
1

Descriptive Polynomial Time Complexity

Tutorial Part 1

Anuj Dawar

University of Cambridge

Prague Fall School, 20 September 2011

Anuj Dawar September 2011

2

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational

Complexity.

Computational Complexity

• Measure use of resources (space, time, etc.) on a machine model of

computation;

• Complexity of a language—i.e. a set of strings.

Descriptive Complexity

• Complexity of a class of structures—e.g. a collection of graphs.

• Measure the complexity of describing the collection in a formal logic, using

resources such as variables, quantifiers, higher-order operators, etc.

There is a fascinating interplay between the views.

Anuj Dawar September 2011

3

First-Order Logic

For a first-order sentence ϕ, we ask what is the computational complexity of the

problem:

Given: a structure A

Decide: if A |= ϕ

In other words, how complex can the collection of finite models of ϕ be?

In order to talk of the complexity of a class of finite structures, we need to fix some

way of representing finite structures as strings.

Anuj Dawar September 2011

4

Encoding Structures

We use an alphabet Σ = {0, 1,#,−}.

For a structure A = (A,R1, . . . , Rm, f1, . . . , fl), fix a linear order< on

A = {a1, . . . , an}.

Ri (of arity k) is encoded by a string [Ri]< of 0s and 1s of length nk .

fi is encoded by a string [fi]< of 0s, 1s and −s of length nk logn.

[A]< = 1 · · · 1
︸ ︷︷ ︸

n

#[R1]<# · · ·#[Rm]<#[f1]<# · · ·#[fl]<

The exact string obtained depends on the choice of order.

Anuj Dawar September 2011

5

Invariance

Note that the decision problem:

Given a string [A]< decide whether A |= ϕ

has a natural invariance property.

It is invariant under the equivalence relation below.

Write w1 ∼ w2 to denote that there is some structure A and orders <1

and <2 on its universe such that

w1 = [A]<1
and w2 = [A]<2

Note: deciding the equivalence relation ∼ is just the same as deciding structure

isomorphism.

Anuj Dawar September 2011

6

Naı̈ve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If ϕ ≡ ∃xψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x],

where c is a new constant symbol.

This runs n time O(lnm) and O(m logn) space, where m is the nesting depth

of quantifiers in ϕ.

Mod(ϕ) = {A | A |= ϕ}

is in logarithmic space and polynomial time.

Anuj Dawar September 2011

7

Second-Order Logic

There are computationally easy properties that are not definable in first-order

logic.

• There is no sentence ϕ of first-order logic such that A |= ϕ if, and only if, |A|

is even.

• There is no formula ϕ(E, x, y) that defines the transitive closure of a binary

relation E.

Consider second-order logic, extending first-order logic with relational quantifiers

— ∃Xϕ

Anuj Dawar September 2011

8

Examples

Evennness

This formula is true in a structure if, and only if, the size of the domain is even.

∃B∃S ∀x∃yB(x, y) ∧ ∀x∀y∀zB(x, y) ∧B(x, z) → y = z

∀x∀y∀zB(x, z) ∧B(y, z) → x = y

∀x∀yS(x) ∧B(x, y) → ¬S(y)

∀x∀y¬S(x) ∧B(x, y) → S(y)

Anuj Dawar September 2011

9

Examples

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and only if, there is

an E-path from a to b.

∃P ∀x∀y P (x, y) → E(x, y)

∃xP (a, x) ∧ ∃xP (x, b) ∧ ¬∃xP (x, a) ∧ ¬∃xP (b, x)

∀x∀y(P (x, y) → ∀z(P (x, z) → y = z))

∀x∀y(P (x, y) → ∀z(P (z, x) → y = z))

∀x((x 6= a ∧ ∃yP (x, y)) → ∃zP (z, x))

∀x((x 6= b ∧ ∃yP (y, x)) → ∃zP (x, z))

Anuj Dawar September 2011

10

Examples

3-Colourability

The following formula is true in a graph (V,E) if, and only if, it is 3-colourable.

∃R∃B∃G ∀x(Rx ∨Bx ∨Gx)∧

∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))

Anuj Dawar September 2011

11

Fagin’s Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of existential second-order

logic if, and only if, it is decidable by a nondeterminisitic machine running in

polynomial time.

ESO = NP

One direction is easy: Given A and ∃P1 . . .∃Pmϕ.

a nondeterministic machine can guess an interpretation for P1, . . . , Pm

and then verify ϕ.

Anuj Dawar September 2011

12

Fagin’s Theorem

Given a machineM and an integer k, there is an ESO sentence ϕ such that

A |= ϕ if, and only if, M accepts [A]<, for some order< in nk steps.

∃ < ∃State1 · · ·Stateq∃Head ∃Tape

< is a linear order ∧

State1(t+ 1) → Statei(t) ∨ . . .

∧State2(t+ 1) → . . .

∧Tape(t+ 1, p) ↔ Head(t, p) . . .

∧Head(t+ 1, h+ 1) ↔ . . .

∧Head(t+ 1, h− 1) ↔ . . .







encoding

transitions

of M

∧at time 0 the tape contains a description of A

∧States(max) for some accepting s

Anuj Dawar September 2011

13

Fagin’s Theorem

State is a k-ary relation and Tape and Head are 2k-ary relations, that use the

lexicographic order on k-tuples.

To state that Tape encodes the input structure:

∀x x < n→ Tape(0,x)

x < na → (Tape(0,x + n) ↔ R1(x|a))

. . .

where,

x < na :
∧

i≤(k−a)

xi = 0

Anuj Dawar September 2011

14

Is there a logic for P?

The major open question in Descriptive Complexity (first asked by Chandra and

Harel in 1982) is whether there is a logic L such that

for any class of finite structures C, C is definable by a sentence of L if,

and only if, C is decidable by a deterministic machine running in

polynomial time.

Formally, we require L to be a recursively enumerable set of sentences, with a

computable map taking each sentence to a Turing machineM and a polynomial

time bound p such that (M, p) accepts a class of structures.

(Gurevich 1988)

Anuj Dawar September 2011

15

Enumerating Queries

For a given structure A with n elements, there may be as many as n! distinct

strings [A]< encoding it.

Given (M0, p0), . . . , (Mi, pi), . . .—an enumeration of polynomially-clocked

Turing machines.

Can we enumerate a subsequence of those that compute graph properties, i.e.

are encoding invariant, while including all such properties?

Anuj Dawar September 2011

16

Recursive Indexability

We say that P is recursively indexable, if there is a recursive set I and a Turing

machineM such that:

• on input i ∈ I , M produces the code for a machineM(i) and a polynomial

pi

• M(i), accepts a class of structures in P.

• M(i) runs in time bounded by pi

• for each class of structures C ∈ P, there is an i such that M(i) accepts C .

Anuj Dawar September 2011

17

Canonical Labelling

We say that a machineM canonically labels graphs, if

• on any input [G]<, the output of M is [G]<′ for some ordering<′; and

• if [G]<1
and [G]<2

are two encodings of the same graph, then

M([G]<1
) = M([G]<2

).

It is an open question whether such a polynomial-time machine exists.

If so, then P is recursively indexable, by enumerating machines

M →Mi.

If not, P 6= NP.

Anuj Dawar September 2011

18

Interpretations

Given two relational signatures σ and τ , where τ = 〈R1, . . . , Rr〉, and arity of

Ri is ni

A first-order interpretation of τ in σ is a sequence:

〈πU , π1, . . . , πr〉

of first-order σ-formulas, such that, for some k,:

• the free variables of πU are among x1, . . . , xk,

• and the free variables of πi (for each i) are among x1, . . . , xk·ni
.

k is the width of the interpretation.

Anuj Dawar September 2011

19

Interpretations II

An interpretation of τ in σ maps σ-structures to τ -structures.

If A is a σ-structure with universeA, then

π(A) is a structure (B,R1, . . . , Rr) with

• B ⊆ Ak is the relation defined by πU .

• for each i, Ri is the relation on B defined by πi.

Anuj Dawar September 2011

20

Reductions

Given:

• C1 – a class of structures over σ; and

• C2 – a class of structures over τ

π is a first-order reduction of C1 to C2 if, and only if,

A ∈ C1 ⇔ π(A) ∈ C2.

If such a π exists, we say that C1 is first-order reducible to C2.

Anuj Dawar September 2011

21

Bi-interpretation with Graphs

For any σ and any class C of σ-structures, there is a class D of graphs (i.e.

structures over a signature containing just one binary relation) such that:

• C is first-order reducible to D; and

• D is first-order reducible to C .

This follows from a standard model-theoretic bi-interpretation.

Anuj Dawar September 2011

22

NP-complete Problems

First-order reductions are, in general, much weaker than polynomial-time

reductions and (in the absence of order and airthmetic on the structures) even

weaker than AC0-reductions.

Nonetheless, there are NP-complete problems under such reductions.

Every problem in NP is first-order reducible to SAT

(Lov àsz and G àcs 1977)

Hamiltonicity and Clique are NP-complete via first-order reductions

(Dahlhaus 1984)

But, 3-colourability is not NP-complete via first-order reductions.

(D.-Grädel 1995)

and the question is open for 3SAT.

Anuj Dawar September 2011

23

P-complete Problems

If there is any problem that is complete for P with respect to first-order reductions,

then there is a logic for P.

If Q is such a problem, we form, for each k, a quantifierQk .

The sentence

Qk(πU , π1, . . . , πs)

for a k-ary interpretation π = (πU , π1, . . . , πs) is defined to be true on a

structure A just in case

π(A) ∈ Q.

The collection of such sentences is then a logic for P.

Anuj Dawar September 2011

24

Conversely,

Theorem

If the polynomial time properties of graphs are recursively indexable, there is a

problem complete for P under first-order reductions.

(D. 1995)

Proof Idea:

Given a recursive indexing ((Mi, pi)|i ∈ ω) of P

Encode the following problem into a class of finite structures:

{(i, x)|Mi accepts x in time bounded by pi(|x|)}

To ensure that this problem is still in P, we need to pad the input to have length

pi(|x|).

Anuj Dawar September 2011

25

Constructing the Complete Problem

SupposeM is a machine which on input i ∈ ω gives a pair (Mi, pi) as in the

definition of recursive indexing. Let g a recursive bound on the running time ofM .

Q is a class of structures over the signature (V,E,�, I).

A = (A, V,E,�, I) is in Q if, and only if,

1. � is a linear pre-order on A;

2. if a, b ∈ I , a � b and b � a, i.e. I picks out one equivalence class from the

pre-order (say the ith);

3. |A| ≥ pi(|V |);

4. the graph (V,E) is accepted by Mi; and

5. g(i) ≤ |A|.

Anuj Dawar September 2011

26

Summary

The following are equivalent:

• P is recursively indexable.

• There is a logic capturing P of the form FO(Q), where Q is the collection of

vectorisations of a single quantifier.

• There is a complete problem in P under first-order reductions.

Another way of viewing this result is as a dichotomy.

Either there is a single problem in P such that all problems in P are easy

variations of it

or, there is no reasonable classification of the problems in P.

Anuj Dawar September 2011

