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Abstract
T (@) is not VX5 (a)-conservative over T7(a), all i > 1.*

It is known that the depth d + 1 Frege system Fj;;1 has almost exponential
(exp(log(n)©M) vs. exp(n®1))) speed-up over the depth d system F, cf.[4].
The speed-up is realized on refutations of sets of depth d formulas (this can be
improved to a single depth d formula using results in bounded arithmetic proved
since then, cf. [1]). However, one would expect that the speed-up can occur
already for refutations of sets of clauses and it is an interesting open problem
to prove this or, at least, to find separating formulas of depth independent of d.

The exponential lower bound for Fy; from [4] is simpler and based on different
idea than later exponential lower bounds for PHP,, ([6, 8]). We think that a
solution of the problem may yield a new insight into proof complexity of constant
depth Frege systems and contribute to some other open problems about the
systems that seem, so far, resistant to modifications of methods of [6, 8].

While discussing that problem we have observed that known facts can be
combined to contribute towards a closely related problem of conservativity
among bounded arithmetic theories. Specifically, it is known ([1]) that the-
ory Tit!(a) is not VXY, | (a)-conservative over T4(c) (for i = 1 one can get a
better separation, cf. [2]) and again it is expected that the theories are not
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VX! (a)-conservative or even VIIS(a)-conservative. We prove almost this good
separation for theories without the smash function (77 is the theory T} without
smash function).

Theorem 0.1 T} (a) is not VX4 (a)-conservative over Ti(a), all i > 1.

We recall first four relevant facts and then give the proof of the theorem.
More background information can be found in [5].

By PHP(a, m) we denote the bounded ¥4 (a) formula expressing the ordinary
pigeonhole principle: « cannot be a graph of a function mapping injectively m
into m — 1. PHP,,, is the propositional translation of PHP (c, m).

Fact 0.2 ([6, 8]) PHP,, cannot be proved in the depth d Frege system Fy by a
proof of size less than exp(m®").

Fact 0.3 ([7]) Leti,k > 1 be fived. If T{() proves the formula
Yz, PHP(a, |z|*)

then all PHPq4 () have F;-proofs of size at most n® , where constant cj, depends
only on k.

This is the well known translation of bounded arithmetic proofs into proposi-
tional proofs. That Tj(«) proofs yield F; proofs can be found in [5] (in fact, a
bit better bound on the depth holds, cf. [4]).

Fact 0.4 ([7]) Let k > 1 be fized. Then theory Ti(a) proves the formula
Vz, PHP(a, |z|*)

This is proved in [7, Thm.7] for all Ag-relations o and we need to verify the
uniformity of the proof in oracle «. The proof is based on Ag-counting of Ay-sets
of polylogarithmic size. In particular, if A € Ap and 4,, ;== {m < n | (n,m) €
A} has size at most log(n)°®), and A, C {0,1}1°8(")° for some ¢ < 1, then
the counting function F' : n — |A4,| is Ag-definable. The construction uses
only Nepomnjascij’s theorem TimeSpace(n®™),n’) C Ag, § < 1, which is oracle
uniform. The assumption A4, C {0,1}1°8("° is in [7] removed via hashing but
we do not need to do that as even a C log(n)?*.

Fact 0.5 ([3]) If T1(c) is not VE5(a)-conservative over Tj(a) then T (a) is
not V4 (a)-conservative over Ti(a) as well, all i > 1.

This is the "no gap theorem” of [3, Thm.5.3]. The theorem is stated in [3] for
theories with the smash function (as those are the theories studied there) and
for theory Si™! () in place of Ti(a) (as that gives a stronger statement). The
smash function is used at one place only in the whole construction [3, 5.1-5.3]:



To have Si*!(c) in the theorem one uses that it is VX!, (a)- conservative over
Ti(c). That is not known for the theories without the smash function and so
we use only T7(«).

We can prove the theorem now. First observe

Claim: For any i > 1 there is k > 1 such that T{(a) does not prove the formula
Vz, PHP(a, |z|*)

Assume otherwise. Then, by Fact 0.3, PHP,q(,,)» has F-proofs of size at
most n. By Fact 0.2 it must hold for all n:

n > exp(log(n)*> )

which is impossible if we pick & > 5°.

By Fact 0.4 and by the claim T () is not VX4 (a)-conservative over T} (a),
and the theorem follows by Fact 0.5.
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