
MODEL THEORY AND GEOMETRY(TUTORIAL)ELISABETH BOUSCARENThis paper is based on a series of three letures that I gave during theLC'2000, in the ontext of the \tutorials" whih have now beome a traditionat the European meetings of the ASL. I have kept fairly lose to the atualformat and style of the talks.It is always diÆult to identify preisely the audiene suh a tutorial shouldaddress. A fair number of broad and ambitious surveys have already beenpublished on the subjet of the appliations of model theory to algebrai ge-ometry (see setion 4.4). I did not, during this tutorial, hoose to address thespeialists of the subjet. The audiene I had in mind onsisted of both young\inexperiened" researhers in model theory and more \mature" logiians fromother parts of logi. Rather than attempting one more broad survey, I tried topresent some of the main onerns of \geometrial model theory" by lookingat onrete examples and this is what I will try to do also in the present paper.We will disuss three algebrai examples, algebraially losed �elds, di�er-entially losed �elds and di�erene �elds (�elds with automorphisms). Thegeometri appliation we will take up as illustration is Hrushovski's approahto the Manin-Mumford onjeture. This is based on a �ne study of the modeltheory of di�erene �elds and is quite emblemati of the method. Perhaps thekey tehnial notion is that of \loal modularity"(or \one-basedness"), whiharises in a purely model theoreti setting. We will see that the Diophantineonjetures of the Manin-Mumford type an be rephrased in terms of this no-tion. Furthermore, as one thinks through the rephrasing proess, one realizesthe need for the introdution of auxiliary algebrai theories suh as the theoryof di�erene �elds.I would like to thank the anonymous referee, despite my temporary shokat the initial suggestion that the paper be totally rewritten and turned intoa survey of a ompletely di�erent type. Fortunately, he/she also provided along list of detailed omments and less draonian suggestions, in ase I did nothoose to follow this �rst drasti piee of advie. I have found these ommentsvery helpful and have followed most of these suggestions.x1. \Geometri" model theory. Until ten years ago, the most strikingappliations of model theory to algebra or number theory had typially beenMeeting 1000, Assoiation for Symboli Logi 1



2 ELISABETH BOUSCARENobtained using only the most basi tools of model theory, notably the ompat-ness theorem and the tehnique of quanti�er elimination, though the algebraiand analyti ingredients had been onsiderably deeper and more varied. Thisapplies for example to the work of Ax-Kohen-Ershov on valued �elds (1965),with later appliations by Denef to the omputation of p-adi integrals, to Ax'swork on the elementary theory of �nite �elds (1968), to work of Denef, van denDries and Maintyre on the p-adis (1970's and 1980's). It applies also to someof the more reent work on o-minimal strutures, suh as Wilkie's results onthe theory of the reals with exponentiation and it's subsequent generalizationto broad lasses of analyti funtions (see [10℄).In parallel pure model theory ourished at the same period, beginning withMorley's haraterization of unountably ategorial theories (1965) and thenwith Shelah's monumental work on lassi�ation theory. Appliations to al-gebra of these more sophistiated notions and results were at �rst rather few:let us mention the existene and uniqueness of the di�erential losure of a dif-ferential �eld of harateristi zero (Blum 1977), and the appliations to thetheory of modules (started by Garavaglia around 1978). It was soon apparentthat the tools of the theory of stability were partiularly well suited to themodel theoreti analysis of groups and �elds. Around 1980, Poizat introduedthe notion of generi of a stable group whih was diretly inspired by the orre-sponding notion for algebrai groups and whih beame one of the main toolsin the subjet.Then in the mid-eighties, under the inuene of Zilber �rst and then ofHrushovski, stability theory started evolving and fousing on the study of the�ne loal behavior of strutures of �nite dimension. This was the beginning ofwhat has been for some years known as \geometri stability" or more generally\geometri model theory".Stability theory �a la Shelah, developed a theory of abstrat independeneand dimension. Although this generalized the lassial algebrai notions of in-dependene (linear independene, algebrai independene), the methods usedwere often those of in�nite ombinatoris. One of the main aspets of the the-ory for example is the lassi�ation of strutures aording to whih in�niteombinatorial objets they interpret: orderings, trees...Geometri stability, as its name indiates, took muh of its inspiration fromgeometry, both in the sense of ombinatorial geometries (or matroids) andof algebrai geometry. This relationship turned out to go both ways: theabstrat notions developed in model theory were applied to the disiplinesof their origins in order to give new proofs or new results there. We willnot disuss here ombinatorial geometries nor any of the results that wereproved in this domain by applying model theoreti tools or ideas (results ofZilber on homogeneous �nite geometries for example [46℄ or results of Evansand Hrushovski about \algebrai matroids"[7℄, [8℄), but we will fous on therelationship with algebrai geometry.



MODEL THEORY AND GEOMETRY 3Geometri stability investigates the geometri properties of the abstrat in-dependene relation introdued by Shelah. One of the main fous points is thestudy of the algebrai strutures oded via this relation (groups, �elds). Thesequestions and the results obtained an be onsidered to be, at a higher levelof generality, in the diret line of two \lassial" and well-known theorems:{ the old theorem of geometry whih says that a Desarguesian projetivegeometry of dimension at least 3 is the projetive geometry over some divisionring;{ the theorem of Weil whih onstruts an algebrai group from a generiallyrational assoiative operation on an algebrai variety.One of the entral notions in the subjet is that of \one-basedness" or loalmodularity, whih was introdued into the subjet independently from severaldi�erent points of view. For sets of \dimension one", loal modularity orre-sponds exatly to the ases where the ombinatorial geometry assoiated tothe dependene relation is aÆne, projetive or trivial. The Zilber Trihotomypriniple states that if D is a set of dimension one, there are only three possi-bilities:{ either the geometry is trivial and there is no group de�nable in D (thegeometry assoiated to D is then the in�nite set with no struture, example(1) in setion 3.3);{ or the geometry is aÆne or projetive and every group de�nable in D isof linear type (see the preise de�nition in setion 2.2). The struture D thenbehaves very similarly to a vetor spae (example (2) in setion 3.3);{ or there is an algebraially losed �eld de�nable in D.This priniple was shown to be false in general by Hrushovski [12℄. But it holdswith extra assumptions, namely in the ontext of abstrat Zariski geometries,de�ned by Hrushovski and Zilber [20, 21℄. This trihotomy, or more preiselythis dihotomy in the ase of a group of dimension one plays an essential rolein the appliations to the Manin-Mumford type of onjetures.The general \abstrat" framework in whih this material was originally de-veloped, namely stability theory, was eventually seen as part of a broader one,\simpliity theory", whih has now beome a very ative aera in model the-ory. This is the point of view we will adopt for the presentation of the abstratnotions involved.This ends our introdutory sketh of geometri stability theory. In the nextsetion (2) we will disuss the theory of algebraially losed �elds, whih is themodel theoreti ontext for lassial algebrai geometry, and explain how theManin-Mumford type of onjetures �t within the model theoreti framework.In the third setion, we will give the abstrat de�nition of independene andstate the de�nition and main results about loal modularity. These notions willbe illustrated by four basi examples, presented at the end of the setion (3.3).In the fourth and last setion, we present two of the theories of �elds whih



4 ELISABETH BOUSCARENare used in Hrushovski's proofs of the algebrai geometry results and �nish in4.3 with a brief sketh of the atual strategy for the proof of Manin-Mumford.



MODEL THEORY AND GEOMETRY 5x2. Algebraially losed �elds and the Mordell-Lang onjeture.2.1. The theory of algebraially losed �elds. We onsider �elds Kas �rst-order strutures in the usual language of rings: LR = f0; 1;+;�; :g.The theory of algebraially losed �elds ACF is axiomatized by axioms whihsay:(i) K is a �eld(ii) K is algebraially losed, that is, every polynomial in one variable withoeÆients inK has a solution inK. This an be axiomatized by the followingsheme: for every n > 18y1; : : :8yn 9x xn + y1xn�1 + : : :+ yn = 0:Every �eld L embeds into an algebraially losed �eld; there is a smallestsuh algebraially losed �eld ontaining L, the algebrai losure of L, whihwe denote by Lalg and whih is unique up to isomorphism over L. The theoryACF is not omplete but it suÆes to speify the harateristi of the �eldto obtain a omplete theory. For p � 0, we let ACFp denote the (omplete)theory of algebraially losed �elds of harateristi p. In fat the theory ACFpis ategorial in every unountable ardinality, that is, has a unique model upto isomorphism in every unountable ardinality. Indeed if K;K 0 are twomodels of ACFp, then K and K 0 are isomorphi if and only if they have thesame transendene degree over the prime �eld of harateristi p.From now on, for the sake of simpli�ation, we onsider only the theoryACF0 of algebraially losed �elds of harateristi zero.2.1.1. Definable subsets. Let K be a model of ACF0 of in�nite tran-sendene degree over Q.In �rst-order logi, we study the subsets de�ned by �rst-order formulas. Westart with the basi or atomi subsets, de�ned using the basi operations andrelations in the language. In this partiular ontext, our basi sets will be:� the Zariski losed sets: E � Kn is Zariski losed if E is the zero-set of a �nite number of polynomials over K, that is, if E = f(a1; : : : ; an) 2Kn; f1(a1; : : : ; an) = : : : = fr(a1; : : : ; an) = 0g, for f1; : : : ; fr 2 K[X1; : : : ; Xn℄.The Zariski losed sets de�ne a Noetherian topology on SnKn, the lassialZariski topology.� The Zariski onstrutible sets: the �nite boolean ombinations (lo-sure under �nite intersetion, �nite union and omplement) of the Zariskilosed sets. They are exatly the sets de�nable by quanti�er-free formulas inthe language LR.� Quantifier elimination: the theory ACF0 has quanti�er elimination,whih means exatly that the projetion of a onstrutible set is also on-strutible and hene that the definable sets are exatly the on-strutible sets.Remark: The model theoreti notion of algebrai losure (see setion 3.2)oinides with the usual �eld notion of algebrai losure.



6 ELISABETH BOUSCARENThe theory ACF0 does not only eliminate quanti�ers but it also eliminatesimaginaries: for every de�nable equivalene relation E on Kn �Kn, thereis a de�nable map fE from Kn to some Km suh that for all a; b in KnfE(a) = fE(b) if and only if a and b are E-equivalent.2.1.2. Varieties and algebrai groups are definable. For thosewho already know their way around algebrai varieties and algebrai groups,the aim of this setion is to explain how these objets an be onsidered asde�nable objets in the theory of algebraially losed �elds. Those unfamiliarwith the subjet an onsider them diretly as de�nable subsets and de�nablegroups with some spei� properties and this should be suÆient for them tounderstand the statement of the Mordell-Lang onjeture in the next setion.For a more omplete and elaborate introdution to the model theoreti ap-proah to algebrai varieties see [35℄. For basi de�nitions and results in alge-brai geometry, see for example [25℄ and [26℄.An affine variety over K is a Zariski losed subset of Kn, for somen � 1, endowed with the indued Zariski topology from Kn. A quasi-affinevariety is a Zariski open subset of an aÆne variety, also endowed with theindued topology. Quasi-aÆne sets are speial ases of Zariski onstrutiblesets.Let V � Kn and W � Km be two quasi-aÆne varieties, a morphism fromV to W is a map f from V to W whih is loally rational (or regular): forevery a 2 V , there is an open subset U of V ontaining a and polynomialsP1; : : : ; Pm; Q1; : : : ; Qm in K[X ℄ suh that on U , the Qi's are non zero andf(x) = (P1=Q1(x); : : : ; Pm=Qm(x)):By the ompatness theorem, f is a de�nable map from V toW , i.e. the graphof f is de�nable: there are open subsets U1; : : : ; Uk of V suh that on eah Uif is given by a �xed tuple of rational frations.An isomorphism is a bijetive morphism whose inverse is also a morphism.So far, we an see diretly that we are dealing with de�nable sets and maps.It is a little more diÆult in the ase of an abstrat variety whih is obtainedby gluing together a �nite number of aÆne varieties.A variety V over K is a set V overed by a �nite number of subsetsV1; : : : ; Vk together with some maps f1; : : : ; fk, where eah fi is a bijetionbetween Vi and some aÆne variety Ui, suh that:(i) for eah i; j the set Uij := fi(Vi \ Vj) is open in Ui(ii) the map fij := fi Æ f�1j is an isomorphism from Uji into Uij .The Ui's are alled the aÆne harts of V .The Zariski topology on V is de�ned by delaring that S � V is open ifand only if for eah i, fi(S \ Vi) is open in Ui. A morphism from a varietyV = (Vi; fi; Ui) to a variety W = (Wj ; gj ; Zj) is a map h from V to W whihis a morphism when read in the harts, i.e. h is ontinuous and for any i; j,the map gj Æ h Æ f�1i restrited to (the quasi-aÆne variety) fi(h�1(Wj) \ Vi))is a morphism.



MODEL THEORY AND GEOMETRY 7There are di�erent possible ways to identify a variety V , given by a �xedsystem of aÆne harts, (Vi; fi; Ui), to a de�nable set. One way is to onsider Vto be the disjoint union of its aÆne harts U1; : : : ; Uk, modded out by the de-�nable equivalene relation whih identi�es Uij and Uji via the de�nable mapsfij . By elimination of imaginaries this will indeed be (de�nably isomorphito) a de�nable subset and the morphisms will be de�nable maps.Notation: If V is a variety de�ned over K, we denote by V (K) the set ofK-rational points of V , or equivalently, if V is seen as a de�nable set in Kn,the subset of tuples in Kn whih belong to the de�nable subset V .We need two more de�nitions: An algebrai group G is a variety Gequipped with a group multipliation : : G�G 7! G and an inverse �1 : G 7!G whih are morphisms for the variety strutures on G and G � G. So inpartiular, an algebrai group is a de�nable group, that is, a group whih liveson a de�nable set and suh that the group multipliation is a de�nable map.The additive and multipliative groups of the �eldK, (Kn;+) and ((K�)n; :)are aÆne algebrai groups (algebrai groups whih are isomorphi to aÆnevarieties). So are all the linear groups, i.e. all the losed subgroups of GLn(K).We will be interested in very di�erent groups, the ones whih have no aÆnesubgroup at all. An Abelian variety is an algebrai group G whih is aomplete irreduible variety, where omplete means that, for any variety Y ,the projetion map � : G � Y 7! Y is losed (i.e. takes losed sets to losedsets).The Abelian varieties of dimension one are exatly the ellipti urves, in fatthe fundamental examples of Abelian varieties are the Jaobians of urves.Over C the Abelian varieties are omplex tori, that is they are of the formC n=� where � is a disrete subgroup of rank 2n (but not every omplex torusis an Abelian variety).Abelian varieties are ommutative divisible groups. They have a ertainnumber of other rather strong properties of whih I will only mention one: inan Abelian variety G, for every n > 0, the number of torsion elements of ordern is �nite but the torsion subgroup of G, Tor(G) is in�nite and Zariski densein G.So we an onsider Abelian varieties over K as a spei� lass of ommu-tative divisible de�nable groups with a ertain number of additional \nie"properties.2.2. The Mordell-Lang onjeture. Reall that a ommutative group� is said to be of �nite rank if there is a �nitely generated subgroup �0 suhthat for every  2 �, for some integer n � 1, n 2 �0. In any ommutativegroup G, the group of torsion elements Tor(G) is of ourse of �nite rank.We now have all the neessary elements in order to give the statement ofthe Mordell-Lang onjeture for Abelian varieties over a �eld of harateristizero.



8 ELISABETH BOUSCARENThe Mordell-Lang onjeture. Let K be an algebraially losed �eldof harateristi zero, let A be an Abelian variety over K, X a losed irreduiblesubset of A and � a �nite rank subgroup of A(K). Then X\� is a �nite unionof translates of subgroups of �, that is, there are m � 1, H1; : : : ; Hm subgroupsof � and elements b1; : : : ; bm in �, suh thatX \ � = m[i=1 bi +Hi:There are two di�erent ases, \the number �eld ase" when K is the alge-brai losure of Q, that is when A is in fat de�ned over a number �eld (a�nite algebrai extension of Q), and \the funtion �eld ase" when A is notde�ned over Qalg .The Mordell onjeture follows from the ase when X is a urve de�nedover a number �eld k, A is the Jaobian of X and � is the (�nitely generated)group of k-rational points of A.The Manin-Mumford onjeture is the partiular ase when K is the alge-brai losure of Q and the group � is the group Tor(A). By taking Zariskilosures, one an give the equivalent statement:The Manin-Mumford onjeture. LetK be an algebraially losed �eldof harateristi zero, let A be an Abelian variety over Qalg and X a losedirreduible subset of A. Then for some integer m � 0,X \ Tor(A) = m[i=1 bi + Tor(Bi)where for eah i, Bi is an Abelian sub-variety of A (an irreduible losedsubgroup of A) and bi +Bi is ontained in X.The Manin-Mumford onjeture was �rst proved by Raynaud in 1983, andthe full Mordell-Lang onjeture was �nally proved by Faltings in 1993. Formore history and annotated bibliographies, one an look at [11℄ or [33℄.Hrushovski gave a new proof of the funtion �eld ase of the Mordell-Langonjeture in 1994 [15℄, inspired by a previous proof of Buium's [3℄. At thesame time he also gave the �rst full proof of the harateristi p > 0 versionof the Mordell-Lang onjeture. Then, in 1995, he gave a new proof of Manin-Mumford. One of the interesting aspets of these proofs is that they all �t ina ommon framework whih was developed a priori in model theory, as I hopewill beome apparent very soon. Another interesting aspet of his Manin-Mumford proof is that it yields rather easily some e�etive bounds for thenumber m of translates involved. In fat I believe that at the time, in 1995,this was the �rst proof giving e�etive bounds whih did not depend on the�eld of de�nition of the variety X .Now let us onsider again the statement of the Mordell-Lang onjeture andtry to understand its meaning.



MODEL THEORY AND GEOMETRY 9The �rst thing to remark is that it deals with two di�erent kinds of objets:we have on one hand A and X , whih are algebrai or from our point of view,de�nable objets, and the group � on the other hand, whih is not de�nable. Inalgebrai geometry, one has tools to deal with algebrai or geometri objets,like varieties; similarly in model theory we have tools to deal with de�nableobjets. So the �rst basi idea in the proof is going to be to replae the group� by a de�nable group.The seond remark is that the Mordell-Lang onjeture is usually onsideredas saying something about urves, or about losed subsets of A, but one analso onsider that it is in fat a statement about the group � and the topologyindued on it by the losed subsets of A. It says that this indued topology isdetermined by the subgroups and their translates. This is not the ase for thetopology on A itself: onsider for example a urve X of genus stritly biggerthan one, and A its Jaobian. It is lassial that a urve of genus stritlybigger than one annot be a group (or the oset of a group). In fat moregenerally, the topology on an algebrai group is never determined by its losedsubgroups (see setion 3.2)). In model theory we are familiar with this typeof questions about the \indued struture" on a subset. If M is a �rst-orderstruture and if E � Mn is a de�nable subset, the indued struture on E isthe new �rst-order struture onsisting of the set E, together with all relativelyde�nable subsets of M : (E;D \ Em;m � 1; D de�nable subset of Mnm).In the ase of de�nable groups the following notion is ruial. A de�nablegroup is of linear type if the indued struture on it is similar to a module,preisely:Definition. Let M be a �rst-order struture, and G �Mn be a de�nablegroup. We say that G is of linear type if for every integer m � 1 and everyde�nable D �Mnm, D\Gm is equal to a �nite boolean ombination of osetsof de�nable subgroups of Gm.The Mordell-Lang onjeture �ts into this framework. There is a formalequivalene between the Mordell-Lang onjeture and the following statement:The model theoreti version of Mordell-Lang. Let K be an alge-braially losed �eld of harateristi zero, let A be an Abelian variety over Kand � a �nite rank subgroup of A(K). Let LK = f+; :; S; fa : a 2 Kgg bethe usual language for rings with an extra unary prediate S (and also on-stants for eah element of K, for tehnial reasons). Then in the theory ofthe LK-struture (K;+; :;�; a)a2K, where the new prediate S is interpretedby the group �, the de�nable group � is of linear type.To see that the above statement implies Mordell-Lang, one only needs tohek that if X is a Zariski irreduible losed subset of A and if X \ � is a�nite boolean ombination of translates of subgroups of �, then in fat it is a�nite union of translates of subgroups. This is fairly straightforward, using theproperties of the Zariski topology on groups. For the other diretion, note �rst



10 ELISABETH BOUSCARENthat Mordell-Lang says something not only about A but also about Cartesianproduts of A: just onsider An whih is also an Abelian variety hene alsosatis�es the onlusion of Mordell-Lang. Then there remains only to pass frominformation about the intersetions with �n of all losed irreduible subsets ofAn to the intersetions with �n of all de�nable subsets of Kn, in the newlanguage.Model theory has developed abstrat riteria in terms of independene whihharaterize, among the de�nable groups, those whih are of linear type. Wewill see this in the next setion with the de�nitions of stable and one-based.But the problem is that, with this very brutal way of making the group �de�nable, by just adding a name for it, it is not easier to show that � is now oflinear type than it was to show the original statement. So the strategy is goingto be to add some new struture to the �eld K, in order to add new de�nablesubsets but in a way we an ontrol, for example in suh a way that yields agood dihotomy between groups of linear type and the others. This is whatwill be ahieved, for the group Tor(A), by adding a �eld automorphism, as wewill explain in the last part of this paper. We will not be able to atually makeTor(A) itself de�nable but will �nd a new de�nable subgroup of A, ontainingTor(A), and whih we will be able to show is of linear type - and this willsuÆe.This extension proess, in whih the original theory of algebraially losed�elds is replaed by an enrihed theory, is harateristi of the model theoretiapproah to suh questions. It should be noted that this was also the approahtaken by Buium in [3℄. As Hrushovski did after him, in the funtion �eld ase,Buium added a derivation, denoted Æ, and on�ned the group � within a Æ-losed subgroup of �nite rank. He then proeeded to use the tools of di�erentialalgebra and jetspaes in order to reah the desired result.In the ase of the model theoreti approah, there are two good reasons thatmake this extension neessary. This approah is based on the powerful abstrattools that were previously developed around the dihotomy linear type/nonlinear type for de�nable (or in�nitely de�nable) groups. In the original theoryof algebraially losed �elds, the smallest de�nable group ontaining Tor(A)is the Zariski losure of Tor(A) in A, that is A itself. Even more relevantis the fat, already mentioned above, that no in�nite group de�nable in analgebraially losed �eld (in the pure language of �elds) is of linear type.2.3. Independene and rank. We have just seen how to �t the Mordell-Lang onjeture into the model theoreti framework of the theory of alge-braially losed �elds. But algebraially losed �elds, together with vetorspaes, are also the main examples whih motivated many of the de�nitionsessential to stability theory. Before giving the atual abstrat de�nitions offorking, independene and rank, we will onsider them in this onrete ontext.We keep the same onventions and K is still an algebraially losed �eld ofharateristi zero and of in�nite transendene degree over the rationals.



MODEL THEORY AND GEOMETRY 11The abstrat notion of independene from model theory oinides with thelassial notion of algebrai independene. Reall that if K0 � K1 � K andK0 � K2 � K, we say that K1 and K2 are algebraially independent over K0if any �nite set of elements of K2 algebraially independent over K0 remainsindependent overK1. When K0 is algebraially losed, this is equivalent to K1andK2 being linearly disjoint overK0, i.e. suh that every �nite set of elementsof K2 whih is linearly independent overK0 remains linearly independent overK1.Definition. Let A;B;C be subsets of K; we say that A and B are in-dependent over C if the two �elds (Q(AC))alg ) and (Q(BC))alg ) are alge-braially independent over (Q(C))alg .There are many di�erent notions of rank that one uses in model theory.In the ase of algebraially losed �elds, they all oinide with the lassialalgebrai notion of dimension.Definition. Let E � Kn be a de�nable subset of K. Let K0 � K bean algebraially losed sub�eld ontaining the parameters neessary to de�neE. We de�ne the rank or dimension of E over K0, Dim(E=K0), to be themaximum of the transendene degrees of the �elds K0(e) over K0, when evaries in E.ForE � Kn, the dimension ofE is at most equal to n, whih is the dimensionof Kn itself.Note that for a �nite tuple e 2 Kn, if K0 � K1 � K, then e is independentfrom K1 over K0 if and only if the transendene degree of K1(e) over K1remains equal to the transendene degree of K0(e) over K0.The next two properties will tell us that the theory of algebraially losed�elds is stable and is not one-based:Properties: 1. Let K0 � K1 � K, be algebraially losed sub�elds of K.Suppose that a; b �nite tuples in K are suh that (K0(a))alg and (K0(b))algare K0-isomorphi and that K1 is linearly disjoint from eah of (K0(a))alg and(K0(b))alg over K0. It is then lassial algebra that (K1(a))alg and (K1(b))algare isomorphi over K1. This is the uniqueness of \independent extensions"over models.2. There exist K1;K2, algebraially losed sub�elds of K, whih are notindependent over their intersetion. Take a; b;  three transendental indepen-dent elements in K. We laim that Q(a; b)alg and Q(; a + b)alg are not alge-braially independent over L := Q(a; b)alg \Q(; a+b)alg . First we hek thatL = Qalg . Indeed, suppose there is some d 2 LnQalg ; then a+ b 2 Q(d; )alg .Let P (X;Y ) be an irreduible polynomial with oeÆients in Q(d)alg suh thatP (; a+ b) = 0. The polynomial P (X;Y ) remains irreduible over Q(a; b)alg ,hene up to multipliation by an element of Q(a; b)alg it must be equal to(Y � aX � b). But this implies that both a and b are in Q(d)alg whih is im-possible. It is now lear that Q(a; b)alg and Q(; a+b)alg are not algebraially



12 ELISABETH BOUSCARENindependent over Qalg as Q(a; b; ; a + b)alg = Q(a; b; )alg has transendenedegree three over Qalg and eah of Q(a; b) and Q(; a + b) has transendenedegree two.x3. Independene, simpliity, stability, modularity. We are �rst go-ing to de�ne what we mean when we talk about an abstrat relation of in-dependene. In model theory, or more preisely in stability or in geometrimodel theory, we often explain that we are working in strutures where onean de�ne a \good" notion of independene and then proeed diretly to lassi-al examples whih are partiular instanes of suh an abstrat independene,without atually giving the preise abstrat de�nition. I will give here a preiseaxiomati de�nition beause I �nd it quite remarkable that there is a fairly\simple" axiomati way to de�ne what a relation of independene should be.On the other hand one should be aware that this de�nition is not a goodpratial tool: in pratie when given a struture, if one wants to see if thereis a good relation of independene, one will use other de�nitions suh as theoriginal de�nition of \forking" of Shelah. One should also be aware that I willpresent here as de�nitions (of simpliity and of stability in partiular) prop-erties whih were in fat theorems established a posteriori from the originalde�nitions.In setion 3.3, I present four easy examples of independene relations whihillustrate the various de�nitions and properties given in setions 3.1 and 3.2.Conventions: We have a omplete theory T in a ountable �rst-order languageL. In order to avoid heavy notation, we suppose that we are working insidea monster model M of T : this means that all sets of parameters we onsider,usually denoted A;B;C : : : are subsets of M, of ardinality stritly smallerthan the ardinality of M, and all models of T , usually denoted M;N : : : areelementary sub-models of M, also of ardinality stritly smaller than the ar-dinality ofM. De�nable sets will be usually denoted D;E; F : : : , for example,E is a de�nable set inM with parameters from A, will mean that E �Mn forsome n and that E is the set of n-tuples in M satisfying a partiular formula(in n free variables) with parameters from the set A. We do not make anydi�erene in notation between elements and �nite tuples.Furthermore we suppose that this monster modelM is saturated, whih hasthe following onsequenes:- any in�nite onjuntion of formulas of ardinality stritly smaller than jMjwhih is �nitely onsistent is realized in M.- any two n-tuples a and b satisfy exatly the same formulas over some setC if and only if there is an automorphism ofM whih takes a to b and �xes Cpoint-wise. In that ase we write that a �C b and say that a and b have thesame type over C.One brutal way to do this is to suppose that the ardinality of M is aninaessible ardinal. But one should not worry about this, everything that is



MODEL THEORY AND GEOMETRY 13done using using these properties of M, ould be done otherwise, with muhmore umbersome notation, by onstantly hanging the model we are workingwith to an ad ho suÆiently big one.3.1. Abstrat independene. An independene relation in M is a rela-tion (or a olletion of triples) I(; B;A) where  ranges over �nite tuples ofM and A;B over subsets ofM, with A � B �M, whih satis�es the followingonditions:1. (invariane) I is invariant under automorphisms of M2. (loal harater) for any ; B there is some ountable A � B suh thatI(; B;A)3. (�nite harater) I(; B;A) if and only if for every �nite tuple b from B,I(; A [ fbg; A)4. (extension) for any ; A and B � A, there is some d suh that  � d overA and I(d;B;A)5. (symmetry) for any b; ; A I(; A [ fbg; A) if and only if I(b; A [ fg; A)also6. (transitivity) suppose that A � B � C, then I(e; C;B) and I(e;B;A) ifand only if I(e; C;A).These properties make it legitimate to say, for any B,C and A subsets ofM, that B and C are I-independent over A if for every �nite subset  of C,I(; B [ A;A).There is a �rst trivial example, where one puts in I all possible triples(; B;A), A � B . In a (monster) algebraially losed �eld K, if one setsI to be the set of triples (e;K2;K1) where K1 < K2 are algebraially losedsub�elds ofK and e andK2 are independent overK1 in the sense of setion 2.3,then I is an abstrat independene relation. We give four more examples insetion 3.3. In addition, we will see the two theories of enrihed �elds presentedin setion 4, di�erentially losed �elds of harateristi zero and algebraiallylosed �elds with automorphisms.The independene relations in these di�erent examples do not all behavesimilarly. For many years, the ruial dividing line was between stable theoriesand unstable theories. In the past few years, this line has shifted to inlude amuh larger lass of theories in whih the tools of \geometri stability" apply,the simple theories.Simple theories were originally introdued by Shelah in 1980, but it was onlyafter work of Hrushovski on spei� examples and then of Kim, and Kim andPillay, that the following property and its onsequenes was isolated:The independene theorem: We say that the independene relation Isatis�es the independene theorem (over models) if,For any model M , and any a; b; ; d �nite tuples suh that- a and b are I-independent over M ,-  and a (resp. d and b) are I-independent over M ,



14 ELISABETH BOUSCAREN-  � d over M ,there is some e suh that e and fa; bg are I-independent over M , e �  overM [ fag and e � d over M [ fbg.The independene theorem says that one an \amalgamate" types in anindependent way.Definition. We say that T is simple if there is a notion of independeneI in T whih satis�es the independene theorem over models.We an already remark (whih is rather reassuring) that the �rst trivialexample, that is the relation I onsisting of all triples, does not satisfy theindependene theorem (take a 6= b; a =  and b = d).The independene theorem is in fat a very strong ondition, as it fores theindependene relation to be uniquely determined:Proposition 3.1. If T is simple then the relation I for whih T satis�es theindependene theorem is uniquely determined (and is the notion of non-forkingas originally de�ned by S. Shelah).Definition. We say that T is stable if there is a notion of independene Iin T whih satis�es the following property (stationarity over models): forany model M of T , for any a; b �nite tuples suh that b � a over M , and forany C �M , if a and C (resp. b and C) are I-independent overM , then a � bover C.Stability means that, if M � C, there is (up to isomorphism) only one wayC and a an be independent over M .If T is stable, then T is simple: given a; b; ; d and M as in the indepen-dene theorem, by the extension property, we know that there is some 0 (resp.some d0) whih looks like  (resp. like d) over M [ a and is independent fromfa; bg over M . By stability, as  � d over M , then 0 � d0 over M [ fa; bg, sowe also have 0 � d over b.One of the main onsequenes of stability, whih is used in an essential wayfor example in the group on�gurations type of onstrutions, is that ertainsubsets turn out to be de�nable: given a modelM , a formula �(x; y) and sometuple b in M (the monster model), the set of tuples a in M suh that �(a; b)holds is a de�nable subset of M , de�nable with parameters from M .Examples (1) and (2) from setion 3.3 are stable, (3) is simple but not sta-ble and (4) is not simple. Algebraially losed �elds (ACFp) are stable, asshown by Property 1 in 2.3. Di�erentially losed �elds of harateristi zero(DCF0, setion 4.1) are stable, algebraially losed �elds with an automor-phism (ACFA, setion 4.2) are simple but not stable.Finally, we will need an essential notion whih was originally introdued byShelah in the ontext of stable theories, namely orthogonality:Definition. Let T be a simple theory,M �M, and E and F two de�nablesubsets inM. We say that E and F are orthogonal overM if for every �nite



MODEL THEORY AND GEOMETRY 15sequene of elements e from E, and for every �nite sequene of elements ffrom F , e and f are independent over M .3.2. Modularity. First we are going to need a loal version of stability;there may be stable de�nable subsets inside a model whose theory is not stable,as we will see in the next setion when looking at algebraially losed �eldswith an automorphism.From now on we suppose that T is a simple theory, hene that there is a(unique) notion of independene whih satis�es the independene theorem.We also suppose that T has elimination of imaginaries (this is relevant forthe de�nition we give here of modularity). Reall that T has elimination ofimaginaries if for every de�nable equivalene relation E onMn �Mn, thereis a de�nable map fE from Mn to some Mk suh that, for all a; b in Mn,fE(a) = fE(b) if and only if a and b are E-equivalent. We mentioned in theprevious setion that algebraially losed �elds had elimination of imaginaries.Definition. Let F � Mn be a de�nable subset with parameters from A.We say that F is stable if, for all model M � M, A � M , for all a; b tuplesfrom F and all C �M , if a � b overM , a and C are independent overM andb and C are independent over M , then a � b over M [ fCg.Keeping in mind that we wish to study the indued struture on some de-�nable subsets, we are also going to need:Definition. Let F � Mn be a de�nable subset with parameters from A.We say that F is stably embedded in M if for every k and every de�nablesubset D �Mnk, there is some de�nable D0 �Mnk, de�nable with parametersfrom F , suh that D \ F k = D0 \ F k. In a stable theory, any de�nable set isboth stable and stably embedded. In an unstable theory, a set an be stablyembedded without being stable (it will be the ase for example of the �xed�eld in a model of ACFA0, see setion 4.2.1) or stable without being stablyembedded.The model theoreti algebrai losure: Reall that we say that ais algebrai over A (a 2 al(A)) if there is a �nite set F , de�nable withparameters from A, suh that a 2 F ; equivalently if a has a �nite number ofonjugates by the automorphisms of M whih �x A point-wise.Definition. Let F be a de�nable subset of Mn. We say that F is loallymodular or one-based if for all C, all a; b �nite tuples of elements from F ,a and b are independent over al(C [ fag) \ al(C [ fbg). We say that thetheory T is one-based if the formula "x = x" (i.e. F =M) is one-based.The notion of modularity, in presene of stability, gives information of analgebrai type about the struture. We will not use this result here but inpartiular, any non trivial relation between three elements has to ome fromthe ation of an Abelian group. If we have a stable theory T and a de�nable



16 ELISABETH BOUSCARENgroup (G; :) �Mn, then there are a; b independent elements of G suh that a; band a:b are pairwise independent but not independent (a:b is not independentfrom fa; bg). I am not going to prove this here but it is easy to hek thatthis is true for example in algebraially losed �elds for both addition andmultipliation (take a; b two algebraially independent transendental elementsover Q). So the existene of three suh elements is neessary for the existeneof a stable de�nable group. Loal modularity implies that it is also a suÆientondition.Proposition ([2℄). Suppose that T is stable and one-based and that thereare a; b;  �nite tuples in M whih are pairwise independent but not indepen-dent, i.e. a and b;  are not independent. Then there is an in�nite Abeliangroup de�nable in M.In fat one an draw muh stronger onlusions from the existene of suha; b; ; the above is just a very weak version of the existing results. We will notbe using this \group onstrution" here anyways but in ontrast the followingproposition is fundamental for what we are going to do. It is interesting to notethat it was proved in 1985, hene long before the relation with Diophantinequestions of the Manin-Mumford or Mordell-Lang type was realized.Proposition ([17℄). Let G be a de�nable group in Mn whih is stable, sta-bly embedded and one-based. Then for any m and for any de�nable set inMnm, X \Gm is a �nite boolean ombination of osets of de�nable subgroupsof Gm.It follows that G has a de�nable Abelian subgroup of �nite index. In anytheory of modules, by the quanti�er elimination to positive primitive formu-las, it is true that any de�nable subset is a boolean ombination of osetsof (positive primitive) de�nable subgroups. What the above says is that ifG is one-based, then the struture indued by M on G redues to that of a\generalized module", that is a module with prediates for some subgroups.Property 2, in setion 2.3, shows that algebraially losed �elds are not one-based. The same argument will be used later in setion 4 to show that the twotheories of enrihed �elds we onsider there are not one-based either. In fat,more generally, one-basedness rules out the existene of a de�nable �eld. But,as we will see, some of the de�nable subsets inside an enrihed �eld an beone-based and this is at the heart of the appliations to algebrai geometry. Aswe have mentioned earlier, in the theory of (non enrihed) algebraially losed�elds, this annot happen, and no de�nable set an be one-based. This omesfrom the fat that this theory is \unidimensional", that is, any two de�nablesubsets are not orthogonal.The three stable examples from setion 3.3, are one-based. In order tohek this more easily, we will now introdue the notion of strongly minimalsets. This notion and its link to ombinatorial geometries was essential to thedevelopment of geometrial stability theory.



MODEL THEORY AND GEOMETRY 17Strongly minimal sets: As we have mentioned above, the use of imagi-nary elements in the de�nition of loal modularity is ruial. There is a ontextthough in whih one an avoid using imaginaries in the de�nition (or avoidassuming that the theory eliminates imaginaries) namely that of strongly min-imal sets.We say that a de�nable set D �Mn is strongly minimal if for any otherde�nable F �Mn, F\D is �nite orDn(F\D) is �nite. We say that the theoryT is strongly minimal if the formula "x = x" is strongly minimal. The theoryACF0 of algebraially losed �elds of harateristi 0 is strongly minimal: aZariski losed subset of K is the zero set of a �nite number of polynomialequations in one variable, and, by quanti�er elimination, any de�nable subsetK is a boolean ombination of Zariski losed sets. Our �rst three examplesbelow in 3.3 are also strongly minimal.In a strongly minimal theory, (model-theoreti) algebrai losure gives riseto the unique independene relation satisfying the independene theorem,whih is also stable: e and C are independent over B if e does not belongto al(C) n al(B). Moreover, onsidered as a losure operator, algebrai lo-sure in a strongly minimal set satis�es the exhange priniple and gives rise to apregeometry in the lassial sense (see for example [30℄). Then one-basedness,or loal modularity, orresponds to the loal modularity of the assoiated pre-geometry in the usual ombinatorial use of the word and an be expressed inthe following way:Let T be a strongly minimal theory (with or without elimination of imag-inaries). Then T is loally modular, or one-based, if and only if for all a; b�nite tuples of elements fromM suh that al(a)\al(b) 6= al(;), a and b areindependent over al(a) \ al(b).3.3. Some basi examples. We present here four basi examples. Inthese four examples, as well as in algebraially losed �elds, the relation ofindependene is given by the relation of (model theoreti) algebrai losure.This means that we de�ne A to be independent from B over C if and onlyif for no a 2 A, a 2 [al((A n fag) [ B [ C)℄ n [al((A n fag) [ C)℄. Thereare two important remarks to be made about this: �rst, this is a speial sit-uation, there are many examples where independene is not given diretly bythe algebrai losure, in partiular the two examples of �elds we will see inthe next setion. Seondly, it is not always the ase that (model theoreti)algebrai losure gives rise to an independene relation in our sense. In par-tiular the symmetry axiom is not always true (it orresponds to the fat thatmodel-theoreti algebrai losure, onsidered as a losure operator, satis�esthe exhange property, whih is not always the ase).(1) Equality. Let L be the language onsisting only of equality, and onsiderthe theory in L whih says that there are in�nitely many distint elements.This is a totally ategorial theory, that is, it has exatly one model (up toisomorphism) in every (in�nite) ardinality. It is learly strongly minimal.



18 ELISABETH BOUSCARENLet E be an in�nite set, hene a model. For A � B � E, and for �e 2 En,say that �e = (e1; : : : ; en) is independent from B over A if for every i, 1 � n,ei 2 B i� ei 2 A. This is an abstrat relation of independene whih isstable and one-based (use the haraterization of one-basedness in the ase ofstrongly minimal sets at the end of the preeding setion as this theory doesnot stritly speaking have elimination of imaginaries: one annot eliminate forexample the equivalene relation on n-tuples whih de�ne the same n elementset).Note that any set of pairwise independent elements is independent, hene(as one might expet) there is no de�nable group in any model.(2) Vetor spaes. Take a ountable division ring S (�nite or in�nite) andV an in�nite dimensional vetor spae over S. Consider V as an LS-struture,where LS is the language with addition, zero, and a unary funtion fs for eahelement s of S, interpreted as salar multipliation by s in V . The theoryof in�nite S-vetor spaes, whih we denote by TS, is omplete and admitsquanti�er elimination. If S is �nite, TS has one model up to isomorphismin every in�nite ardinality; if S is in�nite, TS has ountably many ountablemodels and one model in eah unountable ardinality. This theory is stronglyminimal. For C � B � V , and for A � V , say that A is independent from Bover C if A and B are linearly independent over C: for every a 2 A, a is inthe subspae spanned by B[ (Anfag) i� a is already in the subspae spannedby C [[(Anfag). Then again this is a stable one-based theory. The fat thatit is one-based orresponds exatly to the fat that vetor spaes satisfy thelassial dimension equality: for any �nitely generated subspaes X;Y of V ,dim(X) + dim(Y ) = dim(X [ Y )� dim(X \ Y ):There is a group of ourse in V and if v and w are independent, then theset fv; w; v +wg is an example of a set whih is pairwise independent but notindependent.(3) The random graph. Take the language L = fRg with one binary rela-tion R and onsider the theory of the random graph ER whih is axiomatizedby the following in�nite sheme of axioms:- R is symmetri irreexive- for every distint a1; : : : ; an and b1; : : : ; bm , there exists x suh that forall i; 1 � i � n, R(x; ai) and for all j; 1 � j � m, (not R(x; bj)).The theory of ER admits quanti�er elimination, has only one ountablemodel (but has 2� non isomorphi models of power � for every unountableardinal �). De�ne independene as in example (1) above, i.e. for A � B � E,and for �e 2 En, say that �e = (e1; : : : ; en) is independent from B over A if forevery i, 1 � n, ei 2 B i� ei 2 A.With this notion of independene, this theory is simple, as is easily heked.It follows that this is the unique possible way to obtain a relation of inde-pendene satisfying the independene theorem. But the theory is not stable;onsider two models M � N and two elements a and b suh that a is not in



MODEL THEORY AND GEOMETRY 19relation via R to any element of N and b is related to exatly one elementwhih is in N nM . Then a �M b, a and b are eah independent from N overM , but it is not the ase that a �N b.(4) Real losed �elds. Consider the theory of the reals R in the languageLord = f0; 1;+;�; :; <g of ordered rings. The theory of R, the theory ofreal losed �elds, admits quanti�er elimination and is o-minimal (i.e. everyde�nable subset of R is a �nite union of singletons and open intervals, allowingendpoints from R [ f1;�1g)). Take the relation of independene given byreal losure (= algebrai losure in the model theoreti sense):For A � B � E, and for �e 2 En, say that �e = (e1; : : : ; en) is independentfrom B over A if for every i, 1 � n, ei is in the real losure of the �eld generatedby B [ fe1; : : : ; ei�1g if and only if ei is already in the real losure of the �eldgenerated by A [ fe1; : : : ; ei�1g. This de�nes an independene relation whihdoes not satisfy the independene theorem: in a big non standard model takea; b; ; d; suh that R �  � a � b � d, (where x � y means that y isin�nitely bigger than x), everything being independent over R. No e ansatisfy both e �  over R [ fag and e � d over R [ fbg.The same kind of argument shows more generally that in the presene of ade�nable total ordering no independene relation an be simple.3.4. Some referenes. Simple theories were �rst introdued by Shelah in1980 in [42℄ as a lass stritly ontaining stable theories. It was not knownat the time if in simple theories, as de�ned there, forking was a symmetrirelation. The interest for this lass of theories was revived in the past few yearsfor two reasons. First, it was realized by Hrushovski that many very interestinglasses of algebrai strutures were simple and that in these strutures forkingseemed to have very good properties (the independene theorem, symmetryet). This was in partiular the ase of smoothly approximated strutures([16℄, for surveys see for example [6℄, [28℄ ), pseudo-�nite �elds (see [18℄) andof ourse a little later of algebraially losed �elds with an automorphismwhihwe desribe in the next setion. At around the same time, Kim proved thatin simple theories forking was symmetri [22℄. This hanged the perspetiveon simple theories and also on what having a good relation of independeneshould mean. The de�nitions of independene, simpliity et. whih I gavein the preeding setions ome from further work on the subjet by Kim andPillay [23℄. For a survey on simple theories with the main results and openquestions, there is [24℄. A book by F. Wagner has reently appeared on thissubjet [44℄Conerning geometri stability, the main referene is A. Pillay's book \Geo-metri Stability" ([34℄). More spei�ally on stable groups, see the books byB. Poizat(the original [37℄ or the reent english version [38℄) and by F. Wagner[43℄.



20 ELISABETH BOUSCARENx4. Fields with extra struture and the appliations. All the presentappliations of model theory to lassial Diophantine geometry questions �tinto a ommon general framework. Eah time, one uses a �eld with morede�nable sets than just the lassial onstrutible ones and where a good di-hotomy theorem is available whih enables one to reognize when a group isone-based. Three theories have been used so far:(1) separably losed �elds of harateristi p > 0 for the funtion �eld Mordell-Lang onjeture in harateristi p [15℄;(2) di�erentially losed �elds of harateristi zero for the funtion �eldMordell-Lang onjeture in harateristi 0 [15℄;(3) algebraially losed �elds with an automorphism, in harateristi zero forthe Manin-Mumford onjeture [13℄ and the Tate-Voloh onjeture [39℄, aswell as in harateristi p for the ase of Drinfeld modules [40℄.We will present the two theories of �elds used in the harateristi zero ases,di�erentially losed �elds and algebraially losed �elds with an automorphism,and then �nish with a short sketh showing how to apply the model theoretiresults in the ase of a �eld with an automorphism in order to obtain theManin-Mumford onjeture. At the end (setion 4.4) we give a seletion ofreferenes for surveys or introdutory papers to all of these appliations.Both the theories we are going to disuss are expansions of algebraiallylosed �elds by a unary funtion.4.1. Di�erentially losed �elds of harateristi zero. (see [32℄ or[1℄).The language is the usual language of rings LR, whih we already used foralgebraially losed �elds, together with a map Æ.The theory (DCF0) onsists of the following sheme of axioms (i) to (iii):(i) K is a �eld of harateristi zero(ii) (K; Æ) is a di�erential �eld, that is, Æ is a derivation :Æ : K 7! K, suh that, for all x; y in K, Æ(x + y) = Æ(x) + Æ(y) and Æ(xy) =xÆ(y) + yÆ(y).Before stating the third set of axioms, we need some de�nitions. Given adi�erential �eld (K; Æ), we de�ne the ringKÆ[X ℄ of di�erential polynomials (inone variable) over K to be the ring of polynomials in in�nitely many variablesK[X; Æ(X); Æ2(X); : : : ; Æn(X) : : : ℄.The order of the di�erential polynomial f(X) inKÆ[X ℄ is �1 if f 2 K and oth-erwise the largest n suh that Æn(X) ours in f(X) with non zero oeÆient.For example the di�erential polynomial equation Æ(X) = 0 whih de�nes theonstants for the derivations Æ has order 1.(iii) K is existentially losed. In this ontext, this an be axiomatized bysaying (an in�nite sheme): for any non-onstant di�erential polynomials f(X)and g(X), where the order of g(X) is stritly less than the order of f(X), thereis a z suh that f(z) = 0 and g(z) 6= 0.



MODEL THEORY AND GEOMETRY 21Basi Results: DCF0 is a omplete theory whih admits quanti�er elimi-nation and elimination of imaginaries. We all the models of DCF0 the di�eren-tially losed �elds. It is the model ompletion of the theory of di�erential �eldsof harateristi zero, so, in partiular, any di�erential �eld (K; Æ) embeds intoa di�erentially losed �eld (L; Æ). Di�erentially losed �elds are algebraiallylosed �elds and one an show that they have in�nite transendene degreeover Q.From now on (K; Æ) is a monster model of DCF0.4.1.1. Definable sets in DCF0. We saw earlier that in a \pure" alge-braially losed �eld, the basi de�nable sets are the zero sets of polynomials.Here we start with the zero sets of di�erential polynomials. For any n letKÆ[X1; ::; Xn℄ = K[X1; ::; Xn; Æ(X1); ::; Æ(Xn); Æ2(X1); ::; Æ2(Xn); ::℄:We say that F � Kn is a Æ-losed set if there are f1; : : : ; fr 2 KÆ[X1; : : : ; Xn℄suh that F = f(a1; : : : ; an) 2 Kn; f1(a1; : : : ; an) = : : : = fr(a1; : : : ; an) =0g. The ring KÆ[X1; : : : ; Xn℄ is of ourse not Noetherian but the Æ-losedsets (whih orrespond to radial di�erential ideals) form the losed sets of aNoetherian topology on K, the Æ-topology.We now onsider the Æ-onstrutible sets, that is, the �nite boolean ombi-nations of Æ-losed sets. The elimination of quanti�ers for DCF0 means thatthis lass is losed under projetion hene that all de�nable sets (we all themÆ-de�nable sets) are Æ-onstrutible.Examples: First, if D � Km is a set de�nable in the language LR, withoutusing Æ, as K is algebraially losed, D is onstrutible. This is a partiularase of a Æ-onstrutible set. Exatly as in the ase of algebraially losed�elds, if V is a variety de�ned over K, we an onsider V as a Æ-de�nable set.The �eld of onstants of K, Cons(K) = fa 2 K; Æ(x) = 0g is a Æ-losedset whih is not onstrutible; it is an algebraially losed sub�eld of K.The indued struture on Cons(K) is that of a pure algebraially losed�eld: if D is a Æ-de�nable subset of Kn, D \ Cons(K)n is a onstrutiblesubset (in the language of rings LR) of Cons(K)n, de�nable with parametersfrom Cons(K).We de�ne the Æ-algebrai losure of A, alÆ(A), to be equal to the alge-brai losure (in the usual sense of �elds) of the di�erential �eld generated byA, i.e. the algebrai losure of the �eld (A)Æ := Q(Æi (a); a 2 A; i � 0) (this isexatly the algebrai losure of A in the usual model theoreti sense).4.1.2. Independene and rank. If C � A;B � K, we say that A andB are Æ-independent over C if alÆ(A) and alÆ(B) are algebraially inde-pendent (or equivalently linearly disjoint) over alÆ(C). This Æ-independeneis a notion of independene in the sense of setion 3.1 and DCF0 is stable.One an hek the stability easily thanks to the quanti�er elimination: letK0 < K be a sub-model and let a and b be suh that a � b over K0. So inpartiular, the ideal I(a=K0) of the di�erential polynomials f in K0Æ [X ℄ van-ishing on a is equal to the orresponding ideal for b, I(b=K0). By de�nition ofÆ-independene, if K0 < K1 < K and if a (resp. b) and K1 are Æ-independent



22 ELISABETH BOUSCARENover K0, then the ideal I(a=K1) is generated by I(a=K0), and similarly for b,I(b=K1) is the ideal generated by I(b=K0). It follows that I(a=K1) = I(b=k1),and by quanti�er elimination this implies that a � b over K1.In fat the theory DCF0 is more than stable, it is what is alled !-stable,whih means that it is possible to assign a rank (taking possibly in�nite ordinalvalue) to eah de�nable set. We are only going to onsider de�nable sets with�nite rank and give the de�nition of one rank, whih will be suÆient for ourpurpose. The reader should be aware though that there are many di�erentnotions of rank available in model theory and that it is now known that notwo of them oinide everywhere in DCF0 (the Lasar rank, the Morley rank,the Æ-degree we are going to de�ne below...).If E is a di�erential sub�eld of K and if a is a �nite sequene of elementsof K, we de�ne the Æ-degree of a over E, dÆ(a=K), to be the transendenedegree of the �eld (E(a))Æ , the di�erential �eld generated by E and a, over E.If D � Kn is a Æ-de�nable set, we de�ne the Æ-degree of D to be the maximumof the Æ-degrees of the elements of D.The �eld Cons(K) has Æ-degree equal to one: for any di�erential sub�eldE, for any a element of Cons(K), the di�erential �eld generated by E and a isequal to the �eld E(a). Moreover, and this is fundamental for the appliationto Diophantine geometry, up to de�nable isomorphism, Cons(K) is the uniqueÆ-de�nable �eld with �nite Æ-degree .In ontrast, if V is any variety (of positive dimension) de�ned over K, asa Æ-de�nable set, V has in�nite Æ-degree; this is in partiular the ase of Kitself. When it is �nite the Æ-degree is a good notion of rank, in partiular, ifdÆ(a=E) is �nite, then a and B � E are Æ-independent over E if and only ifdÆ(a=E) = dÆ(a=B).4.1.3. Modularity and the dihotomy theorem. The results belowome from [19℄ and [15℄.The �eld (K; Æ) is not one-based, but neither is the de�nable sub�eldCons(K),by exatly the same argument as for the theory ACFA0: onsider a; b;  in the�eld Cons(K) whih are transendental over Q and algebraially independent.In order to be able to do this, we have to suppose that Cons(K) has big enoughtransendene degree over Q, but we an always suppose that by going to somebig model K 0 extending K. Then alÆ(a; b) = Q(a; b)alg (the �eld algebrailosure) and alÆ(; a+ b) = Q(; a+ b)alg interset in Qalg , but they are notalgebraially independent over Qalg .For our purpose, the interesting feature of di�erentially losed �elds of har-ateristi zero, is that really, the onstant �eld is the \unique" de�nable set ofÆ-degree one whih is not one-based. Let us make this statement more preise.Let D be a de�nable set, we have de�ned in 3.1 the notion of orthogonal-ity. In this partiular ontext, D and Cons(K) are orthogonal if, for every�nite sequene of elements d from D, for every �nite sequene of elements bfrom Cons(K), and for every sub�eld E = alÆ(E), alÆ(Ea) and alÆ(Eb) arealgebraially independent over E.



MODEL THEORY AND GEOMETRY 23Reall that a Æ-de�nable set D � Kn is strongly minimal if, for any Æ-de�nable F � Kn, F \D is �nite or o�nite in D. A strongly minimal set has�nite Æ-degree. The onstant �eld is strongly minimal.The dihotomy theorem for DCF0. Let D � Kn be a strongly mini-mal Æ-de�nable subset. Then D is one-based if and only if D and the �eld ofonstants, Cons(K), are orthogonal.Non-orthogonality between two strongly minimal sets is a very strong rela-tion. In partiular, if D is a Æ-de�nable group whih is non-orthogonal to the�eld Cons(K), then D will be Æ-de�nably isomorphi to G(Cons(K)), whereG is an algebrai group de�ned over the �eld Con(K). The dihotomy theoremthen means that the only strongly minimal groups whih are not one-basedare exatly the ones arising from algebrai groups over the onstants.Hrushovski's proof of the dihotomy theorem in [15℄ uses the fat thatstrongly minimal sets in DCF0 are abstrat Zariski geometries in the senseof Hrushovski-Zilber ([21℄). One an then apply their abstrat dihotomy the-orem whih says that if a strongly minimal set D is a non loally modularZariski geometry, there is a strongly minimal �eld de�nable in D. Then oneuses the fat that the �eld Cons(K) is, up to de�nable isomorphism, theunique strongly minimal �eld Æ-de�nable in K. For introdutory surveys toZariski geometries, see [20℄ or [31℄. A diret proof of the dihotomy theoremfor DCF0 was given very reently (two years after this tutorial atually tookplae) in [36℄.4.2. Algebraially losed �elds with an automorphism. An exposi-tion of the basi properties (axiomatizability, deidability et.) of ACFA, anbe found in Maintyre's introdutory paper [27℄. The in-depth model theo-reti analysis was arried out �rst by Chatzidakis and Hrushovski in [4℄, andontinued in [5℄.The way we are going to present this theory will make it seem very similarto the previous one, di�erentially losed �elds. But although the results arevery similar, the atual proofs need not be. One should note though that againin [36℄, a new proof of the dihotomy theorem for ACFA in harateristi zerois given, along similar lines as the one for the di�erential ase.A di�erene �eld is a �eld K together with an automorphism �, whihwe onsider as an LR [ f�g-struture.The lass of existentially losed models for di�erene �elds turns out to beaxiomatizable (this fat needs a proof of ourse). Here we restrit ourselves tothe ase of harateristi zero.The axioms (ACFA0) say that:(i) K is a an algebraially losed �eld of harateristi zero(ii) (K;�) is a di�erene �eld, i.e. � is an automorphism of K.(iii)K is existentially losed : every di�erene equation whih has a solutionin some extension of K has a solution in K.



24 ELISABETH BOUSCARENACFA0 is not a omplete theory and in order to make it omplete oneneeds to desribe the ation of the automorphism � on the algebrai losureof Q. This theory does not have elimination of quanti�ers, but it does haveelimination of imaginaries. Every di�erene �eld of harateristi zero embedsinto a model of ACFA0.Let us mention a striking reent result about ACFA [14℄ answering the longopen question: what is the theory of a nonstandard Frobenius automorphismor more preisely, what is the theory of an ultraprodut of the di�erene �elds(Falgp ; � : x 7! xp) for all p prime numbers ? The answer is that ACFA isexatly the theory of all nonprinipal ultraproduts of (Falgp ; �q : x 7! xq),when q varies on the set of powers of prime numbers.From now on (K;�) is a monster model of ACFA0.4.2.1. Definable sets in ACFA0. Here the basi sets are the zero setsof di�erene polynomials: for any n letK� [X1; ::; Xn℄ = K[X1; ::; Xn; �(X1); ::; �(Xn); �2(X1); ::; �2(Xn); ::℄:We say that F � Kn is a �-losed set if there are f1; : : : ; fr 2 K�[X1; : : : ; Xn℄suh that F = f(a1; : : : ; an) 2 Kn; f1(a1; : : : ; an) = : : : = fr(a1; : : : ; an) =0g. The �-losed sets form the losed sets of a Noetherian topology on K, the�-topology. Consider now the �-onstrutible sets. It is not true that every�-de�nable set is �-onstrutible (the theory does not eliminate quanti�ers).Here is one example of a �-de�nable set whih is not �-onstrutible: pik ain some extension of K, and extend � to the �eld K(a) by setting �(a) = a.In order to extend � to the algebrai losure of K(a), there are hoies tobe made, in partiular one an either hoose to have � �x point-wise the twosquare roots of a , or to have � exhange them. This means that the setfx;�(x) = x ^ 9t (t2 = x ^ �(t) 6= t)g is not �-onstrutible.The lass of �-de�nable sets is the losure under �nite boolean operationsand projetions of the �-losed sets.The �eld Fix(K) = fa 2 K;�(a) = ag, the �xed �eld of � in K, is �-losed. It is not algebraially losed but it is pseudo-�nite, i.e. it is an in�nitemodel of the theory of all �nite �elds. It is also a \pure" �eld : if D is any�-de�nable subset of Kn, D \ Fix(K)n is a de�nable subset (in the languageLR) of Fix(K)n de�nable with parameters from Fix(K).We de�ne the �-algebrai losure of A, al�(A), to be equal to the alge-brai losure (in the usual sense of �elds) of the di�erene �eld generated byA, i.e. the algebrai losure of the �eld (A)� := Q(�i (a); a 2 A; i 2 Z).4.2.2. Independene, stability and modularity. If C � A � K andC � B � K, we say that A and B are �-independent over C if al�(A) andal�(B) are algebraially independent (or equivalently linearly disjoint) overal�(C). We de�ne the �-degree of a de�nable set exatly like the Æ-degree;if D � Kn is a �-de�nable set, the �-degree of D is the maximum of thetransendene degrees of the di�erene �elds generated by elements of D. The�xed �eld of �, Fix(K) has �-degree one.



MODEL THEORY AND GEOMETRY 25This gives a notion of independene whih satis�es the independene theo-rem over models, whih we will not prove here. Hene the theory is simple.But it is not stable, beause the �eld Fix(K) is not stable: one an �ndE = al�(E) � K and a; b;  2 Fix(K) n E, suh that a and  on the onehand, b and  on the other hand, are �-independent over E, but suh thatpa�  2 Fix(K) and pb�  =2 Fix(K) (note that this is the same examplewhih shows that quanti�er elimination does not hold). This ontradits theuniqueness of independent extensions.Exatly as in the ase of the �eld of onstants in DCF0, the �eld Fix(K) isnot one-based and there is also a very powerful dihotomy theorem.The dihotomy theorem for ACFA0. Let D � Kn be a �-de�nablesubset of �nite �-degree. Then D is stable, stably embedded and one-based ifand only if D and the �xed �eld, Fix(K), are orthogonal.4.3. Appliation to the Manin-Mumford onjeture. Reall the state-ment of the onjeture from setion 2.2. Let A be an Abelian variety de�nedover Qalg and let X be a sub-variety of A; then Tor(A) \X is a �nite unionof translates of subgroups of Tor(A).We have explained already that this is the same as showing that Tor(A) isof linear type (setion 2.2), and hene, by setion 3.2 \stable, stably embeddedand one-based", exept that Tor(A) is not de�nable in the algebraially losed�eld K. Indeed, as we remarked earlier, there are no de�nable one-basedsubsets in a \pure" algebraially losed �eld , so to make this approah workone must put additional struture on the �eld.So the strategy is going to be: go to some bigger algebraially losed �eld Land add new struture on L, hene getting new de�nable sets, in suh a waythat there is some new de�nable subgroup of A, denoted H , whih ontainsTor(A), and whih we an prove is stable, stably embedded and one-based.It is not immediately obvious that this is enough: this would say thatTor(A) \ X is ontained in H \ X , whih itself is a boolean ombinationof translates of subgroups of H (de�nable in the bigger �eld with the extrastruture). But it is then fairly straightforward to hek, using the fat thatX is Zariski losed, that this does imply that X \ Tor(A) is a �nite union oftranslates of subgroups of Tor(A).Let k < Qalg be a �nite extension of Q suh that A is de�ned over k.We want to �nd an algebraially losed �eld L and an automorphism � of Lsuh that (L; �) is a model of ACFA0 and suh that there is some �-de�nablesubgroup of A(L) (the group of L-rational points of the Abelian variety A)ontaining Tor(A) and whih is stable, stably embedded and one-based.What kind of group H are we looking for in (L; �)? How an we be surethat this H will indeed be stable, stably embedded and one-based, i.e. bythe dihotomy theorem, will be orthogonal to Fix(�)? Let us onsider groupsde�ned by rather simple di�erene equations. FirstH1 = fa 2 A(L);�(a)�a =0g. This is A(Fix(�)), so of ourse H1 is not orthogonal to Fix(�) and hene



26 ELISABETH BOUSCARENis not stable one-based. Similarly if Hn = fa 2 A(L);�n(a) � a = 0g, this isA(Fix(�n)). The �eld Fix(�n) is a �nite extension of Fix(�) and it followsthat there is a �-de�nable map (with �nite �bers) from (Fix(�))r (for somer > 0) onto Hn whih is hene also not orthogonal to Fix(�).Now these groups are partiular ases of groups de�ned by polynomial equa-tions. Let P (T ) = mnTn + : : : +m1T +m0, where the mi's are in Z. Thende�ne HP = fa 2 A(L);mn�n(a) + : : :+m1�(a) +m0a = 0gwhere + denotes addition in A, and for a 2 A(L) and m 2 N, ma denotes asusual a+ :::+ a, m times.Then HP is a �-de�nable subgroup of A(L) of �nite �-degree. If, for somen � 1, the polynomial P [T ℄ is not prime to Xn�1, i.e. if P [T ℄ has a root whihis also a root of unity, then HP is ontained in Ker(�n� 1) and the argumentgiven just above implies that HP is not stable one-based. The remarkableresult at the heart of Hrushovski's proof of the Manin-Mumford onjeture fornumber �elds is that the onverse is true:Proposition 4.1. The group HP is orthogonal to the �eld Fix(�) if andonly if P [T ℄ has no root whih is also a root of unity.The proof of this result goes through an analysis of the ring of �-de�nableendomorphisms of A(L) when A is a simple Abelian variety and then variousredutions to minimal ases, using in partiular the following fat: if 0 7!A1 7! A2 7! A3 7! 0 is an exat sequene of �-de�nable homomorphisms,where the Ai's are �-de�nable groups, then A2 is one-based if and only if bothA1 and A3 are one-based.So from the dihotomy theorem for ACFA0 one now knows that if P [T ℄ hasno root whih is also a root of unity, then HP is stable, stably embedded andone-based.Now in order to apply this, one needs to show that there is an automorphism� of Qalg , �xing the number �eld k, and a polynomial P [T ℄ with integeroeÆients suh that no root of P [T ℄ is a root of unity and HP ontainsTor(A). This part of the proof involves no model theory and onsists of twosteps. First, one �xes a prime p (of good redution for A) and one onsidersonly the p0-torsion of A, denoted Torp0(A), that is, the torsion elements oforder prime p. By applying a lassial result of Weil ([45℄) one gets suhan automorphism �1 and a polynomial P1(T ) with HP1 ontaining Torp0(A).Then using two di�erent primes p and q, and a result of Serre ([41℄, pages 33-34and 56-59), one gets the required automorphism working for the full torsionsubgroup.Fix suh an automorphism �, and extend the di�erene �eld (Qalg ; �) toa model (L; �) of ACFA0. In (L; �), the group HP is of linear type, heneX\HP is a �nite boolean ombination of translates of (�-de�nable) subgroupsof HP . And we an onlude that X \ Tor(A) is a �nite union of translatesof subgroups of Tor(A).



MODEL THEORY AND GEOMETRY 27An important remark: this sketh of the proof is orret but does not yielde�etive bounds for the number of translates involved in the representation ofX\Tor(A) as a �nite union. In fat Hrushovski shows that one an bound thenumber of translates involved by a funtion of the degree of the polynomialP [T ℄ and of the size of its oeÆients. But if one is not areful, one loosestrak of any e�etive bounds on the degree and oeÆients of the polynomialP [T ℄ during the passage from the p0-torsion to the full torsion via the Serreresult.So Hrushovski in fat, in order to deal with the full torsion group, givesa more ompliated proof, whih uses model theory and yields sharper infor-mation. What I have desribed above is exatly his proof for the ase of theelements of p0-torsion , Tor0p(A). In that ase, the lassial result of Weil men-tioned above, (a result about the harateristi polynomial of the Frobeniusin an Abelian variety de�ned over Fp ), provides diretly a polynomial P (T )suh that its degree and the size of its oeÆients are bounded by a funtionof p, and of invariants of A (dimension, degree). In order to deal with the fulltorsion and keep e�etive bounds, one needs to work simultaneously with twodi�erent automorphisms, � and � , hene two distint models of ACFA0, andtwo di�erent polynomials, P [T ℄ and Q[T ℄, suh that in (Qalg ; �), HP ontainsthe torsion elements of order prime to p, and in (Qalg ; �), HQ ontains thetorsion elements of order a power of p.One last remark: in fat Hrushovski's result in [13℄ is more general than theone I quoted. He proves the result for all ommutative algebrai groups, andnot only Abelian varieties.4.4. A seletion of referenes on the model theory of �elds and theappliations to Algebrai Geometry. Some general surveys on geometrimodel theory and appliations:� A. Pillay, Model Theory, Di�erential Algebra and Number Theory, inProeedings of the ICM 94, Zurih, Birkhauser 1996.� A. Pillay, Model Theory and Diophantine geometry, Bull. Am. Math.So. 34 (1997), 405-422.� D. Marker, Strongly minimal sets and geometries, Tutorial, LC '95, in[29℄.� E. Hrushovski, Geometri model theory, in Proeedings of the ICM 98,Berlin, Vol. I,, Do. Math., 281{302, 1998.� A. Pillay, Geometri Model Theory, Tutorial, LC '99, preprint.� T. Sanlon, Diophantine geometry from model theory, o Bulletin of Sym-boli Logi 7 (2001), 37{57.For surveys on algebraially losed �elds with an automorphism (ACFA)and the Manin-Mumford onjeture or on the Mordell-Lang onjeture:� J.B. Goode (B. Poizat) H.L.M. (Hrushovski-Lang-Mordell), S�eminaireBourbaki, expos�e 811, F�evrier 1996.



28 ELISABETH BOUSCAREN� Z. Chatzidakis A survey on the model theory of di�erene �elds, in ModelTheory, Algebra and Geometry, D. Haskell and C. Steinhorn ed., MSRIPubliations 2000, 65-96 ([10℄).� E. Bousaren Th�eorie des Mod�eles et Conjeture de Manin-Mumford[d'apr�es E. Hrushovski℄, S�eminaire Bourbaki, Expos�e 870, Mars 2000.Books:- One an �nd an introdution to the model theory of �elds with speialemphasis on di�erentially losed �elds of harateristi zero and a survey onseparably losed �elds in Model theory of �elds, D. Marker, M. Messmer andA. Pillay, Leture Notes in Logi 5, Springer 1996 ([32℄). (The Leture Notesin Logi are now published by the ASL; a new edition of this book is planned).- For a reasonably self-ontained introdution to Hrushovski's proof of theMordell-Lang onjeture, based on the letures given at a summershool heldin Manhester in 1994, see Model Theory and Algebrai Geometry, LetureNotes in Mathematis 1696, E. Bousaren Ed., Springer, 1998 ([1℄).- In Algebrai Model Theory, B. Hart, A. Lahlan and M. Valeriote eds.,NATO ASI Series, Kluwer Aademi Publishers 1997 ([9℄), one an �nd intro-dutory letures with proofs (by Z. Chatzidakis and A. Pillay) to Hrushovski'sproof of the Manin-Mumford Conjeture .[9℄- InModel Theory, Algebra and Geometry, D. Haskell, A. Pillay and C. Stein-horn Eds., MSRI Publiations 2000, one an �nd the proeedings of the intro-dutory workshop of the MSRI semester on \Model theory of �elds" (January98 - June 98) ([10℄). REFERENCES[1℄ E. Bousaren (editor), Model theory and algebrai geometry, Leture Notes in Math-ematis, no. 1696, Springer, 1998.[2℄ E. Bousaren and E. Hrushovski, One-based theories, The Journal of SymboliLogi, vol. 59 (1994), pp. 579{595.[3℄ A. Buium, Intersetions in jet spaes and a onjeture of Serge Lang, Annals ofMathematis, vol. 136 (1992), pp. 583{593.[4℄ Z. Chatzidakis and E. Hrushovski, The model theory of di�erene �elds, Transa-tions of the Amerian Mathematial Soiety, vol. 351 (1999), pp. 2997{3071.[5℄ Z. Chatzidakis, E. Hrushovski, and K. Peterzil, The model theory of di�erene�elds II: periodi ideals and the trihotomy in all harateristis, Proeedings of the Lon-don Mathematial Soiety, vol. 85 (2002), pp. 257{311.[6℄ G. Cherlin, Large �nite strutures with few type, In Hart et al. [9℄.[7℄ D. Evans and E. Hrushovski, Projetive planes in algebraially losed �elds, Pro.London Math. So., vol. 62 (1991), pp. 1{24.[8℄ , The automorphisms group of the ombinatorial geometry of an algebraiallylosed �eld, J. London Math. So., vol. 52 (1995), pp. 209{225.[9℄ B. Hart, A. Lahlan, and M. Valeriote (editors), Algebrai model theory, NATO ASISeries, Kluwer Aademi Publishers, 1997.[10℄ D. Haskell, A. Pillay, and C. Steinhorn (editors),Model theory, algebra and geometry,MSRI Publiations, 2000.
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