
Interpolation and approximate semanti derivations

�

Jan Kraj���ek

y

Mathematial Institute

z

Aademy of Sienes, Prague

Abstrat

We show that the feasible interpolation property is robust for some

proof systems but not for others.

Let A

1

; : : : ; A

m

� f0; 1g

n

. A semanti derivation, de�ned in [6℄, of

B � f0; 1g

n

from A

i

's is a sequene C

1

; : : : ; C

k

of subsets of f0; 1g

n

suh

that C

k

= B and eah C

j

is either one of A

i

's or derived from some earlier

C

j

1

; C

j

2

, j

1

; j

2

< j by the semanti rule: E;F infer G i� G � E \ F .

Of ourse, B an be derived from A

i

's i� B �

T

i

A

i

, in whih ase m�1

steps suÆe. However, if we add a ondition that all C

j

's are from some

lass X � exp(f0; 1g

n

) (taitly assuming that A

i

's and B are in X ) then

this trivial derivation may not be possible anymore. We all derivations

restrited to X X -derivations.

Example 1: Let R � exp(f0; 1g

n

) be the lass of sets de�nable by a lause.

That is, every set in R is de�nable by a disjuntion of literals. The R-

derivations are a semanti version of resolution.

Example 2: Let CP

M

� exp(f0; 1g

n

) be the lass of sets de�nable by an

integer linear inequality with all oeÆients bounded in absolute value by

�
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M . This is a semanti version of utting planes proof system with bounded

oeÆients.

1

Example 3: Let PC

d

� exp(f0; 1g

n

) be the lass of sets de�nable by a

polynomial of degree at most d over some �xed �nite prime �eld F

p

. This

is a semanti version of polynomial alulus.

The reason for introdution of semanti derivations in [6℄ was that for

some proof systems (those suspetable to an approah to feasible interpo-

lation via ommuniation omplexity) feasible interpolation an be derived

for the semanti version of the system (we use this term informally only).

In partiular, both R-derivations and CP

M

-derivations admit monotone fea-

sible interpolation (and hene also exponential lower bounds to the size of

proofs an be proved) and this an be extended to their various general-

izations, f. [7, 6, 8℄. Feasible interpolation, albeit not monotone, holds

also for PC

d

. This is beause one inferene using the semanti rule for PC

d

an be simulated in polynomial alulus of degree at most 2(p � 1)d (f.

[3, Thm.2.6℄), and polynomial alulus admits feasible interpolation by [4℄.

However, the feasible interpolation for polynomial alulus does not ome

from properties of sets de�nable by low degree polynomials (suh as the low

ommuniation omplexity in the sense of De�nition 2) but from a global

property of the proof system; namely, the set of polynomials derivable in a

�xed degree forms a vetor spae with partiular properties. We shall show

that the feasible interpolation is a robust property for X -derivations, if it

is proved via ommuniation omplexity method of [6℄. The quali�ation

robust is formalized by the following notion.

De�nition 1 Let � � 0 be arbitrary and let X � exp(f0; 1g

n

) be a lass

of sets. An �-approximate X -derivation is a semanti derivation using sets

C � f0; 1g

n

suh that there is D 2 X for whih jC4Dj � �2

n

(C4D is the

symmetri di�erene).

Let U , V be two NP sets of x's from f0; 1g

n

. We assume that U and V

are de�ned by 3CNF formulas � and � in variables x

1

; : : : ; x

n

and y

1

; : : : ; y

s

,

and x

1

; : : : ; x

n

and z

1

; : : : ; z

t

respetively. That is, x 2 U i� there is y suh

that (x; y) satis�es �, and similarly for V , (x; z) and �.

To formulate the theorem and its proof we need to reall a notion from

[6℄ related to this situation.

1

The restrition to bounded oeÆients is just for onveniene, allowing as to talk

only about boolean ommuniation omplexity later on. The general ase an be treated

similarly using the real ommuniation omplexity, f. [8℄.
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De�nition 2 ([6, Def.4.3℄) Let A � f0; 1g

n+s+t

, and let u; v 2 f0; 1g

n

,

q

u

2 f0; 1g

s

and r

v

2 f0; 1g

t

. Consider three tasks:

1. Deide whether (u; q

u

; r

v

) 2 A.

2. Deide whether (v; q

u

; r

v

) 2 A.

3. If (u; q

u

; r

v

) 2 A 6� (v; q

u

; r

v

) 2 A �nd i � n suh that u

i

6= v

i

.

These tasks an be solved by two players, one knowing u; q

u

and the other one

knowing v; r

v

. The ommuniation omplexity of A, CC(A), is the minimal

number of bits they need to exhange in the worst ase in solving any of

these three tasks.

Consider one task:

4. If (u; q

u

; r

v

) 2 A and (v; q

u

; r

v

) =2 A either �nd i � n suh that u

i

=

1 ^ v

i

= 0, or learn that there is some u

0

satisfying u

0

� u (i.e. every

bit satis�es u

0

i

� u

i

) and (u

0

; q

u

; r

v

) =2 A.

(Note that the two players are not supposed to �nd suh u

0

, and that the two

ases in 4. are not neessarily exlusive.)

The monotone ommuniation omplexity of A w.r.t. U , MCC

U

(A), is

the minimal t � CC(A) suh that the task 4. an be solved ommuniating

at most t bits in the worst ase.

Now we an give an interpolation theorem for approximate derivations.

If the two NP sets U and V are disjoint, a proof of the disjointness is a

proof of simultaneous unsatis�ability of the two 3CNFs de�ning the sets. In

partiular, a semanti derivation of U \ V = ; is the derivation of ; from

the sets de�ned by the 3-lauses of the two 3CNFs.

Theorem 3 Let � � 0 be arbitrary and let X � exp(f0; 1g

n+s+t

) be a lass

of sets. Assume that U and V are two disjoint NP subsets of f0; 1g

n

, and

that there is an �-approximate X -derivation of U \ V = ; with k steps.

1. Assume that CC(C) � t for any C 2 X . Then there exists a boolean

iruit D of size at most (k + 2n)2

O(t)

, and a set W � f0; 1g

n

suh

that jW j � �k2

n

and suh that D separates U nW and V nW .

2. Assume that U satis�es the following monotoniity ondition: if (u; q

u

)

satis�es � and u

0

� u then (u

0

; q

u

) satis�es �. Further assume that

MCC

U

(C) � t for all C 2 X . Then there is a monotone boolean
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iruit D of size at most (k+n)2

O(t)

, and a set W � f0; 1g

n

suh that

jW j � �k2

n

and suh that D is onstantly 1 on U nW and is onstantly

0 on V nW .

Proof :

We shall assume that the reader is familiar with the argument in [6,

Se.5℄ proving the feasible interpolation for semanti derivations, and we

only desribe where it needs to be appended.

Two players, one given u 2 U and the other one v 2 V , searh for bit

i suh that u

i

6= v

i

. They use a derivation of U \ V = ; for this purpose,

building a path through the derivation from the end line (set ;) bak to one

of the initial sets, always progressing from the onlusion of an inferene to

one of its two hypotheses. Every set A on the path should have the property

that (u; q

u

; r

v

) =2 A as well as (v; q

u

; r

v

) =2 A (this the players an deide

using CC(A) bits of ommuniation).

As none of the initial sets has this property, sooner or later the players

�nd A suh that (u; q

u

; r

v

) 2 A 6� (v; q

u

; r

v

) 2 A, and they �nd i suh that

u

i

6= v

i

using CC(A) bits (via lause 3. of De�nition 2). This strategy of the

players an be turned into a boolean iruit of size (k + 2n)

O(t)

separating

sets U and V , f. [6, Thm.2.3℄.

Assume now that the derivation is not an X -derivation but only �-

approximate X -derivation. For any set A in the derivation let A

�

be a

anonially hosen set from X suh that jA4A

�

j � �2

n

. Further assume

that ;

�

= ; and that A = A

�

for all initial sets. The players proeed as

before, but using sets A

�

in plae of A.

As long as both u, v are outside W :=

S

A

(A4A

�

), A runs over the k

sets in the derivation, the players will �nd A

�

suh that (u; q

u

; r

v

) 2 A

�

6�

(v; q

u

; r

v

) 2 A

�

and onsequently a bit i with u

i

6= v

i

. Hene one gets a

iruit separating U nW from V nW .

The argument from [6, Se.5℄ in the monotone ase an be modi�ed

ompletely analogously.

q.e.d.

The monotone version is onsidered beause there are exponential lower

bounds for monotone iruits separating the set of graphs with a k-lique

from (k�1)-olorable graphs (f. [1℄), while lower bounds for general iruits

are known only under some unproven onjetures.

The hypothesis about the monotone ommuniation omplexity of sets

in X is satis�ed for R and CP

M

(f. [6℄) and hene the theorem applies to
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�-approximate versions of theses derivations. In partiular, one gets lower

bounds for suh derivations. This is beause the exponential iruit lower

bound for monotone iruits separating the set of graphs with a lique of size

k := b

p

n + 1 from the set of graphs that are k-olorable holds also if the

iruit is allowed small error (the argument as presented in [2℄ literally says

that no small monotone iruit an separate a lot of graphs from the �rst set

from a lot of graphs from the seond set). Hene, by an argument analogous

to the lower bound proof in [6, Se.7℄, one gets the following proposition.

Corollary 4 Let U be the set of graphs on n verties having a lique of size

b

p

n+ 1, and let V be the set of b

p

n-olorable graphs.

Assume that � � 2

n

(1=2�
(1))

. Then:

1. Every �-approximate R-derivation of U \ V = ; must have at least

2


(n

1=4

)

steps.

2. Every �-approximate CP

M

-derivation of U \ V = ; must have at least

2


(n

1=4

)

M

O(logn)

steps.

Proof :

If � � 2

n

(1=2�
(1))

and let W be a set of at most �2

(

n

2

)

graphs on n

verties, then

jUnW j

jU j

= jU j

(1�o(1))

and similarly for V . The argument in [2℄

then straightforwardly yields that every monotone iruit separating U nW

from V nW must have size at least 2


(n

1=4

)

.

The MCC of R-sets is O(log n) and of CP

M

-sets it is O(log(Mn) +

log(n) log(Mn)), by [6, Thms.6.1 and 6.4℄. Using this in Theorem 3 yields

upper bounds on the sizes of the separating iruits in terms of k, and

omparing these with the lower bound 2


(n

1=4

)

entails the lower bounds on

k.

q.e.d.

Feasible interpolation of polynomial alulus does not transfer to feasible

interpolation of approximate PC

d

-derivations. This an be seen as follows.

Let �

1

; : : : ; �

k

be any lauses that are unsatis�able, and let A

1

; : : : ; A

k

�

f0; 1g

n

be the sets de�ned by these lauses. So

T

i

A

i

= ;. Take the trivial

derivation: A

1

; A

1

\A

2

; : : : ; A

1

\: : :\A

k

. Eah of the k�1 sets in this deriva-

tions are de�nable by a depth two formula of small size (there are 2k � 1

di�erent subformulas other than literals in total). By the approximation

method of [10, 11℄ there are polynomials f

i

over any �nite prime �eld F

p

of
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degree at most (p�1)

2

`

2

suh that eah set V (f

i

) := fx 2 f0; 1g

n

j f

i

(x) = 0g

di�ers from A

1

\ : : :\A

i

in at most 2ke

�

`

p

2

n

points, with ` � 1 any param-

eter. In partiular, the trivial derivation is �-approximate PC

d

-derivation, if

� � 2ke

�

p

d

p(p�1)

.

A more general way of de�ning approximate derivations is as follows.

Let J � exp(f0; 1g

n

) be a non-empty lass of sets losed downwards, i.e.

D � C 2 J implies D 2 J . In partiular, ; 2 J . A J -approximate X

derivation an use sets C suh that there is D 2 X for whih C4D 2 J .

In the �-approximate derivations one just takes for J sets of size at most

�2

n

. It would be interesting to know if for some J the J -approximate

PC

d

-derivations have super-polynomial speed-up over PC

d

-derivations but

still admit feasible interpolation. For example, if we take for J the sets

that an be inluded in a degree d

0

hypersurfae, then the J -approximate

PC

d

-derivations admit feasible interpolation as they are inluded in PC

dd

0

-

derivations (same argument as after Example 3).

If X -derivations admit non-monotone feasible interpolation only rather

than monotone, one gets at least a onditional lower bound for the number

of steps in the derivations of the disjointness of two sets based on RSA as

in [9℄. The ondition is then the onjetured seurity of RSA.
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