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Abstract

We define the notion of a combinatorics of a first order structure,
and a relation of covering between first order structures and proposi-
tional proof systems. Namely, a first order structure M combinatorially
satisfies an L-sentence ® iff ® holds in all L-structures definable in M.
The combinatorics Comb(M) of M is the set of all sentences combi-
natorially satisfied in M. Structure M covers a propositional proof
system P iff M combinatorially satisfies all ® for which the associated
sequence of propositional formulas (®),, encoding that ® holds in L-
structures of size n, have polynomial size P-proofs. That is, Comb(M)
contains all @ feasibly verifiable in P. Finding M that covers P but
does not combinatorially satisfy ® thus gives a super polynomial lower
bound for the size of P-proofs of (®),.

We show that any proof system admits a class of structures covering
it; these structures are expansions of models of bounded arithmetic.
We also give, using structures covering proof systems R*(log) and PC,
new lower bounds for these systems that are not apparently amenable
to other known methods. We define new type of propositional proof
systems based on a combinatorics of (a class of) structures.

We continue here research into what could be called infinite limits of
polynomially bounded propositional proof systems. Although this is best
explained on examples and formal definitions, the reader deserves a quick
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explanation for this somewhat bizarre statement. A propositional proof
system in a general sense is simply a non-deterministic algorithm accepting
exactly the set of propositional tautologies in DeMorgan language. The
main problem is the NP vs. coNP problem. This is a question whether some
propositional proof system admits polynomial size proofs of all tautologies
(i.e. whether some proof system can run in polynomial time). For a few
particular proof systems based on logic or algebraic calculi (e.g. resolution or
Nullstellensatz) super-polynomial lower bounds are known. All these lower
bounds can be proved for a very uniformly given sequences of tautologies:
For n > 1, the n-th tautology asserts the validity of a combinatorial principle
on structures of size n (e.g. the pigeonhole principle). The principle can be
formulated as a statement that a sentence in a first-order language (or in
a simple 2nd order extension allowing for natural formulation of Ramsey
theorem and alike) has no model (of size n). The sentence then makes sense
over arbitrary structures in the language, even infinite. The general theory
of limits of proof systems we are after says that given a proof system P, if
instances of a principle ® for n > 1 are valid and proved by P in length
polynomial in n then ® holds true (in the definable sense - see Definition
1.1) in a class of first-order structures associated with P. Such a class of
structures is informally called a covering class of P. If a covering class is an
elementary class, i.e. the class of models of a theory, we shall call the theory
a covering theory.

In fact, any P admits a covering class and one can take for the class a
class of suitable generic expansions of models of bounded arithmetic. How-
ever, we look for model-theoretically natural classes as this then yields an
insight into lower bounds for P. There are two prominent examples known
at present. The tree-like resolution proof system R* (in fact, its extension
R*(log)) corresponds to the class of all infinite structures ([12, 15]). Here
”corresponds to” means that the covering relation actually characterizes all
first order principles with polynomial size R*(log)-proofs. The second exam-
ple is Nullstellensatz and polynomial calculus over a finite prime field F,,. Its
covering class is the class of Euler structures with a suitable Grothendieck
ring ([14]).

In this paper we first define the notion of the combinatorics of a first
order structure M and give few examples. Then we recall the translation
of first-order principles into propositional formulas; we consider a particular
translation that produces a set of clauses (or a set of polynomial equations).

In the third section we define the covering relation between first order
structures and propositional proof systems, formalizing a relation that ex-



ists between all structures and (an extension) of tree-like resolution, and
between Euler structures and Nullstellensatz and polynomial calculus over
a finite prime field. Structure M covers a propositional proof system P
iff M combinatorially satisfies all ® for which the associated sequence of
propositional formulas (®),, encoding that ® holds in L-structures of size
n, have polynomial size P-proofs. Finding M that covers P but does not
combinatorially satisfy ® thus gives a super polynomial lower bound for the
size of P-proofs of (®),,.

We use the covering theories for (an extension of) tree-like resolution
[12, 15], and for Nullstellensatz and polynomial calculus systems over a finite
prime field [14] to give new lower bounds for these systems, for principles that
are not apparently amenable to other known methods. This is in Section 4.

In Section 5 we give a general description of a covering class of any P as
expansions of models of bounded arithmetic.

Finally, in the last section, we show that (classes of) structures with r.e.
combinatorics can be seen as propositional proof systems in a natural way.

Definitions of undefined notions in model theory and proof complexity
can be found in [7] and [12] respectively. Logarithms are base 2 and [n] :=
{0,...,n—1}.

1 Combinatorics of a structure

Let L be any first order relational language with constants and with equality.
The prohibition of general function symbols is not essential but it simplifies
some definitions. A suitable general language is the language of directed
graphs: a binary relation symbol and constants; any theory is interpretable
in a theory in this language (see e.g. [9]').

Let M be a first order structure with at least two different elements. To
avoid any confusion we shall assume that L is disjoint from the language of
M. The qualification definable means definable with parameters, unless it
is specified otherwise. An L-structure is definable in M if, for some k > 1,
its universe is a definable subset of M* and all L-relations are definable in
M.

Let ® be an L-sentence.

!This is the only reference I know of where this is explicitly stated and proved. However,
undoubtedly other authors had to use a similar statement earlier.



Definition 1.1 M combinatorially satisfies ®, Mc® in symbols, iff ®
holds in all L-structures definable in M. The combinatorics of M is the set

Comb(M) :={® | Ml=.®}

It would be, perhaps, equally natural to consider L-structures inter-
pretable in M (e.g. in the sense of being definable in M¢?) rather than only
definable.? But for our purposes the given definition suffices.

As all finite structures are definable in all M of size at least 2, Comb(M)
is a subset of sentences valid in finite structures (hence the name combina-
torics of M). It is clearly deductively closed. Moreover, it can be non-trivial,
i.e. bigger than just predicate logic but smaller than the set of all sentences
valid in finite structures.

Example 1.2 Let R be the real closed field in the language of ordered fields.
Comb(R) violates the pigeonhole principle (PHP) but still upholds that there
is no bijection between a set and the set minus one point (the ontoPHP), and

that there is no injective map of A? into A (the weak pigeonhole principle
WPHP), if |A| > 1.

The PHP is violated by many maps in R; for example, map z > 0 to
z + 1 and leave z < 0 in place. The ontoPHP holds as semi-algebraic
bijections preserve Euler characteristic and the characteristics of a set and
the set minus one point differ, c¢f. [5]. The WPHP holds for dimension
reasons.

Example 1.3 Let C be the complex field in the language of rings. Comb(C)

contains Comb(R), as C is definable in R, but it is different. Namely, C

fulfills PHP; this is a theorem of Az [1]. However, the dual statement:
Any f: A — A that is onto must be one-to-one

is clearly not in Comb(C) (e.g. z — x2).

Ax’s theorem states that for any algebraic set A any one-to-one polyno-
mial map p : A — A must be onto. For a proof of the Ax’s theorem utilizing
compactness see e.g. [18, p.2, Thm.1.3]. The proof works equally well in
a bigger generality and gives the following statement: Any V3 L-sentence

2The difference is that the universe of a definable structure is a definable set and the
equality is absolute, while in an interpretable structure the universe can be a quotient
of a definable set modulo a definable relation, or a quotient of a quotient, etc., and the
equality is not absolute.



® that is valid in all finite L-structures is also combinatorially valid in all
structures that are elementarily equivalent to ultraproducts of locally finite

structures (in the case of C it is the ultraproduct of algebraic closures of
finite fields).

Example 1.4 If M is pseudo-finite (i.e., elementarily equivalent to an ul-
traproduct of finite structures) then Comb(M) consists exactly of ®’s valid
in all finite structures.

As the theory of M gets stronger, Comb(M) gets weaker.

Example 1.5 If M is a model of Peano arithmetic PA (or even its subthe-
ory IXY) that is ¥V-sound (M satisfies the same universal sentences that are
true in the standard model N) then Comb(M) consists exactly of ® provable
in predicate logic.

This follows straightforwardly from the completeness theorem which can
be formalized in I%Y, cf. [6].
We mention two problems whose motivation will be clear later.

Problem 1.6 Characterize structures M whose combinatorics Comb(M)
contains the following principle of finite combinatorics: Every partial order-
ing has a minimal element.

The qualification characterize means that we look for a property of such
structures of a natural model-theoretic character. For example, structures
combinatorially satisfying PHP are those admitting ordered weak Euler
characteristic on definable sets, cf. [17].

Problem 1.7 When is Comb(M) recursively enumerable? Are there some
mathematically interesting structures with non-trivial but recursively enu-
merable combinatorics? Are Comb(C) and Comb(R) r.e.?

2 First order principles and propositional formu-
las

A sentence ® gives raise to an infinite sequence of propositional formulas.



Definition 2.1 The propositional language (L) consists of connectives 1
(true), 0 (false), =, of V and A of unbounded arity, and of infinitely many

atoms

R
Py, ik

one for every relation symbol R(x1,...,x) € L and every choice of natural
numbers i1, ...,

The next definition recalls a standard notation [12].

Definition 2.2 Let ® be an L-sentence and n > 1 a natural number. Define
the propositional formula (®), in language (L) by induction on the logical
complezity of ®:

1. (i = §) is 1 iff i = j, otherwise it is 0, for any i,j < n.
2. (R, ... ik))n = pft i for any iy, ... ip <n

8. (2P 1= (P

4. (@0 W), = (B, 0 (), for o =V, A

5. 3z, @(2))n 1= Vicn(@())n

6. (Vz,2(2))n = Nicpn (P(0))n

The formula (®),, is, in general, a constant depth formula while some
proof systems operate with only restricted class of formulas (like resolution
with clauses) or even with formulas that are not DeMorgan (like algebraic
proof systems), or even do not operate with formulas at all (like a general
NP algorithms). Strictly speaking, this does not need to concern us as, by
definition, a proof system proves all tautologies in DeMorgan language. For
example, a general formula is encoded for resolution by limited extension.

However, the tautologies we consider are of special form and there is
a better way of reaching propositional formulas of the CNF form. The
sentence @ is valid in all finite structures iff its Herbrandization ®g is; @5
is an 3V formula and —=® 4 is a CNF formula.

The Herbrandization of a prenex formula ®:

Jz1Vy1 ... Vs H(T,7)
¢ open formula in DNF form, is

Jzy ... 3z O(T, y1/ha(21), y2/ho(x1,22), . . ., yr/hi(T)))



where h; are new function symbols. As we do not allow function symbols,
each h; is replaced by (i 4+ 1)-ary relation symbol H;(x1, ...,z 2), and @y
is defined to be the disjunction of the formula

3wy ... 3wk 3yr - Fyes Hi(z1,91) A Ha (21, w2, 92) A

A Hk(§7yk) A ¢(§ay17 v ayk)

together with the formula
3o Vy1=Hy (21, 1) V... V 321, oYy Hy (21, - Tk, Yi)

Hence (@), is a DNF formula and so, possibly always replacing ® by @,
we may assume henceforth without loss of generality that all ® translate to
a sequence of DNF formulas (®),,.?

An analogous translation is used in [19, 20].

3 Covering theories for proof systems

Let M be a structure and P a proof system.

Definition 3.1 The symbol P &, (®),, denotes the existence of P-proofs of
(®),, of size n°®WY), for all n > 1.
M covers P iff ® € Comb(M) whenever Pt (®),,.

Our main goal in this research is to find, given P, a rich class of structures
M defined by some combinatorial, model-theoretic or geometric property,
and covering P. We use the informal term covering class of P for any such
class. The point is that one can then use structures in the covering class
for proving lower bounds for P: to prove super-polynomial lower bound for
(®),, it is sufficient to find M in the class such that M f=.®.

3The referee pointed out that it is not a priori clear that two logically equivalent
sentences give two sequences of tautologies of polynomially related proof complexity. This
will be indeed true for any P containing R”(log) as (the Herbrand translation of) one
sentence has polynomial size R* (log)-proofs from the other one (i.e. one does not operate
with the Herbrand translation of the equivalence but with proofs of one sentence from the
other one).



3.1 First example: an extension of tree-like resolution

Resolution R is naturally a subsystem of sequent calculus LK, allowing no
connectives except the negation. The following definition augments R as to
correspond to LK-proofs of the Y-depth 0 (as defined in [10] or [12, Def.
12.2.3]).

Definition 3.2 ([15]) (a) R™ is a refutation proof system that works with
clauses C' formed by conjunctions D; of literals ¢; ;:

C = U{Di}, D; = /\ei,j
? J

The inference rules are:

ClU{/\jfj} CQU{ﬁgll,...,—!aC}
C1 U Cy

provided ¢\, ..., ¢, are among {;’s and k > 1, and

Ci U {/\j<u e]} Ca U {/\j<v eu—l—j}
CrUCy U {/\j<u+v tj}

(b) Let f : N — N be a function. The R(f)-size of an R -proof is the
minimum S such that the proof has at most S clauses and each con-
junction of literals occurring in clauses has size at most f(S).

We shall use a phrase R(f)-proofs of size S rather than R -proofs of
R(f)-size S.

(c) Tree-like versions of proof systems are denoted by the superscript *:

R*, R(f)".
Obviously, R(1) is just R, while R(log) is the X-depth 0 subsystem of LK.
Theorem 3.3 ([12, L.9.5.2]) Any structure covers R*(log).

The theorem is valid in a stronger sense than is captured by the notion
of covering. Namely, a principle has polynomial size R*(O(1)) proofs iff it
is provable in predicate logic and, if it is not, then it requires exponential
size R*(log) proofs. This first example of a covering class is from [12],
where the lower bound part of the theorem is a special case of a more



general statement about search trees. The upper bound (principles provable
in predicate logic have polynomial size R*(O(1))-proofs) follows from the
simulation of bounded arithmetic by R constructed already in [10]. See
[15] for further discussion. We state now explicitly this stronger version
of Theorem 3.3 as it will be used in Theorem 4.1. For the sake of the
completeness of the presentation we also outline the construction from [12].

Theorem 3.4 ([12, L.9.5.2],[10]) Let ® be a first order sentence. Then
there are € > 0 and k > 1 such that the following holds:

(1) If =® has an infinite model then (Pg )y, requires R*(log)-proof of size
at least 26”1/2, for alln > 1.

(2) If © is valid in all infinite structures then (@), admits R*(k)-proofs
of size polynomial in n, for all n > 1 for which (®), is a tautology.

Proof-sketch:

Let ® be an L-sentence and Ly the relational language of ®f. If ® can
be violated in an infinite structure, so can be ®y. Let M be an infinite Ly-
structure in which =®z holds. Let k£ > 1 be the maximal arity of a relation
symbol in Ly (hence k depends on L and on the number of quantifiers in ®
only). Let n > 1.

Assume that 7 is an R*(log) refutation of (®y), of size s = 2!, i.e. the
sizes of the conjunctions in clauses are bounded by t.

A partial bijection F' between a subset dom(F) C [n] and a subset
rng(F) C M determines a partial truth assignment ap to atoms of (®g),:
If pﬁ,m,im is an atom and {i1,...,in} C dom(F) then ap gives the atom
the truth value of R(F(i1),...,F(ip)) in M.

Construct a sequence of clauses C; from 7 and partial bijections F; be-
tween subsets of [n] and of M by the following process. Put Cy := 0, Fy := ()
and 7y := 7. Pick a clause C in 7 splitting the proof tree in a 1/3-2/3 fash-
ion of Spira’s lemma. Consider two cases: (a) there is F' D Fj such that
ay forces C) true, and (b) there is no such F. In case (a) take for F| some
F D Fy with the property and of minimal size. In case (b) take F} := Fj.
Clearly |Fy| < tk.

In case (a) we delete from 7 everything above C1, in case (b) everything
that is not above C}. The resulting tree m; is a proof of (a) either the empty
clause from the original initial clauses and from a clause forced true by £,
(b) or it is a proof from original initial clauses of a clause that can never be
forced true by any F' D Fj.



Next we analogously pick Cy splitting m in the 1/3-2/3 fashion and
define F5» and 79 identically, and continue in this process until we reach, in
step w, m, of size 1. Any m; in the process is a proof from original initial
clauses or from clauses forced true by F; of a clause that can never be forced
true by any F' D F;. Note that w <logg/, s < O(t).

Now we reach a contradiction: C, must be an original initial clause
that cannot be forced true by F' O F,,. However, as M satisfies =®p,
as long as there is a room to extend F,, such F' exists. That is, we get a
contradiction if n—|dom(F,)| > tk. Hence t > Q((n/k)/?) and so s > gen'/?
for e = Q(k~'/?). This explains part (1).

In part (2) the hypothesis implies that @ is provable in predicate cal-
culus. The simulation of first order proofs (of bounded arithmetic even) in
[10] produces a tree-like R*-proof of polynomial size (there is no #-function
so we do not get a quasi-polynomial bound). The sizes of the conjunctions
in the clauses are bounded by the size of the open kernel of @, i.e. by some
constant £ > 1 independent of n (in the case of bounded arithmetic the
bound gets polylogarithmic because we work with sharply bounded kernels
instead).

q.e.d.

Riis [20] has recently proved a sharper version of Theorem 3.4 for R*.
Namely, under the same assumptions: In (1) (®),, require R*-proofs of size
22(n) pather than 22m"?) and in (2) (®),, have polynomial size R*-proofs
(so k = 1). Riis [20] stresses the dichotomy form of his theorem under the
name ”complexity gap”.

The idea to use pure model theory for lower bounds in proof complexity
(via the relation formalized here as covering) is from [14] where our second
example is proved.

3.2 Second example: algebraic proof systems

An algebraic proof system seeks to prove that fo € (f1,..., fr), given poly-
nomials f; € F[z] over a field F. A proof of the ideal membership in the
so called Nullstellensatz proof system NS (cf.[2]), is a k-tuple g1,...,gx of
polynomials from F[Z]| such that > ,~; ¢i - fi = fo. The degree of the NS
proof is max;> deg(g; fi)- -

A proof of the ideal membership in polynomial calculus PC is a sequence
of polynomials h1, ..., hy such that h; = fy, and such that every h; is either

10



one of fi,..., fg, or is derived from earlier hq,...,h; 1 by one of the two
rules: g1, g2 entail any F-linear combination of g;, g2, and ¢ entails any
x; - g. The degree of the PC proof is max; deg(h;). We shall denote the
systems NS/F and PC/F respectively when we want to stress the particular
underlying field F'.

Polynomials are encoded using the dense notation, i.e. by listing all
coefficients, even zero, of all monomials up to the degree of the polynomial.
For F finite the size of the code of f is thus proportional to ndeg(f), n the
number of variables. Hence polynomial size NS- or PC- proofs over finite
fields are exactly proofs of bounded degree.

Given propositional formula 1 with binary V and A define polynomial
* by: for atom p, p* := p. Further, (¢ V ¢)* := p* - ¢* and (—1p)* := 1 —¢p*
(the truth values TRUE and FALSE are represented by 0 and 1 respectively).
Note that deg(1*) depends on the logical depth of 1) only.

Now take a first order sentence ®, and we assume that it is in the Her-
brand form. Assign to ® the following set of polynomials:

® > icin] Pir..iyj = 1, one foreach t =1,....k, and i1, ..., i, j € [n]
. I[)Zl]tltjl 'pilf---yitij =0,oneforeacht =1,...,k and ¢1,...,%,7J1,J2 €
n

o [Hi(i1,51) A Hi(i1y- .- ik, 5) A¢(4,7)]* = 0, one for each choice of
i’s and j’s in [n]

e p?> —p =0, any atom p.

Solutions to the polynomial system are in one-to-one correspondence
with satisfying assignments of —(®),. Hence (@), is a tautology iff the
polynomial system has no solution iff the polynomials generate the trivial
ideal (the last set of polynomials allows to look only on solutions in F' rather
than in Falg’ the algebraic closure of F', in order to apply Nullstellensatz).
Hence, whenever we work with algebraic systems we shall work with the
polynomial system as the propositional translation of ®, and we shall denote
the systems also (®),,.

Theorem 3.5 ([13, Thm.5.5]) For NS and PC over a finite prime field
F, and any ® it holds:

NS/F, . (®), iff PC/F,F, (D),
That is, a structure covers NS/F,, iff it covers PC/Fy,.

11



Definition 3.6 ([14, Def.2.1]) Let M be a first-order structure. Def* (M)
is the class of subsets of M* definable in M (with parameters) and Def> (M)
is the union \J, Def*(M).

Let R be a commutative ring with unity. A function

x: Def*(M) — R

s an abstract Euler characteristic on M over R iff it satisfies the following
conditions:

1. x({a}) =1, any a € MF,

2. x(AU B) = x(A) + x(B), whenever A,B,AUB € Def*(M) and A,
B are disjoint.

3. x(Ax B) =x(A) - x(B), whenever A,B,A x B € Def>*(M).

4. x(A) = x(B), whenever A,B € Def> (M) and there is a definable
bijection between A and B.

5. x(A) = ¢ x(B), whenever ¢ € R, A,B € Def>(M) and there is a
definable map f with domain A and range B such that each its fiber
fED(b), b e B, has Euler characteristic x(f (b)) = c.

A pair (M, x/R) satisfying this conditions is called Euler structure.

Theorem 3.7 ([14, Thm.6.1]) Let F,, be a finite prime field.
Then any structure M admitting Euler characteristic over all Z/(p"),
v > 1, covers NS/Fy, and hence also PC/F,,.

4 Examples of new lower bounds

In this section we give examples of applications of the covering theories and
we derive lower bounds for principles of a type that does not seem to be
easily amenable to other known methods.

Let T be the theory of fields in the usual language of rings except that
+ and - are represented by relations, and let 7T be T' together with the
axiom that the characteristic is some specific ¢ > 0. Consider the following
statements obviously valid for finite fields:

®; A field of characteristic ¢ is perfect:
/\Tq — Vydz, 2zl =y

12



®, A field is commutative:
/\T = Ve, y;x-y=y-x
®3 A field is not algebraically closed (a special case):
/\T — Jy1, yoVa;2® +yrz +ys #0

®, A field cannot be ordered:
/\ T — —-A

where A is a sentence in the language of T augmented by < and
expressing that < is a linear ordering respecting the field operations.

@5 Two fields of different characteristic cannot share a common universe:

/\T(;/ — _l/\ 1;5/

where ¢/, ¢" are two different primes and T”, T” two copies of theory
T in disjoint languages.

Theorem 4.1 All principles ®1,...,®5 require proofs of size exp(nQ(I)) n
R*(log).

Proof :
We apply Theorem 3.4. It is enough to find infinite models (fields) in
which the respective principles fail.
®,: There is an infinite imperfect field of characteristic q.
®5y: Quaternions.
‘1)3: C.
d4: R.
®5: Two countable fields of different characteristic can sit on N.

q.e.d.
Theorem 4.2 Let p > 0 be prime. Then principles ®;, © = 2,3,4, require

proofs of superpolynomial size (i.e., of non-constant degree) in both NS/F,
and PC/F).

13



Proof :

We apply Theorem 3.7. The real field R admits Euler characteristic in
Z (see [14] or [5]) and hence also in all Z/(p”). Quaternions and complex
numbers are interpretable in R and so admit such Euler characteristic too.
Thus examples in cases ®;, 1 = 2, 3,4, from the proof of Theorem 4.1 work
here equally well (via Theorem 3.7).

q.e.d.

To prove a similar lower bound for ®; it would be enough to construct
an imperfect field of characteristic ¢ that admits Euler characteristic in all
Z/(p”), v > 1. To prove a lower bound for ®5 one would need to amalga-
mate two countable fields (in disjoint languages) of different characteristic
admitting the Euler characteristic into one structure admitting it too. A
starting point can be a theorem Hrushovski [8] that it is possible to amal-
gamate two algebraically closed fields of different characteristics (strongly
minimal structures, in particular) into one strongly minimal structure.

5 A generic construction

In this section we describe a class of structures covering a given proof system
P. 1t is a class of certain expansion of models of bounded arithmetic and
its definition explicitly refers to P. Thus it is not a good covering class in
the sense that it does not bring new insight about the system. However,
it was one of the original motivations for covering theories to understand
combinatorics behind constructions of the expansions via model theoretic
forcing and it offers some intuition how to search for a useful covering class
for any P.

Let M be an arbitrary countable model of true arithmetic in the usual
language, and let n € M be any non-standard element. Denote by M,, the
structure with the universe {u € M | u < n} in language L,: L, is the
language with a relation symbol Rx for every subset X C (M,)*, all k > 1,
that is definable in M. Note that M, satisfies induction for all L,-formulas.

Let P be a proof system. Proofs, formulas and evaluations are encoded
by relations on M,,. Let Prfp(a,a,o,v) be a first order L,-formula such
that for some £ € N the ¥} formula 3U C m®; Prfp(m,a,o0,U) defines the
relation "« is a P-proof of size < m of ¢”.

Similarly let Sat(a,f,0,0) be a first order formula such that for some
¢ the II} formula YV C mt; Sat(m,B,0,V) defines the relation "8 C m is

14



a truth evaluation satisfying formula ¢ C m”. Here we use the fact that
the property inside ”...” is polynomial-time and hence also, in particular,
expressible by a [T}-formula. Such formulas exist by Fagin’s theorem (or by
a direct construction, cf. [11, 12]).

Consider formula Rfnp with set variables «, 5,7, 0, 0:

Va; [Prfp(z,a,0,9) Ay C 3] — (3 C 2* — Sat(z,B,0,0))

Note that Rfnp is valid in M,,.

Let L' be any language extending L,,. Define a class Cp consisting of L'-
structures that are expansions of M,, and that satisfy Rfnp for all instances
obtained by substituting for «, 3,7, d, o definable relations. The class Cp is
non-empty; for example, it contains all expansions of M,, in which the new
L’-relations are definable already in M,,. Such structure satisfies Rfnp
because M,, does.

We assume that P is strong enough in the next theorem. If a particular
proof system does not satisfy the hypothesis we can replace it by a stronger
proof system that does; a covering class of the stronger system is also a
covering class of the original weaker one.

Theorem 5.1 Let P be a proof system that contains a Frege system F', and
let Cp be the associated class of structures. Then any structure from Cp
covers P.

Proof :
Assume that some N € Cp does not cover P. That means that there is
® such that

(i) all (@), k € N, have polynomial size P-proofs
(ii) but ® ¢ Comb(N).

We use the assumption P DO F' to strengthen (i). Let D be a new unary
predicate symbol not in L', and let ®” be the relativization of ® to D. Then
we have

(i") all (@), k € N, have polynomial size P-proofs.

This is because there are, given k, polynomial size (DeMorgan) formulas ;;
(2,7 < k) with atoms for statements v € D (u < k) such that Frege system
F proves in polynomial size that 3;; define a graph of a bijection between
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D and some initial segment {0,1,...,w — 1} of k. This is because F' can
count (see [3] or [12]).

Property (i4) means that there is an L-structure K C M! definable in
N that violates ®. Structure K defines an evaluation for atoms of (®2),
k = n', that does not satisfy the formula; in particular, predicate D is
interpreted by the universe of K. On the other hand, as M is a model of
true arithmetic, there is m € L,, that is a P proof of (®),. This gives an
instance of Rfnp that is not true, violating the definition of the class Cp.

q.e.d.

Problem 5.2 For which proof systems P does it hold that if P . (®),, then
also P\, (®P),, 2 In particular, does this hold for resolution?

Any structure combinatorially satisfying ® also combinatorially satisfies
®P. Hence if the problem is answered negatively for a proof system P, no
covering class for P can characterize principles with polynomial P-proofs
exactly.*

The simplest case in Theorem 5.1 is when L' extends L, by L, and
N € Cp expands M, by an L-structure on M, with a suitable property.
Such expansions can be constructed, in principle, by forcing (see [11], [12]).

We remark that for many proof systems the axiom scheme Rfnp is
actually equivalent to an induction scheme for formulas of particular form
(depending on the system) or, equivalently, to a principle that any linear
ordering definable by formulas of a particular type has the least element
(this motivates Problem 1.6). See [15] for description of this for resolution
and its extension, and [12] for a more general information.

One would like to further replace Rfnp or the equivalent induction ax-
iom by a transparent combinatorial principle, as it is done for R*(log) and
NS/F,, PC/F, by their covering theories. However, for these proof systems
the combinatorial characterization of polynomial provability is valid only for
proofs of (®),, and not for proofs of arbitrary sequences of tautologies. One
might not be able to replace Rfnp by a transparent combinatorial principle
without the restriction to uniform sequences (®),. No such general charac-
terization is known for any proof system at present. On the other hand, the
restriction to (®), may allow such combinatorial description of polynomial
provability for stronger systems. Particularly interesting would be the cases
of resolution R and cutting planes proof system CP.

1 owe this remark to the referee.
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6 Structures as proof systems

If Comb(M) is r.e., then it defines a proof system. Little bit more generally
we define

Definition 6.1 LetC be a class of structures. Put Comb(C) := (\rec Comb(
Assume that Comb(C) is recursively enumerable, and let M be a Turing ma-
chine that enumerates the set.

Define a proof system Ac as follows: a string w is a proof of formula o
in the system iff

e 7 is a quadruple (®,n,wy,ws) where ® € Comb(C), wy is a computa-
tion of M certifying this membership, and wy is an R*(log)-proof of
o from (®),.

We shall denote the proof system Apr when C consists of just a single struc-
ture M.

Recall that a proof system P polynomially simulates a proof system @)
iff there is a polynomial time algorithm translating any @Q-proof 7 of ¢ into
a P-proof 7' of the same formula, and that P simulates Q) iff such 7’ exists
polynomially bounded in the length of 7 (but is not necessarily construable
by a polynomial time algorithm).

Lemma 6.2 Let C be a class of infinite structures such that Comb(C) is
recursively enumerable. Then

1. A¢ polynomially simulates R*(log).
2. If W € Comb(C) then Ac Fi (U)y,.
3. C covers Ac.

4. Assume Pt (Rfnp)y, all n € N. If all structures in C cover a proof
system P then Ac¢ simulates P.

Proof :
Parts 1. and 2. of the lemma are direct consequences of the definition
Ac.

Part 3. follows from Theorem 3.4. Assume ¥ ¢ Comb(C), and that
¥ is already in the Herbrand form. Hence there is an infinite structure
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M € C in which ¥ combinatorially fails. For the sake of contradiction
assume that A¢ -, (¥),, say (¥),’s are provable in size n*, k > 1 a suitable
constant. This means that (¥), is provable in R*(log) from some (®),, for
some ® € Comb(C) (also in Herbrand form); necessarily m < nF. More
precisely, all clauses of =(®),, are provable in size < n* from the clauses of
—(U),,.

Now @ holds in M. So we can take the assumed proof of any one clause
of =(®),, and apply the same construction as in the proof of Theorem 3.4,
using M as the reference structure. The only difference is that we do not
pick Fy := () but any minimal Fj such that no F O F, makes the clause of
—(®), true. Such Fj exists by the fact that ® holds in M. The contradiction
is reached as before, using that W fails in M.

We shall use bounded arithmetic for Part 3.. By the hypothesis of Part 3
the proof system P polynomially proves formulas (Rfnp),. Hence Rfnp €
Comb(C). Further, R*(log) augmented by instances of (Rfnp), simulates
P; this follows from the fact that R*(log) simulates the theory S3(«a) ([10],
[15]) and this theory proves that Rfnp implies that all o’s with a P-proof
are tautologies. In particular, S3(a) proves the implication

(6 Czb A Sat(z,B,0',6)) = o

where [ is the assignment consisting of p, atoms of o, and ¢’ in the an-
tecedent is the set coding the formula o.

q.e.d.

Note that the hypothesis of part 3. is satisfied by many proof systems,
e.g. by R(log) or F' (cf. [16, 12]). In fact, with a more sophisticated
formulation of Rfnp one can show that R*(log) also satisfies the hypothesis.

The first example restates Example 1.5.

Example 6.3 M is a sound model of I then Ay is defined (i.e., Comb(M)
is recursively enumerable) and Ay = R*(log).

Recall that M is pseudo-finite iff it is elementarily equivalent to an ul-
traproduct of finite structures.

Example 6.4 If M is pseudo-finite then Comb(M) is a complete 110 set
and hence Aps is not defined.
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This is because Comb(M) is then exactly the set of sentences true in
finite structures and Trachtenbrot’s theorem applies.

Example 6.5 Weak Euler characteristic is a function satisfying properties
1.-4. of Definition 3.6. The class of structures admitting weak Fuler char-
acteristic has recursively enumerable combinatorics.

The combinatorics of the class is axiomatized by instances of the ontoPH P
principle, as by [14] this principle characterizes weak Euler structures.

Note that examples from Problem 1.7 would also give examples of these
new "structure based” proof systems.

Acknowledgement: I am indebted to the anonymous referee for valuable
comments and suggestions, and to S. Buss (San diego) for suggesting few
language corrections.
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