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i. Introduction 

The motivation for this work comes 
from two general sources. The first 
source is the basic open question in com- 
plexity theory of whether P equals NP (see 
[I] and /2]). Our approach is to try to 
show they are not equal, by trying to show 
that the set of tautologies is not in NP 
(of course its complement is in NP). This 
is equivalent to showing t~-at no proof 
system (in the general sense defined in 
[3]) for the tautologies is "super" in the 
sense that there is a short proof for 
every tautology. Extended resolution is 
an example of a powerful proof system for 
tautologies that can simulate most stan- 
dard proof systems (see [3]). The Main 
Theorem (5.5) in this paper describes the 
power of extended resolution in a way that 
may provide a handle for showing it is not 
super. 

The second motivation comes from con- 
structive mathematics. A constructive 
proof of, say, a statement VxA must pro- 
vide an effective means of finding a proof 
of A for each value of x, but nothing is 
said about how long this proof is as a 
function of x. If the function is 
exponential or super exponential, then for 
short values of x the length of the proof 
of the instance of A may exceed the number 
of electrons in the universe. Thus one 
can question the sense in which our origi- 
nal "constructive" proof provides a method 
of verifying VxA for such values of x. 
Parikh E4] makes similar points, and goes 
on to suggest an "anthropomorphic" formal 
system for number theory in which induction 
can only be applied to formulas with 
bounded quantifiers. But e~en a quantifier 
bounded by n may require time exponential 
in the length of (the decimal notation 
for) n to check all possible values of the 
quantified variable (unless P = NP), so 
Parikh's system is apparently still not 
feasibly constructive. 

In section 2, I introduce the system 
PV for number theory, and it is this 
system which I suggest properly formalizes 
the notion of a feasibly constructive 
proof. The formulas in PV are equations 

t = u, (for example, x-(y+z) = x.y + x.z) 
where t and u are terms built from vari- 
ables, constants, and function symbols 
ranging over L, the class of functions com- 
putable in time bounded by a polynomial in 
the length of their arguments. The system 
PV is the analog for L of the quantifier- 
free theory of primitive rec~rsive arithme- 
tic developed by Skolem [5] and formalized 
by others (see [6]). A result necessary 
for the construction of the system is 
Cobham's theorem [7] which characterizes L 
as the least class of functions containing 
certain initial functions, and closed under 
substitution and limited recursion on nota- 
tion (see section 2). Thus all the func- 
tions in L (except the initial functions) 
can be introduced by a sequence of defining 
equations. The axioms of PV are these 
defining equations, and the rules of PV are 
the usual rules for equality, together with 
"induction on notation". 

All proofs in PV are feasibly cons- 
tructive in the following sense. Suppose 
an identity, say f(x) = g(x), has a proof 
in PV. Then there is a polynomial p~(n) 

such that ~ provides a uniform method of 
verifying within p~(Ix01 ) steps that a 

given natural number x 0 satisfies 

f(x0) = g(x0). If such a uniform method 

exists, I will say the equation is 
polynomially verifiable (or p-verifiable). 

The reader's first reaction might be 
that if both fang g are in L, then there 
is always a polynomial p(n) so that the 
time required to evaluate them at x 0 is 

bounded by p(Ix 01), and if f(x) = g(x) is a 

true identity, then it should be p- 
verifiable. The point is that the verifi- 
cation method must be uniform, in the sense 
that one can see (by the proof 9) that the 
verification will always succeed. Not all 
true identities are provable, so not all 
are p-verifiable. 

There is a similar situation in cons- 
tructive (or intuitionistic) number theory. 
The Kleene-Nelson theorem (E8], p. 504) 
states that if a formula VxA has a 
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constructive proof, then it is recursively 
realizable in the sense that there is a 
recursive function f which takes x 0 into a 

proof of A? (more properly, f(x0) is a 

number which "realizes" A"O). The con- 
X 

verse is false. One can find a formula 
VxA which is recursively realizable, but 
not constructively provable, since one 
cannot prove that the realizing recursive 
function works. Similarly, any true equa- 
tion f(x) = g(x) in PV is recursively 
realizable (in fact, L-realizable), but 
not all are p-verifiable (i.e. have 
feasibly constructive proofs). 

I argue in section 2 that provable 
equations in PV are p-verifiable. I also 
conjecture the converse is true, which 
leads to 

I.i Verifiability thesis. An equation 
t = u of PV is prova--~n PV if and only 
if it is p-verifiable. 

This statement is similar to Church's 
thesis, in that one can never prove that 
PV is powerful enough, since the notion of 
p-verifiable is informally defined. We 
present evidence for the power of PV in 
this paper by giving examples of things 
that are provable in PV, and by presenting 
the system PVI in section 3 which appears 
to be more powerful than PV, but isn't. 

Another argument for the power of PV 
that can be made is this. There is 
evidence that intuitionistic number theory, 
as formalized by Kleene [8]., is equivalent 
to a quantifier-free theory in which func- 
tions are introduced by ordinal recursion 
up to c O . From this point of view, PV is 

the same kind of quantifier-free theory, 
except the kind of recursion allowed is 
restricted so that only functions in L can 
be defined. 

In section 2, the system PV is des- 
cribed in detail, and some simple examples 
of proofs in the system are given. The 
Valuation Theorem (2.18) states that all 
true equations in PV without variables are 
provable in PV. 

In section 3, the system PVI is pre- 
sented. This system allows formulas to be 
truth functional combinations of equations, 
instead of just equations, and is much 
more convenient than PV for formalizing 
proofs. Nevertheless, theorem 3.10 states 
that any equation provable in PVI is 
provable in PV. 

The second GSdel Incompleteness theo- 
rem for PV, stating that the consistency 
of PV cannot be proved in PV, is proved in 
outline in section 4. I am aware of only 
one other treatment in the literature of 
this theorem for a free-variable system, 
and that is in [9]. (However, there seems 

to be a mistake in [9], since theorem 16, 
p. 134 fails when f(s(x)) is neither iden- 
tically zero nor identically non-zero.) 

In section 5, the proof system 
extended resolution is described, and the 
notion of a p-verifiable proof system for 
the propositional calculus is defined. The 
Main Theorem (5.5) states that a proof 
system f for the propositional calculus is 
p-verifiable iff extended resolution can 
simulate f efficiently, and the proof that 
the simulation works can be formalized in 
PV. The "if" part is proved in outline. 

Section 6 describes how to develop 
propositional formulas which express the 
truth of equations t = u of PV for bounded 
values of the variables in t and u. The ER 
Simulation Theorem (6.8) states that if 
t = u is provable in PV, then there is a 
polynomial (in the length of the bound on 
the variables) bound on the length of the 
minimal extended resolution proofs of the 
associated propositional formulas. The 
"only if" part of the Main Theorem is then 
proved in outline from this. 

In section 7, it is shown how the 
GSdel Incompleteness theorem implies that 
the system PV, as a proof system for the 
propositional calculus, is not itself 
p-verifiable. 

Finally, section 8 offers some conclu- 
sions and directions for future research. 

2. The System PV 

I will use dyadic notation (see 
Smullyan [i0]) to denote natural numbers. % 
The dyadic notation for the natural number 
n is the unique string dkdk_l...d O over the 

k "2 i 
alphabet {1,2} such that ~ d = n. In 

i= 0 1 
particular, the dyadic notation for 0 is 
the empty string. The dyadic successor 
functions s ICx) and s 2(x) are defined by 

si(x) : 2x + i, i = 1,2, and correspond to 

concatenating the digits 1 and 2, respec- 
tively, on the right end of the dyadic 
notation for x. I shall thus abbreviate 
s i (x) by xi. 

A function f comes from functions 
gl,...,g m by the operation of substitution 

iff some equation of the form 

2.1 f(x I ..... x n) = t 

holds for all Xl,...,Xn, where t is a 

The trouble with the more conventional 
binary notation is the necessity of proving 
the consistency of the analogs of equations 
2.2 and 2.3 when x = i = 0. 
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syntactically correct term built up from 
the variables Xl,...,Xn, numerals for the 

natural numbers, and the function symbols 

gl,...,gm. 

A function f comes from functions 
g,hl,h2,kl,k 2 by the operation of limited 

recursion on dyadic notation iff 

2 .2  f ( O , F )  = g(y) 

2 . 3  f ( x i , ~ )  = h i ( x , ~ , f ( x , ~ ) )  , i = 1 , 2  

2.4 f(x,~) ~ ki(x,[), i = 1,2 

for all natural number values of the vari- 
ables, where ~ = (yl,...,yk). We allow 

the case k = 0, in which g is a constant. 

Cobham's class L can be defined to be 
the set of functions f on the natural num- 
bers such that for some Turing machine Z 
and some polynomial p, for all natural 
numbers Xl,...,Xn, Z computes f(xl,...,Xn) 

within p(IxlI+...+IXnl ) steps, where Ix)  

is the length of the dyadic notation for 
X. 

2.5 Definition. The dyadic notation for 
®(x,y) is the dyadic notation for x conca- 
tenated with itself IYl times. 

2.6 Theorem (Cobham). L is the least 
class o-~ctions which includes the 
initial functions Sl, s2, and ~, and which 

is closed under the operations of substi- 
tution and limited recursion on dyadic 
notation. 

Cobham stated this result in [7], in 
a slightly different form. I am not aware 
of any published proof of the theorem, 
although Lascar gave a proof in some 
unpublished seminar notes [II]. 

The formal system PV will have func- 
tion symbols with defining equations of 
the forms 2.1, 2.2, and 2.3. I want only 
functions in L to be definable in PV, 
which means the inequalities 2.4 must be 
satisfied for some functions kl,k 2 in L. 

It is not hard to see that the question, 
given g,hl,h2,kl,k2, of whether the func- 

tion f defined by 2.2 and 2.3 satisfies 
2.4 is recursively undecidable. I want, 
however, for the proof predicate in PV to 
be not only decidable, but definable in 
PV. Therefore, I shall require that 
before a function f can be introduced by 
2.2 and 2.3, a proof must be available in 
PV that f does not grow too fast. It is 
awkward to require that 2.4 be proved 
directly in PV, because it obviously can- 
not be proved without using f, whose 
status in PV is uncertain until after the 
proof is carried out. Thus the proof will 
instead verify the inequality 

I h i ( x , ~ , z ) l  ~ I z ~ k i ( x , 7 )  l ,  i = 1,2 

f o r  some  p r e v i o u s l y  d e f i n e d  f u n c t i o n s  k 1 

a n d  k 2 ( n o t  t h o s e  i n  2 . 4 ) ,  w h e r e  ~ i n d i -  

c a t e s  c o n c a t e n a t i o n .  I t  i s  e a s y  t o  s e e  
that this inequality guarantees that f is 
in L if k I and k 2 are in L, since then 

ff(x,7)l ~ Ig(F)l +~ Ik(o,F) l + Ik(dl,F) f + 

... + Ik(dl...dk,[) I where dl...dk+ 1 is the 

dyadic notation for x and k(x,~) = kl(X,~ ) 

+ k 2 ( x , F )  • 

In order to specify formally what con- 
stitutes a proof of this inequality, we 
must introduce enough initial functions in 
PV to define the relation Ixl ~ IYl. Thus 
we introduce a function TR(x) (TR for 
"trim") which deletes the right-most digit 
of x. From this, a function LESS(x,y) can 
be defined whose value is x with the right- 
most IYJ digits deleted. Thus Ix I IzT 
iff LESS(x,y) = 0. In addition, we need * 
(concatenation) as an initial function, and 
also ® (see 2.5). The purpose of ® is to 
allow formation of functions in PV by com- 
position which grow sufficiently fast to 
dominate any function in L. 

Function symbols in PV will be defined 
later to be certain strings of symbols 
which encode the complete derivation from 
initial functions of the function they 
stand for. In particular, the defining 
equation(s) and number of arguments (arity) 
for a function symbol can be determined by 
inspection from the symbol. 

The set of terms of PV is defined 
Inductlvely as fol---~s. (i) 0 is a term, 
any variable x is a term, and any function 
symbol f of arity 0 is a term. (ii) If 
tl,~..,t k are terms, and f is a function 

symbol of arity k ~ i, then f(tl,...,tk) is 

a term. An equation is a string of the 
form t = u, where t and u are terms. A 
derivation in PV of an equation E from 
equations EI,...,E n is a string of equa- 

tions of the form DI,...,Dz, such that D~ 

is E, and each Di, l~i~, is either some 

Ei, a defining equation for a function 
J 

symbol, or follows from earlier equations 
in the string by a rule of PV (see below). 
If such a derivation exists, we shall write 
EI'''''En ~PV E, or simply ~PV E, if there 

are no hypotheses (the symbol PV here will 
sometimes be deleted). A derivation of E 
from no hypotheses is a proof of E. 

RULES OF PV 

(Here t,u,v are any terms, x is a variable, 
and y is a k-tuple of variables, k_>0.) 

RI. t=u ~- u=t 
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R2. t=u, u=v ~ t=v 

R3. tl=Ul,...,tk=U k ~ f(tl,...,tk) = 

f(u I ..... u k) , 
for any k-place function symbol f, 
kml. 

R4 t= u ~ tv v 
• X ~ U~, 

V 
where ~ indicates substitution of the 

term v for the variable x. 

R5. (Induction on notation) EI,...,E 6 

fl(x'~) = f2(x'~), 
where  E 1 , . . . , E  6 a r e  t h e  e q u a t i o n s  2 .2  

and  2 . 3  w i t h  f r e p l a c e d  by f l  and  by  

f2"  

The d e f i n i t i o n  o f  p r o o f  i s  n o t  y e t  
c o m p l e t e ,  b e c a u s e  t h e  n o t i o n  o f  f u n c t i o n  
symbo l  ( and  h e n c e  o f  t e r m  and  e q u a t i o n )  
and  a s s o c i a t e d  d e f i n i n g  e q u a t i o n s  ha s  n o t  
y e t  b e e n  s p e c i f i e d .  T h e s e  n o t i o n s  m u s t  
a c t u a l l y  be d e f i n e d  i n d u c t i v e l y  s i m u l -  
t a n e o u s l y  w i t h  t h e  d e f i n i t i o n  o f  p r o o f ,  
b e c a u s e  o f  o u r  r e q u i r e m e n t  t h a t  t h e  
b o u n d e d n e s s  o f  f u n c t i o n s  be p r o v e d  i n  PV. 
The a r i t y  o f  a f u n c t i o n  s y m b o l  i s  t h e  num- 
b e r  o f  a r g u m e n t s ,  and  t h e  o r d e r  o f  t h e  
symbo l  i s  r o u g h l y  t h e  d e p t h  o f  n e s t i n g  o f  
r e c u r s i o n  on n o t a t i o n  u s e d  to  d e f i n e  i t .  
We d e f i n e  t h e  o r d e r  o f  a p r o o f  t o  be  t h e  
g r e a t e s t  o f  t h e  o ~ e r s  o f  t h e  f u n c t i o n  
s y m b o l s  o c c u r r i n g  i n  i t .  Now we c a n  com- 
p l e t e  t h e  d e f i n i t i o n s  o f  a l l  t h e s e  n o t i o n s  
s i m u l t a n e o u s l y  and  r e c u r s i v e l y  as  f o l l o w s :  

The initial function symbols all have 
order 0. T-~e are the symbol 0 (of arity 
0), Sl,S2,TR (each of arity i) and *,~, 

LESS (each of arity 2). There are no 
defining equations for 0, s I and s2, and 

the defining equations for the others are 
(here xl means Sl(X), x 2 means s2(x)): 

TR: TR(0) = 0 
T R ( x i )  = x ,  i = 1 ,2  

®: 

*(x,0) = x 

*(x,yi) = si(*(x,y)) , 

®(x,0) = 0 

®(x,yi) = *(X,®(x,y)), 

i = 1,2 

i = 1,2 

LESS: LESS (x, 0) = x 
LESS(x,yi) = TR(LESS(x,y)), 

i = 1,2 

Note: We use infix notation for * and ® 
after this. 

It t is a term, and k is the maximum 
of the orders of the function symbols 
occurring in t, and all variables in t are 
among the variables Xl,...,Xn, n~0, then 

~Xl...Xnt0 is a function symbol of arity n 

and order k. The defining equation is 
f(xl,...,Xn) = t, if n ~ i, and f = t, if 

n = 0, where f is ~Xl...Xnt p. 

If g,hl,h2,kl,k 2 are function symbols 

of arity n-l, n+l, n+l, n, and n, respec- 
tively, (n~l) and if k is the maximum of 
the orders of the five function symbols, 
and if Ei, i=1,2 are proofs of order k or 

less of gESS(hi(x,~,z),z*ki(x,~)) = 0, 

i=1,2, then <[g,hl,h2,kl,k2][~l][H2]> is a 

function symbol of arity n and order k+l. 
If f denotes this function symbol, then the 
three defining equations for f are 

f(0,y) = g(~) (or f(0) = g, if n = I) 

f(xi,~) = hi(x,~,f(x,~)) , i = 1,2 

All function symbols must be formed in 
• these ways. This completes the formal 
specification of the system PV. 

As examples of proofs on PV, let us 
verify some simple properties of LESS or 
TR. 

2.7 ~-PV TR(LESS(xi,y)) = LESS(x,y), 

i = 1,2 

The strategy is to use R5 (induction 
on notation). To do this we introduce a 
new function symbol f (formally, f is 
XxyTR(LESS(yi,x))p) with defining equation 
f(x,y) = TR(LESS(yi,x)). Also a function 
symbol LESS' is introduced with defining 
equation LESS'(x,y) = LESS(y,x). Now the 
hypotheses of the induction rule can be 
verified, when fl is f and f2 is LESS', and 

g(y) = y, and hj (x,y,z) = TR(z); j=l,2. 

Hence f(x,y) = LESS'(x,y), from which 2.7 
follows by RI, R2, and R4, and the defining 
equations for f and LESS' 

2.8 ~PV LESS(x,x) = 0 

This is shown by induction on x, using 
2.7 with y replaced by x. 

2.9 ~PV LESS(x,yi*z) = TR(LESS(x,y*z)), 

i = 1,2 

This is proved by induction on z. 
Here hj(x,y,z,u) = TR(u). 

2.10 ~PV LESS(x,y*z) = LESS(x,z*y) 

Again this is proved by induction on 
y, using 2.9, and the same function h. 

J 
above. 

2.11 

2.8. 

~PV LESS(x,x*y) = 0 

The proof is induction on y, using 
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The intended semantics of PV should 
be clear. Every function symbol f stands 
for a uniquely defined function in L, 
which we can denote by ¢(f). (The reader 
can give a precise definition of O(f) by 
induction on the length of the function 
symbol f.) An equation t = u in PV is 
true iff its universal closure is true in 
the domain of natural numbers, when all 
function symbols receive their standard 
interpretations. 

We say a function F on the natural 
numbers is definable in PV iff ~(f) = F 
for some function symbol f of PV. By 
Cobham's theorem, every function definable 
in PV is clearly in L, but the converse is 
far from obvious, because of our require- 
ment that the bounding inequalities be 
provable in PV. Nevertheless, the converse 
is true. 

2.12 Theorem. Every function in L is 
definable in PV. 

To prove this requires a reproving of 
half of Cobham's theorem, showing that the 
functions introduced by limited recursion 
on notation can have their bounding 
inequalities proved in PV. We will not 
give the argument here. 

Below we introduce two functions in 
PV which we will use in the next section. 
The defining equations given do not 
strictly fit the format for recursion on 
notation, since the function symbols 
g,hl,h2,kl,k2 would have to be introduced 

explicitly. However, the reader should 
have no trouble doing this. 

Note: s I(0) is abbreviated by i, and 

s2(0) is abbreviated by 2. 

2.13 sg(O) = 1 

sg(xi) = 0, i = 1,2 

2.14 sg(O) = o 

sg(xi) = i, i = 1,2 

2.15 CON(O,y) = 0 

CON(xi,y) = sg(y) 

The bounding inequalities for the 
above three functions are easily proved in 
PV from the defining equations for LESS 
and TR. 

We now wish to argue in support of 
one part of the Verifiability Thesis (i.I), 
namely that only p-verifiable equations 
are provable in PV. Our argument includes 
an outline of a highly constructive consis- 
tency proof for PV, and it could be forma- 
lized in, say, primitive recursive number 
theory, to show there is no proof in PV of 
0 = I. An indication of how a similar 
argument showing the consistency of elemen- 
tary arithmetic (in the sense of Kalmar) 

could be carried out in primitive recursive 
arithmetic was given in Rose [12]. 

2.16 Proposition. If ~PV t = u, then the 

equation t = u is p-verifiable. 

2.17 Corollary. Not ~PV 0 = i. 

Our argument for establishing 2.16 
proceeds by induction on the length of the 
proof of t = u (here length counts the 
length of the function sym-~ols in the 
proof). Thus suppose ~ ~ i, and the propo- 
sition holds for all proofs of length < ~. 
Let H be a proof of t = u of length ~. If 
t = u is a defining equation for a function 
symbol f, then the equation holds by 
definition of f. However, the time required 
to verify the equation for a particular 
value of the arguments is equal to the time 
to compute f at that value, so we must be 
sure that this computation time is bounded 
by a polynomial in the length of the argu- 
ments. Here we apply the induction hypo- 
thesis, both to be sure that f does not 
grow too fast (we know this partly because 
if f is defined by recursion, then there 
are proofs of length less than Z estab- 
lishing a bound on the growth rate) and 
that all functions used in defining f can 
be computed in polynomial time. 

Now suppose t = u follows from earlier 
equations in H by one of the rules RI,..., 
R5. 

We will consider R4 as an interesting 
example. Thus (changing the roles of t and 
u to be consistent with the notation of R4) 
we assume by the induction-hypothesis that 
t = u is p-verifiable, and also that the 
equations defining the functions in the 
term v give a polynomial time method of 

evaluating v. Thus to verify t~ = u~ for 
' X X 

particular values for the arguments, we 
first evaluate v at the argument values, 
obtaining v0, and then (using'the induction 

hypothesis) verify t = u at these argument 
values except we let x have the value v 0. 

Note that, by the induction hypothesis, we 
are confident that the equation will hold 
at the values. Further, since a composi- 
tion of polynomials is a polynomial, the 
whole process is bounded in time by a poly- 
nomial in the length of the arguments. 

We leave the other rules to the 
reader. 

Notice that nothing is said about how 
the verification time grows with the length 
of the proof E. In fact, it is easy to see 
that the naive bound on this time is at 
least exponential in the length of E for 
fixed argument values, and we will prove in 
section 7 that PV itself is, in a sense, 
not p-verifiable. 
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The final result in this section is 
the following: 

2.18 Valuation Theorem. If t = u is a 
true equation of--~hout variables, 
then ~PV t = u. 

2.19 Definition. The numeral n for the 
natural number n is the unique term in PV 
of the form Sil(Si2(...Sik(0)... ) whose 

value is n. In particular, the numeral 
for 0 is '0'. 

2.20 Lemma. Every true equation in PV of 

the form f(nl ..... ~k ) = ~ is provable in 

PV. 

First let us note that the valuation 
theorem follows from the lemma. One shows 
by induction on the length of t (using the 
lemma) that if t = n is a true equation, 
then it is provable in PV (rules RI,R2,R3 
are all that is needed for this). But 
t = n, u = n ~PV t = u. 

The lemma is proved by induction on 
the length of the function symbol f, where 
we take the lengths of s I and s 2 to be 0, 

and the lengths of TR, *, ®, and LESS to 
be I, 2, 3, and 4, respectively. If f is 
s I or s2, then our task is to show 

~PV ~ = ~" But the identity function has 

defining equation I(x) = x, from which we 
may conclude x = x by R1 and R2, and m = 
by R4. 

Now suppose f is IXl...XntP for some 

term t. Then the defining equation for f 
is f(x I ..... x n) = t. If f(nl ..... nk ) = ~ 

~l . . . . .  ~k 
i s  t r u e ,  t h e n  t = ~ i s  t r u e .  

x I , • . . ,x k 
Since the induction hypothesis applies to 
each function symbol in t, the argument 
made two paragraphs above can be applied 
to show this last equation is provable in 
PV. Hence, by R4 and R2, ~PV f(nl .... 'nk ) 

Finally, suppose f is introduced by 
recursion on notation, so that it has 
defining equations 2.2 and 2.3. (I intend 
to include the initial functions TR, *, ®, 
and LESS in this case too.) Then one can 
see by induction on p that if f(P'nl''''' 

nk ) = m is true, it is provable in PV. 

(Notice that the main induction hypothesis 
holds for the function symbols g,hl,h2. ) 

3. The System PVI 

The goal now is to construct a system 
PVI in which it is easier to formalize 
proofs than in PV, and then show that 
every equation provable in PVI is provable 
in PV, and conversely. 

As a first step, we notice that it is 
often easier to define a function by simul- 
taneous recursion on several variables at 
once, rather than on just one variable, as 
in 2.2 and 2.3. For example, addition is 
easily defined this way as follows: 

X + 0 = 0 + X = X 

£(x+y) 2 if i = j = I 
xi + yj = {(s(x+y))l if i ~ j 

<(s(x+y))2 if i j = 2 

where s(x) = x + I. 

More generally, f(x,y,z-) is defined 
from g00,g01,gl0,{hij,kijli,je{l,2}} by 

limited 2-recursion on dyadic notation iff 

3.1 f(O,O,~-) = go0(~-) 

3.2 f(O,yj,~-) = gOl(Y,~- ) 

3.3 f(xi,0,~-) = gl0(X,~-) 

3.4 f(xi,yj,~-) = hij (x,y,z-,f(x,y,z-)), 

i,j e {1,2} 

3.5 LESS(hij(x,y,~,u),u*kij(x,y,~)) = 0, 

i,j e {1,2} 

The reason for using three initial 
defining equations (3.1, 3.2m 3.3) instead 
of just two, defining f(x,0,z) and f(0,y,[), 
is to avoid the necessity of proving the 
consistency of the equations when x = y = 0. 

3.6 Theorem. Suppose there are function 
symbols g00,g01,gl0,{hij,kijli,je{l,2}} in 

PV such that the four equations 3.5 are 
each provable in PV. Then there is a func- 
tion symbol f in PV such that each of the 
equations 3.1,...,3.4 is provable in PV. 

The proof will not be given here. 

It is also useful to have a rule 
allowing induction on notation on several 
variables at once. 

3.7 Theorem. Suppose the equations 

0 
3.8 f(xl, .... Xn,~)~. = 

1 

g i  ( X l ,  . . .  , X i _ l , X i + l ,  • . • , X n , ~ )  , 

i < i _<n 

3.9 f(xli I ..... Xnin,Y) = 

hi I ..... in(Xl ..... Xn,~,f(x I ..... 

X n , ~ )  ) , 

(i I ..... i n) ~ {1,2} n 

(2n+n equations altogether) are each prova- 
ble in PV when f is replaced by fl and 

again when f is replaced by f2" Then 
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fl(Xl ..... Xn,~) = f2(xl ..... Xn,~) is 
provable in PV. 

The proof will not be given here. 

The system PVI can now be defined. 
Variables, function symbols, terms, and 
equations are the same as in PV. Formulas 
in PVI are either equations, or truth- 
functional combinations of equations, 
using the truth-functional connectives 
&,v,,,~,~. The axioms and axiom schemes 
of PVI are the following: 

El. x=x 

E2. x=y = y=x 

E3. (x=y&y=z) = x=z 

(E4) f .  (xl=Yl&...&xk=Yk) = f(x I ..... Xk)= 

f (Yl ..... Yk ) 
for each k e i and each k-place 
function symbol f in PV 

E5. (x=y) = (xi=yi), i = 1,2 

E6. ,xl=x2 

E7. ~0=xi, i = 1,2 

DEF. The defining equations for any 
function symbol in PV are axioms 
in PVI. Further, the equations 
3.1,...,3.4 are axioms in PVI, 
provided the equations 3.5 are 
provable in PVI without using 
these instances of 3.1-3•4, and 
provided that the function symbol 
f is the one given by theorem 3.6. 
Finally, the defining equations of 
the initial functions TR, *, ®, 
and LESS, are axioms of PVI. 

TAUTOLOGY. Any truth-functionally valid 
formula of PVI is an axiom of PVI. 

The rules of PVI are the following: 

SUBST A ~ A ! where A is any formula of • X' 

PVI, t is any term, and x is any 
variable. 

IMP. A I,...,A n ~ B, where the formula B 

is a truth-functional consequence 
of formulas AI,...,A n . 

n-INDUCTION, n_>l: 

x~I Xlil ..... Xni n I {A . l-<i_<n}, {A=A Xl'''''~--~n 
i 

(i I ..... in)e{l,2}n} ~ A 

For example, 1-induction is the rule 

A O, A ~ A xl, A ~ A x2 
x pA 

Proofs and derivations in PVI are 
described in a way similar to PV. 

We use the notation CI(A) to mean the 
universal closure of A. We say a formula A 
of PVI is true if CI(A) is true in the 
domain of natural numbers, when the function 
symbols receive their standard meanings. 
The reader is warned that if the terms t 
and u have variables, then this interpreta- 
tion means that ~t = u is not the negation 
of t = u. For example, sg(x) = 0 and 
,sg(x) = 0 are both false, since their 
universal closures are both false in the 
natural numbers. 

3.10 Theorem. An equation t = u is a 
theorem of PVI if and only if it is a 
theorem of PV. 

The proof is omitted for lack of space. 

As a measure of the power and useful- 
ness of the system PVI, we prove the 
following result. 

3.11 Theorem. If AI,...,An,B are formulas 

in PVI, and CI(B) can be derived from 
CI(AI),...,CI(An) in the predicate calculus 

with equality, then AI,...,A n F-pv I B. 

Proof. Suppose the hypotheses of the 
t e-~em are satisfied• Then CI(B) is a 
logical consequence of CI(AI),...,CI(An), 

CI(E1) .... ,CI(E4) in the predicate calculus 

(without the equality axioms). Thus 
CI(A) = CI(B) is a quantificationally valid 
formula, where A is (AI&...&An&EI&...&E4). 

By the Herbrand theorem (see [14]), there 
are substitutions Ol,...,Ok such that 

k c I , . . . , c r 
3.12 i--iv (A~i~B~-, :~r ) 

is truth-functionally valid where Cl,...,c r 

are new distinct constant symbols, Xl,...,x r 

are the variables occurring i~ B, and each 
~i is a substitution of "ground" terms 

(built from Cl,...,c r and constant symbols 

of PV by applying function symbols of PV) 
for the variables in A. If we let ~! be 

i 
the substitution resulting when °i is 

XI,...,X r 
folIowed by the substitution 

Cl,...,c r ' 
then the formula 

k 
3.13 v (Ao.~=B) 

i= l  

is "isomorphic" to 3.12, and hence it is 
also truth-functionally valid. It follows, 
since 3.13 is a formula of PVI, that it is 
an axiom of PVI (by TAUTOLOGY). Further- 
more, by the rule SUBST, each of the formu- 
las EI~ ~ ..... E4~, l~i~k, is a theorem of 
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PVI, and AlO ~ .... ,AnO~, l~i~k, can be 

derived in PVI from the hypotheses AI,... , 

A n . Hence, by the rule IMP, we see that 

AI'''''An ~PVI B. 

4. The G~del Incompleteness 
Theorem for PV 

The main theorem in this section 
states that the consistency of PV cannot 
be proved in PV. This will be applied in 
section 7 to show that the system PV, as a 
proof system for the propositional calcu= 
lus, is not p-verifiable. 

It is easy to see that PV is incom- 
plete, because the equivalence problem for 
functions in L is not recursively enumera- 
ble. But we need to know that a proof of 
this incompleteness can be given in PV 
itself so that we can follow G~del's method 
of proving that a theory cannot have a 
proof of its own consistency. 

The first step is to assign "G~del 
numbers" to the terms, equations, and 
proofs in PV. Notice that an object of 
any of these three kinds has been defined 
to be a string of symbols. The underlying 
alphabet of symbols is infinite, because 
we assume there are an unlimited number of 
variables at our disposal. However, we 
can agree that a variable is just the 
symbol x followed by a finite string on 
the alphabet {1,2}. Hence any term, equa- 
tion, or proof, is a finite string on some 
fixed alphabet A of at most 32 symbols. 
We can code each symbol o in A by a unique 
five-digit code ~(o) over the alphabet 
{1,2}. Then the G~del number of a string 
Ol...o k is the number whose dyadic notation 

is ~(Ol)...~(Ok). The number of an object 

C is denoted by [C3. The important pro- 
perty of G~del numbers from our point of 
view is that an object C and the dyadic 
notation for [C3 can be obtained from each 
other within time bounded by polynomials 
in the lengths of [C] and C, respectively. 

We define the function proof on the 
natural numbers by 

If if m is the number of ~an 
equation t = u, and n is 

proof(m,n) = the number of a proof in 
PV of t = u 

otherwise 

Next we define the function sub as 
follows: sub(m) = n £f m = [t=u]--~d 

n = [(t=u)~], for some equation t = u, 

where ~ is the numeral for m. If m is not 
of the form [t=u], then sub(m) = 0. 

It is not hard to see that both the 
functions proof and sub can be computed in 
time bounded by a polynomial in the 

lengths of their arguments, so that both 
functions are in L. By theorem 2.12 there 
are function symbols PROOF and SUB in PV 
which define proof and sub, respectively. 
(We assume that the defining equations for 
these function symbols represent a 
straightforward algorithm for computing the 
functions.) Let 

4.1 r = [PROOF(SUB(x) ,y)=03 

Then 

4.2 s = sub(r) = [PROOF(SUB(~),y)=0] 

Thus equation number s says "I am not 
provable". 

4.3 Theorem. Equation number s has no 
proof in PV. 

Proof. Suppose, to the contrary, that p is 
t e-h-~umber of a proof of equation number s. 
By the valuation theorem (2.18), we have 
~PV PROOF(SUB(7),p) = i. But by assumption, 

PPV PROOF(SUB(~),y) = 0, so by the rules 

R4, RI, and R2 of PV, ~PV 0 = i. This con- 

tradicts the consistency of PV (theorem 
2.17), establishing the present theorem. 

Now let CON(PV) stand for the equation 
PROOF([0=I],y) = 0. This is a true equation 
of PV, asserting that the equation 0 = 1 
has no proof in PV. 

4.4 Theorem. CON(PV) has no proof in PV. 

The idea, of course, is to show that 
the proof of theorem 4.3 can be formalized 
in PV. We will actually work in the system 
PVI, since this is easier. The first step 
is to for~alize the valuation theorem 
(2.18) in PVI. The proof of 2.18 shows how 
to construct, for each function symbol f of 
PV, a function genf in L such that 

genf(nl,...,nk,m) is the number of a proof 

in PV of the equation f(nl ..... nk ) = ~' 

provided the equation is true, and 
genf(nl,...,nk,m) = 0 otherwise. The 

function formf(n I ..... nk,m) = [f(nl''''' 

nk)=m] is certainly in L. It should be 

possible to show 

4.5 Lemma. ~PVI f(xl ..... Xk)=Y = 

PROOF(FORMf(x I .... ,xk,Y),GENf(x I ..... xk,Y)) 

=i for each function symbol f of PV, where 
FORMf and GENf are the function symbols 

defining formf and genf, respectively. 

Now let us apply the lemma when f is 
PROOF, and substitute ~ (from 4.2) and 1 
for two of the variables, to obtain 

4 . 6  [-PV1 PROOF ( ~ ' , y )  =1 

PRO0 F (FORM ( if ,  y ,  1 ) ,  GEN (g' ,  y ,  1 ) ) = 1 
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where we have left off the subscripts on 
FORM and GEN. By definition, 
formpROOF(S,n,l) = [PROOF(s,n)=I], and for 

each value of n, a proof (say number p) in 
PV of the equation in brackets together 
with a proof (say number q) in PV of for- 
mula number s (see 4.2) gives rise easily 
to a proof (say number contra(p,q,n)) in PV 
of 0 = i. If we let CONTRA define the 
function contra, then one can prove the 
last statement in PVI. 

4.7 Lemma. 
}-PV1 ~ F  (FORM ( g , y ,  1) ,  z) = 18PROOF ( s ,u )  =l) 

PROOF ([ 0=i ], CONTRA (z ,u,y) )=i 

Now lemma 4.7 with GEN(g,y,I) substi- 
tuted for z and y substituted for u, 
together with 4.6 gives us immediately by 
the rule IMP of PVI 

4.8 bPVI PROOF(~,y)=I = PROOF([0=I],t)=I 

where t is CONTRA(GEN([,y,I),y,y)). 

By axiom E7 of PVI, ~PVI n0 = I. 

Hence, by substituting t for y in the 
definition of CON(PV), we have by IMP and 
equality reasoning, from 4.8, 

4.9 ~PV1 CON(PV) = nPROOF([,y)=I 

Simple r e a s o n i n g  
shows ~PVl ,PROOF(x,y)=l = PROOF(x,y)=0, 

and s ince  by the  v a l u a t i o n  theorem,  
~PV s = SUB(~), we have by 4.9 

4.10 ~PV1 CON(PV) = PROOF(SUB(~-),y)=0 

Thus, i f  bPV CON(PV), then 

~PVl CON(PV) (by theorem 3 . 10 ) ,  so 

~PVI PROOF(SUB(~),y) = 0, so - 

~PV PROOF (SUB (F) ,y) = 0 (again by 3.10), 

which contradicts theorem 4.3. This com- 
pletes our outline of the proof of theorem 
4.4. 

5. Propositional Calculus and 
the Main Theorem 

Propositional formulas will be formed 
in the usual way from the connectives 
&,v,~,=,~, and from an infinite list of 
atoms. We will define an atom to be the 
letters ATOM followed by a str~ng on {1,2}, 
so that formulas are certain strings on a 
certain fixed finite alphabet. We can 
assign GSdel numbers to the strings as in 
section 4, and we will write [A] for the 
number of the formula A. A tautology is a 
valid propositional formula, and we will 
use TAUT to denote the set of GSdel 
numbers of tautologies. 

A rope_of s s ~  (for TAUT) is a func- 
tion f in L from~e set of natural numbers 
onto TAUT. (This differs from the 

definition in [3] in that numbers are used 
instead of strings.) If f is a proof 
system, and f(x) = [A], then x is (or 
codes) a proof of A. 

The paper [3] describes a large number 
of standard proof systems, and compares 
them from the point of view of length of 
proof. The system we are interested in 
here is a very powerful system called 
extended resolution (ER), which can 
efficiently simulate any of the standard 
systems, except possibly Frege systems with 
a substitution rule. The idea of extended 
resolution is due to Tseitin [13]. 

The system ER can be defined as 
follows. A literal is an atom or a negation 
of an atom. The complement L of a literal 
L is given by ~ = 7P, ~---g = P, where P is an 
atom. A clause is a disjunction (LlV...VLk) 

of literals, k~0, with no literal repeated. 
If k = 0 the clause (called the empty 
clause) is denoted by D. If A is a propo- 
s1-~al formula, then we associate a 
literal L B with every subform'hla B of A by 

the conditions (i) if B is an atom, then L B 

is B, (ii) if B is ~C, then L B is LC, and 

(iii) if B is (CvD), (C&D), (C=D), or (C~D), 
then L B is some atom uniquely associated 

with B. 

If F is a propositional formula, then 
CNF(F) denotes some set of clauses whose 
conjunction is equivalent to F (and which 
is not unnecessarily long). Now we 
associate with every propositional formula 
A a set def(A) of clauses by the conditions 
(i) def(P)~= ~ if P is an atom, (ii) 
def(~B) = def(B), (iii) def(BoC) = def(B) u 
def(C) u CNF(LBvc~(LBOLc)), where o is &, 

V, D, or ~. 

5.1 Lemma. a) Any truth assignment ~ to 
the atoms of A has a unique extension T' to 
the atoms of def(A) which makes (each 
clause in) def(A) true. In fact, T'(LB) = 

T(B) for each subformula B of A, so in 
particular, T'(LA) = ~(A). 

b) A is a tautology if and only if L A is a 

truth-functional consequence of def(A). 
c) There is a function f in L which 
satisfies f([A]) = [def(A)]. 

Part a) is proved by induction on the 
length of A. Part b) follows immediately 
from a). For part c), obseTve that def(A) 
has at most three times as many clauses as 
A has connectives, and these clauses are 
easily found. 

Notice that, in contrast to def(A), 
CNF(A) is not in general computable in 
polynomial time, simply because some formu- 
las have a shortest conjunctive normal form 
which is exponential in their length. (For 
example, (Pl&P2v...VP2n_l&P2n)). 
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If a clause C 1 is (LlV...vLivLvLi+l v 

...VLk) and C 2 is (MlV'''vM'v~vMj +Iv'''vM~)l 

then the resolvent of C 1 an~ C 2 ls the 

clause which results from deleting repeti- 
tions of literals from (LlV...VLkVMlV...v 

The extension rule for an atom P 
allows the introduction of the three or 
four clauses in CNF(P~(LIoL2)), where o is 

&, v, =, or ~, provided P and P are dis- 
tinct from L 1 and L 2. An ER proof of a 

formula A is a string A~CI~...~Ck~Ck+I ~ 

...*Cn, where Cn is LA, {C I,...,C k} are 

the clauses in def(A), and each C. for 
1 

i > k is either a resolvent of two earlier 
Cj s, or is introduced by the extension 

rule for some atom P which has no earlier 
occurrence in the string. Any string not 
of the above form is, by convention, an ER 
proof of (PvTP), for some fixed atom P. 
The proof system ER is the function such 
that ER(n) = [A], provided the dyadic 
notation of n codes an ER proof of A. It 
is easy to see the function ER is in £. 

It follows from lemma 5.1 and a 
slight modification of the usual complete- 
ness theorem for ground resolution (see 
[14~, for example) that every tautology A 
has an ER proof in which the extension 
rule is not used. (The purpose of the 
extension rule is to give shorter proofs.) 
I now prove the converse explicitly, since 
I want to argue later that the proof can 
be formalized in PV. 

5.2 Soundness of ER. If a formula A has 
an ER proof, then A is a tautology. 

Proof. If A is ~P v P, then A is obviously 
a tautology. Otherwise, the proof has the 

* .*C described form A~CI~...~Ck**Ck+ 1 .. n 

earlier. Let ~ be any truth assignment to 
the atoms of A. Then, as mentioned in 
lemma 5.1, T can be extended to a truth 
assignment ~' to the atoms L B of def(A) 

such that z' makes all clauses in def(A) 
true and T'(LA) = T(A). Hence ~' makes 

CI,...,C k true. Further, each time clauses 

DI,D2,D 3 are introduced by the extension 

rule for an atom P, T' can be extended to 
T" whose domain includes P in such a way 
that DI,D2,D 3 are true under T" (for 

example, if the clauses are CNF(P~(LIVL2)), 

then T"(P) is T'(LIVL2)). Thus there is 

an extension T 1 of T' which makes all 

clauses C i introduced by extension true. 

It is easy to see that any truth assignment 
which makes two clauses true must make any 
resolvent of those clauses true. Hence, 

by induction on i, we see that r I makes C i 

true for 1 ~ i ~ n. In particular, ~i 

makes C n = L A true. Since TI(LA) = T'(LA) 

= z(A), T makes A true. Since T is an 
arbitrary truth assignment to A, A is a 
tautology. 

The above argument shows more than 
just the soundness of ER. It shows that an 
ER proof of A provides a uniform method of 
checking rapidly that a given truth assign- 
ment satisfies A; namely check that z 

1 
satisfies successively CI,C2,...,C n = LA, 

and check successively that TI(B ) ~ TI(LB) 

for larger and larger subformulas B of A, 
and finally check that T(A) = TI(LA) = true. 

Thus ER is a p-verifiable proof system in 
the following sense. 

5.3 (Informal definition). A proof system 
F for TAUT is p-verifiable iff there is a 
polynomial p(n) such that given a proof x 
in the system of a formula A, x gives a 
uniform way of verifying within p(Ixl) 
steps that an arbitrary truth assignment to 
A satisfies A. 

It is easy to see that all the usual 
"Frege" systems (see [3]) for the proposi- 
tional calculus satisfy this definition, in 
addition to ER. On the other hand, if the 
substitution rule (from A conclude Aa, 
where ~ substitutes formulas for atoms) is 
added to Frege systems, then it is no 
longer clear that the system is p- 
verifiable. A proof of A in such a system 
does provide a way of verifying that a 
given truth assignment T satisfies A, but 
since a formula B in the proof may have 
several substitution instances in the 
proof, and each of these instances can 
again have several instances, and so on, we 
may end up having to verify B for exponen- 
tially (in the length of the proof) many 
truth assignments to check that A comes out 
true under the single assignment ~. Also, 
there is no reason to think that a proof 
system for TAUT which incorporates Peano 
number theory or set theory is p-verifiable. 

To make the notion of p-verifiable 
proof system precise, let us code a truth 
assignment T as a string (PI,Z(PI)), 

(P2,z(P2)) ..... (Pk,T(Pk)) listing the atoms 

in its dom~bin and the truth value assigned 
to these atoms. This string in turn can be 
coded as a string on (1,2}, and IT] will 
denote the number whose dyadic notation is 
this last string. Then we can define a 
function tr in L such that 

= ~i if ~(A) is true 
tr([A],[T]) L0 if T(A) is false 

We can make the convention that z assigns 
false to all atoms of A for which a value 
is not explicitly given, so that T(A) is 

92 



defined for any formula A and truth assign- 
ment T and every number n codes some truth 
assignment. Let TR be a function symbol in 
PV which defines tr. 
5.4 (Formal Definition). A proof system 
f for TAUT is p-verifiable iff there is 
some function symbol F in PV defining f 
such that ~PV TR(F(x),y) = I. 

It is worth pointing out that this 
formal definition depends on the particular 
function symbol TR chosen to define tr. 
That is, it depends on the algorithm 
chosen to compute tr. Presumably, if TR 
and TR' both represent straightforward 
algorithms for computing tr, then 
~PV ZR(x,y) = TR'(x,y), so definition 5.4 

would be the same for TR and TR'. 

The formal definition requires that 
the soundness of f be provable in PV. If 
one believes the verifiability thesis 
(I.I), then it is easy to see that the 
formal definition captures the informal 
one. 

In [ 3 ], a notion of one proof system 
simulating another is defined. Here I 
would like to sharpen that notion and say 
that a proof system fl p-simulates a proof 

system f2 iff there is a function g in L 

such that f2(n) = fl(g(n)) for all n. 

Further, fl p-verifiably simulates f2 iff 

there exist functions symbols FI,F 2 in PV 

defining fl,f2, respectively, and a func- 

tion symbol G such that ~PV F2(x) = 

FI(G(x)). 
Now I can state the main theorem of 

this paper, which characterizes the p- 
verifiable proof systems. 

5.5 Main Theorem. A proof system f for 
tautologles is p-verifiable if and only if 
extended resolution p-verifiably simulates 
f. 

5.6 Theorem. Extended resolution p- 
verifia l-~imulates any Frege system (see 
[ 3 ] ) .  

5.7 Corollary. Every Frege system is a 
p-verifiable proof system. 

Theorem 5.6 can be proved by forma- 
lizing in PV the proof in [3] which shows 
that ER simulates any Frege system. The 
argument will not be given here. 

The following lemma is needed for the 
Main Theorem. 

5.8 Lemma. ER is p-verifiable. That is, 
~PV TR E--~E-~RES(x),y) = i, where EXTRES is a 

suitable function symbol in PV defining ER. 

The proof amounts to showing the 
proof of 5.2 (Soundness of ER) can be 

formalized in PV. (Of course, in practice 
it is easier to work in PVI.) Thus one 
defines a function tauone(n) in L such that 
when n = [T], then tauone(n) = [TI], where 

T 1 is the truth assignment described in 

that argument. Then the formal versions of 
the equations TI(L A) = T'(L A) = T(A) are 

provable in PV, and;TR(ER(x),y) = 1 follows. 
The details are omitted. 

The "if" part of the Main Theorem 
follows easily from the lemma. For suppose 
ER p-verifiably simulates f. Then 
~PV F(x) = EXTRES(G(x)), where F defines f. 

If rule R3 of PV (with TR for f) is applied 
to this equation and the result applied 
with transitivity to 5.8 with G(x) for x, 
we obtain ~PV TR(F(x),y) = I. Hence f is 

p-verifiable. 

The converse to the Main Theorem is 
more difficult and will be dealt with in 
the next section. 

6. Propositional Formulas Assigned 
to Equations of PV 

To prove the "only if" part of theorem 
5.5 I propose to first prove that extended 
resolution can p-simulate any p-verifiable 
proof system, and then argue that this 
proof can be formalized in PV. This first 
proof is carried outby assigning, for each 
m, a propositional formula to each equation 
t = u which says, roughly speaking, "the 
equation holds when variables are 
restricted so that the dyadic notations for 
all relevant functions have length at most 
m". I the~ argue that if ~PV t = u, then 

there is an ER proof of the formula whose 
length is bounded by a polynomial in n. 
Applying this result to the equation 
TR(F(x),y) = 1 (which is provable in PV if 
F represents a p-verifiable proof system 
f), one can see that there is an ER proof 
of formula number f(n) which is not much 
longer than the proof n. 

Proceeding more formally, let us fix 
the integer m > 0. We associate with every 
term t of PV the atoms P0[t],Pl[t],...,Pm[t] 

and Q0[t],Ql[t],...,Qm[t]. We will call 

these the atoms of t. The intended 
meanings are 

~true if ith dyadic.digit (i.e. 

j coefficient of 21 ) of t is 2 
Pi [t] ~ ~false if this digit is 1 

|irrelevant if the dyadic length of 
t is < i+l 

true if coefficient of 2 i in t is 

Qi [t] ~ ~ defined (i.e. t ~ 2 i+l - I) 
Kfalse otherwise 

Now we can define, for each term t and each 
truth assignment T to the atoms of t which 
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satisfies Qi[t] = Qi_l[t], l~i~m, a number 

valm(t,T) which is the number whose dyadic 

notation is determined by these intended 
meanings. Next we associate a proposi- 
tional formula proPm[t] with the term t 

(the subscript m will sometimes be 
omitted). Among the atoms of this formula 
are some of the atoms of t and the atoms 
of the variables which occur in t. This 
formula has the following property: 

6.1 Semantic Correctness of proPm. Let 

the term t of PV with variables Xl,...,x n 

define the function f(xl,...,Xn) , and let 

T be a truth assignment which satisfies 
prOPm[t] and such that when f is evaluated 

(according to the defining equations in 
PV) at x i = valm(Xi,T), l~i~n, no value of 

any number appearing in the computation 
exceeds m in dyadic length. Then 
Valm(t,z ) = f(valm(Xl,T ) ..... valm(Xn,~)). 

To define proPm[t] in general in such 

a way that 6.1 holds, we start with the 
following special cases. 

6.2 
m 

proPm[X] is & Qi[x] = Qi_l[X], for 
i=l 

each variable x. 

m 

6.3 proPm[ 0] is & ~Qi[0] 
i=0 

6.4 proPm[Sl(X )] is 

m-i 
(proPm[X] & (Pi+l[Sl(X)]-Pi[x]) 

i=0 

& 7P0[s I (x) ] 
m-i 

&Q0[Sl(X)] & (Qi+l[Sl(X)]-=Qi[x])) 
i=0 

6.5 proPm[S2(X)] is defined similarly. 

tl,...,t k 
Let o - be a substitution 

Xl,...,x k 
(regarded as a transformation) of terms 
for variables. The function ~ takes a 
substitution and an atom of t into an atom 
of to, and is defined by the equations 
~(a,Pi[t]) = Pi[ta], and ~(a,Qi[t]) = 

Qi[ta], where to is the term resulting 

when a is applied to t. @ can be extended 
in an obvious way so that its second argu- 
ment is any propositional formula in the 
atoms of various terms t. Thus ~(a,TA) = 
7~(o,A), and ~(o,(AoB)) = (~(o,A) o~(a,B)), 
where o is &, v, =, or ~. The formulas 
proPm will satisfy the following property: 

4.6 Substitution Principle. 

tl,...,t k 
o = Then 

x I ..... x k 

Let 

k 
proPm[ta] <=> & 

i=l 
proPm[ti]&~ (a,proPm[ t ]) , 

where <=> can be read "is truth-functionally 
equiva&ent to". 

For example, if t is Sl(X ) and a is ~, 

then this principle and 6.3, 6.4, say that 
proPm[Sl(0)] is a conjunction of formulas, 

including ~Qi[0], l~i~m, and ~P0[Sl(0)], 

and Q0[Sl(0)], and Qi+l[Sl(0)] ~ Qi[O], 

0~i~m-l. These formulas imply ~P0[Sl(0)], 

Q0[Sl(0)], and 7Qi[Sl(0)] , l~i~m, which 

completely specify the dyadic notation for 
sl(0) (=1). 

Now suppose proPm[f(xl , .... Xk)] has 

been defined for all function symbols f is 
a certain set S. Then we can inductively 
define proPm[t] for each term t built from 

0, variables, and function symbols in S by 

6.7 proPm[f(t I ..... tk)] = 

k tl,...,t k 
& proPm[t ]&~ 

i= 1 i (Xl, ,x k 

proPm[f(x I ..... Xk)]) 

To complete the definition of proPm[t] 

for all terms t, it suffices to show how to 
define proPm[f(xl, .... Xn)] for each of the 

two ways of defining new function symbols• 
First, suppose f is ~Xl...XntP , where 

proPm[t] has been defined• Then the 

defining equation for f is f(x I .... ,Xn) = t, 

and we define 

6.8 proPm[ f (x I .... ,Xn)] is 

m 

(proPm[t] & (Pi[f(xl ..... x n)]-pi[t]) 
i=0 

m 
& (Qi[ f (Xl ..... Xn) ]-Qi[t])) 

i=0 

The case in which f is defined by 
recursion on notation is more complicated, 
and is omitted for lack of space.This com- 
pletes the definition of proPm[t] , for all 

terms t. 
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Now suppose Xl,...,x r is a list of 

all the variables appearing in the terms t 
and u, and n,m are positive integers with 

m. Then [t=uI~ is the n propositional 

formula 

((prOPm[t]&proPm[U]) & (~Qn+l[Xl]& • • . 

&,Qn+l[Xr])) = 

m m 

( & Qi[t]=(Pi[t]-Pi[u]) & (Qi[t]-Qi[u])) 
i=0 i=0 

We say that m is a bounding value for 
n relative to t = u if the terms t an-~ u 
can be evalu-ated by the relevant defining 
equations for all values of their variables 
of dyadic length n or less without having 
any value in the computation exceed m in 
dyadic length. 

6.8 ER Simulation Theorem. Suppose ~ is 
a proo-=F in PV of t = u. Then there is a 
polynomial p(m) (depending on ~) such that 
for all n,m, if m is a bounding value for 

n relative to t = u, then It=u[ n has an 
m 

extended resolution proof of length at 
most p(m). 

The proof is by induction on the 
length of H, and is omitted. 

Using this theorem, we can sketch the 
proof of the "only if" part of theorem 5.5. 
Thus suppose f is a p-verifiable proof 
system, and suppose F is a function symbol 
in PV which defines f, such that 
~PV TR(F(x),y) = i. Since all functions 

used in defining F and TR are in L, it 
follows that one can find a polynomial q 
with natural number coefficients such that 
for all n, q(n) is a bounding value for n 
relative to TR(F(x),y) = i, and q(n) ÷ =. 
By theorem 6.8, there is a polynomial p(n) 

n 
such that ITR(F(x),y)=I[q(n ) has an ER 

proof of length at most p(q(n)), for all n. 

Now let PI,...,Pk be the atoms of 

some propositional formula A. A truth 
assignment T to these atoms determines a 
number [T] in a straightforward manner, 
and using a variable y for [T], we can use 
the extension ~ule to introduce a set CL 
of clauses defining the atoms Pi[y] and 

Qi[y] in terms of the atoms Pl,...,Pk.. 

Thus any truth assignment T' which 
satisfies all clauses in CL must have the 
property that if T is the restriction of 
T' to PI,...,Pk, then [T] is the value of 

y whose dyadic notation is represented by 
T'(Pi[y]) , T'(Qi[y]) , l~i~m, for suitable 

m. Since any truth assignment T" 
satisfying def(A) must have T"(A) = T"(LA) , 

one can see from the way TR is defined that 
there is an ER derivation of L A 

Q0[TR([--~,y)] from def(A), CL, and , 

proPm[TR([A],y)] , for suitable m. Further, 

there is a polynomial r(n) such that for 
all formulas A, this ER derivation has 
length at most r([A]). 

Now suppose A has a proof a in the 
system f; that is, suppose f(a) = [A]. 
Then bK the valuation theorem 2.18, 
~PV F(a) = [A-], and one can verify that 

IF(a)=[--~[ n has an ER proof of length 
ql (n) 

not exceeding pl(ql(n)), where n = [al, for 

some polynomials Pl and ql" Putting this 

ER proof together with the ones in the 
preceding two paragraphs, and noting that 
the clauses in CL, def(proPm[t] ) for all 

terms t involved can be introduced by the 
extension rule, we come up with an ER proof 
g(a) of A of length not exceeding~p~a[), 

for some polynomial P2" Thus ER(g(a)) = 

f(a) for all a, and since g(a) is in L, ER 
p-simulates f. 

To complete the proof of theorem 5.5 
it is necessary to show ~PV ER(G(x)) = F(x), 

where G is a function symbol in PV defining 
g. This amounts to showing the above 
argument can he formalized in PV, which I 
will not do here. It is not hard to check, 
however, that the above argument is feasibly 
constructive, so that if one believes the 
verifiability thesis (i.I),-the formaliza- 
tion is not necessary. 

7. PV as a Propositional Proof System 

Any formal system for number theory 
can be treated as a proof system for TAUT 
by regarding a proof of the formalization 
of tr([A],y) = 1 as a proof of A. In par- 
ticular, if ~ is a proof in PV of TR([A],y) 
= I, then J[ is a proof in PV of A. We can 
define a function pv in L which satisfies 
pv([~]) = [A] if ~ is a proof of A. Thus 
pv is a proof system for TAUT in the 
general sense defined in section 5. 

7.1 Theorem. The system pv is not p- 
verifiable. 

7.2 Lemma. ~PVI TR(PV(x),y)=I 

PROOF([0=I],z)=0 

The lemma says that the statement "if 
pv is p-verifiable, then PV is consistent" 
is provable in PVI. I prove the lemma by 
giving an informal argument for the impli- 
cation which is readily formalized in PVI, 
using the techniques of section 4. 
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By hypothesis, 

(i) tr(pv(m),n) = 1 for all m and n. 

It is not hard to see that 

(2) /PV TR([P&nP],y) = 0. 

Now suppose PV is inconsistent, so 
that 

(3 )  ~pv o : 1.  

Then from (2) and (3), 

(4) ~PV TR( [P&nP] ,y )  = 1. 

I f  H i s  a p r o o f  in  PV o f  ( 4 ) ,  t h e n  

(5) p v ( [ ~ ] )  = [P&~P].  

Combining (I) and (5), we have 

(6) tr([P&,P],n) = i, for all n. 

But (6) is absurd, since tr([P&,P],n) 
= 0. Hence our assumption that PV is 
inconsistent is untenable, so PV is 
consistent. 

From lemma 7.2, we see that if 
~PV TR(PV(x),y) = i, then ~PVI CON(PV), so 

~PV CON(PV), violating theorem 4.4. 

Therefore pv is not p-verifiable. 

8. Conclusions and Future Research 

(I) There should be alternative formali- 
zations of PV. These would make the 
verifiability thesis (i.i) more convincing 
and make it easier to formalize arguments 
in PV. One such formalization should be a 
programming approach, where proving f(x) = 
g(x) amounts to proving the equivalence of 
two programs. 

(2) If one believes that all feasibly 
constructive arguments can be formalized 
in PV, then it is worthwhile seeing which 
parts of mathematics can be so formalized. 
I think that a good part of elementary 
number theory (such as the unique factori- 
zation theorem) can be formalized in PV, 
although the results will have to be for- 
mulated carefully. For example, the 

e I e 2 e k . 
function Pl P2 "'" Pk is not in L and 

so it is not definable in PV. However, 
e I e 2 e k 

the relation n = Pl P2 "'" Pk i__ss an L- 

relation, and its characteristic function 
is definable in PV. As another example of 
formulation problems, it is hard to see at 
first how to formulate in PV the complete- 
nessJof a proof system for TAUT such as 
ER, since there is no function g in L 
taking an arbitrary tautology number [A] 
into an ER proof of A (unless P = NP). 

However, there is a function g in L which 
takes a code for a tautology A together 
with a list TI,...,T k of all truth assign- 

ments to A into an ER proof of A, and the 
equation ER(G([A~TI*...~Tk])) = [A] should 

be provable in PV. This formulation of 
completeness says that given a formula A, 
together with a verification that all truth 
assignments to A make A true, one can find 
an ER proof of A. This statement certainly 
incorporates the information that every 
tautology has an ER proof. 

(3) The question that lead me to the 
system PV in the first place is the question 
of whether extended resolution is a super 
proof system. I conjecture that it is not. 
A possible approach to showing this is by 
proving some sort of converse to the ER 
simulation theorem (6.8). Specifically, I 
conjecture that the propositional formulas 

Icap's (pv)[ n q(n) have'no ER proofs bounded in 

length by a polynomial in n, where q(n) is 
a bounding value for n relative to con(PV). 

(4) It would be interesting to prove that 
a Frege system with substitution (see [3]) 
is not p-verifiable. A likely approach is 
to show that such a system p-verifiably 
simulates pv, which would mean that if such 
a system were p-verifiable, so would be pv, 
violating theorem 7.1. 
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