number of symbols in A, and

IAla is the number of occurrences of atoms

in A. If D = <AI,...,Az> is a deriva-

n

tion, then ID = ~ IAil,
i=l

n

IDIa = [IAi a' IDI~ = ~' and
i=l

I DIs = Isub(D) , the number of distinct

subformulas which occur in formulas in D.

Direct Translation

Let < be any adequate set of connec-
tives. Let <' = < u {T,F,~}, and let
+

< = all connectives if < contains E or
~, or all connectives except E and
if < does not contain either E or ~.
A direct translation from <i to <2 is

defined to be a function td : {formulas in
L } ÷ {formulas in L } which satisfies:
<i <2

I. td(A) - A
2. Itd(A) I s c[AI, for some constant

c independent of A

3. td (A~) = td (A) tdp(B)

4. Vp • a t (A) : t h e number o f o c c u r -
r e n c e s of p i n t d (A) e q u a l s
t h e number o f o c c u r r e n c e s o f p
i n A.

The f o l l o w i n g f a c t s a r e e a s i l y v e r i f i e d f o r
any a d e q u a t e s e t o f c o n n e c t i v e s <.

a . The r e i s a f o r m u l a T i n L
K <

w i t h T ~ T. (Le t T be t he s h o r t e s t
K <

t a u t o l o g y i n L<. For e x a m p l e ,

T{[} = ((P l P) l P) .)

b. There is a formula F in L
K <

with F ~ F. (Let F be the shortest
E <

inconsistent formula in L . For example,
K

F{]} (((P I P) IP) 1 ((P I P) IP)) .)

c . The re i s a f o r m u l a N i n L
< <

w i t h o n l y one o c c u r r e n c e o f P0 such t h a t
N< ~ nP0. (For e x a m p l e , N{I } = (((P i P)] P)

i

IP0) .)
d. < contains some v-like

connective: o.
e. For every v-like connective x,

there is a £ormula B x in L , with one
< <

occurrence each of P0 and P1 such that

B x ~ (P0xPI). (If A 0 means A and A 1
<

139

means ~A, then there are 0 ~ ~i,~2,~ 3

~ e2)~ 3
1 such that (P0 loP1 ~ (P0xPI).

For example, (P0zPI) ~ (P01nPI) = B~I}.) _

f. If < contains E or ~, then
for any E-like connective x, there is

a formula BxK in L<, with one occurrence

each of P0 and Pl such that

B x ~ (P0xPl) (This comes from the equi-

valences (P0~Pl) ~)~(POEPI) and
(PO~P1) ~ = (P O t P 1] .

U s i n g t h e s e f a c t s i t i s e a s y t o show t h a t
the following recursive definition defines

+
td' to be a direct translation from

K

to <'"
td~(p) = p for any atom p

t d i (T) = T

t d ~ (F) = F

t d ~ (~ B) = ~ t d ~ (B)

otd~(A) td~(B)
t d ~ (A o B) = B K P0 P l

T h e n t d " i s a d i r e c t t r a n s l a t i o n f r o m
K

<' to K, when td" is defined by:
<

t d " (p) = p
K

t d " (r) = T
K

td"(F) = F
K <

t d ~ (g)
t d " (n B) = N - - -

< < PO
t d " (A o B) = t d " (A) o t d ~ (B) < < "

Finally, since the composition of two
direct translations is a direct transla-
tion, if td is defined by

K

t d < (A) = t d " (t d ~ (A)) t h e n t d i s a
+

d i r e c t t r a n s l a t i o n f r o m < t o <.

T h e o r e m 2 L e t F 1 = (< I , R 1) and

F2 = (< 2 ' R 2) be F r e g e s y s t e m s w i t h
+

E1 ~ <2" T h e n t h e r e i s a c o n s t a n t c

s u c h t h a t w h e n e v e r S ~F1 A v i a D 1

t h e r e i s a d e r i v a t i o n D 2 s u c h t h a t

td<2(S) ~F2 td<2(A) via D 2 where

ID21 n s cIDII n and ID21 s c[DII n.

2 (IDll + [IAI) ~ c(IDII+Isl)
AeS

Proof: The notion of translation is
eas--ffg-fTy extended to the translation of
inferences. Suppose R = {A 1 ,A n } ÷ B

is a rule of R I. Then AI,...,A n ~ B,

and since F 2 is implicationally complete,

let td<2(Al) td<2(A n) pF2 td<2(B)

A 1 , •.. ,A k
via D R . If ~ = PI'''''Pk is a substitu-

tion in LK1, define td 2(~) =

td<2 (A I) ,td<2 (A n)
so that

Pl ' " " " 'Pn

td 2(A~) = td<2(A)td<2(~). Now to translate

the given derivation DI, for each formula

A i in D 1 which is inferred from previous

formulas in oD~ and formulas in S by
substitution ~i in rule Ri, replace

A i by DRitd<2(~i). The resulting

derivation D 2 is a derivation such that

td<2(S) ,UF2 tdK2(A) via D 2. Since IDRI n

is a fixed constant for each R, it is
clear that ID21 n -< C[Dll n. If

A 1 ,... ,A k k
-Pl "''Pk' define l~I = [IAil.

'" i=l
Since IDRI a is a fixed constant for each

R, there is a constant c R such that

IDRU I -< CRla I. Now, if A i is inferred in

D i by substitution of ~i in rule Ri,

then, since the number of atoms in R. is
i

fixed, and since each formula in u. must
i

be a subformula of some formula in S or
D I, there is some constant c' such that

I~il -< c'(IDiI + [IAI). Finally, since
AES

translation causes no more than linear
expansion of formulas summation of the
relation IDR ~il -< ciIDll + [IAI) for

i A~S
all formulas A i in D 1 yields

IDzl-< ClDlln(IDi[+ [IA/). Q . E . D .
AeS

Indirect Translation

If <I contains ~ or ~ and <2

contains neither 5 nor ~, then the
above type of direct translation will not
work, since there can be no formula in L

<2
with no more than one occurrence each of
P0 and P1 which is logically equivalent
to either (POEPI) or (P0~PI). In this
situation, the following indirect
translation will suffice.

Let S be a set of formulas in L
with [Sls= s. To each distinct formula

A in sub(S) for which ~ is not the
principal connective, associate a unique
atomic formula £s(A). This association

can be made in such a way that £s(T) = T,

£s(F) = F, and for each A e sub(S)

140

]gs(A)[~ I + Llog2(s)]. For formulas in

sub(S) of the form nA, set

~s(~A) = ~S-~K)-, where p = N p~ and

N P~-ff0 = p" This assigns a literal (atom

or negation of an atom) of length
]ks(A)] ~ 1 + INN] + ~og2(s)J to each

subformula in sub(S), with distinct
(after removal of double negations)
formulas being assigned distinct literals,
and complementary formulas being assigned
complementary literals.

For each binary connective o, let
o

E be a formula in L such that

o ~ ' = max IE ° I E< (P~(P0oPl)), and l e t c< <
o

For e a c h f o r m u l a AoB in s u b (S) whose
p r i n c i p a l c o n n e c t i v e i s b i n a r y , d e f i n e

~(Aog) = E ° Zs(A°B) ~s(A) Zs(B) n o t i n g
kS < P PO Pl '

t h a t [£%(A°B) I ~ ~ c ~ (l + l N < l + K l o g ~ (s) J)

c < L l o g 2 (s) j . F i n a l l y , l e t

d e f ~ (S) = td ((A o B) ~ s u b (S) Z~(AoB)) ,
where t h e p a r e n t h e s i z a t i o n o f t h e l a r g e
c o n j u n c t i o n i s done in some s t a n d a r d way.
(For e x a m p l e , t h e (A o B) ' s a r e o r d e r e d
l e x i c o g r a p h i c a l l y , and t h e g r o u p i n g i s
frum left to right: ((...((EI&E2)&Es) &

...)&Es).) If C ¢ sub(S), then

def~(C) = td<(CAoB)~subCC) Z~CAoB)).
There is a constant d such that

K

I d e f S (C) I ~ d< [c[s k l°gz I st s] • Note t h a t
t h e r e i s a r e n a m i n g s u b s t i t u t i o n p such

t h a t d e f ~ (C) = d e f ~ (C) p . A l s o , i f

A 1 , . . . , A k
= , and C = Ba, then there

Pl,...,Pk
is a renaming p sUChkthat

d e f ~ (C) ~ (d e f B (B) P & (i ~ l d e f ~ (A i))) . T h a t
i s , i f C i s a s u b s t i t u t i o n i n s t a n c e o f
B, t h e n t h e c o n j u n c t s o f t h e d e f i n i t i o n
o f C a r e t h e c o n j u n c t s o f t h e d e f i n i t i o n s
o f t h e f o r m u l a s s u b s t i t u t e d i n t o B p l u s
a r e n a m i n g o f t h e c o n j u n c t s o f t h e
definition of C.

The following lemmas show how

def~(C) captures the important properties

of C. Let PS be the renaming induced by

£S on the atoms of S, (i.e.

£S (P l) • . . ~S (Pk)
PS = Pl'''Pk , where {pl,...,pk }

are the atoms of S.) Clearly SPs is

is satisfiable (falsifiable) iff S is

satisfiable (falsifiable) . Also, £S can

be chosen so that for every A in sub(S)
lAps! -< IAI, by c h o o s i n g

f p if]P[-< 1 + Llog 2 (s) j
k s (p) = ~ s o m e new p ' s . t .] p ' [-< 1 +

Llog 2 (s) J o t h e r w i s e

Lemma 1 T satisfies E ° iff
<

T(P) = T(p0opI).

Proof Immediate from the definition of E °. <

Lemma 2 T satisfies £~(AoB) iff

T (~ s (A o B)) = ~ (~ s (A) o ~ s (B)) .

P r o o f S u b s t i t u t e d e f i n i t i o n o f ~.s(AoB)
i n t o lemma 1.

Lemma 3 T satisfies def~ (S) iff

VAcsub(S) : T(APs) = T(Zs(A)).

Proof
=>--TJ--rnduction on the number of subformulas

of A.
basis: A is an atomic formula.

If A is atomic, then
APs = £s(A)' so

T(APs) = T (£ s (A)) .
i n d u c t i o n s t e p : Suppose

T(Ap S) = ~ (Z s (A)) and

T(BPs) = ~(~s(B)). Then

(nA)p S = n(APs) and

(AoB)p S = (APsOBPs).

(~ i f T(APs) = ~)
I) r(nAPs) = i f T(APs)

= (f i f T (~ s (A)) = t)

t i f T (~ s (A)) f

= T (~ £ s (A)) = T(ZS(-TA)).

2) Since ~ satisfies def~(S),

satisfies each of its conjuncts,

<(AoB) in particular. By lemma
£S
2, T (£ s (AoB)) = T (Zs(A) oZs (B)) ,
and by the induction hypothesis
T(£s (A) oZs (B)) = T ((A o B) p s) , so

T ((AoB)Ps) = T (~ s (A o B)) .
<=) Suppo'se t h a t g A c s u b (S) :

~(APs) = ~ (£ s (A)) . Then f o r e a c h
(AoB) ¢sub (S) ,
~ ((A P s o B p $)) = r (~ s (A o B)) ,

• (APs) = r (~ s (A)) , and
r (B P s) = ~ (~ s (B)) . By t h e d e f i n i t i o n
o f e x t e n s i o n o f a t r u t h a s s i g n m e n t ,
T ((A p s o B P s)) = r (~ s (A) o B s (B) ! , so t h a t
T (£ s (A o B)) = ~ (~s (A) o B s (B)) . Then , by
lemma 2, T s a t i s f i e s ~ (A o B) .

F i n a l l y , s i n c e T s a t i s f i e s e a c h

141

conjunct of def~(S), T satisfies

def~(S).

Lemma 4 A c sub(S) is falsifiable iff

td<(def~(S)~s(A)) is falsifiable.

Proof
=>--~uppose ~ falsifies A.

Then T' = falsifies ~Ps APs"
((~a)(B) = ~(S~))
Extend T' to T" which assigns
arbitrary truth values to the atoms of
SPs not in APs. Then extend T" to

T'" such that VB ~ sub(S),
• '"(Zs(B)) = ~"(BPs). Such an extension

is possible, since each distinct
B c sub(S) (after removal of double
negations) has a distinct ks(B) . Now,

by lemma 3, ~'" satisfies def~(S)

with ~'"(£s(A)) = T'"(APs) = f. But

this means that T'" falsifies

t d < (d e f ~ (S) ~£S (A)) .

<=) Suppose ~ falsifies

td< (def~(S) =£S (A)) .

Then ~(def%(S)) = t and

• (Zs(A)) = f. By lemma 3,

T(APs) ~ I T (Z s (A)) = f . But t h e n

• ' = Tp S (r e n a m i n g s a r e s u r e l y

invertible) falsifies A.
Define an indirect translation to be

ti~(A) = t d < (d e f ~ (S) n ~ s (A)) . Also define

s , = ~'
t i < (S) u { t i (A)}

AeS

T h e o r e m 3 Le t F 1 (< I , R 1) and

F 2 = (< 2 , R 2) be two a r b i t r a r y F r e g e

s y s t e m s . Then t h e r e i s a c o n s t a n t c
such that whenever S PFI A via D I

there is a set S' with A E S and a
derivation D 2 such that

.S v
ti S (It) via D 2 where

tl<2(S) ~f 2 <2

]D21 n ~ ClDlln. IP]USIs and ID21

) 2 ' l o g 2 (l D 1 U S l s) ClDlln'([VlUSl s

c(IDlUS]) 4.
Proof The proof of th i s theorem is based
on-n--f~e fo l low ing two lemmas.

Lemma 5 Suppose R = {AI,...,A k} ÷ g is

a sound rule of inference. Then

((p&def~(A 1)) =£S (A1)) ((p&def~ (Ak))

~s(Ak)),k((p&def~ B))~s(B)) where

s = {A 1 A k) u {B).

Proof Suppose ~ satisfies ((p&def~(Al))

~£S (AI)) ((p&def~ (Ak)) =ZS (Ak)). 2
cases arise:

I) T satisfies deF~(S) and p.

Then, by lemma 3, T(£~(AI)) = T(AIPs) ,

.... T(£s(An)) = T(AnPs) , and

T(Zs(B)) = T(BPs). Since R is sound,

AI,...,A n = B, so AIPs,...,AnP S b Bp S.

Since T satisfies def~(S) and

ti~(Ai) l~i~n, T satisfies AiP S

l~i~n. But then T satisfies BPs,

since AlPs,...,AnP S ~ BPs , so

T(£S(B)) = t and T satisfies ti~(B).

2) T falsifies ((p&def~(S)).

Then T satisfies (def~ (S) =£S (B))

ti~ (B).

ti~(Al) ti~(An) > ti~(B).

Lemma 6 For any Frege system P = (<,R)
t-]Yere exist constants c I and c 2 such

that given any set S 1 of n formulas in

L<, a set S 2 of m formulas from SI,

A), D = td (A~S 2 A) and C = td<(A S1 < ,

atom p, there is a serivation D such
that tdK((C&D)=P) PF tdK(C=P) via D and

Ip[n ~ clmn and for each formula A ~ P

IAI ~ CmlCr.
Proof Since each conjunct of D is a
conjunct of C, C ~ C&D.
The details of the rest of the proof are
rather tedious but straightforward. In a
Frege system F', designed for easy mani-
putations of conjunctions and implications,
a derivation P' : ((C&D) np) ~F' (Cnp) via

< cmn is derived. Then a D' w i t h] D ' l n -

d i r e c t t r a n s l a t i o n o f D' y i e l d s t h e
d e s i r e d d e r i v a t i o n D.

Now, t o p r o v e t h e i n d i r e c t t r a n s l a t i o n
t h e o r e m , s e t S ' = S u D a n d s e t

D = d e f S ' (s ') . C o r r e s p o n d i n g t o e a c h
< 2

f o r m u l a B i n D1,D 2 c o n t a i n s a d e r i v a t i o n

o f t i S ' (B) . To be s p e c i f i c s u p p o s e t h a t
<2

i n D1, B i s i n f e r r e d f rom A 1 , . . . , A k by

s u b s t i t u t i o n a i n r u l e R = {A~ A~} ÷

B' Thus A 1 = A~a A n = A k a , and

142

B = B'~. As induction hypotheses, assume
!

S u D 2 already contains ti~ (AI),... ,
2

!

ti~2(Ak). Let D R be the derivation

whose existence is implied by lemma 5.

Let S R (A~ ... A' B' = ' ' k' }" Then as was

previously observed, there is a renaming

p such that every conjunct of def~_(A~)p
S K

is a conjunct of def~,(S'). Thus

tdK(((def~,(S')&def;R(A~)P)~£s,(Al))),

...,tdK(((def~,(S')&def~R(Ak)P)=£s,(A~)))

~F2 td<(((def~,(S')&def< (B)p)~s,(B)))
S R

def~,(S')
via DRP P

Clearly, since (A=P) # ((A&B)=P), there

are derivations in F 2 of tdK(((def~,(S')

&def;R(A~)p)=Zs,(Ai))) from

td ((def~,(S')=Zs,(Ai)) each with a fixed

number of lines proportional in length to

[def~,(S')[. By lemma 6, there is a

derivation of td<((def~,(S')~s,(B))

from tdK(((def~,(S')&def~R(B)p)=Zs,(B)))

which has no more than Cl]S'[s]SR[s

lines of length bounded by
c21S'[sLlog2|S']s j. Since D R is fixed

and]SR|s is fixed, this entire deriva-

tion that serves in D 2 to replace B has

~cIS'|s lines each of length

~c|S'|slOglS']s. Finally, summing these

bounds for each formula B in DI,

|D2] n ~ C]Dl]nlDlUSls and

ID21 s c]DiIn(IDlUSls)21og2([DlUS]s)

c(IDll+lsl) 4.

IV. Other Powerful Proof Systems

Other systems that have been proposed
for proving validity or unsatisfiability
of propositional formulas include natural
deduction (Fitch [19523, Kleene[1967]),
Gentzen systems (Wang [1960], Kleene
[1967]), and extended resolution (Tseitin
[19687). All of these types of systems
turn out to be equivalent to Frege systems
in the sense that any one such system is
super if and only if all such systems and
all Frege systems are super.

Natural Deduction

Natural deduction systems are often
derived from Frege systems by the addition
of a derived rule, the deduction theorem:

• ~ D B if AI,...,A n F B then AI, ..,An_ 1 . A n .

All Frege systems have a deduction
theorem, so each Frege system gives rise to
a natural deduction system• A line in a
natrual deduction system is a sT-~g of the
form AI,...,A n ~ B, where the A i and B

are formulas. Such a line is considered
equivalent to ((AI&...&An)=B). A rule of

inference in such a system has the form
{~l,...,~k) ÷ ~', where the h i and ~'

are lines of the form A,AI,...,A k ~ B. (4

appears in every line of the rule.) The
rule is sound iff ZI,...,~ k # Z' To

obtain an instance of such a rule, apply
any substitution ~ to AI,...,Ak,B, and

replace A by any list of formulas. A
derivation in such a system is a sequence
of lines, each of which is obtained from
previous lines (or hypotheses) by a rule of
inference.

Every Frege system is a natural deduc-
tion system, if we just read rule
{AI,...,A n) ÷ B as {~bAI,...,ArA n} ÷ &bB.

In fact, in such a system, nothing will
ever be substituted for A.

Theorem 4 If N and N' are implica-
tionally complete natural deduction systems,
there is a polynomial p such that for any
derivation D in N there is a derivation
D' in N' of a translation of the conclu-
sion of D from the translation of the
hypotheses of D of length]D'[~ p(IDl).

Proof The proof of this theorem follows
the same lines as previous proofs.

Each line of D is simulated by a short
derivation of the translation of that line.

Gentzen Systems

We shall outline a version of these
systems as adapted from Kleene [19677. A
sequent is an ordered pair (A,A) of sets
o--~ormulas, written A ÷ A. We shall
assume that A and A are true sets, so
that order of occurrence and multiplicity
of occurrence in A and A have no
meaning. A sequent AI,...,A m ÷ BI,...,B n

is valid iff the formula (AI&...&Am)

(BlV...VBn) is valid, and the sequent

takes on the same truth value under a truth
assignment ~ as the formula
(AI&...&Am) = (BlV...VBn). Corresponding

to each of the connectives ~,&,v,~,~
there are two rules of inference, one for
introduction and one for elimination of the
connective• The rules for ~ and ~ are

143

introduction elimination

A,r + ® r ÷ @,A
F ÷ ~,~A ~A,F ÷

= A,F ÷ O,B F ÷ ~,A B,F ÷ ~)
F ÷ ~,A=B A~B,F ÷

Here upper case Greek letters stand for
sets of formulas, upper case latin letters
stand for formulas, and the notation A,F,
for example, means {A} u F.

The final rule is called

A ÷ A,C C,F +
cut:

A,F ÷ A,O

This rule is not necessary for complete-
ness, but it seems to allow proofs to be
considerably shortened in general.

The Gentzen axioms are sequents of
the form C,F ÷ ~,C.

A proof of a sequent A ÷ A in a
Gentzen system is usually defined to be a
rooted tree whose nodes are labelled with
sequents, whose root is labelled with
A ÷ A, whose leaves are labelled with
axioms, and such that each internal node
is a consequence by a rule of inference of
its daughter node(s). For our purposes,
it is better to assume that either the
proof has a linear format or that it is an
acyclic digraph, so that once an interme-
diate sequent in a proof has been derived,
it does not have to be derived again if it
is used twice.

A proof of a formula A in a Gentzen
system is a proof of the sequent ÷A, and
a proof that A is inconsistent is a
proof of the sequent A+.

The idea of a Gentzen system can be
extended to any system with rules for
deriving sequents. In this sense, natural
deduction systems are Gentzen systems in
which the second set A of the sequent
A ÷ A is always a singleton set, and
Frege systems are Gentzen systems where A
is empty and A is a singleton.

A Gentzen system that is implica-
tionally complete is called a Gentzen
system with cut. Note that the above
system is complete (for ~ = (~,=))
without the cut rule, but that it is not
implicationally complete unless the cut
rule is included.

Theorem 5 Let G be a Gentzen system,
and let G' be a Gentzen system with cut.
Then there is a polynomial p(.) such
that given any derivation D in G, there
is a derivation D' in G' of the trans-
lation of the conclusion of D from the
translations of the hypotheses of D such
that]D'[~ p([D[) .

Proof The proof of this theorem follows
t e--~--previous pattern. Each line of D is
replaced in D' by a short derivation in
G' of the translation of that line.

Resolution with Extension

An operation called consensus was
introduced by Quine [1955] as a method to
help find the minimum normal disjunctive
form for a formula. It was adapted by
Dunham [1962] as a computer method for
establishing the validity of formulas in
normal disjunctive form.

Resolution was introduced by Robinson
[1965] as a proof method for the predicate
calculus. When resolution is restricted to
the propositional calculus, it is just the
dual of consensus, and provides a method
for establishing the inconsistency of a
formula in normal conjunctive form. In
resolution terminology, a literal is an
atom or a negation of an atom, and a clause
is a finite disjunction of literals. We
will think of a clause as a set of literals,
so that ordering and repetitions of
literals in a clause does not make sense.
The complement of a literal ~ is denoted

by ~, and is defined by p = 7p, ~-p = p.
The resolvent of clauses A v ~ and ~ v B
is A v B, where it is understood that if
a literal occurs in both A and B, the
two occurrences are merged in A v B. A
resolution refutation of a set S of
clauses is a finite sequence of clauses
each of which is either a number of S or
a resolvent of two earlier clauses in the
sequence, and such that the last clause is
the empty clause H. One can prove that a
set S of clauses is inconsistent if and
only if S has a resolution refutation.

Tseitin [19687 introduced a rule,
called extension, to be used in conjunction
with extension, and which seems to allow
for considerably shorter refutations of
some sets of clauses. This rule allows the
introduction of new atoms, and new clauses
which force the new atoms to be equivalent
to any truth-function of the original atoms.

Extension Rule: (for a set S of
clauses). If ~ is a literal such that
neither ~ nor ~ occurs in S, then the
three clauses ~ v ~ v y, ~ v 8, a v y
may be added to S, for any literals S
and y.

Notice that the conjunction of these
clauses is equivalent to the formula

The extension rule may be applied any
number of times to a set S of clauses,
provided the new variable ~ introduced is
distinct for each application. The
resulting augmented set is consistent if
and only if the original set S is consis-
tent. Thus a refutation using resolution
with extension consists of a sequence of

144

extensions followed by a sequence of
resolvents.

Resolution with extension can be made
into a proof system for tautologies A
with any connectives by using the methods
described under the section on indirect
translation of Frege systems. If we let
< = {~,&,v} and S = {A), then

e~(BoC) may as well be in conjunctive

normal form, and hence can be regarded as
a set of clauses; (there will be at most
four clauses, with at most three literals
per clause). Then let def(A) be the

union of e~(BoC) over all subformulas

(BoC) of A. Then def(A) is a set of
clauses with the property that
def(A) ~ Z(A) iff A is a tautology.
Further, there exists a derivation using
resolution of the unit clause ~(A) from
the clauses def(A) iff A is a tauto-
logy. If we allow use of the extension
rule in the derivation, then we will
regard such a derivation D as a proof of
A using resolution with extension. The
length [D I of D is the total number of
symbols encoding the clause of the proof,
under a suitable encoding.

Theorem 6 There is Frege system F and a
constant c such that any proof D of a
formula A in resolution with extension
can be transformed to a proof D' of A in

with ID'[~ clDl 3, and the same with F
"F" and "resolution with extension"
interchanged.

The idea of the proof is this. The
system F will include all connectives,
and rules will be suitable for simulating
resolution with extension. A proof D of
A using resolution with extension is a
sequence of clauses representing a deriva-
tion of Z(A) from def(A). If we now
substitute for each literal in each clause
the formula defined by that literal (i.e.
substitute B for Z(B)), the result
will be a sequence of tautologies ending
in A. This can be expanded into a proof
in E by including axiom schemas in F
which make the substitution instances of
<

es(BoC) just defined into instances of

axioms. The other rules needed in F are
the rule "cut" {A v ~B, B v C} ÷ A v C,
to simulate resolution, and rules imple-
menting the associativity and commutativity
of v, and double negation cancellation.

Conversely, given a proof
D = <A 1 ,An> of A in F, a derivation

of Z(A) from def(A) can be constructed
by using the extension rule to introduce
literals £(B) for every subformula B
of every A. such that B is not a i
subformula of A. Clauses defining
literals associated with the subformulas
of A are already available in def(A).

Then the sequence of unit clauses
~(AI) ,£(An) = ~(A) can be expanded

into a derivation using resolution with
extension.

We do not know whether a result
similar to the theorem holds when "resolu-
tion with extension" is replaced by
"resolution", but the result of Tseitin on
regular resolution (described later) casts
doubt on such a proposition.

V. Weaker Systems and Lower Bounds

Analytic Tableaux. These were
introduced by Smullyan, and described in
Smullyan [19681. They were inspired by
Gentzen systems and other similar systems,
and provide a proof system which is elegant
in principle, and satisfying to apply on
short examples. However, since a tableau
proof is defined to be a labelled tree, and
since it cannot so readily be put in a
linear form or the form of an acyclic
digraph, examples can be found which
require much duplication in the construction
of a tableau proof. Here is a class of
hard examples: Let

+_2 +i~3 m {±plv_v v_,±±v...vP±...±} where +P T m
means P and -P means ~P, and the

subscript of pi is a string of i-I +
or -'s corresponding to the sequence of

signs of the preceding pO, j < i. Thus

T is a set of 2 m clauses and has
m

20 + 21 + ... + 2 m-I = 2 m - 1 atoms. For

example, T 2 = {plvp~, plv~p~, -plvp z,_

mplvzp2}. If we let S m be the conjunction

of all disjunctions in T m, then S m has

length about (2m) 2 m, but one can show
that any closed tableau for S m has at

least 22cm nodes, where c > 0 is some
constant independent of m. (We remark
that there is a resolution refutation of

T with length only 2m-l.)
m

Davis-Putnam Procedure. Davis and
Putnam [1960] introduced a decision proce-
dure which amounts to determining whether
a set of clauses is consistent. This
procedure can be formulated in terms of
resolution as follows:

Select a literal g from the set S of
clauses. From all possible resolvents
of pairs of clauses from S in which
is the literal resolved upon (i.e. all
pairs of the form A v 6, ~ v B). If
the empty clause is thus formed, S is
inconsistent. From the set of resolvents,
delete all clauses which have both a
literal and its complement, and let S'
be the remaining resolvents, together

145

with all members of S which contain
neither ~ nor ~. If S' is empty,
then S is consistent. Now repeat the
whole procedure (for a different literal
~) for S' instead of S. (Note that
S' is consistent if and only if S is
consistent, and S' contains one less
atom than S.)

Thus we can think of the Davis-Putnam
procedure as a procedure for generating
resolution proofs of a certain restricted
form. In Cook [1971b3, examples are given
which show the length of the resulting
proofs depend heavily on the order in
which the literals ~ are eliminated.

Also, the Davis-Putnam procedure as
originally stated, and as stated above,
omits "subsumption". This rule allows us
to delete every clause A which is a
super set of another clause B also
present. Subsumption can be applied before
applying the Davis-Putnam procedure, and
it can be applied during the procedure
every time a resolvent is generated.
Examples given in Cook [197167 and Simon
[1971] for which there is no polynomial
bound on the number of clauses generated
by the Davis-Putnam procedure, no matter
in what order the atoms are eliminated.
However, if the subsumption rule is
applied, all the examples generated only
a few clauses under Davis-Putnam. The
status of the Davis-Putnam procedure is
definitely settled by a result in Tseitin
[1968].

Regular Resolution. Tseitin [19683
defines a resolution refutation to be
irregular iff there is some subsequence of
formulas AI,...,A k from the proof such

that each A. is one of the parent i
clauses in forming the resolvent Ai+ I,

1 ~ i ~ k - i, and such that there is some
literal g which appears in A 1 and Ak,

but is not presenz in some intermediate
clause A-. Thus ~ is removed by reso-

1

lution, and then reintroduced by another
branch of the proof (so it must be moved
again if the empty clause is formed). The
refutation is regular if it is not irregu-
lar.

Theorem 7 (Tseitin) For infinitely many
integers n there is an inconsistent set
of n clauses whose minimum regular
resolution refutation has length exceeding

2/~"

The proof, which appears in Tseitin
[1968], is long but elegant.

Corollary: For infinitely many integers
n there is an inconsistent set of n
clauses such that the Davis-Putnam proce-
dure with subsumpzion generates at least

2 Cn clauses, no matter in what order the

atoms are eliminated.

The corollary shows that neither the
Davis-Putnam procedure, nor any obvious
variation of the procedure, is a super
proof system. It also shows that no
obvious variation is a polynomial time
decision procedure. The proof of the
corollary amounts to the easy observation
that every Davis-Putnam refutation (even
with subsumption) correspond to a regular
resolution refutation.

It is not known whether theorem 7
applies to resolution in general (as
opposed to regular resolution).

Semantic Trees. These were discussed
in Robinson [19683 and Kowalski-Hayes
[19693 as a general method for analysing
mechanical proof procedures for the predi-
cate calculus. We shall present a special
version useful as a refutation system for
the propositional calculus.

A partial truth assignment to a set
S of formulas is a map Q : at(S) ÷ {t,f,u}
(u is for "undefined"). The map Q can
be extended to sub(S) by the recursive
equations Q(T) = t, Q(F) = f,

f t if Q (A) = f
Q (~ A) = , f if Q(A) = t ,

L u if Q (A) = u
Q ((A o B)) = Q(A) o Q (B) , w h e r e Q (A) o Q (B)
is given by the truth table in section II
if Q(A) ~ u and Q(B) ~ u, and if just
one of Q(A), Q(B) ~ u, then Q(A) oQ(B)
is t or f if this can be determined
without knowing the value of the other,
and otherwise Q(A) oQ(B) = u. For example,
if o is &, then f&u = f, u&f = f,
but t&u = u&t = u&u = u.

A semantic tree for a set S of
formulas is a finite binary rooted tree,
with the pair of edges leading out from
each node labelled P and ~P respectively,
for some P in at(S), and such that no
branch (i.e. path from root to a leaf) has
a complementary pair of literals on it. A
branch determines a partial truth assign-
ment Q by the conditions Q(p) = t if p
labels some edge on the branch, Q(p) = f
if ~p is on the branch, and Q(p) = u
if neither p nor ~p is on the branch.
The branch is closed for S iff the
partial truth asslgnment determined by the
branch falsifies some formula is S. The
tree is closed for S iff every branch is
closed.

Theorem 8 A set S of formulas is
inconsistent iff there is some closed
semantic tree for S.

The proof can be adapted from results
in Robinson [1968]. An example of a closed
semantic tree for S = {pvq, pv~q, ~pvr,
7pv~r} is

146

r

Tree Resolution and Semantic Trees

A tree resolution refutation of a set
S of clauses is a finite binary rooted
tree whose nodes are labelled with clauses,
such that the leaves are labelled with
clauses from S, the root is labelled
with the empty clause D, and the clause
labelling any internal node is the resol-
vent of the clauses labelling the two
parent nodes of the node. It follows from
the completeness of resolution that S
has a tree resolution refutation iff S
is inconsistent. However, the number of
nodes on the smallest tree resolution
refutation of S might be much greater
than the number of nodes in an (ordinary)
resolution refutation of S, because no
resolvent formed on the tree can be used
more than once.

Here is a tree resolution refutation
for the set S = {pvq, pv,q, npvr, npvnr}
mentioned above

pvq pvTq ipvr 7pv,r

P ~P

D

Theorem 9 Every closed semantic tree for
a set of clauses S can be converted to a
tree resolution refutation (of the same
size and shape) by suitably changing
labels, and conversely.

The ideas needed for the proof are in
Robinson [1968] and Kawalski-Hayes [1969].
As a result of this, we can conclude the
following.

Theorem I0 There is a constant c > 0
such that for infinitely many n there is
an inconsistent set of n clauses whose
smallest tree resolution refutation and
smallest closed semantic tree both have at

2
c (l o g 2 n)

l e a s t 2 n o d e s .

The result for tree resolution refu-
tations follows from theorem 4 of Tseitin
[1968], and the result for closed semantic
trees follows from the theorem above.

Other Simulation Results

Theorem Ii For every closed analytic
tableau T for a set S of clauses there
is a closed semantic tree S with at most
twice as many nodes as T.

Proof Using a depth-first search of the
c o--~d tableau, construct a semantic tree
so that corresponding to every open path
of the tableau which has literals
LI,...,L k labelling nodes, the semantic

tree will have (among other labels) edges
labelled LI,...,L k. Every edge L will

have a mate labelled L, which accounts
for the factor of two. The semantic tree
branches will always close before the
tableau branches.

A very strong counter-example to the
converse of this theorem is provided by the
sets T described in section on analytic

m
tableaux. These sets are exponential for
tableaux, but linear for semantic trees.

Theorem 12 (Tseitin) There is a constant
c such that given a cut-free proof of ÷A
Gentzen's system £ of n lines there is
a resolution refutation (without extension)
of def(A) u {~(-A-)-} of length at most cn.

The proof is outlined in section 1 of
Tseitin [19687.

REFERENCES

Bauer et. al. [1973]. A note on disjunctive
form tautologies, by Bauer, Brand,
Fischer, Meyer, and Paterson. SIGACT
NEWS, April, 1973.

Cook [1971a~. The complexity of theorem-
proving procedures, by S.A. Cook.
Proceedings of Third Annual ACM
Symposium on Theory of Computing, May,
1971.

Cook [1971b3. Examples for the Davis-
Putnam Procedure, by S.A. Cook.
Unpublished manuscript, June, 1971.

Davis-Putnam [1960]. A computing procedure
for quantification theory, by Martin
Davis and Hilary Putnam. JACM, vol.
7, pp. 201-215.

Dunham [1962]. Theorem testing by computer,
by B. Dunham and J.H. North.
Proceedings of the Symposium on
Mathematical Theory of Automata,
Jerome Fox, Editor, pp. 173-177.

Frege [18797. Begriffsschrift, eine der
arithmetischen nachgebildete
Formelsprache des reinen Denkens, by
G. Frege, Halle, 1879.

147

Hilbert-Ackermann [1950]. Principles of
Mathematical Logic, by D. Hilbert and
W. Ackermann, New York (Chelsea Pub.
Co.).

Karp [1972]. Reducibility among combina-
torial problems, by R.M. Karp,
Complexity of Computer Computations,
R.E. Miller and J.W. Thatcher, ed.,
New York (Plenum Press), pp. 85-103.

Kowalski-Hayes [1969]. Semantic trees in
automatic theorem proving, by R.
Kowalski and P. Hayes. Machine
Intelligence, Vol. 4 (B.-]VFeT-t-~r and
D. Michie, eds.), New York, pp.
87-101.

Kleene [1952]. Introduction to Meta-
mathematics, by S.C. Kleene, (D. Van
Nostrand, Inc.).

Kleene [1967]. Mathematical Logic, by
S.C. Kleene, (Wylie).

Mendelson [1964]. Introduction to
Mathematical Logic, by Elliott
Mendelson, (Van Nostrand).

Quine [1955]. A way to simplify truth
functions, by W.V. Quine, American
Mathematical Monthly, Vol. 62, pp.
627-631.

Robinson [1965]. A machine oriented logic
based on the resolution principle, by
J.A. Robinson, JACM, Vol. 12, pp.
23-41.

Robinson [1968]. The generalized
resolution principle, by J.A.
Robinson. Machine Intelligence,
Vol. 3 (D. Michie, ed.), American
Elsevier, New York, pp. 77-94.

Simon [1971]. On the time required by the
Davis-Putnam tautology recognition
algorithm, by Imre Simon, Research
Report CSRR-2050, Department of
Applied Analysis and Computer Science,
University of Waterloo, Waterloo,
Ontario, Canada, June, 1971.

Smullyan [1968]. First order logic, by
Raymond M. Smullyan, Springer-Verlag
New York Inc.

Tseitin [1968]. On the complexity of
derivation in propositional calculus,
by G.S. Tseitin, Studies in
Constructive Mathematics and Mathema-
tical Logic, Part If, A.O. Slisenko,
ed.

Wang [1960]. Toward Mechanical Mathema-
tics, by Hao Wong. IBM Journal, Jan.
1960, pp. 2-22.

148

