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Abstra
t

We de�ne the notion of a 
ombinatori
s of a �rst order stru
ture,

and a relation of 
overing between �rst order stru
tures and proposi-

tional proof systems. Namely, a �rst order stru
tureM 
ombinatorially

satis�es an L-senten
e � i� � holds in all L-stru
tures de�nable inM .

The 
ombinatori
s Comb(M) of M is the set of all senten
es 
ombi-

natorially satis�ed in M . Stru
ture M 
overs a propositional proof

system P i� M 
ombinatorially satis�es all � for whi
h the asso
iated

sequen
e of propositional formulas h�i

n

, en
oding that � holds in L-

stru
tures of size n, have polynomial size P -proofs. That is, Comb(M)


ontains all � feasibly veri�able in P . Finding M that 
overs P but

does not 
ombinatorially satisfy � thus gives a super polynomial lower

bound for the size of P -proofs of h�i

n

.

We show that any proof system admits a 
lass of stru
tures 
overing

it; these stru
tures are expansions of models of bounded arithmeti
.

We also give, using stru
tures 
overing proof systems R

�

(log) and PC,

new lower bounds for these systems that are not apparently amenable

to other known methods. We de�ne new type of propositional proof

systems based on a 
ombinatori
s of (a 
lass of) stru
tures.

We 
ontinue here resear
h into what 
ould be 
alled in�nite limits of

polynomially bounded propositional proof systems. Although this is best

explained on examples and formal de�nitions, the reader deserves a qui
k

�
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explanation for this somewhat bizarre statement. A propositional proof

system in a general sense is simply a non-deterministi
 algorithm a

epting

exa
tly the set of propositional tautologies in DeMorgan language. The

main problem is the NP vs. 
oNP problem. This is a question whether some

propositional proof system admits polynomial size proofs of all tautologies

(i.e. whether some proof system 
an run in polynomial time). For a few

parti
ular proof systems based on logi
 or algebrai
 
al
uli (e.g. resolution or

Nullstellensatz) super-polynomial lower bounds are known. All these lower

bounds 
an be proved for a very uniformly given sequen
es of tautologies:

For n � 1, the n-th tautology asserts the validity of a 
ombinatorial prin
iple

on stru
tures of size n (e.g. the pigeonhole prin
iple). The prin
iple 
an be

formulated as a statement that a senten
e in a �rst-order language (or in

a simple 2nd order extension allowing for natural formulation of Ramsey

theorem and alike) has no model (of size n). The senten
e then makes sense

over arbitrary stru
tures in the language, even in�nite. The general theory

of limits of proof systems we are after says that given a proof system P , if

instan
es of a prin
iple � for n � 1 are valid and proved by P in length

polynomial in n then � holds true (in the de�nable sense - see De�nition

1.1) in a 
lass of �rst-order stru
tures asso
iated with P . Su
h a 
lass of

stru
tures is informally 
alled a 
overing 
lass of P . If a 
overing 
lass is an

elementary 
lass, i.e. the 
lass of models of a theory, we shall 
all the theory

a 
overing theory.

In fa
t, any P admits a 
overing 
lass and one 
an take for the 
lass a


lass of suitable generi
 expansions of models of bounded arithmeti
. How-

ever, we look for model-theoreti
ally natural 
lasses as this then yields an

insight into lower bounds for P . There are two prominent examples known

at present. The tree-like resolution proof system R

�

(in fa
t, its extension

R

�

(log)) 
orresponds to the 
lass of all in�nite stru
tures ([12, 15℄). Here

"
orresponds to" means that the 
overing relation a
tually 
hara
terizes all

�rst order prin
iples with polynomial size R

�

(log)-proofs. The se
ond exam-

ple is Nullstellensatz and polynomial 
al
ulus over a �nite prime �eld F

p

. Its


overing 
lass is the 
lass of Euler stru
tures with a suitable Grothendie
k

ring ([14℄).

In this paper we �rst de�ne the notion of the 
ombinatori
s of a �rst

order stru
ture M and give few examples. Then we re
all the translation

of �rst-order prin
iples into propositional formulas; we 
onsider a parti
ular

translation that produ
es a set of 
lauses (or a set of polynomial equations).

In the third se
tion we de�ne the 
overing relation between �rst order

stru
tures and propositional proof systems, formalizing a relation that ex-
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ists between all stru
tures and (an extension) of tree-like resolution, and

between Euler stru
tures and Nullstellensatz and polynomial 
al
ulus over

a �nite prime �eld. Stru
ture M 
overs a propositional proof system P

i� M 
ombinatorially satis�es all � for whi
h the asso
iated sequen
e of

propositional formulas h�i

n

, en
oding that � holds in L-stru
tures of size

n, have polynomial size P -proofs. Finding M that 
overs P but does not


ombinatorially satisfy � thus gives a super polynomial lower bound for the

size of P -proofs of h�i

n

.

We use the 
overing theories for (an extension of) tree-like resolution

[12, 15℄, and for Nullstellensatz and polynomial 
al
ulus systems over a �nite

prime �eld [14℄ to give new lower bounds for these systems, for prin
iples that

are not apparently amenable to other known methods. This is in Se
tion 4.

In Se
tion 5 we give a general des
ription of a 
overing 
lass of any P as

expansions of models of bounded arithmeti
.

Finally, in the last se
tion, we show that (
lasses of) stru
tures with r.e.


ombinatori
s 
an be seen as propositional proof systems in a natural way.

De�nitions of unde�ned notions in model theory and proof 
omplexity


an be found in [7℄ and [12℄ respe
tively. Logarithms are base 2 and [n℄ :=

f0; : : : ; n� 1g.

1 Combinatori
s of a stru
ture

Let L be any �rst order relational language with 
onstants and with equality.

The prohibition of general fun
tion symbols is not essential but it simpli�es

some de�nitions. A suitable general language is the language of dire
ted

graphs: a binary relation symbol and 
onstants; any theory is interpretable

in a theory in this language (see e.g. [9℄

1

).

Let M be a �rst order stru
ture with at least two di�erent elements. To

avoid any 
onfusion we shall assume that L is disjoint from the language of

M . The quali�
ation de�nable means de�nable with parameters, unless it

is spe
i�ed otherwise. An L-stru
ture is de�nable in M if, for some k > 1,

its universe is a de�nable subset of M

k

and all L-relations are de�nable in

M .

Let � be an L-senten
e.

1

This is the only referen
e I know of where this is expli
itly stated and proved. However,

undoubtedly other authors had to use a similar statement earlier.
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De�nition 1.1 M 
ombinatorially satis�es �, M j=




� in symbols, i� �

holds in all L-stru
tures de�nable in M . The 
ombinatori
s of M is the set

Comb(M) := f� j M j=




�g

It would be, perhaps, equally natural to 
onsider L-stru
tures inter-

pretable in M (e.g. in the sense of being de�nable in M

eq

) rather than only

de�nable.

2

But for our purposes the given de�nition suÆ
es.

As all �nite stru
tures are de�nable in allM of size at least 2, Comb(M)

is a subset of senten
es valid in �nite stru
tures (hen
e the name 
ombina-

tori
s ofM). It is 
learly dedu
tively 
losed. Moreover, it 
an be non-trivial,

i.e. bigger than just predi
ate logi
 but smaller than the set of all senten
es

valid in �nite stru
tures.

Example 1.2 Let R be the real 
losed �eld in the language of ordered �elds.

Comb(R) violates the pigeonhole prin
iple (PHP) but still upholds that there

is no bije
tion between a set and the set minus one point (the ontoPHP), and

that there is no inje
tive map of A

2

into A (the weak pigeonhole prin
iple

WPHP), if jAj > 1.

The PHP is violated by many maps in R; for example, map x > 0 to

x + 1 and leave x � 0 in pla
e. The ontoPHP holds as semi-algebrai


bije
tions preserve Euler 
hara
teristi
 and the 
hara
teristi
s of a set and

the set minus one point di�er, 
f. [5℄. The WPHP holds for dimension

reasons.

Example 1.3 Let C be the 
omplex �eld in the language of rings. Comb(C)


ontains Comb(R), as C is de�nable in R, but it is di�erent. Namely, C

ful�lls PHP; this is a theorem of Ax [1℄. However, the dual statement:

Any f : A! A that is onto must be one-to-one

is 
learly not in Comb(C) (e.g. x! x

2

).

Ax's theorem states that for any algebrai
 set A any one-to-one polyno-

mial map p : A! A must be onto. For a proof of the Ax's theorem utilizing


ompa
tness see e.g. [18, p.2, Thm.1.3℄. The proof works equally well in

a bigger generality and gives the following statement: Any 89 L-senten
e

2

The di�eren
e is that the universe of a de�nable stru
ture is a de�nable set and the

equality is absolute, while in an interpretable stru
ture the universe 
an be a quotient

of a de�nable set modulo a de�nable relation, or a quotient of a quotient, et
., and the

equality is not absolute.
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� that is valid in all �nite L-stru
tures is also 
ombinatorially valid in all

stru
tures that are elementarily equivalent to ultraprodu
ts of lo
ally �nite

stru
tures (in the 
ase of C it is the ultraprodu
t of algebrai
 
losures of

�nite �elds).

Example 1.4 If M is pseudo-�nite (i.e., elementarily equivalent to an ul-

traprodu
t of �nite stru
tures) then Comb(M) 
onsists exa
tly of �'s valid

in all �nite stru
tures.

As the theory of M gets stronger, Comb(M) gets weaker.

Example 1.5 If M is a model of Peano arithmeti
 PA (or even its subthe-

ory I�

0

1

) that is �

0

1

-sound (M satis�es the same universal senten
es that are

true in the standard model N) then Comb(M) 
onsists exa
tly of � provable

in predi
ate logi
.

This follows straightforwardly from the 
ompleteness theorem whi
h 
an

be formalized in I�

0

1

, 
f. [6℄.

We mention two problems whose motivation will be 
lear later.

Problem 1.6 Chara
terize stru
tures M whose 
ombinatori
s Comb(M)


ontains the following prin
iple of �nite 
ombinatori
s: Every partial order-

ing has a minimal element.

The quali�
ation 
hara
terize means that we look for a property of su
h

stru
tures of a natural model-theoreti
 
hara
ter. For example, stru
tures


ombinatorially satisfying PHP are those admitting ordered weak Euler


hara
teristi
 on de�nable sets, 
f. [17℄.

Problem 1.7 When is Comb(M) re
ursively enumerable? Are there some

mathemati
ally interesting stru
tures with non-trivial but re
ursively enu-

merable 
ombinatori
s? Are Comb(C) and Comb(R) r.e.?

2 First order prin
iples and propositional formu-

las

A senten
e � gives raise to an in�nite sequen
e of propositional formulas.
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De�nition 2.1 The propositional language hLi 
onsists of 
onne
tives 1

(true), 0 (false), :, of _ and ^ of unbounded arity, and of in�nitely many

atoms

p

R

i

1

;:::;i

k

one for every relation symbol R(x

1

; : : : ; x

k

) 2 L and every 
hoi
e of natural

numbers i

1

; : : : ; i

k

The next de�nition re
alls a standard notation [12℄.

De�nition 2.2 Let � be an L-senten
e and n � 1 a natural number. De�ne

the propositional formula h�i

n

in language hLi by indu
tion on the logi
al


omplexity of �:

1. hi = ji

n

is 1 i� i = j, otherwise it is 0, for any i; j < n.

2. hR(i

1

; : : : ; i

k

)i

n

:= p

R

i

1

;:::;i

k

, for any i

1

; : : : ; i

k

< n

3. h:�i

n

:= :h�i

n

4. h� Æ	i

n

:= h�i

n

Æ h	i

n

, for Æ = _;^

5. h9x;�(x)i

n

:=

W

i<n

h�(i)i

n

6. h8x;�(x)i

n

:=

V

i<n

h�(i)i

n

The formula h�i

n

is, in general, a 
onstant depth formula while some

proof systems operate with only restri
ted 
lass of formulas (like resolution

with 
lauses) or even with formulas that are not DeMorgan (like algebrai


proof systems), or even do not operate with formulas at all (like a general

NP algorithms). Stri
tly speaking, this does not need to 
on
ern us as, by

de�nition, a proof system proves all tautologies in DeMorgan language. For

example, a general formula is en
oded for resolution by limited extension.

However, the tautologies we 
onsider are of spe
ial form and there is

a better way of rea
hing propositional formulas of the CNF form. The

senten
e � is valid in all �nite stru
tures i� its Herbrandization �

H

is; �

H

is an 98 formula and :�

H

is a CNF formula.

The Herbrandization of a prenex formula �:

9x

1

8y

1

: : : 9x

k

8y

k

;�(x; y)

� open formula in DNF form, is

9x

1

: : : 9x

k

;�(x; y

1

=h

1

(x

1

); y

2

=h

2

(x

1

; x

2

); : : : ; y

k

=h

k

(x)))
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where h

i

are new fun
tion symbols. As we do not allow fun
tion symbols,

ea
h h

i

is repla
ed by (i+ 1)-ary relation symbol H

i

(x

1

; : : : ; x

i

; z), and �

H

is de�ned to be the disjun
tion of the formula

9x

1

: : : 9x

k

9y

1

: : : 9y

k

;H

1

(x

1

; y

1

) ^H

2

(x

1

; x

2

; y

2

) ^ : : :

^ H

k

(x; y

k

) ^ �(x; y

1

; : : : ; y

k

)

together with the formula

9x

1

8y

1

:H

1

(x

1

; y

1

) _ : : : _ 9x

1

; : : : ; x

k

8y

k

:H

k

(x

1

; : : : ; x

k

; y

k

)

Hen
e h�

H

i

n

is a DNF formula and so, possibly always repla
ing � by �

H

,

we may assume hen
eforth without loss of generality that all � translate to

a sequen
e of DNF formulas h�i

n

.

3

An analogous translation is used in [19, 20℄.

3 Covering theories for proof systems

Let M be a stru
ture and P a proof system.

De�nition 3.1 The symbol P `

�

h�i

n

denotes the existen
e of P -proofs of

h�i

n

of size n

O(1)

, for all n � 1.

M 
overs P i� � 2 Comb(M) whenever P `

�

h�i

n

.

Our main goal in this resear
h is to �nd, given P , a ri
h 
lass of stru
tures

M de�ned by some 
ombinatorial, model-theoreti
 or geometri
 property,

and 
overing P . We use the informal term 
overing 
lass of P for any su
h


lass. The point is that one 
an then use stru
tures in the 
overing 
lass

for proving lower bounds for P : to prove super-polynomial lower bound for

h�i

n

it is suÆ
ient to �nd M in the 
lass su
h that M 6 j=




�.

3

The referee pointed out that it is not a priori 
lear that two logi
ally equivalent

senten
es give two sequen
es of tautologies of polynomially related proof 
omplexity. This

will be indeed true for any P 
ontaining R

�

(log) as (the Herbrand translation of) one

senten
e has polynomial size R

�

(log)-proofs from the other one (i.e. one does not operate

with the Herbrand translation of the equivalen
e but with proofs of one senten
e from the

other one).
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3.1 First example: an extension of tree-like resolution

Resolution R is naturally a subsystem of sequent 
al
ulus LK, allowing no


onne
tives ex
ept the negation. The following de�nition augments R as to


orrespond to LK-proofs of the �-depth 0 (as de�ned in [10℄ or [12, Def.

12.2.3℄).

De�nition 3.2 ([15℄) (a) R

+

is a refutation proof system that works with


lauses C formed by 
onjun
tions D

i

of literals `

i;j

:

C =

[

i

fD

i

g ; D

i

=

^

j

`

i;j

The inferen
e rules are:

C

1

[ f

V

j

`

j

g C

2

[ f:`

0

1

; : : : ;:`

0

k

g

C

1

[ C

2

provided `

0

1

; : : : ; `

0

k

are among `

j

's and k � 1, and

C

1

[ f

V

j<u

`

j

g C

2

[ f

V

j<v

`

u+j

g

C

1

[ C

2

[ f

V

j<u+v

`

j

g

(b) Let f : N ! N be a fun
tion. The R(f)-size of an R

+

-proof is the

minimum S su
h that the proof has at most S 
lauses and ea
h 
on-

jun
tion of literals o

urring in 
lauses has size at most f(S).

We shall use a phrase R(f)-proofs of size S rather than R

+

-proofs of

R(f)-size S.

(
) Tree-like versions of proof systems are denoted by the supers
ript

�

:

R

�

, R(f)

�

.

Obviously, R(1) is just R, while R(log) is the �-depth 0 subsystem of LK.

Theorem 3.3 ([12, L.9.5.2℄) Any stru
ture 
overs R

�

(log).

The theorem is valid in a stronger sense than is 
aptured by the notion

of 
overing. Namely, a prin
iple has polynomial size R

�

(O(1)) proofs i� it

is provable in predi
ate logi
 and, if it is not, then it requires exponential

size R

�

(log) proofs. This �rst example of a 
overing 
lass is from [12℄,

where the lower bound part of the theorem is a spe
ial 
ase of a more
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general statement about sear
h trees. The upper bound (prin
iples provable

in predi
ate logi
 have polynomial size R

�

(O(1))-proofs) follows from the

simulation of bounded arithmeti
 by R

+


onstru
ted already in [10℄. See

[15℄ for further dis
ussion. We state now expli
itly this stronger version

of Theorem 3.3 as it will be used in Theorem 4.1. For the sake of the


ompleteness of the presentation we also outline the 
onstru
tion from [12℄.

Theorem 3.4 ([12, L.9.5.2℄,[10℄) Let � be a �rst order senten
e. Then

there are � > 0 and k � 1 su
h that the following holds:

(1) If :� has an in�nite model then h�

H

i

n

requires R

�

(log)-proof of size

at least 2

�n

1=2

, for all n � 1.

(2) If � is valid in all in�nite stru
tures then h�

H

i

n

admits R

�

(k)-proofs

of size polynomial in n, for all n � 1 for whi
h h�i

n

is a tautology.

Proof-sket
h:

Let � be an L-senten
e and L

H

the relational language of �

H

. If � 
an

be violated in an in�nite stru
ture, so 
an be �

H

. Let M be an in�nite L

H

-

stru
ture in whi
h :�

H

holds. Let k � 1 be the maximal arity of a relation

symbol in L

H

(hen
e k depends on L and on the number of quanti�ers in �

only). Let n � 1.

Assume that � is an R

�

(log) refutation of h�

H

i

n

of size s = 2

t

, i.e. the

sizes of the 
onjun
tions in 
lauses are bounded by t.

A partial bije
tion F between a subset dom(F ) � [n℄ and a subset

rng(F ) �M determines a partial truth assignment �

F

to atoms of h�

H

i

n

:

If p

R

i

1

;:::;i

m

is an atom and fi

1

; : : : ; i

m

g � dom(F ) then �

F

gives the atom

the truth value of R(F (i

1

); : : : ; F (i

m

)) in M .

Constru
t a sequen
e of 
lauses C

i

from � and partial bije
tions F

i

be-

tween subsets of [n℄ and ofM by the following pro
ess. Put C

0

:= ;, F

0

:= ;

and �

0

:= �. Pi
k a 
lause C

1

in � splitting the proof tree in a 1=3-2=3 fash-

ion of Spira's lemma. Consider two 
ases: (a) there is F � F

0

su
h that

�

F

for
es C

1

true, and (b) there is no su
h F . In 
ase (a) take for F

1

some

F � F

0

with the property and of minimal size. In 
ase (b) take F

1

:= F

0

.

Clearly jF

1

j � tk.

In 
ase (a) we delete from � everything above C

1

, in 
ase (b) everything

that is not above C

1

. The resulting tree �

1

is a proof of (a) either the empty


lause from the original initial 
lauses and from a 
lause for
ed true by F

1

,

(b) or it is a proof from original initial 
lauses of a 
lause that 
an never be

for
ed true by any F � F

1

.
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Next we analogously pi
k C

2

splitting �

1

in the 1=3-2=3 fashion and

de�ne F

2

and �

2

identi
ally, and 
ontinue in this pro
ess until we rea
h, in

step w, �

w

of size 1. Any �

i

in the pro
ess is a proof from original initial


lauses or from 
lauses for
ed true by F

i

of a 
lause that 
an never be for
ed

true by any F � F

i

. Note that w � log

3=2

s � O(t).

Now we rea
h a 
ontradi
tion: C

w

must be an original initial 
lause

that 
annot be for
ed true by F � F

w

. However, as M satis�es :�

H

,

as long as there is a room to extend F

w

su
h F exists. That is, we get a


ontradi
tion if n�jdom(F

w

)j � tk. Hen
e t � 
((n=k)

1=2

) and so s � 2

�n

1=2

for � = 
(k

�1=2

). This explains part (1).

In part (2) the hypothesis implies that �

H

is provable in predi
ate 
al-


ulus. The simulation of �rst order proofs (of bounded arithmeti
 even) in

[10℄ produ
es a tree-like R

+

-proof of polynomial size (there is no #-fun
tion

so we do not get a quasi-polynomial bound). The sizes of the 
onjun
tions

in the 
lauses are bounded by the size of the open kernel of �

H

, i.e. by some


onstant k � 1 independent of n (in the 
ase of bounded arithmeti
 the

bound gets polylogarithmi
 be
ause we work with sharply bounded kernels

instead).

q.e.d.

Riis [20℄ has re
ently proved a sharper version of Theorem 3.4 for R

�

.

Namely, under the same assumptions: In (1) h�i

n

require R

�

-proofs of size

2


(n)

rather than 2


(n

1=2

)

, and in (2) h�i

n

have polynomial size R

�

-proofs

(so k = 1). Riis [20℄ stresses the di
hotomy form of his theorem under the

name "
omplexity gap".

The idea to use pure model theory for lower bounds in proof 
omplexity

(via the relation formalized here as 
overing) is from [14℄ where our se
ond

example is proved.

3.2 Se
ond example: algebrai
 proof systems

An algebrai
 proof system seeks to prove that f

0

2 hf

1

; : : : ; f

k

i, given poly-

nomials f

i

2 F [x℄ over a �eld F . A proof of the ideal membership in the

so 
alled Nullstellensatz proof system NS (
f.[2℄), is a k-tuple g

1

; : : : ; g

k

of

polynomials from F [x℄ su
h that

P

i�1

g

i

� f

i

= f

0

. The degree of the NS

proof is max

i�1

deg(g

i

f

i

).

A proof of the ideal membership in polynomial 
al
ulus PC is a sequen
e

of polynomials h

1

; : : : ; h

t

su
h that h

t

= f

0

, and su
h that every h

j

is either

10



one of f

1

; : : : ; f

k

, or is derived from earlier h

1

; : : : ; h

j�1

by one of the two

rules: g

1

, g

2

entail any F -linear 
ombination of g

1

, g

2

, and g entails any

x

i

� g. The degree of the PC proof is max

i

deg(h

i

). We shall denote the

systems NS/F and PC/F respe
tively when we want to stress the parti
ular

underlying �eld F .

Polynomials are en
oded using the dense notation, i.e. by listing all


oeÆ
ients, even zero, of all monomials up to the degree of the polynomial.

For F �nite the size of the 
ode of f is thus proportional to n

deg(f)

, n the

number of variables. Hen
e polynomial size NS- or PC- proofs over �nite

�elds are exa
tly proofs of bounded degree.

Given propositional formula  with binary _ and ^ de�ne polynomial

 

�

by: for atom p, p

�

:= p. Further, ( _�)

�

:=  

�

��

�

and (: )

�

:= 1� 

�

(the truth values true and false are represented by 0 and 1 respe
tively).

Note that deg( 

�

) depends on the logi
al depth of  only.

Now take a �rst order senten
e �, and we assume that it is in the Her-

brand form. Assign to � the following set of polynomials:

�

P

j2[n℄

p

H

t

i

1

;:::;i

t

;j

= 1, one for ea
h t = 1; : : : ; k, and i

1

; : : : ; i

t

; j 2 [n℄

� p

H

t

i

1

;:::;i

t

;j

1

�p

H

t

i

1

;:::;i

t

;j

2

= 0, one for ea
h t = 1; : : : ; k, and i

1

; : : : ; i

t

; j

1

; j

2

2

[n℄

� [H

1

(i

1

; j

1

)^ : : : H

k

(i

1

; : : : ; i

k

; j)^:�(i; j)℄

�

= 0, one for ea
h 
hoi
e of

i's and j's in [n℄

� p

2

� p = 0, any atom p.

Solutions to the polynomial system are in one-to-one 
orresponden
e

with satisfying assignments of :h�i

n

. Hen
e h�i

n

is a tautology i� the

polynomial system has no solution i� the polynomials generate the trivial

ideal (the last set of polynomials allows to look only on solutions in F rather

than in F

alg

, the algebrai
 
losure of F , in order to apply Nullstellensatz).

Hen
e, whenever we work with algebrai
 systems we shall work with the

polynomial system as the propositional translation of �, and we shall denote

the systems also h�i

n

.

Theorem 3.5 ([13, Thm.5.5℄) For NS and PC over a �nite prime �eld

F

p

and any � it holds:

NS=F

p

`

�

h�i

n

i� PC=F

p

`

�

h�i

n

That is, a stru
ture 
overs NS=F

p

i� it 
overs PC=F

p

.

11



De�nition 3.6 ([14, Def.2.1℄) LetM be a �rst-order stru
ture. Def

k

(M)

is the 
lass of subsets ofM

k

de�nable inM (with parameters) and Def

1

(M)

is the union

S

k

Def

k

(M).

Let R be a 
ommutative ring with unity. A fun
tion

� : Def

1

(M) �! R

is an abstra
t Euler 
hara
teristi
 on M over R i� it satis�es the following


onditions:

1. �(fag) = 1, any a 2M

k

.

2. �(A [ B) = �(A) + �(B), whenever A;B;A [B 2 Def

1

(M) and A,

B are disjoint.

3. �(A�B) = �(A) � �(B), whenever A;B;A�B 2 Def

1

(M).

4. �(A) = �(B), whenever A;B 2 Def

1

(M) and there is a de�nable

bije
tion between A and B.

5. �(A) = 
 � �(B), whenever 
 2 R, A;B 2 Def

1

(M) and there is a

de�nable map f with domain A and range B su
h that ea
h its �ber

f

(�1)

(b), b 2 B, has Euler 
hara
teristi
 �(f

(�1)

(b)) = 
.

A pair (M , �=R) satisfying this 
onditions is 
alled Euler stru
ture.

Theorem 3.7 ([14, Thm.6.1℄) Let F

p

be a �nite prime �eld.

Then any stru
ture M admitting Euler 
hara
teristi
 over all Z=(p

�

),

� � 1, 
overs NS/F

p

, and hen
e also PC/F

p

.

4 Examples of new lower bounds

In this se
tion we give examples of appli
ations of the 
overing theories and

we derive lower bounds for prin
iples of a type that does not seem to be

easily amenable to other known methods.

Let T be the theory of �elds in the usual language of rings ex
ept that

+ and � are represented by relations, and let T

q

be T together with the

axiom that the 
hara
teristi
 is some spe
i�
 q > 0. Consider the following

statements obviously valid for �nite �elds:

�

1

A �eld of 
hara
teristi
 q is perfe
t:

^

T

q

! 8y9x; x

q

= y

12



�

2

A �eld is 
ommutative:

^

T ! 8x; y;x � y = y � x

�

3

A �eld is not algebrai
ally 
losed (a spe
ial 
ase):

^

T ! 9y

1

; y

2

8x;x

2

+ y

1

x+ y

2

6= 0

�

4

A �eld 
annot be ordered:

^

T ! :A

where A is a senten
e in the language of T augmented by < and

expressing that < is a linear ordering respe
ting the �eld operations.

�

5

Two �elds of di�erent 
hara
teristi
 
annot share a 
ommon universe:

^

T

0

q

0

! :

^

T

00

q

00

where q

0

, q

00

are two di�erent primes and T

0

, T

00

two 
opies of theory

T in disjoint languages.

Theorem 4.1 All prin
iples �

1

; : : : ;�

5

require proofs of size exp(n


(1)

) in

R

�

(log).

Proof :

We apply Theorem 3.4. It is enough to �nd in�nite models (�elds) in

whi
h the respe
tive prin
iples fail.

�

1

: There is an in�nite imperfe
t �eld of 
hara
teristi
 q.

�

2

: Quaternions.

�

3

: C.

�

4

: R.

�

5

: Two 
ountable �elds of di�erent 
hara
teristi
 
an sit on N.

q.e.d.

Theorem 4.2 Let p > 0 be prime. Then prin
iples �

i

, i = 2; 3; 4, require

proofs of superpolynomial size (i.e., of non-
onstant degree) in both NS=F

p

and PC/F

p

.

13



Proof :

We apply Theorem 3.7. The real �eld R admits Euler 
hara
teristi
 in

Z (see [14℄ or [5℄) and hen
e also in all Z=(p

�

). Quaternions and 
omplex

numbers are interpretable in R and so admit su
h Euler 
hara
teristi
 too.

Thus examples in 
ases �

i

, i = 2; 3; 4, from the proof of Theorem 4.1 work

here equally well (via Theorem 3.7).

q.e.d.

To prove a similar lower bound for �

1

it would be enough to 
onstru
t

an imperfe
t �eld of 
hara
teristi
 q that admits Euler 
hara
teristi
 in all

Z=(p

�

), � � 1. To prove a lower bound for �

5

one would need to amalga-

mate two 
ountable �elds (in disjoint languages) of di�erent 
hara
teristi


admitting the Euler 
hara
teristi
 into one stru
ture admitting it too. A

starting point 
an be a theorem Hrushovski [8℄ that it is possible to amal-

gamate two algebrai
ally 
losed �elds of di�erent 
hara
teristi
s (strongly

minimal stru
tures, in parti
ular) into one strongly minimal stru
ture.

5 A generi
 
onstru
tion

In this se
tion we des
ribe a 
lass of stru
tures 
overing a given proof system

P . It is a 
lass of 
ertain expansion of models of bounded arithmeti
 and

its de�nition expli
itly refers to P . Thus it is not a good 
overing 
lass in

the sense that it does not bring new insight about the system. However,

it was one of the original motivations for 
overing theories to understand


ombinatori
s behind 
onstru
tions of the expansions via model theoreti


for
ing and it o�ers some intuition how to sear
h for a useful 
overing 
lass

for any P .

Let M be an arbitrary 
ountable model of true arithmeti
 in the usual

language, and let n 2 M be any non-standard element. Denote by M

n

the

stru
ture with the universe fu 2 M j u < ng in language L

n

: L

n

is the

language with a relation symbol R

X

for every subset X � (M

n

)

k

, all k � 1,

that is de�nable inM . Note that M

n

satis�es indu
tion for all L

n

-formulas.

Let P be a proof system. Proofs, formulas and evaluations are en
oded

by relations on M

n

. Let Prf

P

(a; �; �; 
) be a �rst order L

n

-formula su
h

that for some ` 2 N the �

1

1

formula 9U � m

`

;Prf

P

(m;�; �; U) de�nes the

relation "� is a P -proof of size � m of �".

Similarly let Sat(a; �; �; Æ) be a �rst order formula su
h that for some

` the �

1

1

formula 8V � m

`

;Sat(m;�; �; V ) de�nes the relation "� � m is

14



a truth evaluation satisfying formula � � m". Here we use the fa
t that

the property inside "..." is polynomial-time and hen
e also, in parti
ular,

expressible by a �

1

1

-formula. Su
h formulas exist by Fagin's theorem (or by

a dire
t 
onstru
tion, 
f. [11, 12℄).

Consider formula Rfn

P

with set variables �; �; 
; Æ; �:

8x; [Prf

P

(x; �; �; 
) ^ 
 � x

`

℄ ! (Æ � x

`

! Sat(x; �; �; Æ))

Note that Rfn

P

is valid in M

n

.

Let L

0

be any language extending L

n

. De�ne a 
lass C

P


onsisting of L

0

-

stru
tures that are expansions ofM

n

and that satisfy Rfn

P

for all instan
es

obtained by substituting for �; �; 
; Æ; � de�nable relations. The 
lass C

P

is

non-empty; for example, it 
ontains all expansions of M

n

in whi
h the new

L

0

-relations are de�nable already in M

n

. Su
h stru
ture satis�es Rfn

P

be
ause M

n

does.

We assume that P is strong enough in the next theorem. If a parti
ular

proof system does not satisfy the hypothesis we 
an repla
e it by a stronger

proof system that does; a 
overing 
lass of the stronger system is also a


overing 
lass of the original weaker one.

Theorem 5.1 Let P be a proof system that 
ontains a Frege system F , and

let C

P

be the asso
iated 
lass of stru
tures. Then any stru
ture from C

P


overs P .

Proof :

Assume that some N 2 C

P

does not 
over P . That means that there is

� su
h that

(i) all h�i

k

, k 2 N, have polynomial size P -proofs

(ii) but � =2 Comb(N).

We use the assumption P � F to strengthen (i). Let D be a new unary

predi
ate symbol not in L

0

, and let �

D

be the relativization of � to D. Then

we have

(i') all h�

D

i

k

, k 2 N, have polynomial size P -proofs.

This is be
ause there are, given k, polynomial size (DeMorgan) formulas �

ij

(i; j < k) with atoms for statements u 2 D (u < k) su
h that Frege system

F proves in polynomial size that �

ij

de�ne a graph of a bije
tion between

15



D and some initial segment f0; 1; : : : ; w � 1g of k. This is be
ause F 
an


ount (see [3℄ or [12℄).

Property (ii) means that there is an L-stru
ture K � M

t

n

de�nable in

N that violates �. Stru
ture K de�nes an evaluation for atoms of h�

D

i

k

,

k = n

t

, that does not satisfy the formula; in parti
ular, predi
ate D is

interpreted by the universe of K. On the other hand, as M is a model of

true arithmeti
, there is � 2 L

n

that is a P proof of h�i

k

. This gives an

instan
e of Rfn

P

that is not true, violating the de�nition of the 
lass C

P

.

q.e.d.

Problem 5.2 For whi
h proof systems P does it hold that if P `

�

h�i

n

then

also P `

�

h�

D

i

n

? In parti
ular, does this hold for resolution?

Any stru
ture 
ombinatorially satisfying � also 
ombinatorially satis�es

�

D

. Hen
e if the problem is answered negatively for a proof system P , no


overing 
lass for P 
an 
hara
terize prin
iples with polynomial P -proofs

exa
tly.

4

The simplest 
ase in Theorem 5.1 is when L

0

extends L

n

by L, and

N 2 C

P

expands M

n

by an L-stru
ture on M

n

with a suitable property.

Su
h expansions 
an be 
onstru
ted, in prin
iple, by for
ing (see [11℄, [12℄).

We remark that for many proof systems the axiom s
heme Rfn

P

is

a
tually equivalent to an indu
tion s
heme for formulas of parti
ular form

(depending on the system) or, equivalently, to a prin
iple that any linear

ordering de�nable by formulas of a parti
ular type has the least element

(this motivates Problem 1.6). See [15℄ for des
ription of this for resolution

and its extension, and [12℄ for a more general information.

One would like to further repla
e Rfn

P

or the equivalent indu
tion ax-

iom by a transparent 
ombinatorial prin
iple, as it is done for R

�

(log) and

NS=F

p

, PC=F

p

by their 
overing theories. However, for these proof systems

the 
ombinatorial 
hara
terization of polynomial provability is valid only for

proofs of h�i

n

and not for proofs of arbitrary sequen
es of tautologies. One

might not be able to repla
e Rfn

P

by a transparent 
ombinatorial prin
iple

without the restri
tion to uniform sequen
es h�i

n

. No su
h general 
hara
-

terization is known for any proof system at present. On the other hand, the

restri
tion to h�i

n

may allow su
h 
ombinatorial des
ription of polynomial

provability for stronger systems. Parti
ularly interesting would be the 
ases

of resolution R and 
utting planes proof system CP.

4

I owe this remark to the referee.
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6 Stru
tures as proof systems

If Comb(M) is r.e., then it de�nes a proof system. Little bit more generally

we de�ne

De�nition 6.1 Let C be a 
lass of stru
tures. Put Comb(C) :=

T

M2C

Comb(M).

Assume that Comb(C) is re
ursively enumerable, and let M be a Turing ma-


hine that enumerates the set.

De�ne a proof system A

C

as follows: a string � is a proof of formula �

in the system i�

� � is a quadruple h�; n; w

1

; w

2

i where � 2 Comb(C), w

1

is a 
omputa-

tion of M 
ertifying this membership, and w

2

is an R

�

(log)-proof of

� from h�i

n

.

We shall denote the proof system A

M

when C 
onsists of just a single stru
-

ture M .

Re
all that a proof system P polynomially simulates a proof system Q

i� there is a polynomial time algorithm translating any Q-proof � of � into

a P -proof �

0

of the same formula, and that P simulates Q i� su
h �

0

exists

polynomially bounded in the length of � (but is not ne
essarily 
onstruable

by a polynomial time algorithm).

Lemma 6.2 Let C be a 
lass of in�nite stru
tures su
h that Comb(C) is

re
ursively enumerable. Then

1. A

C

polynomially simulates R

�

(log).

2. If 	 2 Comb(C) then A

C

`

�

h	i

n

.

3. C 
overs A

C

.

4. Assume P `

�

hRfn

P

i

n

, all n 2 N. If all stru
tures in C 
over a proof

system P then A

C

simulates P .

Proof :

Parts 1. and 2. of the lemma are dire
t 
onsequen
es of the de�nition

A

C

.

Part 3. follows from Theorem 3.4. Assume 	 =2 Comb(C), and that

	 is already in the Herbrand form. Hen
e there is an in�nite stru
ture
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M 2 C in whi
h 	 
ombinatorially fails. For the sake of 
ontradi
tion

assume that A

C

`

�

h	i

n

, say h	i

n

's are provable in size n

k

, k � 1 a suitable


onstant. This means that h	i

n

is provable in R

�

(log) from some h�i

m

for

some � 2 Comb(C) (also in Herbrand form); ne
essarily m � n

k

. More

pre
isely, all 
lauses of :h�i

m

are provable in size � n

k

from the 
lauses of

:h	i

n

.

Now � holds in M . So we 
an take the assumed proof of any one 
lause

of :h�i

m

and apply the same 
onstru
tion as in the proof of Theorem 3.4,

using M as the referen
e stru
ture. The only di�eren
e is that we do not

pi
k F

0

:= ; but any minimal F

0

su
h that no F � F

0

makes the 
lause of

:h�i

m

true. Su
h F

0

exists by the fa
t that � holds inM . The 
ontradi
tion

is rea
hed as before, using that 	 fails in M .

We shall use bounded arithmeti
 for Part 3.. By the hypothesis of Part 3

the proof system P polynomially proves formulas hRfn

P

i

n

. Hen
e Rfn

P

2

Comb(C). Further, R

�

(log) augmented by instan
es of hRfn

P

i

n

simulates

P; this follows from the fa
t that R

�

(log) simulates the theory S

2

2

(�) ([10℄,

[15℄) and this theory proves that Rfn

P

implies that all �'s with a P-proof

are tautologies. In parti
ular, S

2

2

(�) proves the impli
ation

(Æ � x

`

^ Sat(x; �; �

0

; Æ)) ! �

where � is the assignment 
onsisting of p, atoms of �, and �

0

in the an-

te
edent is the set 
oding the formula �.

q.e.d.

Note that the hypothesis of part 3. is satis�ed by many proof systems,

e.g. by R(log) or F (
f. [16, 12℄). In fa
t, with a more sophisti
ated

formulation of Rfn

P

one 
an show that R

�

(log) also satis�es the hypothesis.

The �rst example restates Example 1.5.

Example 6.3 M is a sound model of I�

0

1

then A

M

is de�ned (i.e., Comb(M)

is re
ursively enumerable) and A

M

= R

�

(log).

Re
all that M is pseudo-�nite i� it is elementarily equivalent to an ul-

traprodu
t of �nite stru
tures.

Example 6.4 If M is pseudo-�nite then Comb(M) is a 
omplete �

0

1

set

and hen
e A

M

is not de�ned.
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This is be
ause Comb(M) is then exa
tly the set of senten
es true in

�nite stru
tures and Tra
htenbrot's theorem applies.

Example 6.5 Weak Euler 
hara
teristi
 is a fun
tion satisfying properties

1.-4. of De�nition 3.6. The 
lass of stru
tures admitting weak Euler 
har-

a
teristi
 has re
ursively enumerable 
ombinatori
s.

The 
ombinatori
s of the 
lass is axiomatized by instan
es of the ontoPHP

prin
iple, as by [14℄ this prin
iple 
hara
terizes weak Euler stru
tures.

Note that examples from Problem 1.7 would also give examples of these

new "stru
ture based" proof systems.

A
knowledgement: I am indebted to the anonymous referee for valuable


omments and suggestions, and to S. Buss (San diego) for suggesting few

language 
orre
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