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2. Gödel incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.1. Arithmetization of metamathematics . . . . . . . . . . . . . . . . . . . . . 113
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This chapter discusses the proof-theoretic foundations of the first-order theory of
the non-negative integers. This first-order theory of numbers, also called ‘first-order
arithmetic’, consists of the first-order sentences which are true about the integers.
The study of first-order arithmetic is important for several reasons. Firstly, in the
study of the foundation of mathematics, arithmetic and set theory are two of the
most important first-order theories; indeed, the usual foundational development of
mathematical structures begins with the integers as fundamental and from these
constructs mathematical constructions such as the rationals and the reals. Sec-
ondly, the proof theory for arithmetic is highly developed and serves as a basis for
proof-theoretic investigations of many stronger theories. Thirdly, there are intimate
connections between subtheories of arithmetic and computational complexity; these
connections go back to Gödel’s discovery that the numeralwise representable func-
tions of arithmetic theories are exactly the recursive functions and are recently of
great interest because some weak theories of arithmetic have very close connection
of feasible computational classes.

Because of Gödel’s second incompleteness theorem that the theory of numbers
is not recursive, there is no good proof theory for the complete theory of numbers;
therefore, proof-theorists consider axiomatizable subtheories (called fragments) of
first-order arithmetic. These fragments range in strength from the very weak theories
R and Q up to the very strong theory of Peano arithmetic (PA).

The outline of this chapter is as follows. Firstly, we shall introduce the most
important fragments of arithmetic and discuss their relative strengths and the boot-
strapping process. Secondly, we give an overview of the incompleteness theorems.
Thirdly, section 3 discusses the topics of what functions are provably total in various
fragments of arithmetic and of the relative strengths of different fragments of arith-
metic. Finally, we conclude with a proof of a theorem of J. Paris and A. Wilkie which
improves Gödel’s incompleteness theorem by showing that I∆0 + exp cannot prove
the consistency of Q . The main prerequisite for reading this chapter is knowledge of
the sequent calculus and cut-elimination, as contained in Chapter I of this volume.
The proof theory of arithmetic is a major subfield of logic and this chapter necessarily
omits many important and central topics in the proof theory of arithmetic; the most
notable omission is theories stronger than Peano arithmetic. Our emphasis has
instead been on weak fragments of arithmetic and on finitary proof theory, especially
on applications of the cut-elimination theorem. The articles of Fairtlough-Wainer,
Pohlers, Troelstra and Avigad-Feferman in this volume also discuss the proof theory
of arithmetic.

There are a number of book length treatments of the proof theory and model
theory of arithmetic. Takeuti [1987], Girard [1987] and Schütte [1977] discuss the
classical proof theory of arithmetic, Buss [1986] discusses the proof of the bounded
arithmetic, and Kaye [1991] and Hájek and Pudlák [1993] treat the model theory
of arithmetic. The last reference gives an in-depth and modern treatment both of
classical fragments of Peano arithmetic and of bounded arithmetic.
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1. Fragments of arithmetic

This section introduces the most commonly used axiomatizations for fragments
of arithmetic. These axiomatizations are organized into the categories of ‘strong
fragments’, ‘weak fragments’ and ‘very weak fragments’. The line between strong
and weak fragments is somewhat arbitrarily drawn between those theories which
can prove the arithmetized version of the cut-elimination theorem and those which
cannot; in practice, this is equivalent to whether the theory can prove that the
superexponential function i 7→ 21

i is total. The very weak theories are theories which
do not admit any induction axioms.

Non-logical symbols for arithmetic. We will be working exclusively with first-
order theories of arithmetic: these have all the usual first-order symbols, including
propositional connectives and quantifiers and the equality symbol (=). In addition,
they have non-logical symbols specific to arithmetic. These will always include the
constant symbol 0, the unary successor function S , the binary functions symbols
+ and · for addition and multiplication, and the binary predicate symbol ≤ for
‘less than or equal to’.1 Very often, terms are abbreviated by omitting parentheses
around the arguments of the successor function, and we write St instead of S(t). In
addition, for n ≥ 0 an integer, we write Snt to denote the term with n applications
of S to t .

For weak theories of arithmetic, especially for bounded arithmetic, it is common
to include further non-logical symbols. These include a unary function b1

2
xc for

division by two, a unary function |x| which is defined by

|n| = dlog2(n + 1)e,

and Nelson’s binary function # (pronounced ‘smash’) which we define by

m#n = 2|m|·|n|.

It is easy to check that |n| is equal to the number of bits in the binary representation
of n .

An alternative to the # function is the unary function ω1 , which is defined by
ω1(n) = nblog2 nc and has growth rate similar to #. The importance of the use of
the ω1 function and the # function lies mainly in their growth rate. In this regard,
they are essentially equivalent since ω1(n) ≈ n#n and m#n = O(ω1(max{m,n})).
Both of these functions are generalizable to faster growing functions by defining
ωn(x) = xωn−1(blog2 xc) and x#n+1y = 2|x|#n|y| where #2 is #. It is easy to check that
the growth rates of ωn and #n+1 are equivalent in the sense that any term involving
one of the function symbols can be bounded by a term involving the other function
symbol.

1Many authors use < instead of ≤ ; however, we prefer the use of ≤ since this sometimes
makes axioms and theorems more elegant to state.
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For strong theories of arithmetic, it is sometimes convenient to enlarge the set of
non-logical symbols to include function symbols for all primitive recursive functions.
The usual way to do this is to inductively define the primitive recursive functions
as the smallest class of functions which contains the constant function 0 and the
successor function S , is closed under a general form of composition, and is closed
under primitive recursion. The closure under primitive recursion means that if
g and h are primitive recursive functions of arities n and n+2, then the (n+1)-ary
function f defined by

f(~x, 0) = g(~x)

f(~x,m + 1) = h(~x,m, f(~x,m))

is also primitive recursive. These equations are called the defining equations of f .
A bounded quantifier is of the form (∀x ≤ t)(· · ·) or (∃x ≤ t)(· · ·) where t is a

term not involving x . These may be used as abbreviations for (∀x)(x ≤ t ⊃ · · ·)
and (∃x)(x ≤ t ∧ · · ·), respectively; or, alternatively, the syntax of first-order logic
may be expanded to incorporate bounded quantifiers directly. In the latter case,
the sequent calculus is enlarged with additional inference rules, shown in section 1.4.
A usual quantifier is called an unbounded quantifier; when |x| is in the language, a
bounded quantifier of the form (Qx ≤ |t|) is called a sharply bounded quantifier.

A theory is said to be bounded if it is axiomatizable with a set of bounded formulas.
Since free variables in axioms are implicitly universally quantified, this is equivalent
to being axiomatized with a set of Π1 -sentences (which are defined in section 1.2.1).

1.1. Very weak fragments of arithmetic

The most commonly used induction-free fragment of arithmetic is Robinson’s
theory Q , introduced by Tarski, Mostowski and Robinson [1953]. The theory Q has
non-logical symbols 0, S , + and · and is axiomatized by the following six axioms:

(∀x)(¬Sx 6= 0)

(∀x)(∀y)(Sx = Sy ⊃ x = y)

(∀x)(x 6= 0 ⊃ (∃y)(Sy = x))

(∀x)(x + 0 = x)

(∀x)(∀y)(x + Sy = S(x + y))

(∀x)(x · 0 = 0)

(∀x)(x · Sy = x · y + x)

Unlike most of the theories of arithmetic we consider, the language of Q does not
contain the inequality symbol; however, we can conservatively extend Q to include
≤ by giving it the defining axiom:

x ≤ y ↔ (∃z)(x + z = y).
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This conservative extension of Q is denoted Q≤ .
A yet weaker theory is the theory R , also introduced by Tarski, Mostowski

and Robinson [1953]. This has the same language as Q and is axiomatized by the
following infinite set of axioms, where we let s ≤ t abbreviate (∃z)(s + z = t).

Sm0 6= Sn0 for all 0 ≤ m < n,

Sm0 + Sn0 = Sm+n0 for all m,n ≥ 0,

Sm0 · Sn0 = Sm·n0 for all m,n ≥ 0,

(∀x)(x ≤ Sm0 ∨ Sm0 ≤ x) for all m ≥ 0, and

(∀x)(x ≤ Sm0 ↔ x = 0 ∨ x = S0 ∨ x = S20 ∨ · · · ∨ x = Sm0)
for all m ≥ 0.

We leave it to the reader to prove that Q ² R .

1.2. Strong fragments of arithmetic

This section presents the definitions and the basic capabilities of some strong
fragments of arithmetic. These fragments are defined by using induction axioms,
minimization axioms or collection axioms; these axioms do not always apply to all
first-order formulas, but rather apply to formulas that satisfy certain restrictions on
quantifier alternation. For this purpose, we make the following definitions:

1.2.1. Definition. A formula is called a bounded formula if it contains only
bounded quantifiers. The set of bounded formulas is denoted ∆0 . For n ≥ 0, the
classes Σn and Πn of first-order formulas are inductively defined by:

(1) Σ0 = Π0 = ∆0 ,

(2) Σn+1 is the set of formulas of the form (∃~x)A where A ∈ Πn and ~x is a possibly
empty vector of variables.

(3) Πn+1 is the set of formulas of the form (∃~x)A where A ∈ Σn and ~x is a possibly
empty vector of variables.

These classes Σn , Πn form the arithmetic hierarchy.

1.2.2. Definition. The induction axioms are specified as an axiom scheme; that
is, if Φ is a set of formulas then the Φ-IND axiom are the formulas

A(0) ∧ (∀x)(A(x) ⊃ A(Sx)) ⊃ (∀x)A(x),

for all formulas A ∈ Φ. Note that A(x) is permitted to have other free variables in
addition to x . Similarly, the least number principle axioms or minimization axioms
for φ are denoted Φ-MIN and consist of all formulas

(∃x)A(x) ⊃ (∃x)(A(x) ∧ ¬(∃y)(y < x ∧ A(y))),
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for all A ∈ Φ. Likewise, the collection or replacement axioms for Φ are denoted
Φ-REPL and consist of the formulas

(∀x ≤ t)(∃y)A(x, y) ⊃ (∃z)(∀x ≤ t)(∃y ≤ z)A(x, y),

for all A ∈ Φ.

1.2.3. Definition. The above axioms form the basis for a hierarchy of strong
fragments of arithmetic over the language containing the non-logical symbols 0, S ,
+, · and ≤ . The theory IΣn is defined to be the theory axiomatized by the eight
axioms of Q≤ plus the Σn -IND axioms. Of particular importance is the special case
of the theory I∆0 which defined as Q≤ plus the ∆0 -IND axioms. The theory LΣn is
defined to be the theory I∆0 plus the Σn -MIN axioms. Similarly, BΣn is the theory
consisting of I∆0 plus the Σn -REPL axioms. Other theories, especially IΠn , LΠn

and BΠn , can be defined similarly.
The theory of Peano arithmetic, PA , is defined to be the theory Q plus induc-

tion for all first-order formulas. The figure below shows that PA also admits the
minimization and replacement axioms for all formulas.

1.2.4. The figure below shows the containments between the various strong frag-
ments of arithmetic, where S ⇒ T indicates that the theory S logically implies the
theory T . The two arrows IΣn+1 ⇒ BΣn+1 and BΣn+1 ⇒ IΣn do not reverse, i.e.,
the containments are proper. These facts are due to Parsons [1970] and Paris and
Kirby [1978]. (The figure is taken from the latter reference.)

IΣn+1

⇓
BΣn+1⇐⇒BΠn

⇓
IΣn ⇐⇒ IΠn⇐⇒LΣn⇐⇒LΠn

Most of these containments are proved in section 1.2.9. The fact that BΣn+1 is a
subtheory of IΣn+1 is proved as Theorem 1.2.9 below. The fact that it is a proper
subtheory of IΣn+1 is proved as Theorem 3.4.2.

1.2.5. Σ+
n and Π+

n formulas. Some authors use a different definition of the
arithmetic hierarchy than definition 1.2.1. These alternative classes, which we denote
Σ+

n and Π+
n , are inductively defined by

(1) Σ+
0 = Π+

0 = ∆0 ,

(2) Σ+
n+1 is the set of formulas obtained by prepending an arbitrary block of exis-
tential quantifiers and bounded universal quantifiers to Π+

n -formulas.

(3) Π+
n+1 is the set of formulas obtained by prepending an arbitrary block of universal
quantifiers and bounded existential quantifiers to Σ+

n -formulas.
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Thus Σ+
n and Π+

n are defined analogously to Σn and Πn , except arbitrary bounded
quantifiers may be inserted without adding to the quantifier complexity.

It is straightforward to prove that Σn -REPL proves that every Σ+
n -formula is

equivalent to a Σn -formula, using induction on the number of unbounded quantifiers
which are in the scope of a bounded quantifier, with a sub-induction on the number of
bounded quantifiers which have the outermost unbounded quantifier in their scope.
Therefore, IΣ+

n is equivalent to IΣn and BΣ+
n is equivalent to BΣn .

1.2.6. Bootstrapping I∆0 , Phase 1

The axioms of Q are very simplistic and, by themselves, do not imply many
elementary facts about addition and multiplication, such as commutativity and as-
sociativity. When combined with induction axioms, however, the axioms of Q imply
many basic facts about the integers. The process of establishing such basic facts as
commutativity and associativity of addition and multiplication, the transitivity of ≤ ,
the totality of subtraction, etc. is called bootstrapping, named after the expression
“to lift oneself by one’s bootstraps”. That is to say, in order to use the full power of
a set of axioms, it is necessary to do some relatively tedious work establishing that
the axioms of Q are sufficient as a base theory.

This section will give a sketch of the bootstrapping process for I∆0 ; to keep
things brief, only an outline will be given, with most of the proofs left to the
reader. Because I∆0 is a subtheory of all the strong fragments defined above, this
bootstrapping applies equally well to all of them.

To begin the bootstrapping process, show that the following formulas are I∆0

provable.
(a) Addition is commutative: (∀x, y)(x + y = y + x). In order to prove this, first

prove the formulas (a.1) (∀x)(0 + x = x) and (a.2) (∀x, y)(Sx + y = S(x + y)). In
order to prove (a.1), use induction on the formula 0 + x = x , and to prove (a.2),
use induction on Sx + y = S(x + y) with respect to the variable y . Note that the
variable x is being used as a parameter in the latter induction. From these two, one
can use induction on x + y = y + x and prove the commutativity of addition.

(b) Addition is associative: (∀x, y, z)((x + y) + z = x + (y + z)). Use induction
on (x + y) + z = x + (y + z).

(c) Multiplication is commutative: (∀x, y)(x · y = y · x). Analogously to (a), first
prove (c.1) 0 · x = 0 and (c.2) (Sx) · y = x · y + y by induction with respect to x and
y , respectively.

(d) Distributive law: (∀x, y, z)((x + y) · z = x · z + y · z). Use induction.
(e) Multiplication is associative: (∀x, y, z)((x · y) · z = x · (y · z)). Use induction.
(f) Cancellation laws for addition: (∀x, y, z)(x + z = y + z ↔ x = y) and

(∀x, y, z)(x+z ≤ y+z ↔ x ≤ y). Use induction w.r.t. z for the forward implications.
(g) Discreteness of ≤: (∀x, y)(x ≤ Sy ⊃ x ≤ y ∨ x = Sy). This can be proved

from Q without any induction: if x ≤ Sy , then x + z = Sy for some z ; either z = 0
so x = Sy , or there is a u such that u = Sz and so x + Su = Sy , in which case
x + u = y and thus x ≤ y .
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(h) Transitivity of ≤: (∀x, y, z)(x ≤ y ∧ y ≤ z ⊃ x ≤ y). Follows from Q and
the associativity of addition.

(i) Anti-idempotency laws: (∀x, y)(x + y = 0 ⊃ x = 0 ∧ y = 0) and
(∀x, y)(x · y = 0 ⊃ x = 0 ∨ y = 0). These both follow from Q without any induction.
Use the fact that if y 6= 0, then y = Sz for some z .

(j) Reflexivity, trichotomy and antisymmetry of the ≤ ordering: (∀x)(x ≤ x),
(∀x, y)(x ≤ y ∨ y ≤ x) and (∀x, y)(x ≤ y ∧ y ≤ x ⊃ x = y). To prove trichotomy,
use induction on y ; the argument splits into two cases, depending on whether x ≤ y
or y + Sz = x for some z . To prove antisymmetry, reason as follows: if x + u = y
and y + v = x , then x+u+ v = x , so by the cancellation law for addition, u+ v = 0
and by anti-idempotency u = v = 0 and thus x = y .

(k) Cancellation laws for multiplication: (∀x, y, z)(z 6= 0 ∧ x · z = y · z ⊃ x = y)
and (∀x, y, z)(z 6= 0 ∧ x · z ≤ y · z ⊃ x ≤ y). These can be proved using (j) to have
x = y or x + Sv = y or y + Sv = x for some v . Then use the distributive law, the
anti-idempotency of multiplication, and the cancellation laws for addition.

(l) Strict inequality: s < t is an abbreviation for S(s) ≤ t . Thus, we can use
bounded existential quantifiers (∀x < t)(· · ·) to mean (∀x ≤ t)(x < t ⊃ · · ·), and
similarly for bounded universal quantifiers.

Theorem. I∆ ` ∆0-MIN.

Proof. The minimization axiom for A(x) is easily seen to be equivalent to complete
induction on ¬A(x), namely to

(∀y)(((∀z < y)¬A(z)) ⊃ ¬A(y)) ⊃ (∀x)¬A(x).

This is equivalent to induction on the bounded formula (∀y ≤ x)(¬A(y)), and
therefore is provable in I∆0 .

1.2.7. Extending the language of arithmetic.

We now introduce two useful means of conservatively extending the language of
arithmetic with definitions of new predicate symbols and function symbols. It will
be of particular importance that we can use the new function and predicate symbols
in induction formulas.

Definition. A predicate symbol R(~x) is ∆0 -defined if it has a defining axiom

R(~x) ↔ φ(~x)

with φ a ∆0 -formula with all free variables as indicated.

The predicate R is ∆1 -defined by a theory T if there are Σ1 formulas φ(~x) and
ψ(~x) such that R has the defining axiom above and T ` (∀~x)(φ ↔ ¬ψ).
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Definition. Let T be a theory of arithmetic. A function symbol f(~x) is Σ1 -defined
by T if it has a defining axiom

y = f(~x) ↔ φ(~x, y),

where φ is a Σ1 formula with all free variables indicated, such that T proves
(∀~x)(∃!y)φ(~x, y).2

The Σ1 -definable functions of a theory are sometimes referred to as the provably
recursive or provably total functions of the theory. To see that this a reasonable
definition for “provably recursive”, let M be a Turing machine which computes a
function y = M(x). Also choose some scheme for encoding computations of M
and let TM(x,w, y) be the predicate expressing “w encodes a computation of M on
input x which outputs y .” From the bootstrapping below, it can be seen that the
predicate TM can be a bounded formula. Therefore, the function computed by M
can be Σ1 -defined by the (true) formula (∀x)(∃!y)(∃w)(TM(x,w, y)). Conversely, for
any true sentence (∀~x)(∃!y)φ(~x, y) with φ a Σ1 -formula, the function mapping ~x to
y can be computed by a Turing machine that, given input values for ~x , searches for
a value for y and for values of the existential quantified variables in φ which witness
the truth of (∃y)φ(~x, y).

In the case of Σ1 -definability of functions in I∆0 , it is possible to give a stronger
equivalent condition; this is based on the following theorem of Parikh [1971]:

1.2.7.1. Parikh’s Theorem. Let A(~x, y) be a bounded formula and T be a
bounded theory. Suppose T ` (∀~x)(∃y)A(~x, y). Then there is a term t such that
T also proves (∀~x)(∃y ≤ t)A(~x, y).

The above theorem is stated with y a single variable, but it also holds for a vector of
existentially quantified variables. A proof-theoretic proof of a generalization of this
theorem is sketched in section 1.4.3 below.

It is easily seen that I∆0 is a bounded theory, since the defining axiom for ≤ may
be replaced by the (I∆0 -provable) formula

x ≤ y ↔ (∃z ≤ y)(x + z = y),

and the induction axioms may be replaced by the equivalent axioms

(∀z)(A(0) ∧ (∀x ≤ z)(A(x) ⊃ A(Sx)) ⊃ A(z)).

Thus applying Parikh’s theorem gives the following theorem. Its proof is straightfor-
ward and we leave it to the reader.

2The notation (∃!y) means “there exists a unique y such that · · ·”. This is not part of the
syntax of first-order logic; but is rather an abbreviation for a more complicated first-order formula.
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1.2.7.2. Theorem. A function symbol f(~x) is Σ1 -defined by I∆0 if and only if it
has a defining axiom

y = f(~x) ↔ φ(~x, y),

and it has a bounding term t(~x) such that φ is a ∆0 formula with all free variables
indicated and I∆0 proves (∀~x)(∃!y ≤ t)φ(~x, y).3

A predicate symbol R is ∆1 -defined by I∆0 if and only if it is ∆0 -defined by I∆0

(and furthermore, I∆0 can prove the equivalence of the two definitions).

The next theorem states the crucial fact about Σ1 -definable functions that they
may be used freely without increasing the quantifier complexity of formulas, even
when reexpressed in the original language of arithmetic.

1.2.7.3. Theorem.
(Gaifman and Dimitracopoulos [1982,Prop 2.3], see also Buss [1986,Thm 2.2].)

(a) Let T ⊇ BΣ1 be a theory of arithmetic. Let T be extended to a theory T+ in an
enlarged language L+ by adding ∆1 -defined predicate symbols, Σ1 -defined function
symbols and their defining equations. Then T+ is conservative over T . Also, if i ≥ 1
and if A is a Σi - (respectively, Πi -) formula in the enlarged language L+ , then there
is a formula A− in the language of T such that A is also in Σi (respectively, Πi ) and
such that

T+ ` (A ↔ A−).

(b) The same results holds for T ⊇ Q a bounded theory in the language 0, S, +, · and
i = 0, i.e., for the class ∆0 .

Proof. We first sketch the proof for part (b). The proof shows that the new symbols
can be eliminated from a formula A by induction on the number of occurrences
of the new ∆0 -defined predicate symbols and Σ1 -defined function symbols in A .
Firstly, any atomic formula involving a ∆0 -defined R may just be replaced by the
defining equation for R . Secondly, eliminate Σ1 -defined function symbols from
terms in quantifier bounds, by replacing each bounded quantifier (∀x ≤ t)(· · ·)
by (∀x ≤ t∗)(x ≤ t ⊃ · · ·) where t∗ is obtained from t by replacing every new
Σ1 -defined function symbol with its bounding term; and by similarly replacing
bounds on existential bounded quantifiers. Thirdly, repeatedly replace any atomic
formula P (f(~s)) where s does not involve any new function symbols by either of the
formulas

(∃z ≤ t(~s))(Af (~s, z) ∧ P (z))

or
(∀z ≤ t(~s))(Af (~s, z) ⊃ P (z)),

where Af is the ∆0 -formula which Σ1 -defined f , and t is the bounding term of f .
It is easy to see that each step removes new function and predicate symbols

from A and preserves equivalence to A and this proves (b).

3The notation (∃!y ≤ t)(· · ·) means “there is a unique y such that · · · , and this y is ≤ t”.
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The proof of part (a) is similar, but needs a little modification. Most notably,
there is no bounding term t , so the two formulas which can replace P (f(~s)) use an
unbounded quantification of z and are thus in Σ1 and Π1 , respectively. Since Af is
a Σi -formula, it is necessary to pick the correct one of the two formulas for replacing
P (f(~s)): since the first is Σ1 and the second is Π1 there is always an appropriate
choice that does not increase the alternation of unbounded quantifiers. Also, in
order to remove new function symbols from the terms in bounded quantifiers, it is
necessary to use the Σ1 -replacement axioms. We leave the details to the reader. 2

As an immediate corollary to the previous theorem, we get the following important
bootstrapping fact.

Corollary. Let T be I∆0 , IΣn or BΣn for n ≥ 1. Then in the conservative
extension of T with Σ1 -defined function symbols and ∆1 -defined function symbols,
the new function and predicate symbols may be used freely in induction, minimization
and replacement axioms.

1.2.8. Bootstrapping I∆0 , Phase 2

To begin the second phase of the bootstrapping for I∆0 , several elementary
functions and relations are shown to be Σ1 - and ∆0 -definable in I∆0 .

(a) Restricted subtraction. The function x .− y which equals max{0, x − y} can
be Σ1 -defined by I∆0 by the formula

M(x, y, z) ⇔ (y + z = x) ∨ (x ≤ y ∧ z = 0).

The existence of z follows immediately from the trichotomy of ≤ ; thus I∆0 can
prove (∀x, y)(∃z ≤ x)M(x, y, z). Furthermore, I∆0 can prove the uniqueness of z
satisfying M(x, y, z) using the cancellation law for addition. This then is a Σ1 -
definition of the restricted subtraction function.

(b) Predecessor. The predecessor function is easily Σ1 -defined by y = x .− 1.
(c) Division. The division function (x, y) 7→ bx/yc can be Σ1 -defined by ∆0

using the formula

M(x, y, z) ⇔ (y · z ≤ x ∧ x < y(z + 1)) ∨ (y = 0 ∧ z = 0).

Note that in order to make the division function total, we have arbitrarily defined
x/0 to equal 0. The existence of z is proved using induction on the formula
(∃z ≤ x)M(x, y, z). The uniqueness of z is provable as follows, arguing inside
I∆0 : suppose M(x, y, z) and M(x, y, z′), w.l.o.g. z ≤ z′ ; thus, using restricted
subtraction and the distributive law, (z′ .− z)(y + 1) < y + 1; and from this, z′ = z
follows easily.

Two particularly useful special cases of division are when the divisor is two or
four, i.e., b1

2
xc and b1

4
xc .

(d) Remainder. The remainder function is Σ1 -definable in I∆0 since
x mod y = x .− y · bx/yc . The divides relation, x|y , is defined by y mod x = 0.
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(e) Square root. The square root function x 7→ b√xc is Σ1 -definable I∆0 with
the formula

M(x, y) ⇔ y · y ≤ x ∧ x < (y + 1)(y + 1).

(f) Primes. The set of primes is ∆0 -definable by the formula

(∀y ≤ x)(y|x ⊃ y = x ∨ y = 1) ∧ 1 < x.

I∆0 can prove many useful facts about primes and remainders. In particular, it
proves that if x is prime and x|ab then x|a or x|b . The sequence coding tools
developed below will enable I∆0 to prove the unique factorization theorem; however,
more bootstrapping is needed before we can even express the unique factorization
theorem in first-order logic.

(g) Prime powers. The predicate “x is prime and y is a power of x” is ∆0 -
definable by

x is prime and (∀z ≤ y)(1 < z ∧ z|y ⊃ x|z) .

I∆0 can prove simple properties about prime powers, such as the fact that if y is a
power of the prime x then x · y is the least power of x greater than y . This fact can
be proved by using ∆0 -minimization with respect to y .

The bootstrapping is not yet sufficiently developed for us to give ∆0 definitions of
powers of composite numbers; however, we shall next define powers of prime powers.

(h) Powers of two, of four, and of prime powers. We already have shown how
to define powers of the prime two. For powers of fours, we can give two equivalent
definitions:

y is a power of four ⇔ y is a power of two and y mod 3 = 1,

and
y is a power of four ⇔ y is a power of two and y = (b√yc)2 .

The equivalence of these definitions can be proved using ∆0 -induction with respect
to y . I∆0 can also prove that when y < y′ are a powers of four, then y|y′ and that
when y is a power of four, then 4y is the least power of four greater then y .

More generally, the predicate “x is a prime power and y is a power of x” can be
∆0 -defined by

(∃p ≤ x)(p is prime, x and y are powers of p , and y mod (x− 1) = 1).

(i) The LenBit function is defined so that LenBit(2i, x) is equal to the i-th bit in
the binary expansion of x , where the least significant bit is by convention the zeroth
bit. This is Σ1 -definable by I∆0 since LenBit(y, x) = bx/yc mod 2. Although it is
defined for all values y , we shall use LenBit(y, x) only when y is a power of two.

The next theorem states that I∆0 can prove that the binary representation of
a number uniquely determines the number. This theorem also introduces a new
notation; namely, we will write quantifiers of the form (∀2i) and (∃2i) to mean, “for
all powers of two” and “there exists a power of two.” It is important to note that
although we use this notation for quantifying over powers of two, we have not yet
shown how to ∆0 -define i in terms of 2i .
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Theorem. I∆0 proves (∀x)(∀y < x)(∃2i ≤ x)(LenBit(2i, x) > LenBit(2i, y)).

To prove the theorem, I∆0 uses strong induction with respect to x and argues that if
2i is the greatest power of two less than x , then LenBit(2i, x) equals one, and then,
when LenBit(2i, y) also equals one, applies the induction hypothesis to x .− 2i and
y .− 2i . 2

(j) We next show how to ∆0 -define the relation x = 2y as a predicate of x and y .
As a preliminary step, we consider numbers of the form

mp =

p∑
i=0

22p

for p ≥ 0 and show that these numbers are ∆0 -definable. In fact, the set {mp}p is
definable by the formula

LenBit(1, x) = 0 ∧ LenBit(2, x) = 1∧
∧(∀2i ≤ x)(2 < 2i ⊃

[LenBit(2i, x) = 1 ↔ (2i is a power of 4 ∧ LenBit(
⌊√

2i
⌋

, x) = 1)])

As an immediate corollary we get a ∆0 -formula defining the the numbers of the
form x = 22p

; namely, they are the powers of two for which LenBit(x,mp) = 1 holds
for some mp < 2x .

Now the general idea of defining 2y is to express y in binary notation as y =
2p1 + 2p2 + · · ·+ 2pk with distinct values pj , and thus define x =

∏k
j=1 22pj

. To carry
this out, we define an extraction function Ext(u, x) which will be applied when u is
of a number of the form 22p

. Formally we define

Ext(u, x) = bx/uc mod u.

Note that when u = 22p
, then Ext(u, x) returns the number with binary expansion

equal to the 2p -th bit through the (2p+1 − 1)-th bit of x . We will think of x coding
the sequence of numbers Ext(22p

, x) for p = 0, 1, 2, . . . . We also define Ext′(u, x) as
Ext(u2, x); this is of course the number which succeeds Ext(u, x) in the sequence of
numbers coded by x .

We are now ready to ∆0 -define x = 2i . We define it with a formula φ(x, i) which
states there are numbers a, b, c, d ≤ x2 such that the following hold:

(1) a is of the form mp and a > x .

(2) Ext(2, b) = 1, Ext(2, c) = 0 and Ext(2, d) = 1.

(3) For all u of the form 22p
such that a > u2 , Ext′(u, b) = 2 · Ext(u, b),

(4) For all u of the form 22p
such that a > u2 , either

(a) Ext′(u, c) = Ext(u, c) and Ext′(u, d) = Ext(u, d), or

(b) Ext′(u, c) = Ext(u, c) + Ext(u, b) and Ext′(u, d) = Ext(u, d) · Ext(u, a).

(5) There is a u < a of the form 22p
such that Ext(u, c) = i and Ext(u, d) = x .
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Obviously this is a ∆0 -formula; we leave it to the reader the nontrivial task of
checking that I∆0 can prove simple facts about this definition of 2i , including (1) the
fact that if φ(x, i) and φ(x, j) both hold, then i = j , (2) the fact that 2i · 2j = 2i+j ,
(3) the fact that if x is a power of two, then x = 2i for some i < x , and (4) that if
φ(x, i) and φ(y, i) then x = y .

(k) Length function. The length function is |x| = dlog2(x + 1)e and can be
∆0 -defined in I∆0 as the value i such that y = 2i is the least power of two greater
than x . Note that |0| = 0 and for x > 0, |x| is the number of bits in the binary
representation of x .

The reader should check that I∆0 can prove elementary facts about the |x|
function, including that |x| ≤ x and that 36 < x ⊃ |x|2 < x .

(l) The Bit(i, x) function is definable as LenBit(2i, x). This is equivalent to a
∆0 -definition, since when 2i > x , Bit(i, x) = 0. Bit(i, x) is the i-th bit of the binary
representation of x ; by convention, the lowest order bit is bit number 0.

(m) Sequence coding. Sequences will be coded in the base 4 representation used
by Buss [1986]; many prior works have used similar encodings. A number x is viewed
as a bit string in which pairs of bits code one of the three symbols comma, “0” or
“1”. The i-th symbol from the end is coded by the two bits Bit(2i + 1, x) and
Bit(2i, x). This is best illustrated by an example: consider the sequence 〈3, 0, 4〉 .
Firstly, a comma is prepended to the the sequence and the entries are written in base
two, preserving the commas, as the string: “,11,,100”; leading zeros are optionally
dropped in this process. Secondly, each symbol in the string is replaced by a two
bit encoding by replacing each “1” with “11”, each “0” with “10”, and each comma
with “01”. This yields “0111110101111010” in our example. Thirdly, the result is
interpreted as a binary representation of a number; in our example it is the integer
32122. This then is a Gödel number of the sequence 〈3, 0, 4〉 .

This scheme for encoding sequences has the advantage of being relatively efficient
from an information theoretic point of view and of making it easy to manipulate
sequences. It does have the minor drawbacks that not every number is the Gödel
number of a sequence and that Gödel numbers of sequences are non-unique since it
is allowable that elements of the sequence be coded with excess leading zeros.

Towards arithmetizing Gödel numbers, we define predicates Comma(i, x) and
Digit(i, x) as

Comma(i, x) ⇔ Bit(2i + 1, x) = 0 ∧ Bit(2i, x) = 1

Digit(i, x) = 2 · (1 .− Bit(2i + 1, x)) + Bit(2i, x).

Note Digit equals zero or one for encodings of “0” and “1” and equals 2 or 3 otherwise.
It is now fairly simple to recognize and extract values from a sequence’s Gödel

number. We define IsEntry(i, j, x) as

(i = 0 ∨ Comma(i .− 1, x)) ∧ Comma(j, x) ∧ (∀k < j)(k ≥ i ⊃ Digit(j, x) ≤ 1)

which states that the i-th through (j − 1)-st symbols coded by x code an entry in
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the sequence. And we define Entry(i, j, x) = y by

|y| ≤ j .− i ∧ (∀k < j .− i)(Bit(k, y) = Digit(i + k, x)).

When IsEntry(i, j, x) is true, then Entry(i, j, x) equals the value of that entry in the
sequence coded by x . Checking that Entry is ∆0 -definable by I∆0 is left to the
reader; note that the quantifier (∀k < j .− i) may be replaced by a sharply bounded
quantifier since, w.l.o.g., j ≤ |x| .

(n) Length-bounded counting and Numones . Although we have defined Entry
already, we are not quite done with arithmetizing sequence coding; in particular, we
would like to define the Gödel beta function, β(i, x), which equals the i-th entry
of the sequence coded by x . One way to do this would be by encoding a sequence
of numbers 〈an, an−1, . . . , a1〉 as the sequence 〈bn, . . . , b1〉 where bi = 〈i, ai〉 . The
drawback of this approach is that when the values ai are small, the length of the
Gödel number encoding the sequence 〈~b〉 is longer than the length of the Gödel
number encoding the sequence 〈~a〉 ; in fact, it is longer by a logarithmic factor and

thus the function 〈~a〉 7→ 〈~b〉 cannot be ∆0 -defined by I∆0 by virtue of the function’s
superlinear growth rate.

Upon reflection, one sees that the basic difficulty in defining the β function
is the difficulty of counting the number of commas encoded in a Gödel number
of a sequence. This basically the same as the problem as counting of ones in
the binary representation of a number x . Supposing x has binary representation
(xnxn−1 · · · x1x0)2 , we would like to be able to let a0 = x0 and ai = ai−1+xi and then
let bi = 〈i, ai〉 and finally let y be the Gödel number of the sequence 〈bn, . . . , b1〉 .
Now, I∆0 can prove that, if y exists, it is unique, and from y the number of 1’s in the
binary representation of x is easily computed. The catch is that, as above, 〈~b〉 will
in general not be bounded by a term involving x since its length is not necessarily
O(|x|). However, the length of the Gödel number of 〈~b〉 is O(|x|2) so this this method
does work when x is small; in particular, it works if x = |y| for some y . Thus, I∆0

can Σ1 -define the function LenNumones defined so that

LenNumones(y) = the number of 1’s in the binary representation of |y| .
To define a Numones function that works for all numbers, we use a trick that
allows more efficient encoding of successive numbers. The basic idea is that a
sequence a1, a2, a3, . . . , ak of numbers can be encoded with fewer bits if, when writing
the number ai+1 , one only writes the bits of ai+1 which are different from the
corresponding bits in ai . This works particularly well when we have ai ≤ ai+1 ≤ ai+1
for all i ; in this case we formally define the succinct encoding as follows: for i > 0,
define i∗ to be the greatest power of 2 which divides i ; and define 0∗ to equal 0. Now
define a′0 = a0 and define a′i to be a∗i if ai 6= ai−1 or to be 0 otherwise. (Example: if
a = 24, then a′ = 8.) Then the sequence ~a can be more succinctly described by ~a′ .

It is now important to see that I∆0 can extract the sequence 〈~a〉 from the
sequence 〈~a′〉 , at least in a certain limited sense. In particular, we have that if
x = 〈a′k, . . . , a′1, a′0〉 and if IsEntry(i, j, x) and if this entry is the entry for a′` , then the
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value a` can be Σ1 -defined in terms of i, j, x . To describe this Σ1 -definition, note that
the k -th bit of the binary representation of a` is computed by finding the maximum
values i0 < j0 ≤ i such that IsEntry(i0, j0, x) and such that |Entry(i0, j0, x)| > k
and letting the k -th bit of a` equal the k -th bit of Entry(i0, j0, x).

The whole point of using 〈~a′〉 is to give a sufficiently succinct encoding of 〈~a〉 . Of
course, the fact that the encoding is sufficiently succinct also needs to be provable
in I∆0 . It is easily checked that the Gödel number of the sequence 〈0∗, 1∗, . . . , x∗〉
uses exactly 6x − 2Numones(x) + 2 many bits; this is proved by first showing that
there are 2x − Numones(x) bits in the numbers in the sequence, i.e.,

∑x
i=0 |i∗| =

2x−Numones(x), and second noting that there are x + 1 commas, and noting that
each bit and comma is encoded by two bits in the Gödel number. Furthermore, when
x = |y| for some y , I∆0 can prove this fact, using LenNumones in place of Numones .

We are now able to Σ1 -define the function Numones(x) equal to the number of
1’s in the binary representation of x . This is done by defining the sequence

u = 〈〈k∗, a′k〉, 〈(k − 1)∗, a′k−1〉, . . . , 〈0, a′0〉〉

such that k = |x| , a0 = 0, and each ai+1 is equal to ai + Bit(i, x). By the consider-
ations in the previous paragraph, I∆0 can prove that this sequence is bounded by a
term involving only x ; also, I∆0 can compute the values of 0, . . . , k from 0∗, . . . , k∗

and therefore can compute the values of ai as a function of i and u .
(o) Sequence coding. Once we have the Numones function, it is an easy matter

to define the Gödel β function by counting commas. The β function is defined so
that β(m,x) = am provided x is the Gödel number of a sequence 〈a1, . . . , ak〉 with
m ≤ k . It is also useful to define the length function Len(x) which equals k when
x is as above. These are defined easily in terms of the Numones function: the value
β(m,x) equals Entry(i, j, x) where there are m− 1 commas encoded in x to the left
of bit i ; and Len(x) equals the number commas coded by x .

Once sequence encoding has been achieved, the rest of the bootstrapping process
is fairly straightforward. The next stage in bootstrapping is to arithmetize meta-
mathematics, and this is postponed until section 2 below. Stronger theories, such as
IΣ1 , can define all primitive recursive functions: this is discussed in section 1.2.10.

1.2.9. Relationships amongst the axioms of PA

We are now ready to sketch the proofs of the relationships between the
various fragments of Peano arithmetic pictured in paragraph 1.2.4 above.

Theorem. Let n ≥ 0.

(a) BΠn ² BΣn+1 .

(b) IΣn+1 ² BΣn+1 .

(c) If A(x, ~w) ∈ Σn and t is a term, then BΣn can prove that (∀x ≤ t)A(x, ~w) is
equivalent to a Σn -formula.



Proof Theory of Arithmetic 95

Proof. To prove (a), suppose A(x, y) is a formula in Σn+1 . We want to show that

(∀x ≤ u)(∃y)A(x, y) ⊃ (∃v)(∀x ≤ u)(∃y ≤ v)A(x, y).

is a consequence of BΠn . This is proved by the following trick: take all leading
existential quantifiers (∃~z) from the beginning of A and replace these quantifiers
and the existential quantifier (∃y) by a single existential quantifier (∃w) which
is intended to range over Gödel numbers of sequences coding values for all of the
variables y and ~z , say by letting β(1, w) = y and letting β(i + 1, w) be a value for
the i-th variable in ~z . Since y = β(1, w) < w , it follows that the collection axiom
for this new formula implies the collection axiom for A .

Part (c) is proved by induction on n . Note that (c) is obvious when n = 0. For
n > 0, (c) is proved by noting that, by using a sequence to code multiple values, we
may assume without loss of generality that there is only one (unbounded) existential
quantifier at the front of A , so A is (∃y)B with B ∈ Πn−1 . Then (∀x ≤ t)A is
equivalent to (∃u)(∀x ≤ t)(∃y ≤ u)B ; and finally by using the induction hypothesis
that (c) holds for n − 1, we have that (∃y ≤ u)B is equivalent to a Πn−1 -formula.
From this (∃u)(∀x ≤ t)A is equivalent to a Σn -formula.

We prove (b) by induction on n . Suppose A(x, y) is a Σn+1 -formula, possibly
containing other free variables. We need to show that IΣn+1 proves the formula
displayed above, and by part (a) we may assume that A is a Πn -formula. We argue
informally inside IΣn+1 , assuming that (∀x ≤ u)(∃y)A(x, y) holds. Let φ(a) be the
formula

(∃v)(∀x ≤ a)(∃y ≤ v)A(x, y).

It follows from our assumption that φ(0) and that φ(a) ⊃ φ(a + 1) for all a < u .
The induction hypothesis that IΣn ² BΣn together with part (c) implies that the
formula (∀x ≤ u)(∃y ≤ v)A is equivalent to a Πn−1 -formula and thus φ is equivalent
to a Σn -formula. Therefore, by induction on φ , φ(u) holds; this is what we needed
to show. 2

With the aid of the above theorem, the other relationships between fragments of
Peano arithmetic are relatively easy to prove. To prove that IΣn implies Πn -IND,
let A(x) be a Πn formula and argue informally inside IΣn assuming A(0) and
(∀x)(A(x) ⊃ A(x + 1)). Letting a be arbitrary, and letting B(x) be the formula
¬A(a .− x), one has ¬B(a) and B(x) ⊃ B(x + 1). Thus, by induction, ¬B(0),
and this is equivalent to A(a). Since a was arbitrary, (∀x)A(x) follows. A similar
argument shows that IΠn implies Σn -IND.

To show that the Σn -MIN axioms are consequences of IΣn , note that by the
argument given at the end of section 1.2.6 above, the minimization axiom for A(x)
follows from induction on the formula (∀x ≤ y)¬A(x) with respect to the variable y .
If A ∈ Σn , then from part (c) of the above theorem, the formula (∀x ≤ y)(¬A) is
equivalent to a Πn -formula, so the minimization axiom for A is a consequence of
IΠn = IΣn .

It is easy to derive the induction axiom for A from the minimization axiom for A ,
so LΣn = LΠn = IΣn = IΠn .
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Finally, the theorem of Clote [1985] that the strong Σn -replacement axioms are
consequences of IΣn can be proved as follows. Assume n ≥ 1 and A ∈ Σn and
consider the strong replacement axiom

(∃w)(∀x ≤ a)[(∃y)A(x, y) ↔ A(x, β(x + 1, w))].

for A . (Note A may have free variables other than x, y .) Let NumA(u) be a Σn -
formula which expresses the property that there exists a w for which A(x, β(x+1, w))
holds for at least u many values of x ≤ a . Clearly NumA(0) holds and NumA(a+2)
fails. So, by Σn -maximization (which follows easily from Σn -minimization), there is
a maximum value u0 ≤ a + 1 for which NumA(u0) holds. A value w that works for
this u0 satisfies the strong replacement axioms for A .

1.2.10. Definable functions of IΣn .

When bootstrapping theories stronger than I∆0 , such as IΣn for n > 0, the main
theorem of section 1.2.7 still applies, and ∆1 -definable predicates and Σ1 -definable
functions may be introduced into the language of arithmetic and used freely in
induction axioms, without increasing the strength of the theory. Of particular
importance is the fact that the primitive recursive functions can be Σ1 -defined in
(any theory containing) IΣ1 .

Definition. The primitive recursive functions are functions on N and are induc-
tively defined as follows:

(1) The constant function with value 0 is primitive recursive. We can view this a
nullary function.

(2) The unary successor function S(x) = x + 1 is primitive recursive.

(3) For each 1 ≤ k ≤ n , then n-ary projection function πn
k (x1, . . . , xn) = xk is

primitive recursive.

(4) If g is an n-ary primitive recursive function and h1, . . . , hn are m-ary
primitive recursive functions, then the m-ary function f defined by
f(~x) = g(h1(~x), . . . hn(~x)) is primitive recursive.

(5) If n ≥ 1 and g is an (n − 1)-ary primitive recursive function and h is an
(n + 1)-ary primitive recursive function, then the n-ary function f defined by:

f(0, ~x) = g(~x)

f(m + 1, ~x) = h(m, f(m,~x), ~x)

is primitive recursive.

The only use of the projection functions is as a technical tool to allow generalized
substitutions with case (4) above.

A predicate is primitive recursive if its characteristic function is primitive recur-
sive.
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Theorem. IΣ1 can Σ1 -define the primitive recursive functions.

The converse to this theorem holds as well; namely, IΣ1 can Σ1 -define exactly the
primitive recursive functions. This converse is proved later as Theorem 3.1.1.

Proof. It is obvious that the base functions, zero, successor and projection, are
Σ1 -definable in IΣ1 . It is easy to check that set of functions Σ1 -definable by IΣ1 is
closed under composition. Finally suppose that g and h are IΣ1 -definable in IΣ1 .
Then, the function f defined from g and h by primitive recursion can be Σ1 -defined
with the following formula expressing f(m,~x) = y :

(∃w)[Len(w) = m + 1 ∧ y = β(m + 1, w) ∧ β(1, w) = g(~x) ∧
(∀i < m)(β(i + 2, w) = h(i, β(i + 1, w), ~x))].

This formula expresses the condition that there is a sequence, coded by w , containing
all the values f(0, x), . . . , f(m,~x), such that each value in the sequence is correctly
computed from the preceding value and such that the final value is y . The theorem of
section 1.2.7 shows that the above formula defining f is (equivalent to) a Σ1 -formula.
We leave it to the reader to check that IΣ1 can prove the requisite existence and
uniqueness conditions for this definition of f . 2

As an easy consequence, we have

Corollary. Every primitive recursive predicate is ∆1 -definable by IΣ1 .

In the theories IΣn with n > 1, even more functions are Σ1 -definable. A
characterization of the functions Σ1 -definable in IΣn is given in Chapter III of this
volume. Other proof-theoretic characterizations of these functions can be found
in Takeuti [1987], Buss [1994] and in references cited therein.

1.3. Fragments of bounded arithmetic

A subtheory of Peano arithmetic is called a bounded theory of arithmetic, or a
theory of bounded arithmetic, if it is axiomatized by Π1 -formulas. The potential
strength of such theories depends partly on the growth rates of the function symbols
in the language, and usually bounded arithmetic theories have only functions of
subexponential growth rate, including addition, multiplication and possibly polyno-
mial growth rate functions such as ω1 or #. These theories are typically weaker than
the strong theories considered in section 1.2, but stronger than the theories Q and R
discussed in section 1.1.

There are two principal approaches to bounded arithmetic. The original approach
involved theories such as I∆0 and I∆0 + Ω1 ; more recently, bounded theories such
as Si

2 and T i
2 have been extensively studied. One of the main motivations for

studying bounded arithmetics is their close connection to low-level computational
complexity, especially regarding questions relating expressibility and provability in
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bounded arithmetics to questions about the linear time hierarchy and the polynomial
time hierarchy.

1.3.1. I∆0 and Ωn

We have already defined I∆0 and described its bootstrapping process in fairly
complete detail in section 1.2. One corollary of the bootstrapping process is that the
graph of exponentiation is ∆0 -definable in I∆0 ; that is to say, there is a bounded
formula exp(x, y, z) which expresses the condition xy = z and such that I∆0 can
prove facts like exp(x, 0, 1), exp(x, 1, x),

exp(x, y, z) ∧ exp(x, y′, z′) ⇒ exp(x, y + y′, z · z′)
and that for any x and y , there is at most one z such that exp(x, y, z). The
underlying idea of the ∆0 -definition of exp(x, y, z) is to define the sequence 〈xby/2ic〉i
where i ranges from |y| down to 0; however, we leave it to the reader to supply
the details behind this ∆0 -definition. The fact that exponentiation is ∆0 -definable
is essentially due to Bennett [1962] and was first (and independently) proved in the
setting of I∆0 by Gaifman and Dimitracopoulos [1982].

Once the graph of exponentiation has been shown to be ∆0 -definable, one can
formulate the axioms Ωk . Firstly, when working in bounded arithmetic, we define
log x to equal the greatest y such that 2y ≤ x . Then the function ω1(x, y) is defined
to equal xlog y . Since |ω1(x, y)| = Θ(|x| · |y|), it is evident ω1(x, y) cannot be bounded
by a polynomial of x and y . Therefore, by Parikh’s Theorem 1.2.7.1, the function ω1

is not Σ1 -definable in I∆0 . As we shall see later, it is often very desirable to have
the ω1 function be total; therefore it is common to extend I∆0 to a stronger theory
containing the axiom

Ω1 : (∀x)(∀y)(∃z)(z = ω1(x, y)).

This stronger theory is called I∆0 + Ω1 .
The function ω1 has what is called polynomial growth rate, i.e., for any term t(~a)

constructed with the functions S , +, · and ω1 there is a polynomial pt such that
for all ~a , |t(~a)| ≤ pt(|a1|, . . . , |an|). There is also a hierarchy of functions ωn , n ≥ 1,
which have subexponential growth rates, defined by ωn+1(x, y) = 2ωn(log x,log y) . The
axioms Ωn are Π2 -axioms which say that the function ωn is total. By using Parikh’s
Theorem 1.2.7.1, it is immediate that I∆0 + Ωn 0 Ωn+1 .

Although the ωn functions, for n ≥ 2, are superpolynomial, they are much more
similar in nature to polynomial growth rate functions than to exponential growth
rate functions. Using a technique due to Solovay [1976], it can be shown that,
for each n , I∆0 can define an inductive cut on which the ωn function is provably
total; for an explanation of this construction, see Pudlák [1983], Nelson [1986] or
Chapter VIII of this volume. However, Paris and Dimitracopoulos [1982] showed
that it is not possible to define an inductive cut on which the exponentiation function
is provably total. For this reason, we view the ωn functions as being more akin to
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feasible polynomial growth rate functions than to the infeasible exponential function
(see Nelson [1986] for a strong expression of this viewpoint).

1.3.2. ∆0 -formulas and the linear-time hierarchy

There is a very close connection between ∆0 -expressibility and computational
complexity. Recall that the linear time hierarchy consists of those predicates which
can be recognized by some Turing machine which runs in linear time and which
makes a bounded number of alternations between existential and universal states.
Lipton [1978,sect. 4], building on work of Smullyan, Bennett and Wrathall, proved
that the ∆0 definable predicates on N are precisely the subsets which are in the
linear time hierarchy.

The original motivation for the definition of the theory I∆0 by Parikh [1971]
was to give a proof theory that would be appropriate to linear bounded automata,
i.e., to predicates computable by linear space bounded Turing machines. It is still
an open problem whether the linear time hierarchy equals linear space; although it
is commonly conjectured that they are not equal. It is known that the linear time
hierarchy contains log space, and also contains the predicates which can be computed
by a Turing machine which simultaneously polynomial time and n1−ε space for a
constant ε > 0 (see Bennett [1962] and Nepomnjaščii [1970]).

1.3.3. The theories Si
2 and T i

2 of bounded arithmetic

The second approach to theories of bounded arithmetic is due to Buss [1986]
and gives a (conjectured) hierarchy of fragments of I∆0 + Ω1 , which are very closely
related to the computational complexity classes of the polynomial time hierarchy.
These fragments, Si

2 and T i
2 and others, use the language 0, S , +, · , #, |x| , b1

2
xc ,

and ≤ ; where the # function (pronounced ‘smash’) is defined so that x#y = 2|x|·|y| .
The # function was first introduced by Nelson [1986], and it is evident that the #
function has essentially the same growth rate as the ω1 -function.

The second difference between the Si
2 and the T i

2 theories and the I∆0 + Ω1

approach is that the former theories are based on restricting the power of induction;
firstly by further restricting the formulas for which induction holds, and secondly by
using (apparently) weaker forms of induction. It is for this reason that the functions
|x| and b1

2
xc are included in the non-logical language, since they are needed to

elegantly state the axioms of the theories Si
2 and T i

2 .
Before defining the theories Si

2 and T i
2 , we define the classes Σb

i and Πb
i of

formulas, which are defined by counting alternations of bounded quantifiers, ignoring
sharply bounded quantifiers. (Bounded and sharply bounded quantifiers are defined
in section 1 above.)

Definition. The set ∆b
0 = Σb

0 = Πb
0 is equal to the set of formulas in which all

quantifiers are sharply bounded. For i ≥ 1, the sets Σb
i and Πb

i are inductively
defined by the following conditions:
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(a) If A and B are Σb
i -formulas, then so are A∨B and A∧B . If A is a Πb

i formula
and B is a Σb

i -formula, then A ⊃ B and ¬A are Σb
i -formulas.

(b) If A is a Πb
i−1 -formula, then A is a Σb

i -formula.

(c) If A is a Σb
i -formula and t is a term, then (∀x ≤ |t|)A is a Σb

i -formula.

(d) If A is a Σb
i -formula and t is a term, then (∃x ≤ t)A is a Σb

i -formula. Note this
quantifier may be sharply bounded.

The four inductive conditions defining Πb
i are dual to (a)-(d) with the roles of

existential and universal quantifiers and the roles of Πb
i and Σb

i reversed.

This is a good place to justify the presence, in bounded arithmetic, of the #
function or the equivalently growing ω1 . There are essentially three reasons why it
is natural to include # or ω1 . Firstly, it gives a natural bound to the Gödel number
of a formula A(t) in terms of the Gödel numbers of A and t ; namely, the number
of symbols in A(t) is bounded by the product of the numbers of symbols in A and
in t . This allows a smooth arithmetization of metamathematics. Secondly, it arises
naturally from consideration of bounded versus sharply bounded quantifiers, since
it has exactly the growth rate necessary to make the following quantifier exchange
property hold:

(∀x ≤ |a|)(∃y ≤ b)A(x, y)

↔ (∃w ≤ SqBd(b, a))(∀x ≤ |a|)(A(x, β(x + 1, y)) ∧ β(x + 1, y) ≤ b)

where SqBd is a term involving #. In fact, the size of w can be bounded in
terms of a and b , by noting that w must encode |a| + 1 many numbers of at most
|b| bits each; therefore, w ≤ 2c·|a|·|b| for some constant c , and SqBd can easily
be expressed using #. The quantifier exchange property allows sharply bounded
quantifiers to be pushed inside non-sharply bounded quantifiers (at least when the
β function is available). Thirdly, the use of # function means that any term t(x)
can be bounded by 2|x|

c
for some constant c , and conversely, any 2|x|

c
can be

bounded by a term t(x) in the language of bounded arithmetic. In other words,
the terms define functions of polynomial growth rate. This leads to the principal
importance of the classes Σb

i and Πb
i of formulas, which is that they express precisely

the corresponding classes of the polynomial time hierarchy. This fact is discussed in
more depth in section 1.3.6 below, but in brief, a set of natural numbers is definable
by a Σb

i -formula (respectively, a Πb
i -formula) if and only if the set is recognizable by

a predicate in the class Σp
i (respectively, Πp

i ) from the polynomial time hierarchy.
This is essentially due to Wrathall [1976] and Stockmeyer [1976] and was first proved
in this exact form by Kent and Hodgson [1982]. Thus we have that NP , the set
of nondeterministic polynomial time predicates, consists of precisely the predicates
expressible by Σb

1 -formulas, etc.

1.3.3.1. The theory T i
2 will be defined by restricting induction to Σb

i -formulas,
where by induction we mean the usual ‘IND’ flavor of induction. For Si

2 , we need
some additional varieties of induction:
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Definition. Let Φ be a set of formulas. The Φ-PIND axioms are the formulas

A(0) ∧ (∀x)(A(b1
2
xc) ⊃ A(x)) ⊃ (∀x)A(x)

for all formulas A ∈ Φ. As usual, A may have other free variables in addition to x
that serve as parameters. The length-induction Φ-LIND axioms are the formulas

A(0) ∧ (∀x)(A(x) ⊃ A(Sx)) ⊃ (∀x)A(|x|)
for all A ∈ Φ. The length-minimization axioms, Φ-LMIN, are the formulas

(∃x)A(x) ⊃ (∃x)(A(x) ∧ (∀y)(|y| < |x| ⊃ ¬A(y)))

for all A ∈ Φ.

In addition to induction and minimization axioms, there are replacement axioms
that will be defined below after the Gödel β function has been introduced. All of
these axiom schemes are used in conjunction with a set of purely universal axioms
called the BASIC axioms. The set of BASIC axioms consists of:

a ≤ b ⊃ a ≤ Sb |a| = |b| ⊃ a#c = b#c
a 6= Sa |a| = |b|+ |c| ⊃ a#d = (b#d) · (c#d)
0 ≤ a a ≤ a + b
a ≤ b ∧ a 6= b ↔ Sa ≤ b a ≤ b ∧ a 6= b ⊃
a 6= 0 ⊃ 2 · a 6= 0 S(2 · a) ≤ 2 · b ∧ S(2 · a) 6= 2 · b
a ≤ b ∨ b ≤ a a + b = b + a
a ≤ b ∧ b ≤ a ⊃ a = b a + 0 = a
a ≤ b ∧ b ≤ c ⊃ a ≤ c a + Sb = S(a + b)
|0| = 0 (a + b) + c = a + (b + c)
|S0| = S0 a + b ≤ a + c ↔ b ≤ c
a 6= 0 ⊃ |2 · a| = S(|a|) ∧ |S(2 · a)| = S(|a|) a · 0 = 0
a ≤ b ⊃ |a| ≤ |b| a · (Sb) = (a · b) + a
|a#b| = S(|a| · |b|) a · b = b · a
0#a = S0 a · (b + c) = (a · b) + (a · c)
a 6= 0 ⊃ 1#(2 · a) = 2 · (1#a) S0 ≤ a ⊃ (a · b ≤ a · c ↔ b ≤ c)

∧1#(S(2 · a)) = 2 · (1#a) a 6= 0 ⊃ |a| = S(|b1
2ac|)

a#b = b#a a = b1
2bc ↔ 2 · a = b ∨ S(2 · a) = b

These BASIC axioms serve the same role for Si
2 and T i

2 that the axioms of Q served
for the fragments IΣn of Peano arithmetic. There is a certain amount of flexibility
in the choice of BASIC axioms; essentially any finite set of purely universal axioms
which both are sufficiently strong to carry out the bootstrapping of S1

2 and are
contained in the theory S1

2 would serve as well for the BASIC axioms.4

4We have given the BASIC axioms as defined by Buss [1986]. This choice is not entirely
optimal, since, for instance, the second axiom a ≤ S(a), follows from the first, fourth and sixth
axioms. An alternative, and weaker, set of BASIC axioms are given by Cook and Urquhart [1993];
see Buss [1992] for a discussion of their BASIC axioms. Buss and Ignjatović [1995] propose that
|a| ≤ a should be added to the BASIC axioms.
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Definition. Let i ≥ 0. Si
2 is the theory axiomatized by the BASIC axioms plus

Σb
i -PIND. T i

2 is the theory axiomatized by BASIC plus Σb
i -IND. The theories S

(−1)
2

and T
(−1)
2 are equal to just BASIC.

S2 is ∪i≥0S
i
2 and T2 is ∪i≥0T

i
2 . Section 1.3.5 shows that S2 and T2 are the same

theory.

1.3.3.2. Bootstrapping and Σb
1 -definable functions. The bootstrapping

of S1
2 and T 1

2 is analogous to the bootstrapping of I∆0 as described in sections
1.2.6-1.2.8 above. There is now the additional difficulty that the induction axioms
are more severely restricted; but on the other hand, the language of Si

2 and T i
2

is richer since it contains the function symbol |x| and its BASIC axioms and this
makes the definition of the graph of y = 2x essentially trivial, and thereby helps with
defining Gödel numbering of sequences. The most outstanding difference between the
bootstrapping of S1

2 and T 1
2 and the above bootstrapping of I∆0 is that quantifiers

are more carefully counted; namely, whereas I∆0 could use ∆0 -defined predicates and
Σ1 -defined functions, the theories S1

2 and T 1
2 can introduce ∆b

1 -defined predicates
and Σb

1 -defined functions. Accordingly, we make the following important definitions:

Definition. A predicate symbol R(~x) is ∆b
i -defined by a theory T if there is a

Σb
i -formula φ(~x) and a Πb

i -formula ψ(~x) such that R has defining axiom

R(~x) ↔ φ(~x)

and such that T ` (∀~x)(φ ↔ ψ).

Definition. Let T be a theory of arithmetic. A function symbol f(~x) is Σb
i -defined

by T if it has a defining axiom

y = f(~x) ↔ φ(~x, y),

where φ is a Σb
i formula with all free variables indicated such that T proves

(∀~x)(∃!y)φ(~x, y).

By Parikh’s theorem 1.2.7.1, when f is Σb
i -defined then T ` (∀~x)(∃y ≤ t(~x))φ(~x, y)

for some term t .
The analogue of Theorem 1.2.7.3 for fragments of bounded arithmetic is the

following theorem.

1.3.3.3. Theorem. (Buss [1986,Thm 2.2]) Let T ⊇ BASIC be a theory of
arithmetic. Let T be extended to a theory T+ in an enlarged language L+ by
adding ∆b

1 -defined predicate symbols, Σb
1 -defined function symbols and their defining

equations. Then T+ is conservative over T . Also, if A is a Σb
i (respectively, a Πb

i )
formula in the enlarged language L+ , then there is a formula A− in the language of T
such that A− is also in Σb

i (respectively, Πb
i ) and such that

T+ ` (A ↔ A−).
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An immediate corollary to this theorem is that, for i ≥ 1, theories such as Si
2 and T i

2

can introduce Σb
1 -defined function symbols and ∆b

1 -predicate symbols and use them
freely in induction axioms.

With the aid of Theorem 1.3.3.3, the bootstrapping for S1
2 and T 1

2 is analogous
to the bootstrapping for I∆0 in section 1.2.8; indeed, every single function and
predicate symbol which was claimed to be Σ1 -definable or ∆0 -definable (respectively)
in I∆0 in section 1.2.8 is likewise Σb

1 -definable or ∆b
1 -definable in each of the six

theories S1
2 , T 1

2 , BASIC + Πb
1-PIND , BASIC + Σb

1-LIND , BASIC + Πb
1-LIND

and BASIC + Πb
1-IND . We shall omit the details of this bootstrapping here; they

can be found in Buss [1986,1992] and Buss and Ignjatović [1995].

One consequence of the bootstrapping process is that some of the other forms of
induction follow from Σ-PIND and Π-IND :

1.3.3.4. Theorem. (Buss [1986]) Let i ≥ 1.

(1) T i
2 proves Πb

i-IND and T i
2 ² Si

2 .

(2) Si
2 proves Σb

i-LIND, Πb
i-PIND and Πb

i-LIND.

1.3.4. Polynomial time computable functions in S1
2

The last section discussed the fact that Σb
1 -definable functions and ∆b

1 -defined
predicates can be introduced into theories of bounded arithmetic and used freely
in induction axioms. Of particular importance is the fact that these include all
polynomial time computable functions and predicates.

A function or predicate is said to be polynomial time computable provided there
exists a Turing machine M and a polynomial p(n), such that M computes the
function or recognizes the predicate, and such that M runs in time ≤ p(n) for all
inputs of length n . The inputs and outputs for M are integers coded in binary
notation, thus the length of an input is proportional to the total length of its binary
representation.

For our purposes, it is convenient to use an alternative definition of the polynomial
time computable functions; the equivalence of this definition is due to Cobham [1965].

Definition. The polynomial time functions on N are inductively defined by

(1) The following functions are polynomial time:

• The nullary constant function 0.

• The successor function x 7→ S(x).

• The doubling function x 7→ 2x .

• The conditional function Cond(x, y, z) =

{
y if x = 0
z otherwise.

(2) The projection functions are polynomial time functions and the composition of
polynomial time functions is a polynomial time function.



104 S. Buss

(3) If g is a (n− 1)-ary polynomial time function and h is a (n + 1)-ary polynomial
time function and p is a polynomial, then the following function f , defined by
limited iteration on notation from g and h , is also polynomial time:

f(0, ~x) = g(~x)

f(z, ~x) = h(z, ~x, f(b1
2
zc, ~x)) for z 6= 0

provided |f(z, ~x)| ≤ p(|z|, |~x|) for all z, ~x .

A predicate is polynomial time computable provided its characteristic function is
polynomial time. The class of polynomial time functions is denoted p

1 , and the
class of polynomial time predicates is denoted ∆p

1 .

1.3.4.1. Theorem. (Buss [1986])

(a) Every polynomial time function is Σb
1 -definable in S1

2 .

(b) Every polynomial time predicate is ∆b
1 -definable in S1

2 .

Once one has bootstrapped S1
2 sufficiently to intensionally introduce sequence coding

functions, it is fairly straightforward to prove this theorem using Cobhams’s inductive
definition of polynomial time computability. The main case in the proof by induction
is the case where f is defined from g and h by limited iteration on notation: in this
case the predicate f(z, ~x) = y is defined similarly to the way f(m,~x) = y was defined
in the proof of Theorem 1.2.10; the main difference now is that Σb

1 -PIND is used to
prove w exists, and for this it is necessary to bound w with a term. Fortunately, the
bounding condition |f(z, ~x)| ≤ p(|z|, |~x|) makes it possible to bound the elements
of w , and hence w , with a term. We leave the details to the reader. 2

A second way to approach defining the polynomial time function in S1
2 is to di-

rectly formalize polynomial time computability using Turing machine computations,
instead of using Cobham’s definition. This can also be formalized in S1

2 ; furthermore
S1

2 can prove the equivalence of the two approaches. See Buss [1986] for more details.
For i ≥ 1, Si

2 ⊇ S1
2 and also, by Theorem 1.3.5 below, T i

2 ⊇ S1
2 . Therefore, the

above theorem, combined with Theorem 1.3.3.3 gives:

1.3.4.2. Theorem. (Buss [1986]) Let i ≥ 1. The theories Si
2 and T i

2 can introduce
symbols for polynomial time computable functions and predicates and use them freely
in induction axioms.

We shall show later (Theorem 3.2) that the converse to Theorem 1.3.4.1 also holds
and that S1

2 can Σb
1 -define and ∆b

1 -define precisely the polynomial time computable
functions and predicates, respectively.

1.3.5. Relating Si
2 and T i

2

It is clear that Si
2 ⊇ S1

2 and T i
2 ⊃ T 1

2 , for i ≥ 1. In addition we have the following
relationships among these theories:
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Theorem. (Buss [1986]) Let i ≥ 1.

(1) T i
2 ⊇ Si

2 .

(2) Si
2 ⊇ T i−1

2 .

It is however open whether the theories

S1
2 ⊆ T 1

2 ⊆ S2
2 ⊆ T 2

2 ⊆ S3
2 ⊆ · · ·

are distinct.

Proof. A proof of (1) can be found in Buss [1986,sect 2.6]: this proof mostly involves
bootstrapping of T i

2 , and we shall not present it here.
The proof of (2) uses a divide-and-conquer method. Fix i ≥ 1 and fix a Σb

i−1 -
formula A(x); we must prove that Si

2 proves the IND axiom for A . We argue
informally inside Si

2 , assuming (∀x)(A(x) ⊃ A(x + 1)). Let B(x, z) be the formula

(∀w ≤ x)(∀y ≤ z + 1)(A(w .− y) ⊃ A(w)).

Clearly B is equivalent to a Πb
i -formula. By the definition of B , it follows that

(∀x)(∀z)(B(x, b1
2
zc) ⊃ B(x, z)),

and hence by Πb
i -PIND on B(x, z) with respect to z ,

(∀x)(B(x, 0) ⊃ B(x, x)).

Now, (∀x)B(x, 0) holds as it is equivalent to the assumption (∀x)(A(x) ⊃ A(x + 1)),
and therefore (∀x)B(x, x) holds. Finally, (∀x)B(x, x) immediately implies
(∀x)(A(0) ⊃ A(x)): this completes the proof of the IND axiom for A .

The theorem immediately implies the following corollary:

Corollary. (Buss [1986]) S2 = T2 .

In the proof of the above theorem, it would suffice for A(x) to be ∆b
i with respect

to Si
2 . Therefore, Si

2 proves ∆b
i -IND.

1.3.6. Polynomial hierarchy functions in bounded arithmetic

The polynomial time hierarchy is a hierarchy of bounded alternation polynomial
time computability; the base classes are the class P = ∆p

1 of polynomial time recog-
nizable predicates, the class FP = p

1 of polynomial time computable functions, the
class NP = Σp

1 of predicates computable in nondeterministic polynomial time, the
class coNP = Πp

1 of complements of NP predicates, etc. More generally, ∆p
i , p

i ,
Σp

i and Πp
i are defined as follows:
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Definition. The classes ∆p
1 and p

1 have already been defined. Further define, by
induction on i ,

(1) Σp
i is the class of predicates R(~x) definable by

R(~x) ⇔ (∃y ≤ s(~x))(Q(~x, y))

for some term s in the language of bounded arithmetic, and some ∆p
i predi-

cate Q .

(2) Πp
i is the class of complements of predicates in Σp

i .

(3) p
i+1 is class of predicates computable on a Turing in polynomial time using an
oracle from Σp

i .5

(4) ∆p
i+1 is the class of predicates which have characteristic function in p

i+1 .

The connection between the syntactically defined classes of formulas Σb
i defined by

counting alternations of quantifiers and the computationally defined classes Σp
i is

given by the next theorem.

Theorem. (Wrathall [1976], Stockmeyer [1976], Kent and Hodgson [1982])
A predicate is Σp

i if and only if there is a Σb
i -formula which defines it.

Proof. The easier part of the proof is that every Σb
i -formula defines a Σp

i -predicate.
For this, start by noting that a sharply bounded formula defines a polynomial time
predicate, even when the β function and pairing functions are present. Then, given
a Σb

i -formula, one can use the quantifier exchange property to push sharply bounded
quantifiers inward and can use pairing functions to combine adjacent like quantifiers;
this transforms the formula into an equivalent formula which explicitly defines a Σp

i

property according to the above definition.

For the reverse inclusion, use induction on i . To start the induction, note that
Theorem 1.3.4.1 already implies that every ∆p

1 predicate is defined by both a Σb
1 -

and a Πb
1 -formula. For the first part of the induction step, assume that every ∆p

i

predicate is definable by both a Σb
1 and a Πb

i -formula. Then it is immediate that
every Σp

i predicate is definable by a Σb
i -formula. For the second part of the induction

step, we must prove that every ∆p
i+1 -predicate is definable by both a Σp

i+1 - and a
Πp

i+1 -formula. For this, note that it suffices to prove that every p
i+1 -function has

its graph defined by a Σb
i+1 -formula. To prove this last fact, use induction on the

definition of the functions in p
i+1 : it is necessary to show that this condition is

preserved by definition using composition as well as by definition by limited iteration
on notation. The proofs of these facts are fairly straightforward and can even be
formalized by Si

2 , which gives the following theorem:

5An oracle from Σp
i is just a predicate from Σp

i . For our purposes, the most convenient way
to define the class of functions polynomial time relative to an oracle R is as the smallest class of
functions containing all polynomial time functions and the characteristic function of R and closed
under composition and limited iteration on notation.
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Theorem. (Buss [1986])) Let i ≥ 1.

(a) Every p
i function is Σb

i -definable in Si
2 .

(b) Every ∆p
i predicate is ∆b

i -definable in Si
2 .

Proof. The proof proceeds by induction on i . The base case has already been done
as Theorem 1.3.4.1. Part (b) is implied by (a), so it suffices to prove (a). To prove the
inductive step, we must show the following three things (and show they are provable
in Si

2 ):
(1) If f(~x, y) is a p

i−1 -function, then the characteristic function χ(~x) of
(∃y ≤ t(~x))(f(~x, y) = 0) is Σb

i -definable. To prove this, we have by the induc-
tion hypothesis that f(~x, y) = z is equivalent to a Σb

i−1 formula A(~x, y, z). The
Σb

i -definition of χ(~x) is thus6

χ(~x) = z ⇔ (z = 0 ∧ (∃y ≤ t)A(~x, y, 0)) ∨ (z = 1 ∧ ¬(∃y ≤ t)A(~x, y, 0))

which is clearly equivalent to a Σb
i -formula by prenex operations.

(2) If functions g and ~h have graph definable by Σb
i -formulas, then so does their

composition. As an example of how to prove this, suppose f(~x) = g(~x, h(~x)); then
the graph of f can be defined by

f(~x) = y ⇔ (∃z ≤ th(~x))(h(~x) = z ∧ g(~x, z) = y),

where th is a term bounding the function h .
(3) If f is defined by limited iteration from g and h with bounding polynomial p ,
and g and h have Σb

i -definable graphs, then so does f . To prove this, show that
f(z, ~x) = y is expressed by the formula

(∃w ≤ SqBd(2p(|z|,|~x|), z))[β(|z|+ 1, ~x) = y ∧ β(1, w) = g(~x)∧
∧(∀i < |z|)(β(i + 2, w) = min{h(

⌊
z

2|z| .−i .−1

⌋
, ~x, β(i + 1, w)), 2p(|i+1|,|~x|)})].

Here the term SqBd(· · ·) has been chosen sufficiently large to bound the size of the
sequence w encoding the steps in the computation of f(z, ~x). The formula is clearly
in Σb

i , and the theory Si
2 can prove the existence and uniqueness of w by PIND

induction up to z . 2

A more complicated proof can establish the stronger result that T i−1
2 can also

Σb
i -define the p

i -functions:

Theorem. (Buss [1990]) Let i > 1.

(a) Every p
i function is Σb

i -definable in T i−1
2 .

(b) Every ∆p
i predicate is ∆b

i -definable in T i−1
2 .

6We use the convention that a characteristic function of a predicate equals zero when the
predicate is true.
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It is a very interesting question whether the possible collapse of the polynomial-
time hierarchy is related to the possible collapse of the hierarchy of bounded
arithmetic theories. So far what is known is that if S2 is finitely axiomatized
(more precisely, if T i

2 = Si+1
2 for some i ≥ 1), then the polynomial time hierarchy

collapses provably in T2 (see Kraj́ıček, Pudlák and Takeuti [1991], Buss [1995],
Zambella [1996], and section 3.3.2). This means that the hierarchy of theories of
bounded arithmetic collapses if and only if the polynomial time hierarchy collapses
S2 -provably.

1.3.7. The theories PVi

Since T i−1
2 and Si

2 can Σb
i -define the p

i functions, it is often convenient to
conservatively extend the language of bounded arithmetic with symbols for these
functions. Accordingly, we define T i−1

2 ( p
i ) and Si

2(
p
i ) to be the (conservative)

extensions of T i−1
2 and Si

2 to the language containing symbols for the p
i -functions

with their Σb
i -defining equations as new axioms. For i = 1, the theory T 0

2 ( p
1) has

to be defined slightly differently, since T 0
2 does not have sufficient bootstrapping

power to Σb
1 -define the polynomial time functions. Instead, T 0

2 ( p
1) is defined to

have first-order language consisting of symbols for all polynomial time functions and
predicates, and to have as axioms (1) the BASIC axioms, (2) axioms that define
the non-logical symbols in the spirit of Cobham’s definition of the polynomial time
and (3) IND for all sharply bounded (equivalently, all atomic) formulas.7

One must be careful when working with T i−1
2 ( p

i ) and Si
2(

p
i ) since, for i > 1,

the functions symbols for p
i cannot be used freely in induction axioms (modulo

some open questions).
Since the notation T i−1

2 ( p
i ) is so atrocious, it is sometimes denoted PVi instead.

Kraj́ıček, Pudlák and Takeuti [1991] prove that PVi can be axiomatized by purely
universal axioms: to see the main idea of the universal axiomatization, note that if A
is ∆b

i , then PVi proves A is equivalent to a quantifier-free formula via Skolemization
and thus induction on A(x,~c), can be obtained from the universal formula

(∀~c)(∀t)[A(0,~c) ∧ ¬A(t,~c)) ⊃ A(fA(t,~c) .− 1,~c) ∧ ¬A(fA(t,~c),~c)]

where fA is computed by a binary search procedure which asks ∆p
i queries to find

a value b for which A(b − 1,~c) is true and A(b,~c) is false. Of course, this f is a
p
i -function and therefore is a symbol in the language of PVi .

1.3.8. More axiomatizations of bounded arithmetic

For any theory T in which the Gödel β function is present or is Σb
1 -definable,

in particular, for any theory T ⊇ S1
2 , there are two further possible axiomatizations

that are useful for bounded arithmetic:
7The original definition of a theory of this type was the definition of equational theory PV

of polynomial time functions by Cook [1975]. T 0
2 ( p

1) can also be defined as the conservative
extension of PV to first-order logic.
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Definition. Let Φ be a set of formulas. The Φ-replacement axioms are the formulas

(∀x ≤ |s|)(∃y ≤ t)A(x, y) ⊃ (∃w)(∀x ≤ |s|)(A(x, β(x + 1, w)) ∧ β(x + 1, w) ≤ t)

for all formulas A ∈ Φ and all appropriate (semi)terms s and t . As usual A may
have other free variables in addition to x that serve as parameters.

The strong Φ-replacement axioms are similarly defined to be the formulas

(∃w)(∀x ≤ |s|)[(∃y ≤ t)A(x, y) ↔ A(x, β(x + 1, w)) ∧ β(x + 1, w) ≤ t].

The replacement and strong replacement axioms contain an apparently unbounded
quantifier (∃w); however, S1

2 can always bound w by a term SqBd(t, s) which
is large enough to bound a sequence of |s| + 1 values ≤ t . For example, setting
SqBd(t, s) equal to (2t + 1)#(2(2s + 1)2) will work for the sequence encoding given
in section 1.2.8.

It is known that the Σb
i -replacement axioms are consequences of the Σb

i -PIND
axioms, and that the strong Σb

i -replacement axioms are equivalent to the Σb
i -PIND

axioms (for i ≥ 1, and over the base theory S1
2 ). Figure 1 shows these and other

relationships among the axiomatizations of bounded arithmetic.

1.4. Sequent calculus formulations of arithmetic

This section discusses the proof theory of theories of arithmetic in the setting
of the sequent calculus: this will be an essential tool for our analysis of the
proof-theoretic strengths of fragments of arithmetic and of their interrelationships.
The sequent calculus used for arithmetic is based on the system LKe described in
Chapter I of this volume; LKe will be enlarged with additional rules of inference
for induction, minimization, etc., and for theories of bounded arithmetic, LKe is
enlarged to include inference rules for bounded quantifiers.

1.4.1. Definition. LKB (or LKBe ) is the sequent calculus LK (respectively,
LKe ) extended as follows: First, the language of first-order arithmetic is expanded
to allow bounded quantifiers as a basic part of the syntax. Second, the following new
rules of inference are allowed:

Bounded quantifier rules

∀ ≤:left
A(t), Γ→∆

t ≤ s, (∀x ≤ s)A(x), Γ→∆
∀ ≤:right

b ≤ s, Γ→∆, A(b)

Γ→∆, (∀x ≤ s)A(x)

∃ ≤:left
b ≤ s, A(b), Γ→∆

(∃x ≤ s)A(x), Γ→∆
∃ ≤:right

Γ→∆, A(t)

t ≤ s, Γ→∆, (∃x ≤ s)A(x)

where the variable b is an eigenvariable and may not occur in in s or in Γ, ∆.

The Cut Elimination and Free-cut Elimination Theorems still hold for LKB
and LKBe , in the exact same form as they were proved to hold for LK and LKe
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Σb
i -IND ⇐⇒ Πb

i -IND ⇐⇒ Σb
i -MIN ⇐⇒ ∆b

i+1-INDwwÄ
Σb

i -PIND ⇐⇒ Πb
i -PIND ⇐⇒ Σb

i -LIND ⇐⇒ Πb
i -LIND~wÄ

Σb
i -LMIN ⇐⇒ (Σb

i+1 ∩ Πb
i+1)-PINDwwÄ

Σb
i−1-IND

Σb
i+1-MIN ⇐⇒ Πb

i -MIN

Si
2 Â

Σb
i

T i−1
2

Si
2 Â
B(Σb

i )
T i−1

2 + Σb
i -replacement

Σb
1-PIND + Σb

i+1-replacement =⇒ Σb
i -PIND =⇒ Σb

i -replacement

Σb
i -PIND ⇐⇒ Σb

1-PIND + strong Σb
i -replacement

Figure 1

Relationships among axiomatizations for Bounded Arithmetic relative
to the base theory BASIC with i ≥ 1; T 0

2 should be interpreted as
PV1 . See Buss [1986,1990], Buss and Ignjatović [1995] for proofs.

in Chapter I. The principal formulas of the bounded quantifier inferences are the
formulas t ≤ s and (Qx ≤ s)A introduced in the lower sequent; as usual, a cut on a
direct descendent of a principal formula is anchored.

1.4.2. Rule forms of induction. We next introduce inference rules which are
equivalent to induction axioms; the reason for using rules of inference for induction
in place of induction axioms is that the use of free-cut free proofs provides a powerful
proof-theoretic tool for the analysis of fragments of arithmetic.

Definition. Let Ψ be a class of formulas. Then Ψ-IND induction rules are the
inferences of the form

A(b), Γ→ ∆, A(b + 1)

A(0), Γ→ ∆, A(t)

where A ∈ Ψ and where the eigenvariable b does not occur except as indicated.

The Ψ-PIND induction rules are the inferences of the form
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A(b1
2
bc), Γ→ ∆, A(b)

A(0), Γ→ ∆, A(t)

where again A ∈ Ψ and b occurs only as indicated.

We leave it to the reader to check that the induction rules Ψ-IND and Ψ-PIND
are equivalent to the induction axioms Ψ-IND and Ψ-PIND (respectively); in fact,
this is true for any class Ψ of formulas. The fact that the induction rules are
equivalent to the induction axioms depends crucially on the presence of the the side
formulas Γ and ∆ in the inference; when side formulas are not allowed, the inference
rules are often slightly weaker than the induction axioms; see, e.g., Parsons [1972]
and Sieg [1985]. It follows that theories such as I∆0 , IΣn , IΠn , Si

2 and T i
2 can

be equivalently formulated using induction rules instead of induction axioms. For
the rest of this chapter, we will presume that these theories are formulated with the
induction rules.

As was discussed in Chapter I, the free-cut elimination theorem holds for theories
such as IΣn , IΠn , Si

2 and T i
2 . In particular, we have the following corollary to the

free-cut elimination theorem, which generalizes the subformula property to fragments
of arithmetic. For this theorem, Ψ must be a class of formulas which is closed under
the operations of taking subformulas and freely substituting terms for variables.
Strictly speaking, classes such as Σi are not closed under subformulas, since a
Σi -formula may contain a (negated) Πi -subformula; however, one may instead use
the class of Σi -formulas in which all negation signs are in front of atomic subformulas.
This can be done without loss of generality and then this class of formulas is closed
both under subformulas and under term substitution.

Theorem. Let Ψ be a class of formulas closed under subformulas and under term
substitution and containing the atomic formulas. Let R be a fragment of arithmetic
axiomatized by Ψ-IND (or by Ψ-PIND) plus initial sequents containing only formulas
from Ψ. Also suppose that the sequent Γ→∆ contains only formulas from Ψ and
that R ` Γ→∆. Then there is an R-proof of Γ→∆ such that every formula
appearing in the proof is a Ψ-formula.

The proof of this theorem is of course based on the fact that every formula
appearing in an R-proof either is a direct descendent of a formula in an initial
sequent or is an ancestor (and hence subformula in the wide sense) of either a cut
formula or a formula in the endsequent. Furthermore, in a free-cut free R-proof, all
cut-formulas are in Ψ and by free-cut elimination, Γ→∆ has a free-cut free proof.

The above theorem turns out be an extremely powerful tool for the proof-theoretic
analysis of fragments of arithmetic.

1.4.3. We now state and prove a generalization of Theorem 1.2.7.1 which applies to
very general bounded theories R , possibly including induction inferences for bounded
formulas. Assume that R contains ≤ in its language and that R proves that ≤ is
reflexive and transitive. Also suppose that for all terms r and s , there is a term t so



112 S. Buss

that R proves r ≤ t and s ≤ t . Further suppose that for all terms t(~a, b) and r(~a),
there is a term s so that R proves that b ≤ r(~a) ⊃ t(~a, b) ≤ s(~a).

Parikh’s Theorem. Let R be a bounded theory satisfying the above conditions and
A(~x, y) a bounded formula. Suppose R ` (∀~x)(∃y)A(~x, y). Then there is a term t
such that R also proves (∀~x)(∃y ≤ t)A(~x, y).

1.4.4. Proof. (Sketch). By the free-cut elimination theorem, there is a free-

cut free R-proof P of (∃y)A(~b, y), where the b ’s are new free variables. By the
subformula property, every sequent Γ→∆ in the proof P contains only bounded
formulas in its antecedent Γ and its antecedent ∆ contains only bounded formulas
plus possibly occurrences of the formula (∃y)A(~b, y). Given such a ∆ and given a

term t , let ∆≤t denote the result of removing all occurrences of (∃y)A(~b, y) from ∆

and adding the formula (∃y ≤ t)A(~b, y). It is straightforward to prove by induction
on the number of inferences in P that, for each sequent Γ→∆ in P , there is a
term t such that R proves Γ→∆≤t . 2

1.4.5. Inference rules for collection. Just as it possible to replace induction
axioms with induction inferences, it is also possible to formulate the collection axioms
of BΣi as rules of inference. The Σi -collection inferences, Σi -REPL, are

Γ→ ∆, (∀x ≤ t)(∃y)A(x, y)

Γ→ ∆, (∃z)(∀x ≤ t)(∃y ≤ z)A(x, y)

It is not difficult to check that the inference rule for collection (replacement) is
equivalent to the axiom form of collection. Furthermore, the free-cut elimination
theorem holds as before; however, the notion of ‘free-cut’ is changed by also declaring
every direct descendent of the principal formula of a collection inference to be
anchored.

One easy consequence of free-cut elimination for collection inferences is that
Parikh’s Theorem 1.4.3 holds also for theories R that contain Σ1 -REPL; compare
this to Theorem 3.4.1 about the conservativity of BΣi+1 over IΣi .

2. Gödel incompleteness

Gödel’s incompleteness theorems, on the impossibility of giving an adequate and
complete axiomatization for mathematics, were of great philosophical and founda-
tional importance to mathematics. They are arguably the most important results in
mathematical logic since the development of first-order logic. Loosely speaking, the
incompleteness theorems state that any sufficiently expressive, consistent theory with
a decidable axiomatization is not complete; and furthermore, for any such theory, the
second incompleteness theorem gives an explicit, non self-referential true statement
which is not a consequence of the theory. More generally, the set of Π1 -sentences true
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about the integers8 is not recursively enumerable, so there is no way to generalize or
replace first-order logic with any other kind of formal system which both admits a
decidable notion of ‘provability’ and is complete in the sense of ‘proving’ every true
Π1 -sentence of the integers.

2.1. Arithmetization of metamathematics

The usual methods of proving Gödel’s incompleteness theorems involve coding
metamathematical concepts (i.e., coding the syntax of first-order logic) with integers
and then using a self-referential or diagonal construction to obtain non-provable
true statements;9 this process of coding syntactic aspects of logic with integers
is called ‘arithmetization’. There are essentially two different approaches to the
arithmetization of syntax. The first approach uses numeralwise representability as
a means of representing computable functions: a numeralwise representation of a
function gives a characterization of the function’s values for particular choice of
inputs to the function. To be precise, a formula A(~x, y) numeralwise represents a
function f(~x) = y in a theory T if and only if, for every particular integers n1, . . . , nk

with f(~n) = m , the theory T proves

(∀y)(A(Sn10, . . . , Snk , y) ↔ y = Sm0).

It turns out that every recursive function is numeralwise representable even in
very weak theories such as R and Q ; and conversely, only recursive functions are
numeralwise representable in any axiomatizable theory, no matter how strong.

However, numeralwise representation of f in the theory T only implies that T can
‘represent’ all particular, fixed values of f ; this in no way implies that T can prove
general properties of the function f . This in is in contrast to the second approach to
the arithmetization of syntax which involves giving intensional definitions of certain
(but not all) recursive functions. In the intensional approach to arithmetization
of metamathematics, one gives formulas which define concepts such as “formula”,
“term”, “substitution”, “proof”, “theorem”, etc; these definitions are said to be
intensional provided the theory T can prove simple properties of these concepts. For
instance, one wants the theory T to be able to define the notion of substituting a term
into a formula and prove the result is a formula; similarly, T should be able to prove
that the set of theorems is closed under modus ponens; etc. (See Feferman [1960] for
a comprehensive discussion of intensionality.)

It is significantly more work to carry out the details an intensional arithmetiza-
tion of syntax than a numeralwise representation of recursive functions; indeed, an

8By Matijacevič’s theorem, the same holds for the true, purely universal sentences (in the
language of PA).

9There are approaches to the first incompleteness theorem that avoid this arithmetization of
metamathematics; for instance, one can directly prove that the true Π1 sentences of arithmetic
do not form a recursively enumerable set, say by encoding Turing machine computations with
integers. For somewhat different approaches based on Berry’s paradox, see Chaitin [1974] and
Boolos [1989].
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intensional definition of a function is typically a numeralwise representation of the
same function. Furthermore, the intensional representation requires the additional
verification that the underlying theory can prove simple facts about the function.
Nonetheless, the intensional definition has significant advantages, most notably, in
allowing a smoother treatment of the Gödel incompleteness theorem, especially the
second incompleteness theorem.

Since many textbooks discuss the first approach based on numeralwise rep-
resentability and since we prefer the intensional approach, this article will deal
only with the intensional approach. The reader who wants to see the numeralwise
representability approach can consult Smorynski [1977] and any number of textbooks
such as Mendelson [1987]. The intensional approach is due to Feferman [1960]. An
effective unification of the two approaches can be given using the fact (independently
due to Wilkie and to Nelson [1986]) that I∆0+Ω1 and S1

2 are interpretable in Q ; since
both I∆0 +Ω1 and S1

2 admit a relatively straightforward intensional arithmetization
of metamathematics (see Wilkie and Paris [1987] and Buss [1986]), this allows strong
forms of incompleteness obtained via the intensional approach to apply also to the
theory Q ; paragraph 2.1.4 below sketches how the interpretation of S1

2 in Q can be
used to give an intensional arithmetization in Q . The book of Smullyan [1992] gives
a modern, in-depth treatment of Gödel’s incompleteness theorems.

2.1.1. Overview of an intensional arithmetization of metamathematics.
We now sketch some of the details of an arithmetization of metamathematics; this
arithmetization can be carried out intensionally in I∆0 + Ω1 and in S1

2 . Detailed
explanations of similar arithmetizations in these theories can be found in Wilkie and
Paris [1987] and in Buss [1986]. We shall always work in the (apparently) weaker
theory S1

2 .
To arithmetize metamathematics, we need to assign Gödel numbers to syntactic

objects such as ‘terms’, ‘formulas’, ‘proofs’, etc. Each such syntactic object is viewed
as an expression consisting of string of symbols from a finite alphabet. This finite
alphabet contains logical connective symbols “∧”, “∨”, “¬”, “⊃”, “∃”, “∀”, etc.,
and the comma symbol and parentheses; it also contains non-logical connective
symbols for the function and relation symbols of arithmetic. The alphabet also needs
symbols for variables: for this there is a variable symbol “x” (and possibly “a”
for free variables) and there are symbols “0” and “1” used to write the values of
subscripts of variables in binary notation. In addition, when first-order proofs are
formalized in the sequent calculus, it will contain a symbol “→ ” for the sequent
connective and the semicolon symbol for separating sequents. At times, it will be
convenient to enlarge the finite alphabet with other symbols that can be used for
describing the skeleton of a proof.

Since the alphabet is finite, we can identity the alphabet with some finite set
{0, . . . , s} of integers, thereby giving each alphabet symbol σ a Gödel number which
is denoted pσq. Then, given an expression α which consists of the symbols a1a2 · · · am ,
let n1, . . . , nm be their Gödel numbers, then the least Gödel number of the sequence
〈n1, . . . , nm〉 is, by definition, the Gödel number of the expression α . The Gödel
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number of an expression α is denoted pαq. There is a subtle difference between
the Godel number of symbol σ and the Gödel number of the expression containing
just σ ; these are both denoted pσq and it should always be clear from context which
one is intended.10

Since we have already discussed that intensional definitions of Gödel numbers of
sequences can be given; it is straightforward to further give intensional definitions of
(Gödel numbers of) syntactic objects; in particular, S1

2 can ∆b
1 -define the following

predicates:

FreeV ar(w) - w codes a free variable

BdV ar(w) - w codes a bound variable

Term(w) - w codes a term

Fmla(w) - w codes a formula

Sequent(w) - w codes a sequent

For example, the formula FreeV ar(w) asserts that either w = 〈paq, p0q〉 (which
codes the free variable “a0”) or w is of the form 〈paq, p1q, w1, . . . , wk〉 with k ≥ 0
and with each wi equal to p0q or p1q (this encodes “ai” where i > 0 has binary
representation 1w1 · · ·wk ). The ∆b

1 definitions of Term , Fmla and Sequent are
somewhat more complicated: they depend crucially on the fact that length-bounded
counting is Σb

1 -definable and that therefore terms and formulas may be parsed by
means of counting parentheses. Counting commas also allows notions such as the
i-th formula of a sequent to be Σb

1 -defined.
In keeping with the convention that all syntactic objects are coded by expressions,

we let the Gödel number of a proof be defined to the Gödel number of an expression
consisting of a sequence of sequents separated by semicolons. A proof is intended to
be valid provided that each sequent in the proof can be inferred by a valid rule of
inference from sequents appearing earlier in the proof. Of course the notion of valid
inference depends on the formal proof system in which the proof is being carried
out. Accordingly, for an appropriate fixed formal system T , we wish S1

2 to be able
to ∆b

1 -define the predicate to define ProofT (w) which states that w codes a valid
T -proof. For this to be possible, there must be a polynomial time procedure which
determines whether w codes a valid T -proof; in general, this will be based on a
polynomial time procedure which checks whether a given inference is valid for T .

The theories T that we will consider, such as Si
2 , T i

2 , IΣi , BΣi , etc., will have
only axioms and unary and binary inference rules, and these will be specified by a
finite set of schemes. For such schematic theories, S1

2 can ∆b
1 -define the relation11

ValidInferenceT (u, v, w) - w can be inferred with a single T -inference
from zero, one or both of u and v.

10We have defined pAq in a nonconventional manner: the usual definition is to let pAq represent
a closed term whose value is equal to the Gödel number of A . We shall represent this alternative
concept with the notation pAq . The definition for pAq that we are using is better for our intensional
development.

11We discuss the situation for non-schematic theories below in section 2.1.3.
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With this, it is easy for S1
2 to ∆b

1 -define ProofT (w). In addition, S1
2 can ∆b

1 -define
the predicate PrfT (w, u) which states that ProofT (w) and Fmla(u) and that w is a
proof of the sequent →A where u = pAq (i.e., that w is a T -proof of the formula A).
Finally, the set of theorems of T can be defined by

ThmT (u) ⇔ (∃w)PrfT (w, u).

However, ThmT is not generally ∆b
1 -definable, since it not generally even decidable

(a consequence of Gödel’s incompleteness theorems, see below).12

A particularly important syntactic operation is the substitution of a term into
a formula. Let A be a formula and let t be a term; because of the sequent
calculus’ conventions on free and bound variables, one can always form the formula
A(t/a0), which is A with t substituted in for the free variable a0 , merely by
replacing each occurrence of a0 as a subexpression of A with the expression t .
This is clearly Σb

1 -definable in S1
2 and Sub(u, v) denotes the function such that

Sub(pAq, ptq) = pA(t/a0)q for all formulas A and terms t .
One final simple, but important formalization, is the definition of closed canonical

terms n which represent an integer n . The term 0 is just the constant symbol 0.
And inductively, the term 2m is (SS0) ·m and the term 2m + 1 is 2m + S0. Note
that the number of symbols in n is O(|n|); also, S1

2 can Σb
1 -define the map n 7→ pnq.

2.1.2. Intensionality of the arithmetization. In order for the above-sketched
arithmetization to be considered intensional, it is necessary that S1

2 can prove basic
facts about the arithmetization. To simplify notation, we shall use abbreviations such
as (∀pAq)(· · · pAq · · ·), which abbreviates the formula (∀u)(Fmla(u) ⊃ (· · ·u · · ·)).
Some examples of what S1

2 can prove include:

1. (∀u, v, w)(Fmla(u) ∧ Term(v) ⊃ Fmla(Sub(u, v))).

2. (∀pAq)(∀pBq)(ThmT (pAq) ∧ ThmT (pA ⊃ Bq) ⊃ ThmT (pBq)).

3. (∀u)(ProofT (u) ⊃ ThmS1
2
(pProofT (u)q)).

4. (∀pAq)(∀u)(PrfT (u, pAq) ⊃ ThmS1
2
(pPrf(u, pAq)q)).

5. (∀pAq)(ThmT (pAq) ⊃ ThmS1
2
(pThmT (pAq)q)).

These five formulas require some explanation. The first just states that when a term
is substituted into a formula, a formula is obtained. The second codes the fact that
the consequences of the sequent calculus are closed under modus ponens. S1

2 proves
this by the simple argument that if there are sequent calculus proofs of →A and→A ⊃ B , then these can be combined with the simple sequent calculus proof of
A,A ⊃ B→B using two cuts to obtain a sequent calculus proof of B . The third
formula states that any u which encodes a T -proof can in fact be proved to be
a T -proof. The intuitive idea behind the fact that S1

2 can prove this formula is

12Even for decidable theories T , if T 2 (∀x)(∀y)(x = y), then the predicate ThmT (u) is
PSPACE-hard.
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that, given u encoding a proof as a string of symbols, it is possible to construct a
S1

2 -proof of the statement ProofT (u) that u codes a T -proof. In fact, the S1
2 -proof

of ProofT (u), proceeds by verifying that u , viewed as a string of symbols, satisfies
all the properties of being a valid T -proof. The provability of the fourth and fifth
formulas in S1

2 is similar to the provability of the third.
The fact that S1

2 can prove the third formula is a special case of a more general
fact:

Theorem. (Buss [1986,Thm 7.4]) Let A(b) be a Σb
1 -formula with only the variable b

free. Then, S1
2 can prove

(∀u)(A(u) ⊃ ThmS1
2
(pA(u)q)).

Hilbert-Bernays-Löb derivability conditions. The following three derivability
conditions, introduced by Hilbert and Bernays [1934-39] and Löb [1955], give suffi-
cient conditions on an arithmetization for the second incompleteness theorem to hold
for a theory T , with respect to a given formalization ThmT of provability:

HBL1: For all A and B , T ` ThmT (pAq) ∧ ThmT (pA ⊃ Bq) ⊃ ThmT (pBq).

HBL2: For all A , if T ` A , then T ` ThmT (pAq).

HBL3: For all A , T ` ThmT (pAq) ⊃ ThmT (ThmT (pAq) ).

Assuming T ⊇ S1
2 , the first and third conditions follow from the fact that formulas

2 and 5 above are provable in S1
2 . The second condition is the fact that formula 5

is true; which of course is an immediate consequence of fact that formula 5 above is
provable in S1

2 and hence is true.

2.1.3. Arithmetization of syntax for non-schematic theories. So far, we
have considered only schematically axiomatized theories. This is not unreason-
able, since many of the theories we are interested in, such as Peano arithmetic are
schematically axiomatized. Many other theories such as Si

2 , I∆0 , IΣ1 , etc. are
not schematic but are at least nearly schematic in that they are axiomatized by a
finite set of schemes with substitution restricted to certain formula classes. The
metamathematics for these latter theories can be arithmetized with only a slight
modification of the above methods.

A theory is said to be axiomatizable provided that it has a recursive (i.e., decid-
able) set of axioms. By a theorem of Craig’s this is equivalent to having a recursively
enumerable set of axioms. In general, there are many axiomatizable theories which
are not schematic; nonetheless, the arithmetization of metamathematics can be
modified to apply to any axiomatizable theory as follows.

Let T be an axiomatizable theory. Since the predicate ValidInferenceT may no
longer be polynomial-time, it may not be ∆b

1 -definable in S1
2 . However, it is possible

to express ValidInferenceT (u, v, w) in equivalent form as

(∃a)ValidInfEvidence(a, u, v, w),
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where ValidInfEvidence is ∆b
1 w.r.t. S1

2 .13 With this, a T -proof is then coded as
a sequence containing the lines of the proof, plus any necessary evidence values, a ,
justifying the steps in the proof. In this way, the predicates ProofT (w) and PrfT (w, u)
are ∆b

1 -definable in S1
2 ; likewise, ThmT is definable from PrfT as before.

It is easy to check that formulas 1-5 are still provable in S1
2 . Also, if T ⊇ S1

2 , the
Hilbert derivability conditions hold as well.

2.1.4. Arithmetization in theories which contain only Q. All our proofs
of incompleteness theorems will assume that the theory T under consideration con-
tains S1

2 . However, the results all hold as well for theories which only contain Q . The
intensional arithmetization in S1

2 can be extended to an intensional arithmetization
in Q based on the fact that S1

2 is interpretable in Q . The interpretation of S1
2 in Q

is a very special kind based on an inductive cut J ; namely, there is a formula J(a)
such that Q proves J is closed downwards and is closed under 0, S , +, · and #. In
addition, for φ any sentence, the sentence φJ , φ relativized by J , is obtained from φ
by replacing every quantifier (Qx) with (Qx.J(x)). Then, we have that Q ` φJ for
all theorems φ of S1

2 .

The first use of inductive cuts for interpretations was by Solovay. The fact that
I∆0 can be interpreted in Q was first discovered by Wilkie; a local interpretation
of I∆0 in Q was independently discovered by E. Nelson. For more details of inductive
cuts and this interpretation of S1

2 in Q see Theorem 4.3.3 below, or Pudlák [1983],
Nelson [1986] or Chapter VIII of this volume. Pudlák [1983] gives a very general
form of the interpretation of I∆0 in Q .

An intensional arithmetization of metamathematics can be given in Q by replac-
ing predicates such as Proof(w) with their relativizations J(w)∧ (ProofT (w))J . The
reader can check that the proofs given in the next sections all still work with these
relativized predicates.

2.2. The Gödel incompleteness theorems

In this section, we discuss the diagonal, or fixpoint, lemma, the first and second
incompleteness theorems, and Löb’s theorem.

2.2.1. The Gödel diagonal lemma. The Gödel diagonal, or fixpoint, lemma
is a crucial ingredient in the proof of the incompleteness theorems. This lemma
states that, for any first-order property A , there is a formula B that states that the
property A holds of the Gödel number of B . Thus, since we know that provability is
a first-order property, it will be possible to construct a formula which asserts “I am
not provable”.

13Our formulation works for any decidable set of axioms and rules of inference; we do require
always that all the usual logical axioms and rules of inference are present. A similar construction
will work for inference rules with any finite number of hypotheses.
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Gödel’s Diagonal Lemma. Let A(a0) be a formula. Then there is a formula B
such that S1

2 proves

B ↔ A(pBq).

Furthermore, if A is a Σb
i , Πb

i , Σi or Πi formula (respectively), then so is B ; and if
A involves free variables other than a0 , then so does B .

Proof. This proof quite simple but rather tricky and difficult to conceptualize. We
first define a diagonalization function f which satisfies

f(pCq) = pC(pCq)q

for all formulas C , where C(pCq) means C(pCq/a0). To define f , recall that the
function n 7→ Num(n) = pnq is Σb

1 -definable in S1
2 . Then the function f is

Σb
1 -definable by S1

2 since

f(x) = Sub(x,Num(x)).

Next, we wish to let the formula C(a0) be A(f(a0)); however, since f is not a
function symbol in the language of S1

2 , we must be more careful in defining C . Let
f(a) = b be Σb

1 -defined with the formula Gf (a, b) which defines the graph of f and
let tf be a term such that S1

2 proves f(a) ≤ tf . Now the formula C can be taken to
be either

(∃x ≤ tf )(Gf (a0, x) ∧ A(x)) or (∀x ≤ tf )(Gf (a0, x) ⊃ A(x)).

(With a little more care, we can choose C to be in the same quantifier complexity
class as A .) Finally, define B to be the formula C(pCq).

We claim that S1
2 proves B ↔ A(pBq). The proof of this claim is almost

immediate. First, by the definitions of f and B , we have pBq is equal to f(pCq);
of course S1

2 proves this fact. Second, by the definition of C , B is S1
2 -provably

equivalent to A(f(pCq)). Therefore, B is S1
2 -provably equivalent to A(pBq).

Q.E.D.

2.2.2. The first incompleteness theorem. Gödel’s first incompleteness
theorem states that there is no complete, axiomatizable, consistent theory T ex-
tending Q . We shall prove several variants of this in this section.

Definition. Let T be an axiomatizable theory. ConT is the ∀∆b
1 -formula

¬ThmT (0 6= 0) which expresses the condition “T is consistent.”
T is said to be ω -consistent if there does not exist a formula B(a) such that

T ` (∃x)B(x) and such that T ` ¬B(n) for all n ≥ 0. T ⊇ S1
2 is weakly

ω -consistent provided there is no such formula B which is ∆b
1 w.r.t. S1

2 . Since every
true ∆b

1 -sentence is provable in S1
2 , T is weakly ω -consistent if and only if T is

consistent and proves only true ∃∆b
1 -sentences.
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Gödel’s First Incompleteness Theorem. Let T be an consistent, axiomatizable
theory containing Q. Then there is a true sentence φ such that T 0 φ. Further, if
T is weakly ω -consistent, then T 0 ¬φ.

The formula φ is explicitly constructible from the axiomatization of T .

Proof. We’ll prove this theorem under the assumption that T ⊇ S1
2 . Choose φ to

a formula such that

S1
2 ` φ ↔ ¬ThmT (pφq).

Intuitively, the formula φ is asserting “I am not provable in T ”; the Diagonal
Lemma 2.2.1 guarantees that φ exists.

First, let’s show that φ is true. Suppose φ were false. Then, by the choice of φ
and since S1

2 is a true theory, T ` φ . Therefore, S1
2 ` ThmT (pφq); and again, by the

choice of φ , S1
2 ` ¬φ . Since T ⊇ S1

2 , we also have T ` ¬φ , which contradicts the
consistency of T . So φ cannot be false.

Second, we show that T 0 φ . Suppose, for sake of a contradiction, T ` φ . Then
S1

2 ` ThmT (pφq). By choice of φ , S1
2 ` ¬φ . So also T ` ¬φ , which again contradicts

the consistency of T .

Third, we assume T is weakly ω -consistent and prove that T 0 ¬φ . Suppose
T does prove ¬φ . Then since T ⊇ S1

2 and by choice of φ , T ` ThmT (pφq). But

ThmT (pφq) is a false ∃∆b
1 -sentence, which contradicts the weak ω -consistency of T .

Q.E.D.

The obvious question at this point is whether the hypothesis of weak ω -consistency
can be removed from the First Incompleteness Theorem; i.e., whether there is a
consistent, axiomatizable, complete theory extending Q . It turns out that this
hypothesis can be removed:

Rosser’s Theorem. (Rosser [1936]) There is no consistent, axiomatizable, complete
theory T ⊇ Q.

The proof of this theorem will give a constructive method of obtaining a formula φ
from the axiomatization of a consistent theory T such that φ is independent of T .

Proof. As before, we give the proof assuming T ⊇ S1
2 . We need to define a modified

notion of provability called “Rosser provability”. Let Neg be the unary function,
Σb

1 -definable in S1
2 , such that Neg(pAq) = p¬Aq for all formulas A . Then we define

the predicate R-PrfT (w, a) as

R-PrfT (w, a) ⇔ PrfT (w, a) ∧ (∀v ≤ w)(¬PrfT (v,Neg(a))).

Intuitively, A has a Rosser proof if and only if A has a (ordinary) proof such that its
negation, ¬A , has no smaller proof. Note that, since T is consistent, R-PrfT (n, pAq)
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is true exactly when PrfT (n, pAq) is; however, this fact is not provable in S1
2 .14 The

predicate R-ThmT (u) is defined to be the ∃Πb
1 -formula (∃w)(R-PrfT (w, u)).

Now use the Diagonal Lemma to choose a sentence φ so that

S1
2 ` φ ↔ ¬R-Thm(pφq).

As before, we have φ is true. In fact, the same proof works as in the proof of the First
Incompleteness Theorem, since ThmT and R-ThmT are extensionally equivalent.
Secondly, T 0 φ again by the same argument as in the previous theorem; in brief: if
T ` φ , then φ is false by choice of φ , but we just claimed φ is true.

Thirdly, we want to show T 0 ¬φ . Suppose T does prove ¬φ ; let n be a
Gödel number of a T -proof of ¬φ . Since T is consistent, we have that there is no
T -proof of φ ; thus S1

2 proves the true ∆0 -sentence (∀v ≤ n)¬PrfT (v, pφq). And
since PrfT (n,Neg(φ)) is true, S1

2 also proves (∀v)(v > n ⊃ ¬R-PrfT (v, pφq)). Hence,
S1

2 proves ¬R-ThmT (pφq). By the choice of φ and since T ⊇ S1
2 , this implies T ` φ ,

which contradicts the consistency of T .
Q.E.D.

2.2.3. The second incompleteness theorem. Gödel’s second incompleteness
theorem improves on his first incompleteness theorem by giving an example of a true
formula with an intuitive meaning which is not provable by a decidable, consistent
theory T . This formula is the formula ConT which expresses the consistency of T .
Note, however, that unlike the the formula φ in the first incompleteness theorem,
ConT is not necessarily independent of T since there are consistent theories that
prove their own inconsistency. An example of such a theory is T + ¬ConT .

Gödel’s Second Incompleteness Theorem. Let T be a decidable, consistent
theory and suppose T ⊇ Q. Then T 0 ConT .

Proof. As usual, we assume T ⊇ S1
2 . Let φ be the formula from the proof of Gödel’s

First Incompleteness Theorem which is S1
2 -provably equivalent to ¬ThmT (pφq).

Recall that we proved T 0 φ . We shall prove that S1
2 proves ConT ⊃ φ ; which will

suffice to show that T 0 ConT , since T ⊇ S1
2 .

By choice of φ , S1
2 proves ¬φ ⊃ ThmT (pφq). Also, by the formula 5 in sec-

tion 2.1.2, S1
2 proves ThmT (pφq) ⊃ ThmT (pThmT (pφq)q). Also, by choice of φ

and by formula 1 of section 2.1.2, S1
2 proves ThmT (pThmT (pφq)q) ⊃ ThmT (p¬φq).

Putting these together shows that S1
2 proves that

¬φ ⊃ [ThmT (pφq) ∧ ThmT (p¬φq)].

From whence ¬φ ⊃ ¬ConT is easily proved. Therefore, S1
2 proves ConT ⊃ φ . 2

14This is a good example (see Feferman [1960]) of an extensional definition which is not an
intensional definition. For consistent theories T , R-PrfT and R-ThmT provide an extensionally
correct definition of provability, since R-PrfT (n, pAq) has the correct truth value for all particular
n and pAq. However, they are not intensionally correct; since, in general, T cannot prove that
R-ThmT (pAq) and R-ThmT (pA ⊃ Bq) implies R-ThmT (B).
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The formula φ not only implies ConT , but is actually S1
2 -equivalent to ConT .

For this, note that since φ implies ¬ThmT (pφq), it can be proved in S1
2 that φ

implies ¬ThmT (p0 = 1q). (Since if a contradiction is provable, then every formula is
provable.)

2.2.4. Löb’s theorem. The self-referential formula constructed for the proof of
the First and Second Incompleteness Theorems asserted “I am not provable”. A
related problem would be to consider formulas which assert “I am provable”. As the
next theorem shows, such formulas are necessarily provable. In fact, if a formula
is implied by its provability, then the formula is already provable. This gives a
strengthening of the Second Incompleteness Theorem, which implies that, in order
to prove a formula A , one is not substantially helped by the assuming that A is
provable. More precisely, the assumption ThmT (pAq) will not significantly aid a
theory T in proving A .

Löb’s Theorem. Let T ⊇ Q be an axiomatizable theory and A be any sentence. If
T proves ThmT (pAq) ⊃ A, then T proves A.

Proof. As usual, we assume T ⊇ S1
2 . Let T ′ be the axiomatizable theory T ∪{¬A} .

The proof of Löb’s Theorem uses the fact that T ′ is consistent if and only if T 0 A ;
and furthermore, that S1

2 proves Con(T ′) is equivalent to ¬ThmT (pAq). From
these considerations, the proof is almost immediate from the second incompleteness
theorem. Namely, since T proves ¬A ⊃ ¬ThmT (pAq) by choice of A , T also proves
¬A ⊃ Con(T ′). Therefore, by the Deduction Theorem, T ′ ` Con(T ′) so by Gödel’s
Second Incompleteness Theorem, T ′ is inconsistent, i.e., T ` A .

2.2.5. Further reading. The above material gives only an introduction to the
incompleteness theorems. Other significant aspects of incompleteness include: (1) the
strength of reflection principles which state that the provability of a formula implies
the truth of the formula, see, e.g., Smorynski [1977]; (2) provability and interpretabil-
ity logics, for which see Boolos [1993], Lindström [1997], and Chapter VII of this
handbook; and (3) concrete, combinatorial examples of independence statements,
such as the Ramsey theorems shown by Paris and Harrington [1977] to be independent
of Peano arithmetic.

3. On the strengths of fragments of arithmetic

3.1. Witnessing theorems

In section 1.2.10, it was shown that every primitive recursive function is Σ1 -
definable by the theory IΣ1 . We shall next establish the converse which implies that
the Σ1 -definable functions of IΣ1 are precisely the primitive recursive functions.
The principal method of proof is the ‘witnessing theorem method’: IΣ1 provides the
simplest and most natural application of the witnessing method.
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3.1.1. Theorem. (Parsons [1970], Mints [1973] and Takeuti [1987]). Every
Σ1 -definable function of IΣ1 is primitive recursive.

Parsons’ proof of this theorem was based on the Gödel Dialectica theorem and a
similar proof is given by Avigad and Feferman in Chapter V in this volume. Takeuti’s
proof was based on a Gentzen-style assignment of ordinals to proofs. Mints’s proof
was essentially the same as the witness function proof presented next; except his
proof was presented with a functional language.

3.1.2. The Witness predicate for Σ1 -formulas. For each Σ1 -formula A(~b),

we define a ∆0 -formula WitnessA(w,~b) which states that w is a witness for the truth
of A .

Definition. Let A(~b) be a formula of the form (∃x1, . . . , xk)B(x1, . . . , xk,~b), where

B is a ∆0 -formula. Then the formula WitnessA(w,~b) is is defined to be the formula

B(β(1, w), . . . , β(k, w),~b).

If ∆ = ∆′, A is a succedent, then Witness∨∆(w,~c) is defined to be

WitnessA(β(1, w),~c) ∨Witness∨∆′(β(2, w),~c).

Dually, if Γ = A, Γ′ is an antecedent, then Witness∧Γ is defined similarly as

WitnessA(β(1, w),~c) ∧Witness∧Γ′(β(2, w),~c).

Note the different conventions on ordering disjunctions and conjunctions; these are
not intrinsically important, but merely reflect the conventions for the sequent calculus
are that active formulas of strong inferences are at the beginning of an antecedent
and at the end of a succedent.

It is, of course, obvious that WitnessA is a ∆0 -formula, and that I∆0 can prove

A(b) ↔ (∃w)WitnessA(w,~b).

3.1.3. Proof. (Sketch of the proof of Theorem 3.1.1.) Suppose IΣ1 proves
(∀x)(∃y)A(x, y) where A ∈ Σ1 . Then there is a sequent calculus proof P in the
theory IΣ1 of the sequent (∃y)A(c, y). We must prove that there is a primitive
recursive function f such that A(n, f(n)) is true, in the standard integers, for all
n ≥ 0. In fact, we shall prove more than this: we will prove that there is a
primitive recursive function f , with a Σ1 -definition in IΣ1 , such that IΣ1 proves
(∀x)A(x, f(x)). This will be a corollary to the next lemma.

Witnessing Lemma for IΣ1 . Let Γ and ∆ be cedents of Σ1 -formulas and suppose
IΣ1 proves the sequent Γ→∆. Then there is a function h such that the following
hold:
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(1) h is Σ1 -defined by IΣ1 and is primitive recursive, and

(2) IΣ1 proves

(∀~c)(∀w)[Witness∧Γ(w,~c) ⊃ Witness∨∆(h(w,~c),~c)].

Note that Theorem 3.1.1 is an immediate corollary to the lemma, since we may take
Γ to be the empty sequent, ∆ to be the sequent containing just (∃y)A(c, y), and let
f(x) = β(1, β(1, h(x))) where h is the function guaranteed to exist by the lemma.
This is because h(x) will be a sequence of length one witnessing the cedent (∃y)A ,
so its first and only element is a witness for the formula (∃y)A , and the first element
of that is a value for y that makes A true.

It remains to prove the Witnessing Lemma. For this, we know by the Cut
Elimination Theorem 1.4.2, that there is a free-cut free proof P of the sequent
Γ→∆ in the theory IΣ1 ; in this proof, every formula in every sequent can be
assumed to be a Σ1 -formula. Therefore, we may prove the Witnessing Lemma by
induction on the number of steps in the proof P .

The base case is where there are zero inferences in the proof P and so Γ→∆
is an initial sequent. Since the initial sequents allowed in an IΣ1 proof contain only
atomic formulas, the Witnessing Lemma is trivial for this case.

For the induction step, the argument splits into cases, depending on the final
inference of the proof. There are a large number of cases, one for each inference rule
of the sequent calculus; for brevity, we present only three cases below and leave the
rest for the reader.

For the first case, suppose the final inference of the proof P is an ∃:right inference,
namely,

. . .
... . . .

Γ→ ∆, A(t)

Γ→ ∆, (∃x)A(x)

Let c be the free variables in the upper sequent. The induction hypothesis gives a
Σ1 -defined, primitive recursive function g(w,~c) such that IΣ1 proves

Witness∧Γ(w,~c)→Witness∨{∆,A(t)}(g(w,~c),~c).

In order for Witness∨{∆,A(t)}(g(w,~c),~c) to hold, either β(2, g(w,~c)) witnesses
∨

∆
or β(1, g(w,~c)) witnesses A(t). So letting h(w,~c) be Σ1 -defined by

h(w,~c) = 〈〈t(~c)〉 ∗ β(1, g(w,~c)), β(2, g(w,~c))〉,
where ∗ denotes sequence concatenation. It is immediate from the definition of
Witness that

Witness∧Γ(w,~c)→Witness∨{∆,(∃x)A(x)}(h(w,~c),~c).

For the second case, suppose the final inference of the proof P is an ∃:left
inference, namely,
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. . .
... . . .

A(b), Γ→ ∆

(∃x)A(x), Γ→ ∆

where b is an eigenvariable which occurs only as indicated. The induction hypothesis
gives us a Σ1 -defined, primitive recursive function g(w,~c, b) such that IΣ1 proves

Witness∧{A(b),Γ}(w,~c)→Witness∨∆(g(w,~c, b),~c).

Let tail(w) be the Σ1 -defined function so that tail(〈w0, w1, . . . , wn〉) = 〈w1, . . . , wn〉 .
Letting h(w,~c) be the function g(〈tail(β(1, w)), β(2, w)〉,~c, β(1, β(1, w))), it is easy
to check that h satisfies the desired conditions of the Witnessing Lemma.

For the third case, suppose the final inference of P is a Σ1 -IND inference:

. . .
... . . .

A(b), Γ→ ∆, A(Sb)

A(0), Γ→ ∆, A(t)

where b is the eigenvariable and does not occur in the lower sequent. The induction
hypothesis gives a Σ1 -defined, primitive recursive function g(w,~c, b) such that IΣ1

proves
Witness∧{A(b),Γ}(w,~c, b)→Witness∨{∆,A(Sb)}(g(w,~c, b),~c, b).

Let k(~c, v, w) be defined as

k(~c, v, w) =

{
v if Witness∨{∆}(v,~c)

w otherwise

Since Witness is a ∆0 -predicate, k is Σ1 -defined by IΣ1 . Now define the primitive
recursive function f(w,~c, b) by

f(w,~c, 0) = 〈β(1, w), 0〉
f(w,~c, b + 1) = 〈β(1, g(〈β(1, f(w,~c, b)), β(2, w)〉,~c, b)),

k(~c, β(2, f(w,~c, b)), β(2, g(〈β(1, f(w,~c, b)), β(2, w)〉,~c, b)))〉

By Theorem 1.2.10, f is Σ1 definable by IΣ1 , and since f may be used in induction
formulas, Σ1 can prove

Witness∧{A(0),Γ}(w,~c)→Witness∨{∆,A(b)}(f(w,~c, b),~c, b).

using Σ1 -IND with respect to b . Setting h(w,~c) = f(w,~c, t) establishes the desired
conditions of the Witnessing Lemma.
Q.E.D. Witnessing Lemma and Theorem 3.1.1.

3.1.4. Corollary. The ∆1 -definable predicates of IΣ1 are precisely the primitive
recursive predicates.
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Proof. Corollary 1.2.10 already established that every primitive recursive predicate
is ∆1 -definable by IΣ1 . For the converse, suppose A(c) and B(c) are Σ1 -formulas
such that IΣ1 proves (∀x)(A(x) ↔ ¬B(x)). Then the characteristic function of the
predicate A(c) is Σ1 -definable in IΣ1 since IΣ1 can prove

(∀x)(∃!y)[(A(x) ∧ y = 0) ∨ (B(x) ∧ y = 1)].

By Theorem 3.1.1, this characteristic function is primitive recursive, hence so is the
predicate A(c).

3.1.5. Total functions of IΣn . Theorem 1.2.1 provided a characterization of the
Σ1 -definable functions of IΣ1 as being precisely the primitive recursive functions.
It is also possible to characterize the Σ1 -definable functions of IΣn for n > 1 in
terms of computational complexity; however, the n > 1 situation is substantially
more complicated. This problem of characterizing the provably total functions of
fragments of Peano arithmetic is classically one of the central problems of proof
theory; and a number of important and elegant methods are available to solve it.
Space prohibits us from explaining these methods, so we instead mention only a few
references.

The first method of analyzing the strength of fragments of Peano is based on
Gentzen’s assignment of ordinals to proofs; Gentzen [1936,1938] used Cantor normal
form to represent ordinals less than ε0 and gave a constructive method of assigning
ordinals to proofs in such a way that allowed cuts and inductions to be removed
from PA-proofs of sentences. This can then be used to characterize the primitive
recursive functions of fragments of Peano arithmetic in terms of recursion on ordinals
less than ε0 . The textbooks of Takeuti [1987] and Girard [1987] contain descriptions
of this approach. A second version of this method is based on the infinitary proof
systems of Tait: Chapter III of this volume describes this for Peano arithmetic,
and Chapter IV describes extensions of this ordinal assignment method to much
stronger second-order theories of arithmetic. The books of Schütte [1977] and
Pohlers [1980] also describe ordinal assignments and infinitary proofs for strong
theories of arithmetic. A further use of ordinal notations is to characterize natural
theories of arithmetic in terms of transfinite induction.

A second approach to analyzing the computational strength of theories of arith-
metic is based on model-theoretic constructions; see Paris and Harrington [1977],
Ketonen and Solovay [1981], Sommer [1990], and Avigad and Sommer [1997].

A third method is based on the Dialectica interpretation of Gödel [1958] and
on Howard’s [1970] assignment of ordinals to terms that arise in the Dialectica
interpretation. Chapter V of this volume discusses the Dialectica interpretation.

A fourth method, due to Ackermann [1941] uses an ordinal analysis of ε-calculus
proofs.

More recently, Buss [1994] has given a characterization of the provably total
functions of the theories IΣn based on an extension of the witness function method
used above.
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3.2. Witnessing theorem for Si
2

Theorem 1.3.4.1 stated that every polynomial time function and every polynomial
time predicate is Σb

1 -definable or ∆b
1 -definable (respectively) by S1

2 . More generally,
Theorem 1.3.6 stated that every p

i -function and every ∆p
i -predicate is Σb

i -definable
or ∆b

i -definable by Si
2 . The next theorem states the converse; this gives a precise

characterization of the Σb
1 -definable functions of S1

2 and of the Σb
i -definable functions

of Si
2 in terms of their complexity in the polynomial hierarchy. The most interesting

case is probably the base case i = 1, where S1
2 is seen to have proof-theoretic strength

that corresponds precisely to polynomial time.

Theorem. (Buss [1986])

(1) Every Σb
1 -definable function of S1

2 is polynomial time computable.

(2) Let i ≥ 1. Every Σb
i -definable function of Si

2 is in the i-th level, p
i , of the

polynomial hierarchy.

Corollary. (Buss [1986])

(1) Every ∆b
1 -definable predicate of S1

2 is polynomial time.

(2) Let i ≥ 1. Every ∆b
i -definable predicate of Si

2 is in the i-th level, ∆p
i , of the

polynomial hierarchy.

The corollary follows from the theorem by exactly the same argument as was used
to prove Corollary 3.1.4 from Theorem 3.1.1. To prove the theorem, we shall use a
witnessing argument analogous to the one use for IΣ1 above. First, we need a revised
form of the Witness predicate; unlike the usual definition of the Witness predicate
for bounded arithmetic formulas, we define the Witness predicate only for prenex
formulas, since this provides some substantial simplification. This simplification is
obtained without loss of generality since every Σb

i -formula is logically equivalent to
a Σb

i -formula in prenex form.

3.2.1. Definition. Fix i ≥ 1. Let A(~c) be a Σb
i -formula which is in prenex form.

Then Witnessi
A(w,~c) is defined by induction on the complexity of A as follows:

(1) If A is a Πb
i−1 -formula, then Witnessi

A(w,~c) is just the formula A(~c),

(2) If A(~c) is not in Πb
i−1 and is of the form (∃x ≤ t)B(~c, x), then Witnessi

A(w,~c) is
the formula

Witnessi
B(~c,b)(β(2, w),~c, β(1, w)) ∧ β(1, w) ≤ t.

Intuitively, a witness for (∃x ≤ t)B(x) is a pair w , the first element of the pair
giving a value for x and the second element witnessing the truth of B(x) for
that value of x .

(3) If A(~c) is not in Πb
i−1 and is of the form (∀x ≤ |t|)B(~c, x), then Witnessi

A(w,~c)
is the formula

(∀x ≤ |t|)Witnessi
B(~c,d)(β(x + 1, w),~c, x).
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Intuitively, a witness for (∀x ≤ |t|)B(x) is a sequence w of length |t| + 1,
w = 〈w0, w1, . . . , w|t|〉 such that each wx witnesses the truth of B(x), for
0 ≤ x ≤ |t| .

Lemma. Let i ≥ 1 and A ∈ Σb
i . Then

(a) Witnessi
A is ∆b

i with respect to S1
2 . If i > 1, then Witnessi

A is a Πb
i−1 -formula.

(b) Witnessi
A defines a ∆p

i -predicate.

(c) Si
2 proves

A(~c) ↔ (∃w)Witnessi
A(w,~c).

(d) There is a term tA and a polynomial time, Σb
1 -definable function gA such that

S1
2 proves

Witnessi
A(w,~c) ⊃ gA(w) < tA(~c) ∧Witnessi

A(gA(w),~c).

The lemma is easily proved by induction on the complexity of A . For part (d), the
function gA(w) merely computes a succinct Gödel number of w ; this just involves
removing unnecessary leading zeros and removing unnecessary elements from the
witness.

We extend the witness predicate to cedents of prenex form formulas as follows. If
∆ = ∆′, A is a succedent, then Witnessi∨∆(w,~c) is defined to be

Witnessi
A(β(1, w),~c) ∨Witnessi∨∆′(β(2, w),~c).

Dually, if Γ = A, Γ′ is an antecedent, then Witnessi∧Γ is defined similarly as

Witnessi
A(β(1, w),~c) ∧Witnessi∧Γ′(β(2, w),~c).

3.2.2. Proof. (Proof sketch for Theorem 3.2.) We shall prove Theorem 3.2
by proving a slightly more general witnessing lemma that applies to sequents of
Σb

i -formulas. Although the lemma holds for sequents of general Σb
i -formulas, we

state it only for formulas in prenex form, since this simplifies the Witness predicate
and the proof.

Witnessing Lemma for Si
2 . Let i ≥ 1. Let Γ→∆ be a sequent of formulas in Σb

i

in prenex form, and suppose Si
2 proves Γ→∆. Let ~c include all free variables in the

sequent. Then there is a p
i -function h(w,~c) which is Σb

i -defined in Si
2 such that Si

2

proves
Witnessi∧Γ(w,~c)→Witnessi∨∆(h(w,~c),~c).

The proof of the Witnessing Lemma is by induction on the number of sequents in a
free-cut free proof P of Γ→∆. Since every Σb

i -formula is equivalent to a Σb
i -formula

in prenex form, we may assume w.l.o.g. that every induction formula in the free-cut
free proof P is a prenex form Σb

i -formula. Then, by the subformula property, every
formula appearing anywhere in the proof is also a Σb

i -formula in prenex form. The
base case of the induction proof is when Γ→∆ is an initial sequent; in this case,
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every formula in the sequent is atomic, so the Witnessing Lemma trivially holds.
The induction step splits into cases depending on the final inference of the proof.
The structural inferences and the propositional inferences are essentially trivial, the
latter because of our assumption that all formulas are in prenex form. So it remains
to consider the quantifier inferences and the induction inferences. The cases where
the final inference of P is an ∃ ≤:right inference or an ∃ ≤:left inference are similar
to the ∃:right and ∃:left cases of the proof of the Witnessing Lemma 3.1.3 for IΣi ,
so we omit these cases too.

Now suppose the final inference of P is a Σb
i -PIND inference:

. . .
... . . .

A(b1
2
bc), Γ→ ∆, A(b)

A(0), Γ→ ∆, A(t)

where A ∈ Σb
i \Πb

i−1 and where b is the eigenvariable and does not occur in the lower
sequent. The induction hypothesis gives a Σb

i -defined, p
i -function g(w,~c, b) such

that Si
2 proves

Witnessi∧{A(b 1
2
bc),Γ}(w,~c, b)→Witnessi∨{∆,A(b)}(g(w,~c, b),~c, b).

Let k(~c, v, w) be defined as

k(~c, v, w) =

{
v if Witnessi∨∆(v,~c)

w otherwise

Since Witnessi is a ∆b
i -predicate, k is Σb

i -defined by Si
2 ; and since Witnessi is in ∆p

i ,
k is in p

i . Define the p
i -function f(w,~c, b) by

f(w,~c, 0) = 〈β(1, w), 0〉
f(w,~c, b) =

〈
β(1, g(〈β(1, f(w,~c, b1

2
bc)), β(2, w)〉,~c, b)),

k(~c, β(2, f(w,~c, b1
2
bc)), β(2, g(〈β(1, f(w,~c, b1

2
bc)), β(2, w)〉,~c, b)))〉

for b > 0.

Since f is defined by limited recursion on notation from g , and since g is Σb
i -defined

by Si
2 , f is also Σb

i -defined by Si
2 . Therefore, f may be used in induction formulas

and Si
2 can prove

Witnessi∧{A(0),Γ}(w,~c)→Witnessi∨{∆,A(b)}(f(w,~c, b),~c, b).

using Σb
i -PIND with respect to b . Setting h(w,~c) = f(w,~c, t) establishes the desired

conditions of the Witnessing Lemma.
Finally, we consider the inferences involving bounded universal quantifiers. The

cases where the principal formula of the inference is a Πb
i−1 -formula are essentially

trivial, since such formulas do not require a witness value, i.e., they are their own
witnesses. This includes any inference where the principal connective is a non-sharply
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bounded universal quantifier. A ∀ ≤:left where the principal formula is in Σb
i must

have a sharply bounded universal quantifier as its principal connective; this case of
the Witnessing Lemma is fairly simple and we leave it to the reader. Finally, we
consider the case where the last inference of P is a ∀ ≤:right inference

. . .
... . . .

b ≤ |t|, Γ→ ∆, A(b)

Γ→ ∆, (∀x ≤ |t|)A(t)

where A ∈ Σb
i \ Πb

i−1 and where the eigenvariable b occurs only as indicated. The
induction hypothesis gives a Σb

i -defined, p
i -function g such that Si

2 proves

b ≤ |t| ∧Witnessi∧Γ(β(2, w),~c)→
Witnessi

A(b)(β(1, g(w,~c, b)),~c, b) ∨Witnessi∨∆(β(2, g(w,~c, b)),~c).

Let f1(w,~c) be defined to equal β(2, g(w,~c, b)) for the least value b ≤ |t| such
this value witnesses

∨
∆, or if there is no such value of b ≤ t , let f1(w,~c) = 0.

Since the predicate Witnessi∨∆(β(2, g(w,~c, b)),~c) is ∆p
i and is ∆b

i -defined by Si
2 , the

function f1 is in p
i and is Σb

i -defined by Si
2 . Also, let f2(w,~c) equal

〈β(1, g(w,~c, 0)), β(1, g(w,~c, 1)), β(1, g(w,~c, 2)), . . . , β(1, g(w,~c, |t|))〉 .

It is easy to verify that f2 also is in p
i and is Σb

i -definable by Si
2 . Now let h(w,~c)

equal 〈f2(〈0, w〉,~c), f1(〈0, w〉,~c)〉 . It is easy to check that h satisfies the desired
conditions of the Witnessing Lemma.
Q.E.D. Witnessing Lemma and Theorem 3.2.

3.3. Witnessing theorems and conservation results for T i
2

This section takes up the question of the definable functions of T i
2 . For these

theories, there are three witnessing theorems, one for each of the Σb
i -definable,

the Σb
i+1 -definable and the Σb

i+2 -definable functions. In addition, there is a close
connection between Si+1

2 and T i
2 ; namely, the former theory is conservative over the

latter. We’ll present most of these results without proof, leaving the reader to look
up the original sources.

The results stated in this section will apply to T i
2 for i ≥ 0; however, for i = 0,

the bootstrapping process does not allow us to introduce many simple functions.
Therefore, when i = 0, instead of T 0

2 , we must use the theory PV1 = T 0
2 ( p

1) as
defined in section 1.3.7. To avoid continually treating i = 0 as a special case, we let
T 0

2 denote PV1 for the rest of this section.

3.3.1. The Σb
i+1 -definable functions of T i

2

Theorem. (Buss [1990]) Let i ≥ 0.

(1) T i
2 can Σb

i+1 -define every p
i+1 -function.
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(2) Conversely, every Σb
i+1 -definable function of T i

2 is a p
i+1 -function.

(3) Si+1
2 is Σb

i+1 -conservative over T i
2 .

(4) Si+1
2 is conservative over T i

2 + Σb
i+1 -replacement with respect to Boolean combi-

nations of Σb
i+1 formulas.

We’ll just state some of the main ideas of the proof of this theorem, and let
the reader refer to Buss [1990] or Kraj́ıček [1995] for the details. Part (1) with
i = 0 is trivial because of the temporary convention that T 0

2 denotes PV1 . To
prove part (1) for i > 0, one shows that T i

2 can “Qi -define” every p
i+1 formula,

where Qi -definability is a strong form of Σb
i+1 -definability. The general idea of a Qi -

definable function is that it is computed by a Turing machine with a Σp
i -oracle such

that every “yes” answer of the oracle must be supported by a witness. In the correct
computation, the sequence of “yes/no” answers is maximum in a lexicographical
ordering, and thus T i

2 can prove that the correct computation exists using Σb
i -MAX

axioms (which can be derived similarly to minimization axioms). This proof of (1) is
reminiscent of the theorem of Krentel [1988] that MINSAT is complete for p

1 .
Part (2) of the theorem is immediate from Theorem 3.2 and the fact that

T i
2 ⊆ Si+1

2 . Part (3) is based on the following strengthening of the Witnessing
Theorem 3.2.2 for Si+1

2 :

Witnessing Lemma for Si+1
2 . Let i ≥ 1. Let Γ→∆ be a sequent of formulas in

Σb
i+1 in prenex form, and suppose Si+1

2 proves Γ→∆; let ~c include all free variables
in the sequent. Then there is a p

i+1 -function h(w,~c) which is Qi -defined in T i
2 such

that T i
2 proves

Witnessi+1∧Γ
(w,~c)→Witnessi+1∨∆

(h(w,~c),~c).

The proof of this Witnessing Lemma is almost exactly the same as the proof of
the Witnessing Lemma in section 3.2.2; the only difference is that the witnessing
functions are now proved to be Qi -definable in T i

2 . In fact, (1) implies the necessary
functions are Qi -defined by T i

2 since we already know they are Σb
i+1 -defined by Si+1

2 .
So the main new aspect is showing that T i

2 can prove that the witnessing functions
work.

Part (3) of the theorem is an immediate consequence of the Witnessing Lemma.
Part (4) can also be obtained from the Witnessing Lemma using the fact that
T i

2 +Σb
i+1 -replacement can prove that A(~c) is equivalent to (∃w)Witnessi+1

A (w,~c) for
any A ∈ Σb

i+1 .

3.3.2. The Σb
i+2 -definable functions of T i

2

The Σb
i+2 -definable functions of T i

2 can be characterized by the following theorem,
due to Kraj́ıček, Pudlák and Takeuti [1991].

KPT Witnessing Theorem. Let i ≥ 0. Suppose T i
2 proves

(∀x)(∃y)(∀z ≤ t(x))A(y, x, z)
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where A ∈ Πb
i . Then there is a k > 0 and there are Σb

i+1 -definable function symbols
f1(x), f2(x, z1), . . ., fk(x, z1, . . . zk−1) such that T i

2 proves

(∀x)(∀z1 ≤ t)[A(f1(x), x, z1) ∨ (∀z2 ≤ t)[A(f2(x, z1), x, z2)

∨(∀z3 ≤ t)[A(f3(x, z1, z2), x, z3)

∨ · · · ∨ (∀zk ≤ t)[A(fk(x, z1, . . . , zk−1), x, zk)] · · ·]]]

Conversely, whenever the above formula is provable, then T i
2 can also prove

(∀x)(∃y)(∀z ≤ t)A(y, x, z).

The variables x , y and z could just as well have been vectors of variables, since
the replacement axioms and sequence coding can be used to combine adjacent like
quantifiers. Also, the first half of the theorem holds even if t involves both x and y .
The proof of the KPT Witnessing Theorem is now quite simple: by the discussion
in section 1.3.7, we can replace each T i

2 by its conservative, universally axiomatized
extension PVi+1 , and now the theorem is an immediate corollary of the corollary to
the generalized Herbrand’s theorem in section 2.5.3 of Chapter I.

3.3.2.1. Applications to the polynomial hierarchy. The above theorem has
had a very important application in showing an equivalence between the collapse of
the hierarchy of theories of bounded arithmetic and the (provable) collapse of the
polynomial time hierarchy. This equivalence was first proved by Kraj́ıček, Pudlák
and Takeuti [1991]; we state two improvements to their results. (We continue the
convention that T 0

1 denotes PV1 .)

Theorem. (Buss [1995], Zambella [1996]) Let i ≥ 0. If T i
2 ² Si+1

2 , then (1) T i
2 = S2

and therefore S2 is finitely axiomatized, and (2) T i
2 proves the polynomial hierarchy

collapses, and in fact, (2.a) T i
2 proves that every Σb

i+3 -formula is equivalent to
a Boolean combination of Σb

i+2 -formulas and (2.b) T i
2 proves the polynomial time

hierarchy collapses to Σp
i+1/poly .

Corollary. S2 is finitely axiomatized if and only if S2 proves the polynomial hierar-
chy collapses.

Let g(x) be a Σb
1 -definable function of T i

2 such that for each n > 0 there is
an m > 0 so that T i

2 ` (∀x)(x > n ⊃ g(x) > m) (for example, g(n) = |n| or
g(n) = ||n|| , etc.) Let gΣb

i -IND denote the axioms

A(0) ∧ (∀x)(A(x) ⊃ A(x + 1)) ⊃ (∀z ≤ g(x))A(z).

Let ∀Πb
i(N) denote the set of all ∀Πb

i sentences (in the language of S2 ) true about
the standard integers.
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3.3.2.2. Theorem. (essentially Kraj́ıček, Pudlák and Takeuti [1991])
If T i

2 + ∀Πb
i(N) ² gΣb

i+1 -IND, then the polynomial time hierarchy collapses to
∆p

i+1/poly .

Note that second theorem differs from the first in that there is no mention of the
provability of the collapse of the polynomial hierarchy; on the other hand, the second
theorem states a stronger collapse. Kraj́ıček, Pudlák and Takeuti [1991] prove the
second theorem with g(n) = |n| and without the presence of ∀Πb

i(N): their proof
gives the stronger form stated here with only minor modifications.

3.3.3. The Σb
1 -definable functions of T 1

2

Buss and Kraj́ıček [1994] characterize the Σb
1 -definable functions of T 1

2 as being
precisely the functions which are projections of PLS functions.

Polynomial Local Search. Johnson, Papadimitriou and Yannakakis [1988] defined
a Polynomial Local Search problem (PLS-problem) L to be a maximization problem
satisfying the following conditions: (we have made some inessential simplifications
to their definition)

(1) For every instance x ∈ {0, 1}∗ , there is a set FL(x) of solutions, an integer valued
cost function cL(s, x) and a neighborhood function NL(s, x),

(2) The binary predicate s ∈ FL(x) and the functions cL(s, x) and NL(s, x) are
polynomial time computable. There is a polynomial pL so that for all s ∈
FL(x), |s| ≤ pL(|x|). Also, 0 ∈ FL(x).

(3) For all s ∈ {0, 1}∗ , NL(s, x) ∈ FL(x).

(4) For all s ∈ FL(x), if NL(s, x) 6= s then cL(s, x) < cL(NL(s, x), x).

(5) The problem is solved by finding a locally optimal s ∈ FL(x), i.e., an s such that
NL(s, x) = s .

It follows from these conditions that all s ∈ FL(x) are polynomial size.

A PLS-problem L can be expressed as a Πb
1 -sentence saying that the conditions

above hold; if these are provable in T 1
2 then we say L is a PLS-problem in T 1

2 . The
formula OptL(x, s) is the ∆b

1 -formula NL(s, x) = s . A multivalued function g such
that for all x , NL(g(x), x) = g(x), is called a PLS function; g must be total, but may
be multivalued, since there may exist more than one optimal cost solution. The next
theorem states, loosely speaking, that the (multivalued) Σb

1 -definable functions of T 1
2

are precisely the functions f which can be expressed in the form f = π◦g , where g is
a PLS function and where π is a polynomial time function (in fact, π(y) = β(1, y)
can always be used).

Theorem. (Buss and Kraj́ıček [1994])

(1) For every PLS problem L, T 1
2 can prove (∀x)(∃y)OptL(x, y).
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(2) If A ∈ Σb
1 and if T 1

2 proves (∀~x)(∃y)A(~x, y), then there is a polynomial time
(projection) function π(y) and a PLS problem L such that T 1

2 proves

(∀~x)(∀y)(OptL(~x, y) ⊃ A(~x, π(y)).

In other words, if g is a PLS function solving L, then A(~x, π ◦ g(~x)) holds for
all ~x and all values of g(~x).

Natural Proofs. The above theorem characterizing the Σb
1 consequences of T 1

2 in
terms of PLS functions was used in an important way to establish the independence
of some computational complexity conjectures from S2

2(α). Razborov and Rudich
[1994] introduced a notion of “P-natural proofs” of P 6= NP ; which intuitively are
proofs which provide a polynomial time method of separating out truth tables of
Boolean functions that do not have polynomial size circuits. They then showed that
under a certain strong pseudo-random number generator conjecture (henceforth: the
SPRNG conjecture) that there cannot be P-natural proofs of P 6= NP . Razborov
[1995] then showed that S2

2(α) cannot prove superpolynomial lower bounds on the
size of circuits for predicates in the polynomial hierarchy unless there are P-natural
proofs that P 6= NP . This latter condition of course implies the SPRNG conjecture is
false; however, most researchers in cryptography apparently do believe the SPRNG
conjecture. Thus commonly believed cryptographic conjectures imply that S2

2(α)
cannot prove superpolynomial lower bounds for NP predicates. A further observation
of Widgerson is that S2

2 cannot prove the SPRNG conjecture. Razborov’s proof
used the conservativity of S2

2 over T 1
2 , and the above characterization of the Σb

1 -
consequences of T 1

2 ; he then combined this with a communication complexity result
(analogous to Craig interpolation) to extract a P-natural proof from the resulting
PLS function.

Razborov [1994] has subsequently given a simpler proof of the above-discussed
theorem which uses the translations from bounded arithmetic into propositional
logic (see Chapter VIII of this volume) plus interpolation theorems for propositional
logic. A complete account of this simpler proof can be found in our survey article,
Buss [1997].

3.4. Relationships between BΣn and IΣn

Recall from section 1.2.9, that BΣn+1 ` IΣn ` BΣn . We show in the next
paragraphs that these three theories are distinct and that BΣn+1 is conservative over
IΣn .

3.4.1. Conservation of BΣn+1 over IΣn . In this section we outline a proof of
the well-known theorem that the BΣn+1 is Πn+2 -conservative over IΣn ; this was
first proved by Parsons [1970]. A model-theoretic proof was later given by Paris and
Kirby [1978], and we sketch below a proof-theoretic proof from Buss [1994].
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Theorem. BΣn+1 is Πn+2 -conservative over IΣn .

Recall that BΣn+1 is equivalent to the theory BΠn , which has Πn -REPL axioms
of the form

(∀x ≤ t)(∃y)A(x, y)→(∃z)(∀x ≤ t)(∃y ≤ z)A(x, y)

where A ∈ Πn . In the above sequent, there are unbounded quantifiers in the scope
of bounded quantifiers, so the formula in the antecedent is a Σ+

n+1 -formula, not a
Σn+1 -formula.

Definition. Fix n and suppose A ∈ Σ+
n+1 .

(1) If A ∈ Π+
n , then A6s is defined to be A .

(2) If A is (∃x)B and A /∈ Π+
n , then A6s is defined to be (∃x ≤ s)B .

(3) If A is (Qx ≤ t)B then A6s is defined to be (Qx ≤ t)(B6s).

Let Γ→∆ be a sequent A1, . . . , Ak→B1, . . . , B` of Σ+
n+1 -formulas. Then Γ6s is

the formula
∧k

i=1 A6s
i and ∆6s is the formula

∨`
j=1 B6s

j . This notation should cause
no confusion since antecedents and succedents are always clearly distinguished.

If ~c = c1, . . . cs is a vector of free variables, then ~c ≤ u abbreviates the formula
c1 ≤ u ∧ · · · ∧ cs ≤ u . (∀~c ≤ u) and (∃~c ≤ u) abbreviate the corresponding vectors
of bounded quantifiers.

Lemma. Let n ≥ 1. Suppose Γ→∆ is a sequent of Σ+
n+1 -formulas that is provable

in BΣn+1 . Let ~c include all the free variables occurring in Γ→∆. Then

IΣn ` (∀u)(∃v)(∀~c ≤ u)
(
Γ6u ⊃ ∆6v

)
.

Intuitively, this theorem is saying that given a bound u on the sizes of the free
variables and on the sizes of the witnesses for the formulas in Γ, there is a bound v
for the values of a witness for a formula in ∆. The conservation theorem above is an
immediate corollary of the lemma, so it remains to prove the lemma.

Proof. We give only a short sketch of the proof of the lemma here; a more detailed
version is given in Buss [1994] although the definitions are slightly different there.

Firstly, formulate BΠn -proofs in the sequent calculus, using the inference rule
form of the Πn -REPL axioms described in section 1.4.5. Secondly, since BΠn =
BΣn+1 , we may assume there is a BΠn -proof P of Γ→∆, and by the Free-cut
Elimination Theorem, we may assume that every formula appearing in P is a
Σ+

n+1 -formula. Thirdly, we shall use induction on the number of sequents in P to
prove that the Lemma holds for every sequent in P . The induction step involves a
number of cases; we shall do only the two cases where the final inference of P is a
replacement inference and where the final inference of P is a ∀:right inference. The
latter case is the hardest of all the cases; the rest of the cases are left to the reader.

Suppose the final inference of P is a replacement inference:



136 S. Buss

. . .
... . . .

Γ→ ∆, (∀x ≤ t)(∃y)A(x, y)

Γ→ ∆, (∃z)(∀x ≤ t)(∃y ≤ z)A(x, y)

The induction hypothesis is that IΣn proves

(∀u)(∃v)(∀~c ≤ u)[Γ≤u ⊃ ∆≤v ∨ (∀x ≤ t)(∃y ≤ v)A(x, y)].

From this, the desired result that

(∀u)(∃v)(∀~c ≤ u)[Γ≤u ⊃ ∆≤v ∨ (∃z ≤ v)(∀x ≤ t)(∃y ≤ z)A(x, y)].

follows immediately.
Now suppose that P ends with a ∀:right inference:

. . .
... . . .

Γ→ ∆, B(~c, d)

Γ→ ∆, (∀x)B(~c, x)

Note that B ∈ Π+
n since (∀x)B is a Σ+

n+1 -formula. We reason inside IΣn . Let u be
arbitrary. By strong Σn -replacement (see the end of section 1.2.9) there is a u′ ≥ u
such that

(∀~c ≤ u)
(
(∀x)B(~c, x) ↔ (∀x ≤ u′)B(~c, u′)

)
.

Let v ≥ u′ be given by the induction hypothesis so that

(∀~c, d ≤ u′)
(
Γ6u′ ⊃ ∆6v ∨B(~c, d)

)
.

Now let ~c ≤ u be arbitrary such that Γ6u . We need to show ∆6v ∨ (∀x)B(~c, x).
Suppose that (∀x)B(~c, x) is false: then there is a d ≤ u′ such that ¬B(~c, d), and by
the induction hypothesis, ∆6v holds. Thus ∆6v ∨ (∀x)B(~c, x) holds.

3.4.2. IΣn+1 properly contains BΣn+1

Theorem. (Parsons [1970]) Let n ≥ 1. IΣn+1 is not equal to BΣn+1 .

Proof. We’ll give only a quick sketch of a proof-theoretic proof based on Gödel’s
second incompleteness theorem; see Paris and Kirby [1978] for a model-theoretic
proof. The two main steps in our proof are:

(1) IΣ1 ` Con(IΣn) ⊃ Con(BΣn+1). This is proved by formalizing, in IΣ1 , the
proof of Theorem 3.4.1 sketched above. That proof was quite constructive:
any BΣn+1 proof of a Σn -formula can be transformed into a free-cut free proof
by a primitive recursive process. Then the transformation of the free-cut free
BΣn+1 -proof into a IΣn -proof, as in the proof of Lemma 3.4.1, is primitive
recursive (in fact it is polynomial time).

Therefore, IΣ1 proves that if BΣn+1 proves a contradiction, 0 = 1, then so
does IΣn ; i.e., IΣ1 proves that if BΣn+1 is inconsistent, then so is IΣn .
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(2) IΣn+1 ` Con(IΣn). To prove this, first note that, since IΣ1 can prove the free-cut
elimination theorem, it is sufficient to prove that IΣn+1 can prove that there is
no free-cut free IΣn -proof of 0 = 1; in particular, it suffices to show that IΣn+1

can prove that there is no IΣn sequent calculus proof of 0 = 1 in which every
formula is a Σn -formula. Second, IΣn+1 has a truth definition for Σn -formulas;
i.e., there is a formula Tr(x, y) such that when x is the Gödel number of a
Σn -formula and y is a sequence encoding values for the free variables of the
formula, then Tr(x, y) defines the truth of the formula for those values. In
addition, IΣn+1 can prove that the truth definition satisfies the usual properties
of truth, in that it obeys the meanings of the logical connectives. Chapter VIII
discusses truth definitions in depth, and the reader should refer to that for more
details. Third, using the truth definition for Σn -formulas, IΣn+1 can prove,
by induction on the number of lines in the free-cut free IΣn -proof, that every
sequent in the proof is valid. Therefore, it cannot be a proof of 0 = 1, since
that is not valid. So by this means, IΣn+1 proves the consistency of IΣn .

(1) and (2) immediately that IΣn+1 proves the consistency of BΣn+1 ; therefore, by
Gödel’s incompleteness theorem, IΣn+1 is not equal to BΣn+1 .

3.4.3. BΣn+1 properly contains IΣn . The fact that IΣn does not prove the
Σn+1 -replacement axioms was first established independently by Lessan [1978] and
Paris and Kirby [1978]. Their proofs were model-theoretic; Kaye [1993] gave a
proof-theoretic proof based on an argument analogous to the proof of Theorem 3.3.2.1
using a Herbrand-style nocounterexample interpretation.

4. Strong incompleteness theorems for I∆0 + exp

4.1. Gödel’s Second Incompleteness Theorem states that a sufficiently strong,
axiomatized, consistent theory T cannot prove its own consistency. One way to
strengthen this incompleteness theorem is by working with two theories, S and T ,
such that S is a subtheory of T : in some cases, one can establish that T cannot
prove the consistency of its subtheory S .

There are many cases in which this strengthening of the second incompleteness
theorem can be achieved. One important situation is where T is conservative over S ;
for example, BΣn+1 cannot prove the consistency of IΣn , since BΣn+1 is conservative
over IΣn and the latter theory cannot prove its own consistency. A second important
example is where S is interpretable in T and thus Con(S) ⊃ Con(T ); for example, it
is known that S2 is interpretable in Q (see Wilkie and Paris [1987] and Nelson [1986])
and therefore S2 cannot prove Con(Q).

A third example, and the one that is the main subject of this section, is the
theorem of Wilkie and Paris [1987] that I∆0 + exp cannot prove the consistency
of Q . This example does not fall into either of the above examples, since I∆0 + exp
is not interpretable in Q .
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4.2. Before beginning a discussion of the proof that I∆0 + exp does not prove
Con(Q), we discuss a few other extensions of the second incompleteness theorem. The
first extension is that the second incompleteness theorem applies also to restricted
notions of provability, such as “bounded consistency” and “Σk -consistency”.

Definition. Let S be a theory, formalized in the sequent calculus. We say that
S is bounded consistent if there is no S -proof of the empty sequent → in which
only bounded formulas appear. For k ≥ 0, S is Σk -consistent provided there is no
S -proof of the the empty sequent in which only Σk -formulas appear. S is free-cut
free consistent if there is no formula A such that S has free-cut free proofs of both→A and A→ .

The formulas BdCon(S), ConΣk
(S) and FCFCon(S) are ∀Πb

1 -formulas which
express the bounded consistency, the Σk -consistency and the free-cut free consistency
of S , respectively.

Of course, the cut-elimination theorem implies that a bounded theory S satisfies
these three notions of consistency if and only if S is consistent in the usual sense;
however, since the cut-elimination theorem is not provable in weak theories where
the superexponentiation function is not provably total, these three new notions of
consistency will not generally be provably equivalent to each other or to Con(S).

Definition. We say that a proof is bounded provided every formula in the proof
is ∆0 . Similarly a proof is Σk , if every formula in the proof is in Σk . We write
S ∆0

A and S Σk
A to denote the condition that A has a sequent calculus S -proof

in which every formula is in ∆0 or Σk , respectively.

Buss [1986] proved that if S is a bounded theory (such as I∆0 , Si
2 , T i

2 , S2 ,
etc) then S cannot prove its own free-cut free consistency; i.e., S cannot prove
FCFCon(S) and hence S 0 BdCon(S) and S 0 Σk-Con for all k > 0. This was
later strengthened to show that S2 does not prove BdCon(BASIC), the bounded
consistency of its induction-free base theory: this result first appeared in Takeuti
[1990] and Buss and Ignjatović [1995] building on the earlier work of Pudlák [1990].
A related result, proved by Buss and Ignjatović [1995], is that the theory PV (and
hence S1

2 ) does not prove the consistency of a finitely axiomatized, induction-free
fragment PV − of PV .

Like the theorem of Wilkie and Paris [1987] that we discuss below, these indepen-
dence results provide situations where a stronger theory cannot prove a consistency
statement about a weaker theory. These results are interesting in their own right of
course; but in addition, they are motivated by a yet-unfulfilled hope that indepen-
dence results of these kinds could lead to a proof that P 6= NP . This wistful hope is
based on the intuitive idea that P 6= NP is analogous to a finitary incompleteness
theorem.

4.2.1. More strengthenings of Gödel’s second incompleteness theorem can be found
in Chapters VII and VIII of this volume.
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4.3. A theorem of Wilkie and Paris

This section outlines a proof of the theorem that I∆0 + exp cannot prove the
consistency of I∆0 . Earlier, we used the notation exp(x, y, z) as a ∆0 -predicate
expressing the condition that xy = z . We also define “exp” to be the sentence

(∀x)(∀y)(∃z)exp(x, y, z)

stating that the exponentiation function is total.

Theorem. (Wilkie and Paris [1987]) I∆0 +exp cannot prove Con(I∆0). Therefore,
I∆0 + exp cannot prove Con(Q).

It is worth noting some theories that are sufficiently strong to prove the consis-
tency of I∆0 . First, if one considers bounded consistency, we have that

I∆0 + exp ` BdCon(I∆).

To prove this fact, one shows that I∆0+exp can define a truth definition for bounded
formulas which is sufficient to allow I∆0 + exp to prove the validity of every sequent
which has a bounded ∆0 -proof.

Second, let 2x
k be the superexponentiation function defined by 2x

0 = x and
2x

i+1 = 22x
i . By the bootstrapping techniques used earlier, there is a ∆0 -formula

superexp(i, x, z) which intensionally expresses 2x
i = z . Similarly, superexp(i, x, z)

is ∆b
1 -definable with respect to S1

2 . We let “superexp” be the axiom stating

(∀x)(∀y)(∃z)superexp(x, y, z).

Since I∆0 + superexp can prove the free-cut elimination theorem, it can also prove
that BdCon(I∆0 ) implies Con(I∆0). Therefore, I∆0 + superexp ` Con(I∆0).

4.3.1. We are now ready to outline the proof of Theorem 4.3. It is more convenient
to work with S2 instead of I∆0 and so we shall prove that S2 + exp 0 Con(S2).
Note that we still have S2 + exp ` BdCon(S2). Also, S1

2 (and I∆0 + Ω1 ) proves
Con(Q) ⊃ Con(S2), so Con(S2) and Con(I∆0) are equivalent.15 We shall prove
Theorem 4.3, by proving a series of lemmas, theorems and corollaries, namely,
Lemma 4.3.2 through Theorem 4.3.10. The proof is a modified version of the original
proof of Wilkie and Paris [1987].

4.3.2. Lemma. Let φ(x) be a Σ1 -formula, and suppose S2 + exp ` (∀x)φ(x).
Then there is a constant k > 0 such that

S2 ` (∀x)(2x
k exists ⊃ φ(x)).

To improve readability, we shall often write, as above, a shorthand notation such as
“2x

k exists” as an abbreviation for (∃y)superexp(k, x, y).

15The proof below that S2 + exp 0 Con(S2) can be understood without knowing how to prove
in S1

2 that I∆0 and S2 are equiconsistent.
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Proof. Without loss of generality, φ(x) is of the form (∃u)φM(x, u) with φM ∈ ∆0 .
The hypothesis implies that S2 proves (∀y)(∃z)(2y = z) ⊃ (∀x)φ(x), which can be
put in prenex form as

(∀x)(∃u)(∃y)(∀z)[2y 6= z ∨ φM(x, u)].

Now, momentarily enlarge S2 to have Skolem functions for all ∆0 formulas, thereby
making S2 axiomatized by purely universal formulas. The strong form of Herbrand’s
theorem (section 2.5.3 of Chapter I) implies that there is an ` > 0 and there are
terms s1(u), t1(x), s2(x, u1, y1), t2(x, u1, y1), . . . , s`(x, u1, . . . , u`−1, y1, . . . , y`−1),
t`(x, u1, . . . , u`−1, y1, . . . , y`−1) so that S2 proves

(∀x)[(∀z1)[2
t1(x) 6= z1 ∨ φM(x, s1(x)) ∨ (∀z2)[2

t2(x,z1) 6= z2 ∨ φM(x, s2(x, z1))∨
· · · ∨ (∀z`)[2

t2(x,z1,...,z`−1) 6= z` ∨ φM(x, s2(x, z1, . . . , z`−1))] · · ·]]].

Since ¬φ ⊃ ¬φM(x, si(x, ~z)), we immediately have that S2 also proves

(∀x)[φ(x) ∨ (∀z1)(2
t1(x) 6= z1 ∨ (∀z2)(2

t2(x,z1) 6= z2∨
· · · ∨ (∀z`)(2

t`(x,z1,...,z`−1) 6= z`) · · ·))]

where each ti is a function with polynomial growth rate with graph defined by a
∆0 -formula. Thus, S2 proves that φ(x) holds, provided there exists z1 = 2t1(x) ,
z2 = 2t2(x,z1), . . . , z` = 2t`(x,z1,...,z`−1) . Since each ti has polynomial growth rate,
the values of the zi ’s are bounded by 2x

`+1 for sufficiently large x ∈ N ; therefore,
S2 proves that if 2x

`+1 exists, then φ(x) holds. Taking k = ` + 1, Lemma 4.3.2 is
proved.

4.3.3. Theorem. (Solovay [1976]) For each n, k ≥ 0, there is a S1
2 -proof P of

(∃x)(superexp(k, n, x)) with size polynomially bounded in terms of |n| and k . In
addition, P is a Σ2k+1 -proof.

Proof. The proof is based on using formulas that define inductive cuts. The
particular ones we need are formulas Ji(x) and Ki(x) defined as:

J0(x) ⇔ 0 = 0 (always true)

K0(x) ⇔ (∃y)(2x = y)

Ji+1(x) ⇔ (∀z)(Ki(z) ⊃ Ki(z + x))

Ki+1(x) ⇔ (∃y)(2x = y ∧ Ji+1(y))

Lemma.

(a) S1
2 ` Jk(0)

(b) S1
2 ` Jk(x) ⊃ Jk(x + 1)
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(c) S1
2 ` Jk(x) ∧ u < x ⊃ Jk(u)

(d) S1
2 ` Jk(x) ⊃ Jk(x + x)

(e) S1
2 ` Kk(0)

(f) S1
2 ` Kk(x) ∧ u < x ⊃ Kk(u)

(g) S1
2 ` Kk(x) ⊃ Kk(x + 1)

(h) S1
2 ` Kk(x) ⊃ (∃z)superexp(k + 1, x, z).

Parts (a)-(g) are proved simultaneously by induction on k . Part (h) is likewise proved
using induction on k . Moreover, it is easy to verify that the S2 -proofs of formulas
(a)-(g) are polynomial size in k , and involve only Σ2k+1 -formulas.

By using (d) and (c) of the lemma, it is straightforward now to give find an
S1

2 -proof of Jk(n) of size polynomial in |n| and k ; from this, (e) and (h) give the
desired proof of P of (∃z)superexp(k, n, z).

4.3.4. Lemma. Suppose φ(x) ∈ Σ1 and S2 + exp ` (∀x)φ(x). Then, there is a
k ≥ 0 such that

S1
2 ` (∀x)

(
S2 Σk

φ(x)
)
.

Lemma 4.3.4 is proved from Lemma 4.3.2 by formalizing the argument of Lemma 4.3.3
in S1

2 .

4.3.5. Lemma. Let φ(x) be a ∀Πb
1 -formula, which is without loss of generality of

the form (∀y)φM(x, y) where φM ∈ Πb
1 . Then there is a term t such that

S1
2 ` ¬φ(x)→ (

S2 ∆0
(∃y ≤ t(x))¬φM(x, y)

)
.

This lemma is a special case of Theorem 2.1.2.

4.3.6. Lemma. Let φ be a ∀Πb
1 -sentence such that S2 + exp ` φ. Then there is a

k ≥ 0 such that

S1
2 ` ¬φ→¬ConΣk

(S2).

Proof. Without loss of generality, φ is of the form (∀x)φM(x) with φM a Πb
1 -

formula. By Lemma 4.3.4, S2 proves (∀x)(S2 Σk
φM(x)). On the other hand,

Lemma 4.3.5 implies that S2 proves

¬φM(x) ⊃ (
S2 ∆0

¬φM(x)
)
.

These two facts suffice to prove Lemma 4.3.6.

4.3.7. Lemma. Let k > 0. Then S2 + exp proves ConΣk
(S2).
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Proof. (Sketch). The proof of this has two main steps:

(1) Firstly, one shows that S2 + exp proves BdCon(S2) ⊃ ConΣk
(S2). This is

done, by formalizing the following argument: (a) Assume that P is a Σk -proof
of 0 = 1 in the theory S2 . (b) By using sequence encoding to collapse
adjacent like quantifiers, we may assume w.l.o.g. that each formula in P has
at most k + 1 unbounded quantifiers. (c) By applying the process used to
prove the Cut-Elimination Theorem 2.4.2 of Chapter I, there is a bounded
S2 -proof of 0 = 1 of size at most 2

||P ||
2k+4 . Since only finitely many iterations of

exponentiation are needed, the last step can be formalized in S2 + exp.

(2) Secondly, one shows that S2 +exp can prove the bounded consistency of S2 . The
general idea is that if there is a bounded S2 -proof P of 0 = 1, then there is a
a fixed value ` so that all variables appearing in P can be implicitly bounded
by L = 2

size(P )
` where size(P ) is the number of symbols in P . (In fact, ` = 3

works.) Once all variables are bounded by L , a truth definition can be given

based on the fact that 2Lsize(P )
exists. With this truth definition, S2 + exp can

prove that every sequent in the S2 -proof is valid.

4.3.8. Corollary. The theory S2 + exp is conservative over the theory S2 ∪
{ConΣk

(S2) : k ≥ 0} with respect to ∀Πb
1 -consequences.

Proof. The fact that the first theory includes the second theory is immediate from
Theorem 4.3.7. The conservativity is immediate from Lemma 4.3.6.

Incidentally, since S2 is globally interpretable in Q , we also have that the theories
S2 + {ConΣk

(S2) : k ≥ 0} and S2 + {ConΣk
(Q) : k ≥ 0} are equivalent.

4.3.9. Theorem. S2 ∪ {ConΣk
(S2) : k ≥ 0} 0 Con(S2).

It is an immediate consequence of Theorem 4.3.9 and Corollary 4.3.8 that S2 +
exp 0 Con(S2), which is the main result we are trying to establish. So it remains to
prove Theorem 4.3.9:

Proof. Let k > 0 be fixed. Use Gödel’s Diagonal Lemma to choose an ∃Σb
1 -sentence

φk such that

S1
2 ` φk ↔

(
S2 + ConΣk

(S2) ∆0
¬φk

)
.

Now φk is certainly false, since otherwise S2 + ConΣk
(S2) proves ¬φk , which would

be false if φk were true. Furthermore, S2 + exp can formalize the previous sentence,
since as sketched above in the part (2) of the proof of Theorem 4.3.7, S2 + exp
can prove the validity of every formula appearing in a bounded proof in the theory
S2 + ConΣk

(S2). Therefore, S2 + exp proves ¬φk .

Since ¬φk is a ∀Πb
1 -sentence, Corollary 4.3.8 implies that there is some m > 0

such that S2 + ConΣm(S2) ` ¬φk . It is evident that S2 + ConΣk
(S2) cannot prove

ConΣm(S2) since this would contradict the fact that φk is false, which implies that
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S2 + ConΣk
(S2) does not prove ¬φk . Therefore S2 + ConΣk

(S2) also cannot prove
Con(S2).

Since this argument works for arbitrary k , the Compactness Theorem implies
that S2 + {ConΣk

(Q) : k ≥ 0} cannot prove Con(S2).

The proofs above actually proved something slightly stronger than Theorem 4.3.9;
namely,

4.3.10. Theorem. There is an m = O(k) such that S2+ConΣk
(S2) 0 ConΣm(S2).

We conjecture that m = k + 1 also works, but do not have a proof at hand.

4.3.11. A related result, which was stated as an open problem by Wilkie and
Paris [1987] and was later proved by Hájek and Pudlák [1993,Coro. 5.34], is the fact
that there is a ∀Πb

1 -sentence φ , such that S1
2 + exp ` φ but such that S1

k 0 φ for all
k ≥ 0.
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