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Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational

Complexity.

Computational Complexity

e Measure use of resources (space, time, etc.) on a machine model of

computation;
e Complexity of a language—i.e. a set of strings.
Descriptive Complexity
e Complexity of a class of structures—e.g. a collection of graphs.

e Measure the complexity of describing the collection in a formal logic, using

resources such as variables, quantifiers, higher-order operators, etc.

There is a fascinating interplay between the views.
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First-Order Logic

For a first-order sentence @, we ask what is the computational complexity of the

problem:

Given: a structure A
Decide: if A = ¢

In other words, how complex can the collection of finite models of ¢ be?

In order to talk of the complexity of a class of finite structures, we need to fix some

way of representing finite structures as strings.
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Encoding Structures

We use an alphabet > = {0, 1, #, — }.

For astructure A = (A, Ry,..., Ry, f1,..., f1), fix alinear order < on
A=Aay,...,a,}.

R; (of arity k) is encoded by a string [R;] - of Os and 1s of length n*.

f; is encoded by a string [f;] < of Os, 1s and —s of length n* log n.

Al = L L #R# - #Rol A #Fi<

n

The exact string obtained depends on the choice of order.

September 2011



Invariance

Note that the decision problem:
Given a string |A] - decide whether A =

has a natural invariance property.

It is invariant under the equivalence relation below.

Write wq ~ w9 to denote that there is some structure A and orders <;

and <o on its universe such that

wy = [A]<, andws = [A],

Note: deciding the equivalence relation ~ is just the same as deciding structure

iIsomorphism.
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Naive Algorithm

The straightforward algorithm proceeds recursively on the structure of :
e Atomic formulas by direct lookup.
e Boolean connectives are easy.

e If © = dx ¢ then for each a € A check whether

(A, c—=a) = 1le/x],
where ¢ is a new constant symbol.

This runs n time O(In"") and O(m log n) space, where m is the nesting depth

of quantifiers in ©.

Mod(p) ={A | A E p}

IS in logarithmic space and polynomial time.
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Second-Order Logic

There are computationally easy properties that are not definable in first-order

logic.

Al

e There is no sentence o of first-order logic such that A = ¢ if, and only if,

IS even.

e There is no formula ¢ (F, x, y) that defines the transitive closure of a binary

relation F..

Consider second-order logic, extending first-order logic with relational quantifiers
—dXp
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Examples

Evennness

This formula is true in a structure if, and only if, the size of the domain is even.
AB3S VzdyB(z,y) AVaVyVzB(z,y) AN B(z,2) >y =z
VaVyVzB(x,z) N B(y,z) = x =y
VavVyS(x) A B(x,y) — =S (y)
VaVy—S(x) A B(x,y) — S(y)
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Examples

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and only if, there is

an F/-path from a to .

AP VaVy P(z,y) — E(x,y)
dxP(a,x) A JxP(x,b) N ~FxP(x,a) A =z P(b, )
Vavy(P(z,y) — V2(P(z,2) =y = 2))
Vavy(P(z,y) — V2(P(z,2) =y = 2))
Va((x £ a A FyP(z,y)) — 3P (2, 2))
Va((z # b A JyP(y,z)) — 32P(z, 2))
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Examples

3-Colourability

The following formula is true in a graph (V, E) if, and only if, it is 3-colourable.

dR3B4G  Vx(Rx V Bx V Gx)A
Vr( —(Rx A Bx)A—=(Bx AGz) A —~(Rx ANGzx))A
VaVy(Exy — ( —(Rx A Ry)A
—(Bx N By)A
—(Gz A Gy)))
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Fagin’s Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of existential second-order
logic if, and only if, it is decidable by a nondeterminisitic machine running in
polynomial time.

ESO = NP

One direction is easy: Given A and 3P, ... dP,, .

a nondeterministic machine can guess an interpretation for P, ..., P,

and then verify .
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Fagin’s Theorem

Given a machine M and an integer k, there is an ESO sentence ¢ such that
A |= @ if, and only if, M accepts [A]_, for some order < in n* steps.

4 < dState; - - - State,JIHead JTape
< is alinear order A
State1 (t + 1) — State; () V ...
NStatea(t + 1) — ... encoding
ATape(t + 1,p) <> Head(t,p)... ¢ transitions
AHead(t + 1,h+ 1) < ... of M
AHead(t +1,h — 1) < ...

/

Aat time 0 the tape contains a description of A

/\State s (max) for some accepting s
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Fagin’s Theorem

State is a k-ary relation and Tape and Head are 2k-ary relations, that use the

lexicographic order on k-tuples.

To state that Tape encodes the input structure:

¥x x < n — Tape(0,X)
x < n® — (Tape(0,x +n) < R1(x|4))

where,
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Is there a logic for P?

The major open question in Descriptive Complexity (first asked by Chandra and

Harel in 1982) is whether there is a logic £ such that

for any class of finite structures C, C is definable by a sentence of L if,
and only if, C is decidable by a deterministic machine running in

polynomial time.

Formally, we require L to be a recursively enumerable set of sentences, with a
computable map taking each sentence to a Turing machine )/ and a polynomial

time bound p such that (M, p) accepts a class of structures.

(Gurevich 1988)
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Enumerating Queries

For a given structure A with n elements, there may be as many as n! distinct

strings [A] - encoding it.

Given (Mg, po), - - -, (M;,p;),...—an enumeration of polynomially-clocked

Turing machines.

Can we enumerate a subsequence of those that compute graph properties, i.e.

are encoding invariant, while including all such properties?
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Recursive Indexability

We say that P is recursively indexable, if there is a recursive set Z and a Turing
machine M such that:

e oninputi € Z, M produces the code for a machine M (i) and a polynomial

Di
e ) (i), accepts a class of structures in P.

e M (%) runs in time bounded by p;

e for each class of structures C' € P, there is an ¢ such that M (¢) accepts C'.
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Canonical Labelling

We say that a machine M canonically labels graphs, if
e on any input [G] -, the output of M is [G] - for some ordering <’; and

e if |G|, and [G] ., are two encodings of the same graph, then

M([G]<1) — M([G]<2)

It is an open question whether such a polynomial-time machine exists.

If so, then P is recursively indexable, by enumerating machines

If not, P # NP.
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Interpretations

Given two relational signatures o and 7, where 7 = (R, ..., R,.), and arity of

Rz‘ IS n;

A first-order interpretation of 7 in o is a sequence:

(U Ty e ey Ty )
of first-order o-formulas, such that, for some k,:
e the free variables of ¢y are among x4, . . ., 2k,

e and the free variables of 7; (for each 7) are among x1, ..., ZTk.p, -

k is the width of the interpretation.
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Interpretations Il

An interpretation of 7 in 0 maps o-structures to 7-structures.

If A is a o-structure with universe A, then
w(A) is a structure (B, Ry, ..., R,) with
e B C AF is the relation defined by 7.

e for each 7, R, is the relation on B defined by ;.

Anuj Dawar

19

September 2011



Reductions

Given:
e (U'| —aclass of structures over ¢; and
e (5 — aclass of structures over 7

7 is a first-order reduction of C' to C'5 if, and only if,

AeCy e nA)eCs.

If such a 7 exists, we say that C'; is first-order reducible to C5.
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Bi-interpretation with Graphs

For any o and any class C' of o-structures, there is a class D of graphs (i.e.

structures over a signature containing just one binary relation) such that:
e (' is first-order reducible to D; and

e [ is first-order reducible to C.

This follows from a standard model-theoretic bi-interpretation.
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NP-complete Problems

First-order reductions are, in general, much weaker than polynomial-time
reductions and (in the absence of order and airthmetic on the structures) even

weaker than ACq-reductions.

Nonetheless, there are NP-complete problems under such reductions.

Every problem in NP is first-order reducible to SAT
(Lovasz and G acs 1977)

Hamiltonicity and Clique are NP-complete via first-order reductions
(Dahlhaus 1984)

But, 3-colourability is not NP-complete via first-order reductions.
(D.-Gradel 1995)

and the question is open for 3SAT.
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P-complete Problems

If there is any problem that is complete for P with respect to first-order reductions,

then there is a logic for P.

If () is such a problem, we form, for each k, a quantifier Qk.

The sentence

Q(ry, 71, ..., 7s)
for a k-ary interpretation 7 = (7, 71, . . ., Ts) is defined to be true on a
structure A just in case
m(A) € Q.

The collection of such sentences is then a logic for P.
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Conversely,

Theorem

If the polynomial time properties of graphs are recursively indexable, there is a

problem complete for P under first-order reductions.
(D. 1995)

Proof Idea:
Given a recursive indexing ((M;, p;)|? € w) of P

Encode the following problem into a class of finite structures:
{(¢, )| M; accepts x in time bounded by p; (|z|)}

To ensure that this problem is still in P, we need to pad the input to have length

pi(lzl).
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Constructing the Complete Problem

Suppose M is a machine which on input ¢ € w gives a pair (M;, p;) as in the

definition of recursive indexing. Let g a recursive bound on the running time of M.

() is a class of structures over the signature (V, E, <, I).
A=AV E =X I)isinQ if, and only if,
1. <is a linear pre-order on A;

2. ifa,be I,a < bandb < q,i.e. I picks out one equivalence class from the

pre-order (say the i");
3. |A] > pi(|V]);
4. the graph (V, F) is accepted by M;; and

5. g(i) < |A].
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Summary

The following are equivalent:

e P is recursively indexable.

e There is a logic capturing P of the form FO(Q), where Q is the collection of

vectorisations of a single quantifier.

® There is a complete problem in P under first-order reductions.

Another way of viewing this result is as a dichotomy.

Either there is a single problem in P such that all problems in P are easy
variations of it

or, there is no reasonable classification of the problems in P.
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