Descriptive Polynomial Time Complexity

Tutorial Part 1

Anuj Dawar University of Cambridge

Prague Fall School, 20 September 2011

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

Computational Complexity

- Measure use of resources (space, time, *etc.*) on a machine model of computation;
- Complexity of a language—i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures—e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers, higher-order operators, *etc.*

There is a fascinating interplay between the views.

First-Order Logic

For a first-order sentence φ , we ask what is the *computational complexity* of the problem:

Given: a structure \mathbb{A} Decide: if $\mathbb{A} \models \varphi$

In other words, how complex can the collection of finite models of φ be?

In order to talk of the complexity of a class of finite structures, we need to fix some way of representing finite structures as strings.

Encoding Structures

We use an alphabet $\Sigma = \{0, 1, \#, -\}.$

For a structure $\mathbb{A} = (A, R_1, \dots, R_m, f_1, \dots, f_l)$, fix a linear order < on $A = \{a_1, \dots, a_n\}$.

 R_i (of arity k) is encoded by a string $[R_i]_{<}$ of 0s and 1s of length n^k .

 f_i is encoded by a string $[f_i]_{\leq}$ of 0s, 1s and -s of length $n^k \log n$.

$$[\mathbb{A}]_{<} = \underbrace{1 \cdots 1}_{n} \# [R_1]_{<} \# \cdots \# [R_m]_{<} \# [f_1]_{<} \# \cdots \# [f_l]_{<}$$

The exact string obtained depends on the choice of order.

Invariance

Note that the decision problem:

Given a string $[\mathbb{A}]_{<}$ decide whether $\mathbb{A} \models \varphi$

has a natural invariance property.

It is invariant under the equivalence relation below.

Write $w_1 \sim w_2$ to denote that there is some structure \mathbb{A} and orders $<_1$ and $<_2$ on its universe such that

 $w_1 = [\mathbb{A}]_{\leq_1}$ and $w_2 = [\mathbb{A}]_{\leq_2}$

Note: deciding the equivalence relation \sim is just the same as deciding structure isomorphism.

Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of φ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\varphi \equiv \exists x \, \psi$ then for each $a \in \mathbb{A}$ check whether

 $(\mathbb{A}, c \mapsto a) \models \psi[c/x],$

where *c* is a new constant symbol.

This runs n time $O(ln^m)$ and $O(m \log n)$ space, where m is the nesting depth of quantifiers in φ .

 $Mod(\varphi) = \{ \mathbb{A} \mid \mathbb{A} \models \varphi \}$

is in logarithmic space and polynomial time.

Second-Order Logic

There are computationally easy properties that are not definable in first-order logic.

- There is no sentence φ of first-order logic such that $\mathbb{A} \models \varphi$ if, and only if, |A| is even.
- There is no formula $\varphi(E, x, y)$ that defines the transitive closure of a binary relation E.

Consider second-order logic, extending first-order logic with *relational quantifiers* $-\exists X \varphi$

Examples

Evennness

This formula is true in a structure if, and only if, the size of the domain is even.

$$\begin{array}{ll} \exists B \exists S & \forall x \exists y B(x,y) \land \forall x \forall y \forall z B(x,y) \land B(x,z) \rightarrow y = z \\ & \forall x \forall y \forall z B(x,z) \land B(y,z) \rightarrow x = y \\ & \forall x \forall y S(x) \land B(x,y) \rightarrow \neg S(y) \\ & \forall x \forall y \neg S(x) \land B(x,y) \rightarrow S(y) \end{array}$$

Examples

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and only if, there is an E-path from a to b.

$$\begin{aligned} \exists P \quad \forall x \forall y \, P(x, y) &\to E(x, y) \\ \exists x P(a, x) \land \exists x P(x, b) \land \neg \exists x P(x, a) \land \neg \exists x P(b, x) \\ \forall x \forall y (P(x, y) \to \forall z (P(x, z) \to y = z)) \\ \forall x \forall y (P(x, y) \to \forall z (P(z, x) \to y = z)) \\ \forall x ((x \neq a \land \exists y P(x, y)) \to \exists z P(z, x)) \\ \forall x ((x \neq b \land \exists y P(y, x)) \to \exists z P(x, z)) \end{aligned}$$

Examples

3-Colourability

The following formula is true in a graph (V, E) if, and only if, it is 3-colourable. $\exists R \exists B \exists G \quad \forall x (Rx \lor Bx \lor Gx) \land \\ \forall x (\neg (Rx \land Bx) \land \neg (Bx \land Gx) \land \neg (Rx \land Gx)) \land \\ \forall x \forall y (Exy \rightarrow (\neg (Rx \land Ry) \land \\ \neg (Bx \land By) \land \\ \neg (Gx \land Gy)))$

Fagin's Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of *existential second-order logic* if, and only if, it is decidable by a *nondeterminisitic machine* running in polynomial time.

ESO = NP

One direction is easy: Given A and $\exists P_1 \dots \exists P_m \varphi$.

a nondeterministic machine can guess an interpretation for P_1, \ldots, P_m and then verify φ .

Fagin's Theorem

Given a machine M and an integer k, there is an ESO sentence φ such that $\mathbb{A} \models \varphi$ if, and only if, M accepts $[\mathbb{A}]_{<}$, for some order < in n^{k} steps.

 $\begin{array}{l} \exists < \hspace{0.1cm} \exists {\sf State}_1 \cdots {\sf State}_q \\ \exists {\sf Head} \hspace{0.1cm} \exists {\sf Tape} \\ < \hspace{0.1cm} {\sf is a \ linear \ order} \hspace{0.1cm} \wedge \\ & \hspace{0.1cm} {\sf State}_1(t+1) \rightarrow {\sf State}_i(t) \lor \ldots \\ & \hspace{0.1cm} \wedge {\sf State}_2(t+1) \rightarrow \ldots \\ & \hspace{0.1cm} \wedge {\sf State}_2(t+1,p) \leftrightarrow {\sf Head}(t,p) \ldots \\ & \hspace{0.1cm} \wedge {\sf Tape}(t+1,p) \leftrightarrow {\sf Head}(t,p) \ldots \\ & \hspace{0.1cm} \wedge {\sf Head}(t+1,h+1) \leftrightarrow \ldots \\ & \hspace{0.1cm} \wedge {\sf Head}(t+1,h-1) \leftrightarrow \ldots \end{array} \right) \hspace{0.1cm} {\sf of} \ M \\ & \hspace{0.1cm} \wedge {\sf Head}(t+1,h-1) \leftrightarrow \ldots \end{array} \right) \hspace{0.1cm} {\sf At \ time} \ 0 \ {\sf the \ tape \ contains \ a \ description \ of \ A \end{array}$

 \wedge State_s(max) for some accepting s

Fagin's Theorem

State is a k-ary relation and Tape and Head are 2k-ary relations, that use the lexicographic order on k-tuples.

To state that Tape encodes the input structure:

• • •

$$\begin{aligned} \forall \mathbf{x} \quad \mathbf{x} < n &\to \mathsf{Tape}(0, \mathbf{x}) \\ \mathbf{x} < n^a &\to (\mathsf{Tape}(0, \mathbf{x} + n) \leftrightarrow R_1(\mathbf{x}|_a)) \end{aligned}$$

where,

$$\mathbf{x} < n^a$$
 : $\bigwedge_{i \le (k-a)} x_i = 0$

Is there a logic for P?

The major open question in *Descriptive Complexity* (first asked by Chandra and Harel in 1982) is whether there is a logic \mathcal{L} such that

for any class of finite structures C, C is definable by a sentence of \mathcal{L} if, and only if, C is decidable by a deterministic machine running in polynomial time.

Formally, we require \mathcal{L} to be a *recursively enumerable* set of sentences, with a computable map taking each sentence to a Turing machine M and a polynomial time bound p such that (M, p) accepts a *class of structures*.

(Gurevich 1988)

Enumerating Queries

For a given structure \mathbb{A} with n elements, there may be as many as n! distinct strings $[\mathbb{A}]_{<}$ encoding it.

Given $(M_0, p_0), \ldots, (M_i, p_i), \ldots$ an enumeration of polynomially-clocked Turing machines.

Can we enumerate a subsequence of those that compute graph properties, i.e. are *encoding invariant*, while including all such properties?

Recursive Indexability

We say that P is *recursively indexable*, if there is a recursive set \mathcal{I} and a Turing machine M such that:

- on input $i \in \mathcal{I}$, M produces the code for a machine M(i) and a polynomial p_i
- M(i), accepts a class of structures in P.
- M(i) runs in time bounded by p_i
- for each class of structures $C \in P$, there is an *i* such that M(i) accepts C.

Canonical Labelling

We say that a machine M canonically labels graphs, if

- on any input $[G]_{<}$, the output of M is $[G]_{<'}$ for some ordering <'; and
- if $[G]_{\leq_1}$ and $[G]_{\leq_2}$ are two encodings of the same graph, then $M([G]_{\leq_1}) = M([G]_{\leq_2}).$

It is an open question whether such a polynomial-time machine exists.

If so, then P is recursively indexable, by enumerating machines $M \to M_i$. If not, P \neq NP.

Interpretations

Given two relational signatures σ and τ , where $\tau = \langle R_1, \ldots, R_r \rangle$, and arity of R_i is n_i

A first-order interpretation of τ in σ is a sequence:

 $\langle \pi_U, \pi_1, \ldots, \pi_r \rangle$

of first-order σ -formulas, such that, for some k,:

- the free variables of π_U are among x_1, \ldots, x_k ,
- and the free variables of π_i (for each *i*) are among $x_1, \ldots, x_{k \cdot n_i}$.

k is the width of the interpretation.

Interpretations II

An interpretation of τ in σ maps σ -structures to τ -structures.

- If \mathbb{A} is a σ -structure with universe A, then
- $\pi(\mathbb{A})$ is a structure (B,R_1,\ldots,R_r) with
 - $B \subseteq A^k$ is the relation defined by π_U .
 - for each i, R_i is the relation on B defined by π_i .

Reductions

Given:

- C_1 a class of structures over σ ; and
- C_2 a class of structures over au

 π is a *first-order reduction* of C_1 to C_2 if, and only if,

 $\mathbb{A} \in C_1 \Leftrightarrow \pi(\mathbb{A}) \in C_2.$

If such a π exists, we say that C_1 is first-order reducible to C_2 .

Bi-interpretation with Graphs

For any σ and any class *C* of σ -structures, there is a class *D* of *graphs* (i.e. structures over a signature containing just one binary relation) such that:

- C is first-order reducible to D; and
- D is first-order reducible to C.

This follows from a standard model-theoretic bi-interpretation.

NP-complete Problems

First-order reductions are, in general, much weaker than *polynomial-time reductions* and (in the absence of order and airthmetic on the structures) even weaker than AC₀-reductions.

Nonetheless, there are NP-complete problems under such reductions.

Every problem in NP is first-order reducible to SAT

(Lovàsz and Gàcs 1977)

Hamiltonicity and Clique are NP-complete via first-order reductions

(Dahlhaus 1984)

But, 3-colourability is not NP-complete via first-order reductions.

(D.-Grädel 1995)

and the question is open for **3SAT**.

P-complete Problems

If there is any problem that is complete for P with respect to first-order reductions, then there is a logic for P.

If Q is such a problem, we form, for each k, a quantifier Q^k .

The sentence

$$Q^k(\pi_U,\pi_1,\ldots,\pi_s)$$

for a *k*-ary interpretation $\pi = (\pi_U, \pi_1, \dots, \pi_s)$ is defined to be true on a structure A just in case

 $\pi(\mathbb{A}) \in Q.$

The collection of such sentences is then a logic for P.

Conversely,

Theorem

If the polynomial time properties of graphs are recursively indexable, there is a problem complete for P under first-order reductions.

(D. 1995)

Proof Idea:

Given a recursive indexing $((M_i, p_i) | i \in \omega)$ of P

Encode the following problem into a class of finite structures:

 $\{(i, x) | M_i \text{ accepts } x \text{ in time bounded by } p_i(|x|) \}$

To ensure that this problem is still in P, we need to pad the input to have length $p_i(|x|)$.

Constructing the Complete Problem

Suppose M is a machine which on input $i \in \omega$ gives a pair (M_i, p_i) as in the definition of recursive indexing. Let g a recursive bound on the running time of M.

Q is a class of structures over the signature (V, E, \preceq, I) .

 $\mathbb{A} = (A,V,E,\preceq,I)$ is in Q if, and only if,

- 1. \leq is a linear pre-order on A;
- 2. if $a, b \in I$, $a \leq b$ and $b \leq a$, i.e. I picks out one equivalence class from the pre-order (say the i^{th});
- 3. $|A| \ge p_i(|V|);$
- 4. the graph (V, E) is accepted by M_i ; and
- 5. $g(i) \le |A|$.

Summary

The following are equivalent:

- P is recursively indexable.
- There is a logic capturing P of the form FO(Q), where Q is the collection of vectorisations of a single quantifier.
- There is a complete problem in P under first-order reductions.

Another way of viewing this result is as a dichotomy.

Either there is a single problem in P such that all problems in P are easy variations of it

or, there is no reasonable classification of the problems in P.