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Chapter 1

Sums of count random variables

1.1 Generating functions

Definition 1.1.1. Let {an}n∈N0 be a sequence of real numbers. The function

A(s) =
∞∑

n=0

ans
n,

defined for all s ∈ R for which the sum converges absolutely, is called a generating function
(GF) of the sequence {an}n∈N0 .

Definition 1.1.2. Let X be a non-negative integer-valued (i.e. count) random variable.
Its probability distribution is given by the probabilities {pn}n∈N0 where pn = P(X =
n). The generating function of the sequence {pn}n∈N0 is called a probability generating
function (PGF).

The definition of a PGF PX(s) of a count random variable X can be rewritten as follows:

PX(s) = EsX

The following theorem summarizes basic facts about probability generating functions.

Theorem 1.1.1. Let X be a count random variable, PX its probability generating func-
tion with the radius of convergence RX . Then the following holds:

1. RX ≥ 1. For all |s| < RX the derivatives P
(k)
X (s) exist and, furthermore, the limit

lims→1− P
(k)
X (s) = P

(k)
X (1−) also exists.

2. P(X = k) = 1
k!P

(k)
X (0) and, in particular, P(X = 0) = PX(0).

3. EX(X − 1) · · · (X − k + 1) = P
(k)
X (1−), and, in particular, EX = P ′

X(1−).

5



6 CHAPTER 1. SUMS OF COUNT RANDOM VARIABLES

Clearly from Theorem 1.1.1 it follows that

varX = P ′′
X(1−) + P ′

X(1−)−
(
P ′
X(1−)

)2
if EX <∞.

Exercise 1. Find the generating function of the count random variable X and determine its
radius of convergence. Using the generating function find the mean value and variance of X.

1. X has the Bernoulli distribution with parameter p ∈ (0, 1).

2. X has the binomial distribution with parameters m ∈ N0 and p ∈ (0, 1).

3. X has the negative binomial distribution with parameters m ∈ N0 and p ∈ (0, 1).

4. X has the Poisson distribution with parameter λ > 0.

5. X has the geometric distribution (on N0) with parameter p ∈ (0, 1).

Exercise 2. Let PX(s) be a probability generating function of a count random variable X.
Find the probability distribution of X and compute its mean if

1. PX(s) = 1
4−s

, |s| < 4.

2. PX(s) = 2
s2−5s+6

, |s| < 2.

3. PX(s) = 24−9s
5s2−30s+40

, |s| < 2.

4. PX(s) = 1
2max(p,q)

(

1−
√

1− 4pqs2
)

, |s| ≤ 1 with p ∈ (0, 1) and q = 1− p.

Solution to Exercise 2, part (4). The mean can be computed in a standard way by taking
the derivative P ′

X(s) and considering the limit lims→1− P ′
X(s). We obtain

EX =

{
2pq

max(p,q)|p−q| , p 6= q,

∞, p = q.

Now, in order to obtain the probabilities P(X = k) recall the Taylor expansion of the function
f(x) =

√
1 + x at x = 0. We have that

√
1 + x =

∞∑

k=0

(1
2

k

)

xk =
∞∑

k=0

(
2k

k

)
(−1)k

22k(1− 2k)
xk.

Now, take x := −4pqs2 (notice that such x will never be equal to −1 where the Taylor
expansion would not exist since the square root is not smooth at zero). Hence, we obtain

PX(s) =
1

2max(p, q)

(

1 +

∞∑

k=0

(
2k

k

)
(pq)k

2k − 1
s2k

)

.

Comparing the coefficients it follows that

P(X = 0) = 0

P(X = 2k) = 1
2max(p,q)

(
2k
k

) (pq)k

2k−1 , k = 1, 2, . . .

P(X = 2k − 1) = 0, k = 1, 2, . . .

It should be mentioned that P (s) is not a probability generating function as defined in Defi-
nition 1.1.2 - the sequence {pn} here is not a probability distribution on N. △
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Exercise 3. Consider a series of Bernoulli trials. Determine the probability that the number
of successes in n trials is even.

Solution to Exercise 3. Even though there are many ways how to solve this Exercise, we
will make use of the probability generating functions. Notice that the number of successes in
n trials can be even in two ways:

1. in the n-th trial, the throw was a success and in (n − 1) trials the total number of
successes was odd

2. in the n-th trial, the throw was a failure and in (n − 1) trials the total number of
successes was even

Denote now by an the probability that in n-trials there will be an even number of successes.
By the law of total probability, we obtain that

an = p(1− an−1) + (1− p)an−1, n = 1, 2, . . . ,

with a0 := 1 (surely in zero trials there are no successes which is an even number). Now
multiplying the whole recurrence equation by sn and summing from n = 1 to ∞ we obtain
for |s| < 1 that

∞∑

n=1

ans
n = p

∞∑

n=1

+(1− 2p)

∞∑

n=1

an−1s
n

If we denote by A(s) the GF of the sequence of probabilities (not a distribution!) {an}∞n=0,
we can rewrite this as

A(s)− 1 = p · s

1− s
+ (1− 2p)sA(s), |s| < 1,

from which we get, using partial fractions, that

A(s) =
1− (1− p)s

(1− s)(1− (1− 2p)s)
=

1
2

1− s
+

1
2

1− (1− 2p)s
, |s| < 1.

Going back to the definition of A(s) we can see that

∞∑

n=0

ans
n =

1

2

∞∑

n=0

1 · sn +
1

2

∞∑

n=0

(1− 2p)nsn

and comparing the coefficients we get the final formula for an

an =
1

2
(1 + (1− 2p)n) , n = 0, 1, 2, . . .

△

Exercise 4. At a party, the guests play (having had some drinks) a game. Each person takes
off one of their socks and puts it into a sack. Then all the socks are shuffled and each person
chooses (uniformly randomly) one sock. Assume there is n ∈ N guests at the party. What is
the probability pn that no guest gets their own sock?
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Solution to Exercise 4. This is a famous and old problem called ”The Matching Problem”
first solved in 1713 by P. R. de Montmort. Assume that n ≥ 2. We shall calculate the
number of derangements Dn (i.e. permutation of {1, 2, . . . , n} such that no element appears
in its original position). Then, of course, the sought probability pn = Dn

n! . Let us number the
guests 1, 2, . . . , n and their socks also 1, 2, . . . , n. Assume that the guest number 1 chooses
sock i (there are n − 1 ways to make such a choice). The following both possibilities can
occur:

1. Person i does not take sock no. 1. But this is the same situation as if we considered
only (n− 1) guests with (n− 1) socks playing the game.

2. Persion i takes sock no. 1. But this is the same situation as if we considered only (n−2)
guests with (n− 2) socks playing the game.

Hence, the recurrence relation for Dn is

Dn = (n− 1) (Dn−1 +Dn−2) .

Dividing by n! yields a formula for pn:

pn =
Dn

n!
= (n−1)

(
1

n
· Dn−1

(n− 1)!
+

1

n(n− 1)
· Dn−2

(n− 2)!

)

=
n− 1

n
pn−1+

1

n
pn−2, n = 3, 4, . . .

Thus
npn = (n− 1)pn−1 + pn−2.

If we multiply both sides of the recursion formula by sn and sum for n from 3 to ∞ we obtain

∞∑

n=3

npns
n =

∞∑

n=3

(n− 1)pn−1s
n +

∞∑

n=3

pn−2s
n.

Now, if we denote P (s) =
∑∞

n=1 pns
n and if we further notice that p1 = 0 and p2 =

1
2 , we can

rewrite this as
s(P ′(s)− s) = s2P ′(s) + s2P (s)

which yields the differential equation

P ′(s) =
s

1− s
P (s) +

s

1− s

with initial condition P (0) = 0 (just plug zero into the formula for P (s)). Solving this, we
obtain

P (s) =
e−s

1− s
− 1.

Now, we only need to expand it into a power series to compare coefficients. We have

P (s) =
1

1− s

( ∞∑

n=0

(−1)k

k!
sk − 1 + s

)

=

( ∞∑

k=0

sk

)

·
( ∞∑

n=2

(−1)k

k!
sk

)

=

∞∑

k=2





k∑

j=2

(−1)j

j!



 sk.

This gives

p1 = 0

pn =
n∑

j=2

(−1)j

j!
, n = 2, 3, . . .

△
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1.2 Sums of count random variables

1.2.1 Deterministic sums of count random variables

Theorem 1.2.1. Let X and Y be two independent count random variables with proba-
bility generating functions PX (and radius of convergence RX) and PY (with radius of
convergence RY ), respectively. Denote further Z = X +Y and its probability generating
function PZ . Then

PZ(s) = PX(s) · PY (s), |s| < min{RX , RY }.

Exercise 5. Generalize the statement of Theorem 1.2.1 to n ∈ N independent count random
variables.

Exercise 6. Find the distribution of the sum of n ∈ N independent random variables
X1, . . . , Xn, where

1. Xi has the Poisson distribution with parameter λi > 0, i = 1, . . . , n.

2. Xi has the binomial distribution with parameters p ∈ (0, 1) and mi ∈ N.

1.2.2 Random sums of count random variables

Theorem 1.2.2. Let N and X1, X2, . . . be independent and identically distributed count
random variables. Set

S0 = 0,

SN = X1 + . . . XN .

If the common probability generating function of Xi’s is PX and the probability gener-
ating function of N is PN , then the probability generating function of SN , PSN

, is of the
form

PSN
(s) = PN (PX(s)) .

Exercise 7. Prove Theorem 1.2.2 and show that, as a corollary, it holds that

1. ESN = EN · EX1,

2. varSN = EN · varX1 + varN · (EX1)
2.

Solution to Exercise 7. Following the definition of SN and conditioning on the number of
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summands we obtain

PSN
(s) =

∞∑

n=0

P(SN = n)sn

=
∞∑

n=0

sn
∞∑

k=0

P(SN = n|N = k)P(N = k)

=
∞∑

k=0

( ∞∑

n=0

P(SN = n|N = k)sn

)

P(N = k)

=

∞∑

k=0

(PX(s))kP(N = k)

= PN (PX(s)) .

The interchange of the sums is possible due to Fubini-Tonelli’s Theorem and since Sk is a
deterministic sum of count random variables, we have that

PSk
(s) =

∞∑

n=0

P(SN = n|N = k)sn = (PX(s))k

by Theorem 1.2.1. The corollary follows by differentiating the function PSN
(s) and taking its

limit as s→ 1−. We have

ESN = lim
s→1−

P ′
SN

(s) = lim
s→1−

P ′
N (PX(s))P ′

X(s) = P ′
N (1−)P ′

X(1−) = EN · EX1.

Similarly for the variance. △

Exercise 8. 1. Let {Xi}i∈N be a sequence of independent, identically distributed random
variables with Poisson distribution with parameter α > 0. Let N be a random variable,
independent of Xi’s, with Poisson distribution with parameter λ > 0. Consider the sum
S0 = 0, SN =

∑N
i=1Xi. Find the probability distribution of SN , its mean and variance.

2. The number of eggs a hen lays, N , has Poisson distribution with parameter λ > 0.
Each egg hatches with probability p ∈ (0, 1) independently of the other eggs. Find the
probability distribution of the number of chickens. How many chickens can a farmer
expect?

3. Each day, a random number N of people come to withdraw money from an ATM. Each
person withdraws Xi hundred crowns, i = 1, . . . , N . Assume that N has Poisson distri-
bution with parameter λ > 0 and that Xi’s are independent and identically distributed
having binomial distribution with parameters n ∈ N and p ∈ (0, 1). Find the probability
distribution of the total amount withdrawn each day and compute its mean.

1.3 Galton-Watson branching process

Our aim is to analyse the evolution of a population of identical organisms, each of which lives
exactly one time unit and as it dies, it gives birth to a random number of new organisms,
thus producing a new generation. Example of such organisms are the males carrying a family
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name, bacteria, etc.

We assume that the family sizes, U
(k)
i , are independent count random variables which are

identically distributed with probabilities

P(U = k) = pk, k = 0, 1, 2, . . .

and we denote the number of organisms in the n-th generation (i.e. its size) by Xn. Hence,
the evolution of our population is described by the random sequence X = (Xn, n ∈ N0). It
follows that

X0 = 1,

Xn =

Xn−1∑

i=1

U
(n)
i

if Xn−1 6= 0 and Xn = 0 if Xn−1 = 0, n = 1, 2, . . . A neat way how to visualise one realisation
of the Galton-Watson branching process is via random trees as in the following picture.

0 X0 = 1

1 X1 = 3

2 X2 = 6

3 X3 = 9

...
...

...
...

...
U

(3)
5U

(3)
2 U

(3)
4U

(3)
1 U

(3)
3 U

(3)
6

Since U
(n)
i are independent (of each other w.r. to i and n; and of Xn−1) using Theorem 1.2.2

we obtain that the probability generating function PXn can be expressed as

PXn(s) = PXn−1 (PU (s)) (1.3.1)

Using the same argument and Theorem 1.1.1 we also have (cf. Exercise 7) that

EXn = P ′
Xn

(1) = P ′
Xn−1

(PU (1)) · P ′
U (1) = P ′

Xn−1
(1) · P ′

U (1) = EXn−1 · EU

and, denoting EU =: µ and varU =: σ2, we obtain EXn = µn. In a similar manner, the
formula for varXn can be obtained. Indeed, from Exercise 7, part (2), we have that

varXn = (EX1)
2varXn−1 + EXn−1varX1

= (EU)2varXn−1 + µn−1varU

= µ2varXn−1 + µn−1σ2

Hence, we obtain a linear difference equation of the first order and recursively it holds that

varXn = σ2µn−1
(
1 + µ+ µ2 + . . .+ µn−1

)

with the last term being a partial geometric series. We have arrived at the following re-
sult.
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Theorem 1.3.1. Let X = (Xn, n ∈ N0) be the Galton-Watson process with the number
of children in a family U having the mean µ and variance σ2. Then

EXn = µn

varXn =

{

nσ2, µ = 1,

σ2µn−1 µn−1
µ−1 , µ 6= 1.

Denote en := P(Xn = 0), i.e. the probability that the Galton-Watson branching process X is
extinct by the n-th generation. Clearly {en}n∈N0 is a bounded and non-decreasing sequence
(since if Xn = 0 for some n ∈ N0 then also Xn+1 = 0) and thus there is a limit e := limn→∞ en,
which is called the probability of ultimate extinction of the process X.

Theorem 1.3.2. The probability of ultimate extinction e is the smallest root of the fixed
point equation PU (x) = x on [0, 1].

Proof. We shall proceed in two steps. Notice, that a solution to the equation PU (x) = x on
the interval [0, 1] always exists - just take x = 1.

1. Claim: The number e solves the equation PU (x) = x on [0, 1].
First notice, that en = P(Xn = 0) = PXn(0). From the recursive formula (1.3.1) it
follows that

PXn(s) = PXn−1(PU (s))

= . . .

= PU (PU (. . . (s) . . .))
︸ ︷︷ ︸

n−times

= . . .

= PU (PXn−1(s))

Plugging in s = 0 we obtain

en = PU (en−1), n ∈ N.

Since PU is continuous on [0, 1] (it is a power series with radius of convergence RU ≥ 1)
we can take the limit n→ ∞ of both sides, move the limit into the argument of PU and
obtain e = PU (e).

2. Claim: The number e is the smallest root of PU (x) = x on [0, 1].
First notice that the function PU is non-decreasing on the interval [0, 1]. This is because
its first derivative is non-negative on [0, 1]. Let η be a solution to the fixed point equation
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PU (x) = x on [0, 1]. We will show that e ≤ η. From (1.3.1) we have that

e1 = PU (e0) = PU (0) ≤ PU (η) = η,

e2 = PU (e1) ≤ PU (η) = η,

...

en ≤ η, n ∈ N0.

Hence we obtain e ≤ η.

Theorem 1.3.3. Suppose that p0 > 0. Then e = 1 if and only if µ ≤ 1.

Proof. Let us first comment on the assumption p0 > 0. If p0 = 0, then it would mean that
there will always be at least one member of the next generation in one family U , this would
mean that P(Xn = 0) = 0 for all n ∈ N0 and thus, our process would never extinct (i.e.
e = 0). Since p0 > 0, then it cannot happen that p1 = 1, which would mean that we always
have exactly one member of the next generation and, again, the processX would never extinct.

We already know that PU is on the interval [0, 1] continuous and non-decreasing. Furthermore,
PU is also convex, since P ′′

U (s) ≥ 0 on [0, 1]. Hence, the the equation PU (x) = x can have
only one or two roots in the interval [0, 1] as shown in the pictures below.

0 1

1

y = x

y = PU (x)

Case when P ′
U (1−) = µ ≤ 1.

0 1

1

y = x

y = PU (x)

Case when P ′
U (1−) = µ > 1.

By Theorem 1.3.2, we have that e is the smallest non-negative root of the fixed point equation
PU (x) = x. Hence, e = 1 if and only if µ = P ′

U (1−) ≤ 1.

Theorems 1.3.2 and 1.3.3 give us a cookbook how to compute the probability of ultimate
extinction of the Galton-Watson branching process. First compute µ = EU and if EU ≤ 1
we immediately know that e = 1. If EU > 1, we have to solve the fixed point equation
x = PU (x).

Exercise 9. Let X = (Xn, n ∈ N0) be the Galton-Watson branching process with U having
the distribution {pn}n∈N0 . Find the probability of ultimate extinction e and the expected
number of members of the n-the generation.
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1. p0 =
1
5 , p1 =

1
5 , p2 =

3
5 and pk = 0 for k = 3, 4, . . ..

2. p0 =
1
12 , p1 =

5
12 , p2 =

1
2 and pk = 0 for k = 3, 4, . . ..

3. p0 =
1
10 , p1 =

2
5 , p2 =

1
2 and pk = 0 for k = 3, 4, . . ..

4. p0 =
1
2 , p1 = 0, p2 = 0, p3 =

1
2 and pk = 0 for k = 4, 5, . . ..

5. pk =
(
1
2

)k+1
, k = 0, 1, 2, . . ..

6. pk = pqk, k = 0, 1, 2, . . . with p ∈ (0, 1) and q = 1− p (i.e. geometric distribution)

Solution to Exercise 9, part (1). First notice, that EU = 1
5 · 0 + 1

5 · 1 + 3
5 · 2 = 7

5 . Hence
EXn =

(
7
5

)n
. We further have that EU = µ > 1 and we thus know by Theorem 1.3.3 that

e < 1. We thus have to solve the fixed point equation PU (s) = s as proved in Theorem 1.3.2.
In this case,

PU (s) =
1

5
s0 +

1

5
s1 +

3

5
s2, s ∈ R.

This means that we need to solve a quadratic equation, namely,

1

5
+

1

5
s+

3

5
s2 = s.

There will always be root s1 = 1. The second one is s2 =
1
3 . Hence, we obtain e = 1

3 . △

Exercise 10. Suppose that the family sizes U have geometric distribution on {0, 1, 2, . . .}
with parameter p ∈ (0, 1). Find the distribution of Xn, i.e. the probabilities P(Xn = j) for
j = 0, 1, 2, . . ..

Solution to Exercise 10. The starting point is to determine the probability generating
function PXn . From the proof of Theorem 1.3.2, we know that

PXn(s) = PU (PU (. . . (s) . . .))
︸ ︷︷ ︸

n−times

We know that the PGF of the geometric distribution on N0 is given by

PU (s) =
p

1− qs
=

1

1 + µ− µs
, |s| < 1

q
,

where µ is the mean µ = EU = p
q
. Writing down the first few iterates of PU , we can guess

the pattern

PX1(s) =
1

1 + µ− µs

PX2(s) =
1

1 + µ− µ 1
1+µ−µs

=
(1 + µ)− µs

(1 + µ+ µ2)− s(µ+ µ2)

...

PXn(s) =

∑n−1
k=0 µk −

(
∑n−1

k=1 µ
k
)

s
∑n

k=0 µk − (
∑n

k=1 µ
k) s
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which can be proved by induction on n. Furthermore, we can simplify the formula as

PXn(s) =

{
(µn−1−1)−(µn−2−1)µs
(µn−1)−(µn−1−1)µs

µ 6= 1
n−(n−1)s
n+1−ns

µ = 1

The case µ = 1: Now we only need to expand the formula above into a power series and
compare coefficients. This is easily done by dividing the nominator by the denominator to
obtain

PXn(s) =
n− (n− 1)s

(n+ 1)− ns

= 1− 1

n
+

1
n

(n+ 1)− ns

= 1− 1

n
+

1

n(n+ 1)
· 1

1− n
n+1s

= 1− 1

n
+

1

n(n+ 1)
·

∞∑

k=0

(
n

n− 1

)k

sk

Which gives

P(Xn = 0) = 1− 1

n+ 1

P(Xn = k) =
1

n(n+ 1)

(
n

n− 1

)k

, k = 1, 2, . . .

The case µ 6= 1: Similarly as in the previous case, we have to write PXn(s) as a power series
and compare coefficients. We have

PXn(s) =
(µn−1 − 1)− (µn−2 − 1)µs

(µn − 1)− (µn−1 − 1)µs

=
µn−2 − 1

µn−1 − 1
+

(µn−1 − 1)− (µn − 1)µ
n−2−1

µn−1−1

(µn − 1)− (µn−1 − 1)µs

=
µn−2 − 1

µn−1 − 1
+

(
µn−1 − 1

µn − 1
− µn−2 − 1

µn−1 − 1

)

· 1

1− µn−1−1
µn−1 µs

=
µn−2 − 1

µn−1 − 1
+

(
µn−1 − 1

µn − 1
− µn−2 − 1

µn−1 − 1

) ∞∑

k=0

(
µn−1 − 1

µn − 1
µ

)k

sk

which gives

P(Xn = 0) =
µn−1 − 1

µn − 1

P(Xn = k) =
µn−2 − 1

µn−1 − 1
+

(
µn−1 − 1

µn − 1
− µn−2 − 1

µn−1 − 1

)(
µn−1 − 1

µn − 1
µ

)k

△
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1.4 Answers to exercises

Answer to Exercise 1. 1. PX(s) = 1− p+ ps for s ∈ R, EX = p, varX = p(1− p).

2. PX(s) = (1− p+ ps)m for s ∈ R, EX = mp, varX = mp(1− p).

3. PX(s) =
(

ps
1−(1−p)s

)m

, for |s| < 1
1−p

, EX = pm
1−p

, varX = pm
(1−p)2

.

4. PX(s) = eλ(s−1) for s ∈ R, EX = λ, varX = λ.

5. PX(s) = p
1−(1−p)s for |s| < p

1−p
, EX = 1−p

p
and varX = 1−p

p2
.

Answer to Exercise 2. 1. EX = 1
3 and P(X = k) = 3

4 ·
(
1
4

)k
, k ∈ N0.

2. EX = 3 and P(X = k) = 1
2k

− 2
3 · 1

3k
, k ∈ N0.

3. EX = 11
15 and P(X = k) = 3

10 · 1
2k

(
1 + 1

2k

)
, k ∈ N0.

4.

EX =

{
2pq

max(p,q)|p−q| , p 6= q,

∞, p = q.

and
P(X = 0) = 0

P(X = 2k) = 1
2max(p,q)

(
2k
k

) (pq)k

2k−1 , k = 1, 2, . . .

P(X = 2k − 1) = 0, k = 1, 2, . . .

Answer to Exercise 3. Let an be the probability that in n trials, the number of successes
is even. Then

an =
1

2
(1 + (1− 2p)n) , n = 0, 1, 2, . . .

Answer to Exercise 4.

p1 = 0

pn =
n∑

j=2

(−1)j

j!
, n = 2, 3, . . .

Answer to Exercise 5. LetX1, . . . , Xn be independent count random variables with proba-
bility generating functions PX1 , . . . , PXn and the corresponding radii of convergenceR1, . . . , Rn.
Denote Z =

∑n
k=1Xi and its probability generating function PZ . Then

PZ(s) =
n∏

i=1

PXi
(s), |s| < min

i=1,...,n
Ri.

Answer to Exercise 6. The sum Z =
∑n

i=1Xn

1. has the Poisson distribution with parameter
∑n

i=1 λi.

2. has the binomial distribution with parameter p and
∑n

i=1mi.
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Answer to Exercise 7. Both claims are true.

Answer to Exercise 8. 1. PSN
(s) = eλ(e

α(s−1)−1) for s ∈ R, ESN = λα, varSN = λα(1+
α).

2. The number of chicks has the Poisson distribution with parameter λp. The farmer can
expect λp chicks.

3. Let SN be the total amount withdrawn each day. Then PSN
(s) = eλ[(1−p+ps)n−1] for

s ∈ R, ESN = λnp.

Answer to Exercise 9. 1. e = 1
3 , EXn =

(
7
5

)n
.

2. e = 1
6 , EXn =

(
17
12

)n
.

3. e = 1
5 , EXn =

(
7
5

)n
.

4. e =
√
5−1
2 , EXn =

(
3
2

)n
.

5. e = 1, EXn = 1.

6. If p < 1
2 then e = 1

µ
= p

1−p
. If p ≥ 1

2 , then e = 1. EXn =
(
1−p
p

)n

.

Answer to Exercise 10. If µ = 1, then

P(Xn = 0) = 1− 1

n+ 1

P(Xn = k) =
1

n(n+ 1)

(
n

n− 1

)k

, k = 1, 2, . . .

If µ 6= 1, then

P(Xn = 0) =
µn−1 − 1

µn − 1

P(Xn = k) =
µn−2 − 1

µn−1 − 1
+

(
µn−1 − 1

µn − 1
− µn−2 − 1

µn−1 − 1

)(
µn−1 − 1

µn − 1
µ

)k
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Chapter 2

Discrete time Markov Chains

2.1 Markov property and time homogeneity

Definition 2.1.1. A Z-valued random sequence X = (Xn, n ∈ N) is called a discrete
time Markov chain with a state space S if

1. S = {i ∈ Z : there exists n ∈ N0 such that P(Xn = i) > 0},
2. and it holds that

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i)

for all times n ∈ N0 and all states i, j, in−1, . . . , i0 ∈ S such that P(Xn = i,Xn−1 =
in−1, . . . , X0 = i0) > 0.

Roughly speaking, the first condition says that the state space contains all the possible values
of the stochastic process X but no other values. The second condition, called the Markov
property, says that given a current state the past and the future of X are independent. For
a discrete time Markov chain X, the probability

pij(n, n+ 1) := P(Xn+1 = j|Xn = i)

is called the transition probability from state i at time n to the state j at time n+ 1. With
these, we can create a stochastic matrix1 P (n,n+ 1) = (pij(n, n + 1))i,j∈S which is called
the transition probability matrix of X at time n to time n+ 1. Similarly, we can define (for
k ∈ N0)

pij(n, n+ k) := P(Xn+k = j|Xn = i)

and a stochastic matrix P (n,n+ k) = (pij(n, n+ k))i,j∈S . Although it is possible to define
matrix multiplication for stochastic matrices of the type Z × Z rigorously, whenever we will
multiply infinite matrices, we will assume that S ⊂ N0 (thus excluding the case S = Z).

Definition 2.1.2. If there is a stochastic matrix P such that P (n,n+ 1) = P for all

1A stochastic matrix is a matrix P = (pij)i,j∈S such that each row is a probability distribution on S.

19
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n ∈ N0, then we say that X is a (time) homogeneous discrete time Markov chain.

For a homogeneous discrete time Markov chain X it is thus possible to define a transition
matrix after k ∈ N0 steps by P (k) := P (n,n+ k). It holds that

P (k) = P k

and, as a corollary, we obtain the famous Chapman-Kolmogorov equation

P (m+ n) = P (m) · P (n), m, n ∈ N0.

If we are interested in the probability distribution of Xn, denoted by p(n), we have that

p(n)T = p(0)TP n, n ∈ N0.

where p(0) denote the initial distribution ofX, i.e. the vector which contains the probabilities
P(X0 = k) for k ∈ S.

Exercise 11. Let X be the Galton-Watson branching process with X0 = 1 and p0 > 0.

1. Show that X is a homogeneous discrete time Markov chain with a state space S = N0.

2. Find its transition matrix P .

3. Compute the distribution of X2 in the case when the distribution of U is p0 =
1
5 , p1 =

1
5 ,

p2 =
3
5 , pk = 0 for all k = 3, 4, . . .

Solution to Exercise 11. Let X be the Galton-Watson branching process for which X0 = 1
and p0 > 0.

1. We will proceed in three steps: first we find the effective states S, then we show the
Markov property (these two are the key requirement for X to be a Markov chain) and
then we will show homogeneity.
State space S: Since X0 = 1, we immediately have that 1 ∈ S. Since p0 > 0, then it
can happen (with probability p0) that X1 = 0. Hence also 0 ∈ S and we know that
{0, 1} ⊂ S. The case when {0, 1} = S is only possible if U takes either only the value 0
or takes values in the set {0, 1}. If there is k ∈ N \ {1} such that pk > 0, then we have
that S = N0.
Markov property: Now that we have the set of effective states S, take some n ∈ N0 and
i, j, in−1, . . . , i1 ∈ S such that P(Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = 1) > 0 and
consider

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = 1).

If i = 0, this probability is 1 if j = 0 and 0 if j 6= 0. This is, however, the same as
P(Xn+1 = j|Xn = i). If i 6= 0, we have that

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = 1) =

= P

(
Xn∑

k=1

U
(n)
k = j|Xn = i, . . . , X0 = 1

)

= P

(
Xn∑

k=1

U
(n)
k = j|Xn = i

)
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since the sum depends only on Xn and U
(n)
i are independent of Xn−1, . . . , X0. Hence,

the Markov property (2) of Definition 2.1.1 also holds and we can infer, that X is a
discrete time Markov chain.
Homogeneity: We have that

pij(n, n+ 1) = P

(
Xn∑

k=1

U
(n)
k = j|Xn = i

)

= P

(

Z :=

i∑

k=1

U
(n)
k = j

)

We need to show, that this number does not depend on n. Notice, that Z represents
a sum of a deterministic number of independent, identically distributed count random

variables U
(n)
k . Hence, we can use Theorem 1.2.1. The PGF of the sum is PZ(s) = PU (s)

i

and the sought probability is

pij(n, n+ 1) = P

(
Xn∑

k=1

U
(n)
k = j|Xn = i

)

= P

(

S :=
i∑

k=1

U
(n)
k = j

)

= [PU (s)
i]j

where [P (s)]k denotes the coefficient at sk. This, however, does not depend on n.

2. The transition matrix is P := (pij)i,j∈S with pij := [PU (s)
i]j .

3. Consider now the particular case when U has the distribution p0 = 1
5 , p1 = 1

5 , p2 = 3
5

and pk = 0 for all k = 3, 4, . . . Then we have

PU (s) =
1

5
+

1

5
s+

3

5
s2

and

pij = [PU (s)
i]j =

[(
1

5
+

1

5
s+

3

5
s2
)i
]

j

.

In particular,

PU (s)
0 = 1

PU (s)
1 =

1

5
+

1

5
s+

3

5
s2

PU (s)
2 =

1

25
+

2

25
s+

7

25
s2 +

6

25
s3 +

9

25
s4

PU (s)
3 =

1

125
+

3

125
s+

12

125
s2 +

19

125
s3 +

36

125
s4 +

27

125
s5 +

27

125
s6

...

and

P =










1 0 0 0 0 0 0 0 · · ·
1
5

1
5

3
5 0 0 0 0 0 · · ·

1
25

2
25

7
25

6
25

9
25 0 0 0 · · ·

1
125

3
125

12
125

19
125

36
125

27
125

27
125 0 · · ·

...
...

...
...

...
...

...
...

. . .










.

Since we know that the initial distribution is given by p(0)T = (0, 1, 0, . . .) (since
X0 = 1), we have that p(2)T = p(0)TP 2 which will give

p(2)T =

(
33

125
,
11

125
,
36

125
,
18

125
,
27

125
, 0, . . .

)

.



22 CHAPTER 2. DISCRETE TIME MARKOV CHAINS

△

Exercise 12 (Symmetric random walk). Consider Y1, Y2, . . . independent identically dis-
tributed random variables such that P(Y1 = −1) = P(Y1 = +1) = 1

2 . Define X0 = 0 and
Xn =

∑n
i=1 Yi for n ∈ N. Decide whether X = (Xn, n ∈ N0) is a homogeneous discrete time

Markov chain or not.

Hint: Notice that we can write Xn =
∑n−1

i=1 Yi + Yn = Xn−1 + Yn.

Exercise 13 (Running maximum). Consider Y1, Y2, . . . independent identically distributed
integer-valued random variables and define Xn = max{Y1, . . . , Yn} for n ∈ N. Decide whether
X = (Xn, n ∈ N0) is a homogeneous discrete time Markov chain or not.

Hint: Can you find a formula for Xn which uses only Xn−1 and Yn?

Exercise 14 (Recursive character of Markov chains). Consider Y1, Y2, . . . independent iden-
tically distributed integer-valued random variables. Let X0 be another S-valued random
variable, S ⊂ Z, which is independent of the sequence {Yi} and consider a measurable func-
tion f : S × Z → S. Define

Xn+1 = f(Xn, Yn+1), n ∈ N0.

Show that X = (Xn, n ∈ N0) is a homogeneous discrete time Markov chain.

If X is a homogeneous discrete time Markov chain, then it holds that

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) =

= P(Xn+1 = j|Xn = i,Xn−1 = jn−1, . . . , X0 = j0)

for all n ∈ N0 and all possible trajectories (i, in−1, . . . , i0) and (i, jn−1, . . . , j0) of (Xn, . . . , X0).
Thus, to show that a stochastic process with discrete time is not a Markov chain, it suffices
to find n ∈ N and different possible trajectories of length n such that the equality between
the above conditional probabilities does not hold. Notice that i and j are the same for both
considered trajectories.

Exercise 15. Let Y0, Y1, . . . be independent, identically distributed random variables with a
discrete uniform distribution on {−1, 0, 1}. Set Xn := Yn + Yn+1 for n ∈ N0. Decide whether
X = (Xn, n ∈ N0) is a homogeneous discrete time Markov chain or not.

Solution to Exercise 15. By definition, we have that

X0 = Y0 + Y1

X1 = Y1 + Y2

X2 = Y2 + Y3

We will show that the values (2, 0, 2) and (−2, 0, 2) of a random vector (X0, X1, X2) have
different probabilities. Observe that

(X0, X1, X2) = (−2, 0, 2) ↔ (Y0, Y1, Y2, Y3) = (−1,−1, 1, 1)

(X0, X1, X2) = (2, 0, 2) ↔ (Y0, Y1, Y2, Y3) = not possible
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Hence, for the corresponding probabilities, we obtain

P(X2 = 2|X1 = 0, X0 = 2) =
P(X0 = 2, X1 = 0, X2 = 2)

P(X0 = 2, X1 = 0)
= 0

P(X2 = 2|X1 = 0, X0 = −2)
P(Y0 = −1, Y1 = −1, Y2 = 1, Y3 = 1)

P(Y0 = −1, Y1 = −1, Y2 = 1)
=

1

3
.

△

Imagine we do the following experiment. We put a board game figurine on a board which
looks like this:

· · · −3 −2 −1 0 1 2 3 · · ·

Then, we will flip a coin. If heads, the figurine steps to the right and if tails, it moves to the
left. Then we flip a coin again and so on. This can be modelled by the symmetric random
walk X from Exercise 12. The board can be visualized as an infinite graph whose vertices
are labelled by integers (i.e. corresponding to the state space S = Z). If P is the transition
matrix of X, then if pij > 0, we will draw an arrow from i to j. These arrows will be the
edges. So we obtain the so-called transition diagram:

−3 −2 −1 0 1 2 3
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

. . . . . .

The transition diagram will be very useful when analysing the irreducibility of the chain X
which will be needed for classification of states in the next section.

A different way, helpful for intuition, is to draw the so-called sample path of X. For this
reason, flip a coin ten times, move the figurine on the board and note down the cell in which
it ended. The aim is to draw an honest graph of the function. Put the numbers of cells on the
y axis and the number of flips on the x axis. Since we start on the yellow cell at the 0th flip,
we put a black dot at (0, 0). Now flip a coin and put the next dot at either (1, 1) or (1,−1)
depending on whether we got heads or tails. Flip a coin again and so on. We may obtain the
following:
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2 4 6 8 10

−1

1

2

3

4

n

Xn(ω)

Repeating the experiment several times, we may obtain different graphs. For example, re-
peating it three times, we could obtain the following:

2 4 6 8 10

−2

2

4

n

Xn(ω)

The dots of same colors are called a sample path of X. To be more precise, X : N0×Ω → S is
a random process. Fix ω ∈ Ω. Then the function (of one variable) X(·, ω) : N0 → S is called
the trajectory or sample path of X. Unfortunately, having one trajectory of your process does
not really tell you much about it since even two sample paths can be dramatically different.
Thus, when analysing a stochastic process, you typically want to say what all its trajectories
have in common.

2.2 Classification of states based on P n

Throughout this section we only consider homogeneous discrete time Markov chains. For
convenience, we will use the symbol

Pi(·) := P(·|X0 = i), Ei(·) :=
∫

Ω
(·)dPi
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Definition 2.2.1. Let X = (Xn, n ∈ N0) be a homogeneous discrete time Markov chain
with a state space S.

1. A transient state is a state i ∈ S such that if X starts from i, then it might not
ever return to it (i.e. Pi(∀n ∈ N0 : Xn 6= i) > 0).

2. A recurrent state is a state i ∈ S such that if X starts from i, then it will visit it
again almost surely (i.e. Pi(∃n ∈ N0 : Xn = i) = 1.)

(a) Let
τi(1) := inf{n ∈ N : Xn = i}.

the first return time to the state i. A recurrent state i is called null recurrent,
if the mean value of the first return time to i is infinite, i.e. if Eiτi(1) = ∞.

(b) A recurrent state i ∈ S is called positive recurrent if Eiτi(1) <∞.

3. Denote by p
(n)
ij the elements of a stochastic matrix P (n) (i.e. the transition prob-

abilities from a state i ∈ S to a state j ∈ S in n steps). If a state i ∈ S is such that

Di := {n ∈ N0 : p
(n)
ii > 0} 6= ∅, we can define di := GCD(Di) and if di > 1, we say

that i is periodic with a period di and non-periodic if di = 1 (here GCD denotes
the greatest common divisor).

Recall that the transition matrix P (n) can be obtained as the n-th power of the transi-
tion matrix P of the chain X since we only deal with homogeneous discrete time Markov
chains.

Theorem 2.2.1. Denote the elements of the transition matrix of a homogeneous Markov

chain X in n steps P (n) by p
(n)
ij .

1. A state i ∈ S is recurrent if and only if
∑∞

n=1 p
(n)
ii = ∞.

2. A recurrent state i ∈ S is null-recurrent if and only if limn→∞ p
(n)
ii = 0.

A little care is needed in applying Theorem 2.2.1. Clearly all states must be either recurrent

or transient. Hence, part (1) says that a state i ∈ S is transient if and only if
∑∞

n=1 p
(n)
ii <∞.

However, this means that p
(n)
ii → 0 as n→ ∞ for transient states as well as for null-recurrent

states. Hence, showing that limn→∞ p
(n)
ii = 0 yields that the state i is either transient or null-

recurrent. Theorem 2.2.1 provides the following cookbook for classification of states based on

the limiting behaviour of p
(n)
ii .
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∑∞
n=1 p

(n)
ii <∞?

i is trans.

limn→∞ p
(n)
ii = 0?

i is pos. rec.

i is null rec.
No

Yes

No

Yes

It is clear, that for a successful application of these criteria, we need to be able to know

the behaviour of p
(n)
ii when n tends to infinity. We will have to find an explicit formula for

p
(n)
ii . This can be done in various ways, either using probabilistic reasoning or computing the

matrix P n and taking its diagonal elements.

Exercise 16. Let Y1, Y2, . . . be independent, identically distributed random variables with
a discrete uniform distribution on {−1, 1}. Define X0 := 0 and Xn :=

∑n
i=1 Yi.This is the

symmetric random walk X = (Xn, n ∈ N0) considered in Exercise 12. Find the probabilities

p
(n)
ii and classify the states of X.

Solution to Exercise 16. Transient or recurrent states? Our aim is to use the cookbook

above. For this, we need to know the limiting behaviour of p
(n)
ii as n→ ∞. Suppose we make

an even number n = 2k of steps. Then in order to return to the original position (say i) we
have to make k steps to the right and k steps to the left. On the other hand, if we make
an odd number n = 2k + 1 of steps, then we will never be able to get back to the original
position. Hence,

p
(n)
ii =

{
(
2k
k

) (
1
2

)k (1
2

)k
, n = 2k

0, n = 2k + 1

Now, we need to decide if
∑∞

n=1 p
(n)
ii < ∞ or not. In order to do so, notice that, using the

Stirling’s formula (m! ≈
√
2πmmme−m), we have

(
2k

k

)
1

22k
=

(2k)!

(k!)2
· 1

22k
≈ 1√

πk
, k → ∞,

and, using the comparison test, we have that the sum
∑∞

n=1 p
(n)
ii converges if and only if the

sum
∑∞

n=1
1√
πn

converges. This is, however, not true and hence we can infer that

∞∑

n=1

p
(n)
ii = ∞.

This means that the state i is recurrent and we need to say if it is null recurrent of positive
recurrent. But this is easy since 1√

πk
goes to 0 (which corresponds to n = 2k) and also 0 goes

to 0 trivially (which corresponds to n = 2k + 1). Hence, the state i is null recurrent. At the
beginning, i was arbitrary and our reasoning is valid for any i ∈ N0. Hence, all the states of
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the symmetric random walk are null recurrent.

Periodicity: For every i, we have that for all k, p
(2k+1)
ii = 0 and p2kii > 0. Hence, the set

{n ∈ N0 : p
(n)
ii > 0} = {2k, k ∈ N0} = {0, 2, 4, . . .}.

Its greatest common divisor is 2 and hence, di = 2 for every i. Altogether, the symmetric
random walk has 2-periodic, null recurrent states. △

Exercise 17. Let Y1, Y2, . . . be independent, identically distributed random variables with
a discrete uniform distribution on {−1, 0, 1}. Define Xn := max{Y1, . . . , Yn}. Then X =
(Xn, n ∈ N) is a homogeneous discrete time Markov chain (see Exercise 13). Find the proba-

bilities p
(n)
ii and classify the states of X.

Hint: Use similar probabilistic reasoning as in Exercise 12 to find the matrix P n. What
must the whole trajectory look like, if we start at −1, make n steps, and finish at −1 again?

Exercise 18. Consider a series of Bernoulli trails with the probability of success p ∈ (0, 1).
Denote Xn the length of a series of successes in the n-th trial (if the n-th trial is not a success
then we set Xn = 0). Show that X = (Xn, n ∈ N0) is a homogeneous Markov chain, find the
transition matrix P and P n and classify its states.

If we want to find the whole matrix P n we have more options. One is, of course, the Jordan
decomposition. Using the Jordan decomposition we obtain matrices S and J such that
P = SJS−1. Then

P n = (SJS−1) · (SJS−1) · . . . · (SJS−1)
︸ ︷︷ ︸

n−×

= SJnS−1

and finding the matrix Jn is easy due to its form. Another way how to find P n is via the
Perron’s formula as stated in the following theorem.

Theorem 2.2.2 (Perron’s formula for matrix powers). Let A be an n × n matrix with
eigenvalues λ1, · · · , λk with multiplicities m1, · · · ,mk. Then it holds that

An =
k∑

j=1

1

(mj − 1)!

dmj−1

dλmj−1

[
λnAdj (λI −A)

ψj(λ)

]

λ=λj

where

ψj(λ) =
det(λI −A)

(λ− λj)mj
.

Exercise 19. Consider a homogeneous discrete time Markov chain X with the state space
S = {0, 1} and the transition matrix

P =

(
1− a a
b 1− b

)

,

where a, b ∈ (0, 1). Find Pn and classify the states of X.
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Solution to Exercise 19. We will use the Jordan decomposition to find the matrix P n,
then we will take its diagonal elements and use the cookbook above to classify the states 0
and 1. The key ingredients for Jordan decomposition are the eigenvalues and eigenvectors.
The eigenvalues are the roots of the characteristic polynomial ψ(λ). We thus have to solve

ψ(λ) = det (λI − P ) =

(
λ− 1 + a −a

−b λ− 1 + b

)

= λ2 − (2− (a+ b))λ+ 1− (a+ b) = 0.

The corresponding eigenvectors v1 and v2 are found as solutions to Pvi = λivi, i = 1, 2. We
arrive at

λ1 = 1 . . . vT
1
= (1, 1)

λ2 = 1− (a+ b) . . . vT
2
=
(
−a

b
, 1
)

The Jordan form is then

(
1− a a
b 1− b

)

=

(
1 −a

b

1 1

)

︸ ︷︷ ︸

=:S

(
1 0
0 1− (a+ b)

)

︸ ︷︷ ︸

=:J

(
b

a+b
a

a+b

− b
a+b

b
a+b

)

︸ ︷︷ ︸

=S−1

.

Now it is easy to find the power Jn. We have that

Jn =

(
1 0
0 (1− (a+ b))n

)

so that

P n = SJnS−1

=
1

a+ b

(
1 −a

b

1 1

)(
1 0
0 (1− (a+ b))n

)(
b a
−b b

)

=
1

a+ b

(
b+ a(1− (a+ b))n a− a(1− (a+ b))n

b− b(1− (a+ b))n a+ b(1− (a+ b))n

)

.

Clearly,

p
(n)
ii =

{
b+ a(1− (a+ b))n, i = 0,
a+ b(1− (a+ b))n, i = 1,

−→
n→∞

{
b, i = 0,
a, i = 1,

6= 0.

Hence, the sum
∑∞

n=1 p
(n)
ii cannot converge and because of this, the Markov chain under

consideration has positive recurrent states. Since also pii > 0 for both i = 0, 1, the states are
also non-periodic. △

Exercise 20 (Random walk on a triangle). Consider a homogeneous discrete time Markov
chain with the state space S = {0, 1, 2} and the transition matrix

P =





0 1/2 1/2
1/2 0 1/2
1/2 1/2 0



 ,

Find Pn and classify the states of X.
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Solution to Exercise 20. In order to successfully apply the Perron’s formula we need the
following ingredients: the eigenvalues λ1, . . . , λk of P , their multiplicities m1, . . . ,mk, the
corresponding polynomials ψj(λ) and the adjoint matrix of λI −P . The we plug everything
into the formula to obtain P n.
Ingredients:
As in the previous exercise, we have to find the roots of characteristic polynomial

ψ(λ) = det (λI − P ) =

∣
∣
∣
∣
∣
∣

λ −1
2 −1

2
−1

2 λ −1
2

−1
2 −1

2 λ

∣
∣
∣
∣
∣
∣

= λ3 − 3

4
λ− 1

4
= (λ− 1)

(

λ+
1

2

)2

= 0

which yields

λ1 = 1 . . . m1 = 1 . . . ψ1(λ) =
(
λ+ 1

2

)2

λ2 = −1
2 . . . m2 = 2 . . . ψ2(λ) = (λ− 1)

The adjoint matrix can be obtained as follows. Given a square n× n matrix A, the adjoint

AdjA =








+detM11 −detM12 · · · (−1)n+1detM1n

−detM21 +detM22 · · · (−1)n+2detM2n
...

...
. . .

...
(−1)n+1detMn1 (−1)n+1detMn1 · · · (−1)n+ndetMn1








T

where Mij is the (i, j) minor (i.e. the determinant of the (n − 1) × (n − 1) matrix which is
obtained by deleting row i and column j of A). We obtain

Adj (λI − P ) = Adj





λ −1
2 −1

2
−1

2 λ −1
2

−1
2 −1

2 λ



 =





λ2 − 1
2

1
2λ+ 1

4
1
2λ+ 1

4
1
2λ+ 1

4 λ2 − 1
4

1
2λ+ 1

4
1
2λ+ 1

4
1
2λ+ 1

4 λ2 − 1
4



 .

Plugging everything into the formula, we obtain

P n =
1

(1− 1)!

d0

dλ0

(

λnAdj (λI − P )
(
λ+ 1

2

)2

)∣
∣
∣
∣
∣
λ=1

+
1

(2− 1)!

d

dλ

(
λnAdj (λI − P )

λ− 1

)
∣
∣
∣
∣
∣
λ=− 1

2

=
4

9
· 3
4





1 1 1
1 1 1
1 1 1



+
λn

λ− 1





2λ 1
2

1
2

1
2 2λ 1

2
1
2

1
2 2λ





∣
∣
∣
∣
∣
λ=− 1

2

+
nλn−1(λ− 1)− λn

(λ− 1)2





λ2 − 1
2

1
2λ+ 1

4
1
2λ+ 1

4
1
2λ+ 1

4 λ2 − 1
4

1
2λ+ 1

4
1
2λ+ 1

4
1
2λ+ 1

4 λ2 − 1
4





∣
∣
∣
∣
∣
λ=− 1

2

=





1
3 + 2

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n

1
3 − 1

3

(
−1

2

)n 1
3 + 2

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n

1
3 − 1

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n 1
3 + 2

3

(
−1

2

)n



 .

Clearly for all i ∈ S we have that

p
(n)
ii =

1

3
+

2

3

(

−1

2

)n
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and hence, the sum
∞∑

n=1

p
(n)
ii =

∞∑

n=1

1

3
+

2

3

∞∑

n=1

(

−1

2

)n

= ∞

which implies that all the states are recurrent and, moreover, p
(n)
ii → 1

3 6= 0 which implies
that they are positive recurrent. Further,

{n ∈ N0 : p
(n)
ii > 0} = N

and hence, the states are all non-periodic since the greatest common divisor of all natural
numbers is 1. △

Looking back:

1. When computing the characteristic polynomial of P , one has to solve a polynomial
equation of higher order. It helps to know that when P is a stochastic matrix, one of
its eigenvalues is always 1 (hence, we can divide the polynomial ψ(λ) by λ−1 to reduce
its order and find the other eigenvalues quickly).

2. Do not forget to take the transpose of the matrix when computing the adjointAdj(λI−
P ).

3. Compare the periodicity of the symmetric random walk on Z with the periodicity of
the symmetric random walk on a triangle.

2.3 Classification of states based on accessibility and state

space

Although Theorem 2.2.1 gives a characterisation of recurrence of a state in terms of the
power of a matrix P (more precisely in terms of its diagonal entries), it may be very tedious

to apply in practice since one has to check the behaviour of p
(n)
jj for every j ∈ S. As it turns

out, however, the situation can be made easier.

Definition 2.3.1. Let X = (Xn, n ∈ N0) be a homogeneous Markov chain with a state
space S and let i, j ∈ S be two of its states. We say, that j is accessible from i (and write

i → j) if there is m ∈ N0 such that p
(m)
ij > 0. If the states i, j are mutually accessible,

then we say that they communicate (and write i ↔ j). X is called irreducible if all its
states communicate.

Theorem 2.3.1. Let X = (Xn, n ∈ N0) be a homogeneous Markov chain with a state
space S. The following claims hold:

1. If two states communicate, they are of the same type.

2. If a state j ∈ S is accessible from a recurrent state i ∈ S, then j is also recurrent
and i and j communicate.
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Some remarks are in place.

• When we say that two states are of the same type, we mean that both states are either
null-recurrent, positive recurrent or transient and if one is periodic, the other is also
periodic with the same period.

• Theorem 2.3.1 holds for both finite and countable state space S. Hence, if the Markov
chain is irreducible (all its states communicate), then it suffices to classify only one state
- the rest will be of the same type.

• If for a state i ∈ S there is j ∈ S such that i→ j 6→ i, then i must be transient.

• Clearly, the relation i ↔ j is an equivalence relation on the state space and thus, we
may factorize S into equivalence classes. If i is a recurrent state, then [i] simply consists
of all the states which are accessible from i.

2.3.1 Finite chains

In the case when the state space S is finite, the situation becomes very easy.

Theorem 2.3.2. Let X be an irreducible homogeneous Markov chain with a finite state
space. Then all its states are positive recurrent.

Exercise 21. Suppose we have an unlimited source of balls and k drawers. In every step
we pick one drawer at random (uniformly chosen) and we put one ball into this drawer. Let
Xn be a number of drawers with a ball at the time n. Show that X = (Xn, n ∈ N) is a
homogeneous Markov chain, find its transition probability matrix and classify its states.

Exercise 22 (Gambler’s ruin, B. Pascal (1656)). Suppose a gambler goes to a casino to
repeatedly play a game which ends by either the gambler losing the round or the gambler
winning the round. Suppose further that our gambler has initial fortune $ a and the croupier
has $ (s− a) with $ s being the total amount of $ in the game. Each turn they play and the
winner gets one dollar from his opponent. The game ends when either side has no money.
Suppose that the probability that our gambler wins is 0 < p < 1. Model the evolution of
capital of the gambler by a homogeneous Markov chain (i.e. say what is Xn and prove that
it is a homogeneous Markov chain), find its transition matrix and classify its states.

Solution to Exercise 22. Forget for a second, that we are given an exercise to solve and
imagine yourself watching two your friends play at dice. Naturally, you ask yourself: Who is
going to win? How long will they play? And so on. In order to answer these questions, you
have to build a model of the situation. There are various ways how to do that. For instance,
you can assume that the whole universe follows Newton’s laws. These laws are deterministic
in nature - if you know the initial state of the universe and if you have enough computational
power, you could, in theory, get exact answers to these questions.

Analysis: This is not an option for us. Instead, we will use a probabilistic model. But what
kind of model should we use? First notice, that dice are played in turns and that each time
a specific amount of money travels from one player to his opponent. Further, there is a finite
amount, say $ s, in the game so that it is enough to observe how much money one of the
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player has and the fortune of the other can be simply deduced from this. The observed player
starts with a certain fortune, say $ a.

Building a mathematical model: Denote by Xn the fortune of the observed player after the
n-th round. So far, Xn is just a symbol. We have to give a precise mathematical meaning
to this symbol and it is very natural to assume that Xn is a random variable for each round
n. The game ends when either side has no money, this means that all Xn’s can take values
in the set S := {0, 1, . . . , s} with X0 = a. Now, the i-th round can be naturally modelled by
another random variable Yi taking only two values - the observed player won or lost. This
corresponds to the player either getting $ 1 or losing it. Hence, each Yi can take either the
value −1 or +1 and we assume that the result of every round does not depend on the results
of all the previous rounds (e.g. the player does not learn to throw the dice better, the die does
not become damaged over time, etc.) - this allows us to assume that Yi’s are independent
and identically distributed. Obviously, the Xn’s and Yi’s are connected - Xn is the sum of X0

and all Yi for i = 1, . . . , n unless Xn is either s or 0 in which case it does not change anymore.
The formal model follows:
Let (Ω,F ,P) be a probability space. For each i ∈ N, let

Yi : (Ω,F ,P) → ({−1, 1}, {∅, {−1}, {1}, {−1, 1}})

be a random variable and assume that Y1, Y2, . . . are all mutually independent with the same
probability distribution on {−1, 1} given by

P(Yi = −1) = 1− p, P(Yi = 1) = p.

Define X0 := a and

Xn := X0 + (Xn−1 + Yn)1[Xn−1 6∈{0,s}] +Xn−11[Xn−1∈{0,s}], n ∈ N.

Then each Xn is a random variable taking the values in S = {0, 1, . . . , s} (show this!) and,
using Exercise 14, we can see that X := (Xn, n ∈ N0) is a homogeneous discrete-time Markov
chain with the state space S. Looking closely, we see that it is a random walk on the following
graph

0 1 2 s− 1 s
. . .

with absorption states at 0 and s. The transition matrix of X is built in the following way.
Clearly, once we step into the state 0 or s, we will never leave it. Hence p00 = pss = 1 and
p0i = psi = 0 for all i ∈ {1, . . . , s− 1}. Furthermore, from the state j, j ∈ {1, . . . , s− 1}, we
can always reach only state j − 1 (with probability q = 1− p) and j + 1 (with probability p),
i.e. pj,j−1 = q and pj,j+1 = p. We arrive at

P =












1 0 0 0 0 · · · 0 0 0 0
q 0 p 0 0 · · · 0 0 0 0
0 q 0 p 0 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

...
0 0 0 0 0 · · · 0 q 0 p
0 0 0 0 0 · · · 0 0 0 1












The transition diagram representing the Markov chain X is the following:
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0 1 2 s−1 s

11

p

q

p

q

. . .

Classification of states: In order to classify the states, we make use of Theorem 2.3.1 and
Theorem 2.3.2. We first notice that the chain is reducible. In particular, the state space can
be written as

S = {0} ∪ {s} ∪ {1, . . . , s− 1}.
All the states in the set {1, . . . , s − 1} communicate and thus, they are of the same type. It
suffices to analyse only one of them, say the state 1. Obviously,

{n ∈ N0 : p
(n)
11 > 0} = {2k, k ∈ N0}

and hence, the state 1 is 2-periodic. Furthermore, 1 → 0 6→ 1 and hence, 1 is transient. This
means that all the states {1, . . . , s − 1} are 2-periodic and transient. Further, since p00 > 0
and pss > 0, both 0 and s are non-periodic. Since p00 = Pi(X1 = 0) = 1, we immediately
have that 0 is a recurrent state and since τ0(1) = 1,P-a.s., we also have that E0τ0(1) = 1 <∞
which implies that 0 is positive recurrent. Alternatively, one can argue that we can define
a (rather trivial) sub-chain of X which only has one state (i.e. 0) and which is therefore
irreducible with a finite state space. Then we may appeal to Theorem 2.3.2 to infer that 0 is
positive recurrent. The same holds for the state s. △

Exercise 23 (Heat transmission model, D. Bernoulli (1796)). The temperatures of two iso-
lated bodies are represented by two containers with a number of balls in each. Altogether, we
have 2l balls, numbered by 1, . . . , 2l. The process is described as follows: in each turn, pick
a number from {1, . . . , 2l} uniformly at random and move the ball to the other container.
Model the temperature in the first container by a homogeneous Markov chain. Then find its
transition matrix and classify its states.

Exercise 24 (Blending of two incompressible fluids, T. and P. Ehrenfest (1907)). Suppose we
have two containers, each containing l balls (these are the molecule of our fluid). Altogether,
we have l black balls and l white balls. The process of blending is described as follows: each
turn, pick two balls, each from a different container, and switch them. This way the number
of balls in each urn is constant in time. Model the process of blending by a homogeneous
Markov chain. Then find its transition matrix and classify its states.

2.3.2 Infinite chains

When the state space is infinite the situation is a bit more difficult.

Definition 2.3.2 (Stationary distribution). Let X be a homogeneous Markov chain
with a state space S and transition matrix P . We say that a probability distribution
π = (πi)i∈S is a stationary distribution of X if

πT = πTP . (2.3.1)
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Clearly, a stationary distribution must solve the equation (2.3.1) but at the same time, it has
to be a probability distribution on the state space. This may be true only if

∑

i∈S
πi = 1. (2.3.2)

Typically, when solving the system (2.3.1), one fixes an arbitrary π0, finds a general solution
in terms of π0 and then tries to choose π0 in such a way that (2.3.2) holds.

Theorem 2.3.3. Let X be an irreducible homogeneous Markov chain with a state space
S (finite or infinite). Then all its states are positive recurrent if and only if X admits a
stationary distribution.

Obviously, if the stationary distribution does not exist, then we are left with the question
to determine if the states are all null-recurrent or transient. This can be decided using the
following result.

Theorem 2.3.4. Let X be an irreducible homogeneous Markov chain with a state space
S = {0, 1, 2, . . .}. Then all its states are recurrent if and only if the system

xi =
∞∑

j=1

pijxj , i = 1, 2, . . . , (2.3.3)

has only a trivial solution in [0, 1], i.e. xj = 0 for all j ∈ N.

If we adopt the notation x = (xi)i∈N and R = (pij)i,j∈N (notice that i, j are not zero - we
simply forget the first column and row), the system (2.3.3) can be neatly written as

x = Rx

which is to be solved for x ∈ [0, 1]N. Theorems 2.3.3 and 2.3.4 together suggest two possible
courses of action which can be taken. We either first try to find the stationary distribution
and if that fails (i.e. the states can be either null-recurrent or transient), we can look on
the reduced system (2.3.3) (which only tells us if all the states are recurrent or transient)
OR we can start with solving the reduced system (2.3.3) to see if the states are transient or
recurrent and if we show that they are recurrent we may move on and look for a stationary
distribution to see if the states are null or positive recurrent. This reasoning is summarized
in the following cookbook.
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∃π stationary?

x = Rx,
x ∈ [0, 1]N

pos. rec.

null rec.trans.

No
Yes

x = 0x 6= 0

x = Rx,
x ∈ [0, 1]N

∃π stationary?trans.

null rec. pos. rec.

x = 0x 6= 0

No Yes

So, basically, the choice of which one to follow is yours. That being said, you are usually
asked to find the stationary distribution anyway so it is efficient to start with the first one.

Exercise 25. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) with the
state space S = N0 given by the transition matrix

P =








1
2

1
22

1
23

· · ·
1 0 0 · · ·
0 1 0 · · ·
...

...
...

. . .







.

Solution to Exercise 25. We will follow the first guideline. First we should notice that
the state space is infinite. When we look at P we see that p0i > 0 for all i ∈ N0 and also
pi,i−1 > 0 for i ∈ N. Hence,

0 → i, i ∈ N0,

i→ i− 1, i ∈ N,

and thus i ↔ j for all i, j ∈ S. For a better visualisation we can draw a transition diagram
of X as follows:

0 1 2 3

. . .

This means that all the states of X are of the same type (Theorem 2.3.1). At this point,
we are already able to determine the periodicity of all states. Since p00 > 0, the state 0 is
non-periodic and thus all the other states are non-periodic. In order to say more, we employ
our cookbook according to which we have to decide if X admits a stationary distribution. We
have to solve the equation πT = πTP for an unknown stochastic vector πT = (π0, π1, π2, . . .).
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The system reads as

π0 =
1

2
π0 + π1

π1 =
1

22
π0 + π2

π2 =
1

23
π0 + π3

...

πk =
1

2k+1
π0 + πk+1, k = 0, 1, 2, . . . (2.3.4)

which translates as (for a fixed π0 whose value will be determined later)

π1 = π0 −
1

2
π0 =

(

1− 1

2

)

π0

π2 = π1 −
1

22
π0 =

(

1− 1

2
− 1

22

)

π0

...

πk+1 =

(

1− 1

2
− 1

22
− . . .− 1

2k+1

)

π0, k = 0, 1, 2, . . . (2.3.5)

The formula (2.3.5) is easily proved from (2.3.4) by induction (do not forget this step!).
Solving for a general k ∈ N0 we have

πk+1 =



1−
k+1∑

j=1

1

2j



π0 =

(

1− 1

2
·
1− 1

2k+1

1− 1
2

)

π0 =
1

2k+1
π0, k = 0, 1, 2, . . .

So far, we know that every vector πT = (π0,
1
2π0,

1
22
π0, . . .) solves the equation πT = πTP .

Now we further require that the vector π is also a probability distribution, i.e. all its elements
are non-negative and they sum up to 1.

1
!
=

∞∑

k=0

πk = π0 +
∞∑

k=1

1

2k
π0 = 2π0.

This means that the only π0 for which π is a probability distribution on N0 is π0 =
1
2 . Hence,

we arrive at

πk =
1

2k+1
, k = 0, 1, 2, . . .

which is the sought stationary distribution of the Markov chain X. Hence, by our cookbook,
we know that the chain has only positive recurrent states. △

Exercise 26. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) with the
state space S = N0 given by the transition matrix

P =








1
2·1

1
3·2

1
4·3 · · ·

1 0 0 · · ·
0 1 0 · · ·
...

...
...

. . .







.
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Solution to Exercise 26. Clearly the chain X has infinitely many states and in the same
way as in the previous exercise, all its states communicate and are non-periodic. Now we try
to find the stationary distribution. The equation πT = πTP reads as

π0 =
1

2 · 1π0 + π1

π1 =
1

3 · 2π0 + π2

...

πk =
1

(k + 1)(k + 2)
π0 + πk+1

which translates as

π1 =
1

2
π0

π2 =
1

3
π1

π3 =
1

4
π2

...

from which we can guess that

πk =
1

k + 1
π0, k = 1, 2, . . . (2.3.6)

This has to be proven by induction as follows. When k = 1, we immediately obtain that
π1 =

1
2π0 which is correct. Now we assume that the formula (2.3.6) holds for some k ∈ N and

we wish to show that it also holds for k + 1. We compute

πk+1 = πk −
1

(k + 1)(k + 2)
π0

ind.
=

1

k + 1
π0 −

1

(k + 1)(k + 2)
π0 =

1

k + 2
π0

and hence, the formula (2.3.6) is valid. This means that each vector πT = (π0,
1
2π0,

1
3π0, . . .)

is a good candidate for a stationary distribution. Now we have to choose π0 in such a way
that we have

∑∞
k=0 πk = 1. This is, however, impossible as the following computation shows.

1
!
=

∞∑

k=0

πk = π0 +
∞∑

k=1

1

k + 1
π0 = ∞.

We thus see, that X does not admit a stationary distribution. Hence, the states cannot be
positive recurrent and we need to decide whether they are null recurrent or transient. We
define

R :=










0 0 0 . . .

1 0 0
. . .

0 1 0
. . .

...
. . .

. . .
. . .









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the N× N matrix which is obtained by crossing out the first row and column of P . Now we
need to solve x = Rx for an unknown vector xT = (x1, x2, . . .). We get

x1 = 0

x2 = x1
...

xk+1 = xk, k = 1, 2, . . .

which implies that 0 = x1 = x2 = . . . and thus, this equation has only a trivial solution (in
particular on [0, 1]). This means that all the states are recurrent and since they cannot be
positive recurrent, they must be null-recurrent. △

Looking back: The equation x = Rx always has the trivial solution. The question is whether
this is the only solution which lives in the interval [0, 1] (more precisely, x ∈ [0, 1]N or,
xj ∈ [0, 1] for all j ∈ N). In this exercise, the interval [0, 1] was not important. However,
sometimes the interval [0, 1] becomes important - it is in the situation when there is another
solution to x = Rx such that xj → c as j → ∞ where c ∈ (1,∞] (see hint to Exercise 28).

Exercise 27. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) given
by the transition matrix

P =








p0 p1 p2 · · ·
1 0 0 · · ·
0 1 0 · · ·
...

...
...

. . .







,

where 0 < pi < 1 for all i ∈ N0 such that
∑∞

i=0 pi = 1.

Hint: Convince yourself that

∞∑

k=1



1−
k−1∑

j=0

pj



 =
∞∑

k=1

∞∑

j=k

pj =
∞∑

k=1

kpk.

Exercise 28. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) given
by the transition matrix

P =








1
2

1
2 0 0 · · ·

1
3 0 2

3 0 · · ·
1
4 0 0 3

4 · · ·
...

...
...

...
. . .







.

Hint: Show that there is no stationary distribution and that the reduced system x = Rx

is solved by xk = k+1
2 x1 for a fixed x1. Now, if x1 6= 0, then xj → ∞ as j → ∞ and hence,

there must be an index j∗ such that xj∗ > 1. Hence, one cannot choose x1 6= 0 in such a way
that all xk’s are in [0, 1] and we are left only with x1 = 0 for which all xk’s belong to [0, 1].
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Exercise 29. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) given
by the transition matrix

P =













2
3

1
3 0 0 0 · · ·

2
9

2
3

1
9 0 0

. . .

2
27 0 8

9
1
27 0

. . .

2
81 0 0 26

27
1
81

. . .
...

. . .
. . .

. . .
. . .

. . .













.

Exercise 30. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) given
by the transition matrix

P =













3
4

1
4 0 0 0 · · ·

3
16

3
4

1
16 0 0

. . .

3
64 0 15

16
1
64 0

. . .

3
256 0 0 63

64
1

256

. . .
...

. . .
. . .

. . .
. . .

. . .













.

Exercise 31. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) given
by the transition matrix

P =








p0 p1 p2 · · ·
1 0 0 · · ·
1 0 0 · · ·
...

...
...

. . .







,

where 0 < pi < 1 for all i ∈ N0 and
∑∞

i=0 pi = 1.

Exercise 32. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) given
by the transition matrix

P =








q0 p0 0 0 · · ·
q1 0 p1 0 · · ·
q2 0 0 p2 · · ·
...

...
...

...
. . .







,

where 0 < pi < 1 for all i ∈ N0 and qi = 1− pi.

Exercise 33. Classify the states of a homogeneous Markov chain X = (Xn, n ∈ N0) given
by the transition matrix

P =








q0 0 p0 0 0 · · ·
q1 0 0 p1 0 · · ·
q2 0 0 0 p2 · · ·
...

...
...

...
...

. . .







,

where 0 < pi < 1 for all i ∈ N0 and qi = 1− pi.
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Hint: In this exercise, one could think that the state 1 (i.e. the one corresponding to the
column of zeroes) is not reachable and should not belong to S. This depends on the initial
distribution p(0)T = (p(0)0, p(0)1, p(0)2, . . .). If p(0)1 = 0, then we may cross out the state
1, relabel the states and this exercise becomes Exercise 32. Assume then that p(0)1 6= 0.

Exercise 34. Suppose a snail climbs an infinitely high tree. Each hour, our snail moves one
centimetre up with probability 1/3 and with probability 2/3 it moves one centimetre down
(it does not really want to fight gravity). If the snail reaches ground level, it moves one
centimetre up in the next hour. Formulate the model for the height above ground in which
our snail is so that you obtain a homogeneous Markov chain, find its transition matrix and
classify its states.

Exercise 35. Modify Exercise 34 in such a way that the probability of going up is p ∈ (0, 1)
and the probability of going down is q := 1 − p. Classify the states of the resulting Markov
chain in terms of p.

2.4 Absorption probabilities

Recall the Gampler’s ruin problem (Exercise 22). One may ask, what is the probability (which
will clearly depend on the initial wealth a) that the whole game will eventually result in the
ruin of the gambler. In general, what is the probability, that if a Markov chain starts at a
transient state i, the first visited recurrent state is a given j. These are called absorption
probabilities.

Let X be a Markov chain with a state space S and denote by T the set of transient states
and by C the set of recurrent states (S = C ∪ T ). Define

τ := min{n ∈ N : Xn /∈ T},

the time of leaving T and denote by Xτ the first visited recurrent state. Assume that
Pi(τ = ∞) = 0 for all i ∈ T . Then we can define the absorption probabilities

uij := Pi(Xτ = j), i ∈ T, j ∈ C.

Theorem 2.4.1. It holds that

uij = pij +
∑

k∈T
pikukj , i ∈ T, j ∈ C. (2.4.1)

Theorem 2.4.1 can be easily applied in practice. Notice that if we relabel all the states in
such a way that all the recurrent states have smaller index than all the transient states, we
can write the transition matrix in the following way:

P =
C T

C

T

(
PC 0
Q R

)

.
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Here PC = (pij)i,j∈C , Q = (pij)i∈T,j∈C and R = (pij)i,j∈T . The formula (2.4.1) can then be
written as

U = Q+RU

which has one solution in [0, 1] if and only if Pi(τ = ∞) = 0 for every i ∈ T (i.e. the chain
leaves the set of transient states almost surely). The solution is, in general, written as a
matrix geometric series

Û =
∞∑

n=0

RnQ

and, in the case when |S| <∞ it takes the form

Û = (IT −R)−1Q. (2.4.2)

Exercise 36. Classify the states of a Markov chain given by the transition probability matrix

P =







1
2 0 0 1

2
0 0 1

2
1
2

0 1
2

1
2 0

0 1
2

1
2 0







and, if applicable, compute the matrix U of absorption probabilities into the set of recurrent
states.

Solution to Exercise 36. Let us denote the Markov chain under consideration byX. Clearly,
the state space of X is S = {0, 1, 2, 3} and we have that 1 → 2 → 3 → 1 and 0 → 1 6→ 0.
Hence, by Theorem 2.3.1, we have that the states 1, 2, 3 are positive recurrent (they define a
finite irreducible sub-chain) and 0 is a transient state. All the states are non-periodic (p00 > 0
and p22 > 0).
Let us further compute the absorption probabilities U . The cookbook is as follows: first
rearrange the states in such a way that all the recurrent states are in the upper left corner of
P , then compute Û from the formula (2.4.2). We obtain

P =

1 2 3 0

1
2
3
0







0 1
2

1
2 0

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2







Now we compute Û from formula (2.4.2):

Û = (I1 −R)−1Q =

(

1− 1

2

)−1
(
0 0 1

2

)
=
(
0 0 1

)
=
(
u01 u02 u03

)

The interpretation of the computed Û is that if X starts from 0, it jumps on spot for an
unspecified amount of time but once it jumps to a different state then 0, it will be the state
3 almost surely. △
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Looking back: Being given a chain in Exercise 36 with this particular P , we can immediately
answer the question which of the recurrent states will be the first one X visits after leaving
the set of transient states. Since p03 > 0 and p01 = p02 = 0, it must be that the first state
which is visited after leaving 0 is 3. This becomes even clearer once we draw the transition
diagram of X:

0 3

1

2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Exercise 37. Let p ∈ [0, 1]. Classify the states of the Markov chain given by the transition
matrix

P =







p 0 1− p 0
1− p p 0 0
0 0 1− p p
0 p 0 1− p







and, if applicable, compute the matrix U of absorption probabilities into the set of recurrent
states.

Exercise 38. Classify the states of the Markov chain given by the transition matrix

P =









1
3

1
6 0 1

4
1
4

0 1
4

1
2 0 1

4
0 1

2
1
4 0 1

4
1
4 0 1

2
1
4 0

0 1
4

1
4 0 1

2









and, if applicable, compute the matrix U of absorption probabilities into the set of recurrent
states.

Exercise 39. Classify the states of the Markov chain given by the transition matrix

P =









1
2 0 1

2 0 0
1
3 0 1

6
1
2 0

1
2 0 0 0 1

2
0 1

2
1
6 0 1

3
0 0 1

2 0 1
2









and, if applicable, compute the matrix U of absorption probabilities into the set of recurrent
states.

Exercise 40. Classify the states of the Markov chain given by the transition matrix

P =











1
2

1
4 0 0 1

4 0
1
4

1
2 0 0 0 1

4
1
4 0 1

4
1
4

1
4 0

0 1
4

1
4

1
4 0 1

4
1
4 0 0 0 1

2
1
4

0 1
4 0 0 1

4
1
2










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and, if applicable, compute the matrix U of absorption probabilities into the set of recurrent
states.

Exercise 41. Classify the states of the Markov chain given by the transition matrix

P =













1
2 0 0 0 1

4
1
4 0

1
8 0 7

8 0 0 0 0
0 1

2 0 1
2 0 0 0

0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0













and, if applicable, compute the matrix U of absorption probabilities into the set of recurrent
states.

Exercise 42. A baby echidnea was born in the zoo. In order not to hurt itself, it is now only
allowed to move in the following maze:

1

2 4 6

53

At each step, our baby echindea decides (uniformly randomly) upon one direction (west, east,
north or south) and then it goes in that direction until it reaches a wall. If there is a wall
in the chosen direction, our baby echidnea is confused and stays on the spot. Denote by Xn

its position at step n ∈ N0. Classify the states of the Markov chain X = (Xn, n ∈ N0) and
compute the matrix of absorption probabilities U into the set of recurrent states.

Exercise 43. Consider an urn and five balls. At each step, we shall add or remove the balls
to/from the urn according to the following scheme. If the urn is empty, we will add all the
five balls into it. If it is not empty, we remove either four or two balls or none at all, every
case with probability 1/3. Should we remove more balls than the urn currently contains, we
remove all the remaining balls. Denote by Xn the number of balls in the urn at the n-th
step. Classify the states of the Markov chain X = (Xn, n ∈ N0) and compute the matrix of
absorption probabilities U into the set of recurrent states.

Exercise 44. There is a mouse in the house! The mouse moves in such a way that in each
room, it chooses one of the adjacent rooms (each with the same probability) and runs there
(the movements occur at times n = 1, 2, . . .). This is what our flat looks like:

(T) (H) (K)

(L) (B)
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The rooms are the hall (H), kitchen (K), toilet (T), bedroom (B) and the living room (L).
We can set two traps - one is mischievously installed in the bedroom and the other one in the
kitchen since we really should not have a mouse there. As soon as the mouse enters a room
with a trap, it is caught and it will never ever run into another room. Denote by Xn the
position of the mouse at time n. Classify the states of the Markov chain X = (Xn, n ∈ N0)
and compute the matrix of absorption probabilities U .

Exercise 45. Modify the previous Exercise. Suppose now that we open the door from our
living room (L) to the garden (G). Once the mouse leaves the flat and enters the garden, it
will never come inside again. If the mouse starts in the toilet, what is the probability that it
will escape the flat before it is caught in a trap?

Solution to Exercise 45. Building the formal model (i.e. defining Xn and proving that it
is a homogeneous discrete time Markov chain) is simple and could be done in a similar way
as for any random walk with absorbing states (see e.g. Exercise 22). We will focus on the
task at hand: finding the probabilities uij . First, we shall find the transition probabilities P
and the transition diagram describing X. We have that

P =

K B G T H L

K
B
G
T
H
L











1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 1 0
1
3 0 0 1

3 0 1
3

0 1
3

1
3 0 1

3 0











L

G

B

KHT

1
3

1
3

1
3

1

1
3 1

3
1
3

1

1

1

Now we have two options. Either to compute the whole matrix Û or just to compute uTG.
Computing Û : This can be done as in the previous exercises using the formula (2.4.2). We
have

Û = (I3 −R)−1Q =





1 −1 0
−1

3 1 −1
3

0 −1
3 1





−1



0 0 0
1
3 0 0
0 1

3
1
3



 =





3
5

1
5

1
5

3
5

1
5

1
5

1
5

2
5

2
5



 .

Of course, one can make many mistakes in computing the inverse of a matrix 3 × 3. You
should always check that all the rows of your final matrix Û are probability distributions (i.e.
that they sum up to 1).
Computing only uTG: We can also appeal to the formula (2.4.1) and write down only those
equations which interest us. We are interested in uLG so let us rewrite (2.4.2) for i = L and
j = G. We obtain

uTG = pTG + pTTuTG + pTHuHG + pTLuLG = uHG

Hence, we also need an equation for uHG. We again apply formula (2.4.2) and look into P

to obtain

uHG = pHG + pHTuTG + pHHuHG + pHLuLG =
1

3
uTG +

1

3
uLG
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which means that we also need an equation for uLG, namely,

uLG = pLG + pLTuTG + pLHuHG + pLLuLG =
1

3
+

1

3
uHG.

Now you can choose your favourite method of solving this system of equation to obtain the
solution uTG = 1

5 . △

Exercise 46. There is a mouse in the house again! This time, this is what our flat looks like:

(K)

(H) (P)

(B)

The rooms are kitchen (K), hall (H), bedroom (B) and pantry (P). The mouse moves in such
a way that in every room it chooses one of the doors (each with the same probability) and
runs through those to a different room (or out of the flat). The movements occur at times
n = 1, 2, . . .. We have set one trap in the pantry. If the mouse enters a room with a trap, it is
caught and it will never run again. If the mouse leaves the house, it forgets the way back and
lives happily ever after (and it will never come back to our flat). Denote by Xn the position
of the mouse at time n. Classify the states of the Markov chain X = (Xn, n ∈ N0). What
is the probability that if the mouse starts in the bedroom, it will escape the flat before it is
caught in the trap?

Exercise 47. Recall the gambler’s ruin problem (Exercise 22) and assume that the gambler
starts with the initial wealth $a and that the total wealth in the game is $s. Compute the
probability that the game will eventually result in the ruin of the gambler.

Solution to Exercise 47. Recall that if X is the Markov chain modelling the gambler’s
wealth, then its state space is S = {0} ∪ {s} ∪ {1, 2, . . . , s − 1} where 0 and s are absorbing
states and 1, 2, . . . , s−1 are transient states. Let us assume that a ∈ {1, 2, . . . , s−1} (otherwise
the game would be somewhat quick). Our task is to compute the probabilities of absorption
from the transient state a to the absorbing state 0, i.e. we will compute ua0. Rearranging
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the states, we obtain

P =

0 s 1 2 3 . . . s− 2 s− 1

0
s
1
2
3
...

s− 2
s− 1





















1 0 0 0 0 · · · 0 0

0 1 0 0 0
. . . 0 0

q 0 0 p 0
. . . 0 0

0 0 q 0 p
. . . 0 0

0 0 0 q 0
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0
. . . 0 p

0 p 0 0 0 · · · q 0





















.

With these ingredients in hand, we shall make use of the formula

U = Q+RU .

Now, we see that

u1 − q − pu2 = 0

ui − qui−1 − pui+1 = 0, i = 2, 3, . . . , s− 2

us−1 − qus−2 = 0

Let us write ui := ui0 for i = 1, 2, . . . , s − 1 and define u0 := 1 and us := 0. We obtain the
following difference equation with boundary conditions

ui − qui−1 − pui+1 = 0, i = 1, 2, . . . , s− 1

u0 = 1

us = 0

Its characteristic polynomial is

χ(λ) = −pλ2 + λ− q

and its roots are λ1 = 1 and λ2 = q/p.
The case p 6= q: In this case, we have two different roots λ1 and λ2, the fundamental solution to
the difference equation is then {1, q/p} and the general solution to the homogeneous equation
is

ui = A · 1i +B ·
(
q

p

)i

, i = 1, 2, . . . , s− 1.

where A and B are constants which will be determined from the boundary conditions. Namely,
we have that

1 = A+B

0 = A+B

(
q

p

)s
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which gives

A = −

(
q
p

)s

1−
(
q
p

)s , B =
1

1−
(
q
p

)s .

Finally, we arrive at

ui =

(
q
p

)i

−
(
q
p

)s

1−
(
q
p

)s , i = 0, 1, . . . , s.

The case p = q: In this case, χ(λ) only has one root and the general solution is given by

ui = A+Bi, i = 1, 2, . . . , s− 1,

where

1 = A

0 = A+Bs.

Hence,

ui = 1− i

s
, i = 0, 1, . . . , s.

△

2.5 Steady-state and long-term behaviour

Theorem 2.5.1 (Strong law of large numbers for Markov chains). Let X be an irre-
ducible homogeneous discrete time Markov chain with positive recurrent states S. Let
π = (πj)j∈S be its stationary distribution. Then

1

n

n∑

k=0

1[Xk=j] −→
n→∞

πj , j ∈ S

Exercise 48. Consider the mouse moving in our flat from Exercise 44. Assume that there
are no traps and the doors to the garden are closed. We wish to analyse the behavioural
patterns of our mouse. The mouse moves in the same way as before - in each room, it chooses
(uniformly randomly) one of the adjacent rooms and moves there. What is the long-run
proportion of time the mouse spends in each of the rooms?

2.6 Answers to exercises

Answer to Exercise 11. The Galton-Watson branching process is a homogeneous discrete
time Markov chain with a the transition matrix

P = (pij)
∞
i,j=0 = [PU (s)

i]j
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where [R(s)]k denotes the coefficient of a polynomial R at sk. For the particular case of U ,
the distribution of X2 is

p(s)T =

(
33

125
,
11

125
,
36

125
,
18

125
,
27

125
, 0, . . .

)

.

Answer to Exercise 12. The symmetric random walk is a homogeneous discrete time Markov
chain.

Answer to Exercise 13. The running maximum is a homogeneous discrete time Markov
chain.

Answer to Exercise 14. The claim holds. What is more, the converse is also true as shown
for example in [?], Proposition 7.6, p. 122.

Answer to Exercise 15. The process X is not a Markov chain. Consider trajectories
(−2, 0, 2) and (2, 0, 2).

Answer to Exercise 16. The symmetric random walk on Z has 2-periodic, null-recurrent
states.

Answer to Exercise 17. We have that p
(n)
−1,−1 =

(
1
3

)n
, p

(n)
0,0 =

(
2
3

)n
and p

(n)
1,1 = 1. Hence,

−1, 0 are non-periodic, transient states and 1 is a non-periodic, positive recurrent state (the
so-called absorbing state).

Answer to Exercise 18. The transition matrix is

P =








q p 0 0 · · ·
q 0 p 0 · · ·
q 0 0 p · · ·
...

. . .
. . .

. . .
. . .







, P n =








q qp qp2 · · · qpn−1 pn 0 0 · · ·
q qp qp2 · · · qpn−1 0 pn 0 · · ·
q qp qp2 · · · qpn−1 0 0 pn · · ·
...

...
...

...
...

...
...

. . .







.

All the states are non-periodic, positive recurrent.

Answer to Exercise 19. We have that

P n =
1

a+ b

(
b+ a(1− (a+ b))n a− a(1− (a+ b))n

b− b(1− (a+ b))n a+ b(1− (a+ b))n

)

and all the states are positive recurrent and non-periodic.

Answer to Exercise 20. We have that

P n =





1
3 + 2

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n

1
3 − 1

3

(
−1

2

)n 1
3 + 2

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n

1
3 − 1

3

(
−1

2

)n 1
3 − 1

3

(
−1

2

)n 1
3 + 2

3

(
−1

2

)n





and all the states are positive recurrent and non-periodic.
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Answer to Exercise 21. X is a homogeneous discrete-time Markov chain with the state
space S = {0, 1, . . . , k} and the transition matrix

P =














0 1 0 0 · · · 0 0

0 1
k

1− 1
k

0
. . . 0 0

0 0 2
k

1− 2
k

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 0 · · · k−1
k

1− k−1
k

0 0 0 0 · · · 0 1














.

The states 0, . . . , k − 1 are transient and non-periodic, the state k is absorbing (i.e. positive
recurrent, non-periodic).

Answer to Exercise 22. X is a homogeneous discrete-time Markov chain with the state
space S = {0, 1, . . . , s} and the transition matrix

P =












1 0 0 0 0 · · · 0 0 0 0
q 0 p 0 0 · · · 0 0 0 0
0 q 0 p 0 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

...
0 0 0 0 0 · · · 0 q 0 p
0 0 0 0 0 · · · 0 0 0 1












The states 1, . . . , s− 1 are transient and 2-periodic, the states 0 and s are absorbing.

Answer to Exercise 23. Denote Xn the number of balls in the first container at time n.
Then X = (Xn, n ∈ N0) is a homogeneous discrete-time Markov chain whose state space is
S = {0, 1, . . . , 2l} and transition matrix

P =










0 1 0 0 · · · 0 0
1
2l 0 1− 1

2l 0 · · · 0 0
0 2

2l 0 1− 2
2l · · · 0 0

...
. . .

. . .
. . .

. . .
...

...

0 0 0 0 · · · 2l
2l 0










(i.e. p01 = p2l−1,2l = 1 and pk,k−1 = k
2l , pk,k+1 = 1 − k

2l for k = 1, . . . , 2l − 1 and pij = 0
otherwise). All the states are positive recurrent and 2-periodic.

Answer to Exercise 24. Denote by Xn the number of white balls in the first container.
Then X = (Xn, n ∈ N0) is a homogeneous discrete-time Markov chain whose state space is
S = {0, 1, . . . , l} and transition matrix

P =











0 1 0 0 · · · 0 0
(
1
l

)2 2(l−1)
l2

(
l−1
l

)2
0 · · · 0 0

0
(
2
l

)2 4(l−2)
l2

(
l−2
l

)2 · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 0 · · ·
(
l
l

)2
0










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(i.e. p0,1 = pl−1,l = 1 and pk,k−1 =
(
k
l

)2
, pk,k = 2k(l−k)

l2
, pk,k+1 =

(
l−k
l

)2
for k = 1, . . . , l − 1

and pij = 0 otherwise). All the states are positive recurrent and non-periodic.

Answer to Exercise 25. There is a stationary distribution πT = (pk)
∞
k=0 where pk = 1

2k+1

for k ∈ N0. All the states are non-periodic and positive recurrent.

Answer to Exercise 26. There is no stationary distribution. All the states are non-periodic
and null-recurrent.

Answer to Exercise 27. The stationary distribution exists if and only if the sum
∑∞

k=1 kpk <
∞. If this is so, the states are all positive recurrent and non-periodic. If

∑∞
k=1 kpk = ∞, then

there is no stationary distribution and all the states are null-recurrent and non-periodic.

Answer to Exercise 28. There is no stationary distribution. All the states are non-periodic
and null-recurrent.

Answer to Exercise 29. There is no stationary distribution. All the states are non-periodic
and null-recurrent.

Answer to Exercise 30. There is no stationary distribution. All the states are non-periodic
and null-recurrent.

Answer to Exercise 31. There is a stationary distribution πT = (pk)
∞
k=0 where p0 = 1

2−p0

and pk = pk
1−p0

for k ∈ N. All the states are non-periodic and positive recurrent.

Answer to Exercise 32. The stationary distribution exists if and only if
∑∞

k=1

∏k−1
j=0 pj <

∞. If this is so, all the states are positive recurrent and non-periodic. If
∑∞

k=1

∏k−1
j=0 pj = ∞,

then all the states are null-recurrent and non-periodic.

Answer to Exercise 33. All the states are non-periodic. The state 1 is transient. If
∑∞

k=1

∏k−1
j=0 pj < ∞, the states 0, 2, 3, 4, . . . are positive recurrent. If

∑∞
k=1

∏k−1
j=0 pj = ∞,

then the state 0, 2, 3, 4, . . . are null-recurrent.

Answer to Exercise 34. Let Y = (Yi, i ∈ N) be a sequence of independent, identically
distributed random variables with values in {−1, 1} defined on a probability space (Ω,F ,P).
Let their common distribution be

P(Y1 = −1) =
2

3
, P(Y1 = 1) =

1

3
.

Define X0 := 0 and

Xn+1 := 1[Xn=0] + 1[Xn 6=0](Xn + Yn+1), n = 0, 1, 2, . . .

Xn represents the height in which the snail is at time n. Then X = (Xn, n ∈ N) is a
homogeneous discrete time Markov chain with the state space S = N0. Its transition matrix
is

P =












0 1 0 0 0 · · ·
2
3 0 1

3 0 0 · · ·
0 2

3 0 1
3 0

. . .

0 0 2
3 0 1

3

. . .
...

. . .
. . .

. . .
. . .

. . .












.
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X admits a stationary distribution π0 = 1
4 and πk = 3

4

(
1
2

)k
for k = 1, 2, . . . All its states are

2-periodic and positive recurrent.

Answer to Exercise 35. Regardless of the value of the parameter p, X defined similarly as
in Exercise 34 has 2-periodic states. If p ≤ q, then all the states are null-recurrent. If p > q,
then all the states are transient.

Answer to Exercise 36. If the states are labeled S = {0, 1, 2, 3}, then all the states are
non-periodic, 1, 2, 3 are positive recurrent and 0 is transient. The absorption probabilities are
given by

Û = (0, 0, 1).

Answer to Exercise 37. If p ∈ (0, 1), then the chain is irreducible and all the states are
non-periodic, positive recurrent. If p = 1, then the chain is not irreducible, the state space
can be written as S = {0} ∪ {1} ∪ {2, 3} where 0 and 1 are absorbing states and 2, 3 are
non-periodic and positive recurrent. If p = 0, then the chain is not irreducible, the state
space can be written as S = {0, 1} ∪ {2} ∪ {3} where 0, 1 are non-periodic transient states, 2
and 3 are absorbing states and the absorption probabilities are given by

Û =

(
u02 u03
u12 u13

)

=

(
1 0
1 0

)

.

Answer to Exercise 38. The chain is not irreducible, its state space can be written as
S = {0, 3} ∪ {1, 2, 4} where 0, 3 are non-periodic transient states and 1, 2, 4 are non-periodic
positive recurrent states. The absorption probabilities are

Û =

(
u01 u02 u04
u31 u32 u34

)

=

(
2
7

2
7

3
7

2
21

16
21

3
21

)

.

Answer to Exercise 39. The chain is not irreducible, its state space can be written as
S = {1, 3} ∪ {0, 2, 4} where 1, 3 are 2-periodic, transient and 0, 2, 4 are non-periodic, positive
recurrent. The absorption probabilities are given by

Û =

(
u10 u12 u14
u30 u32 u34

)

=
1

9

(
4 3 2
2 3 4

)

.

Answer to Exercise 40. The chain is not irreducible, its state space can be written as
S = {3, 4} ∪ {1, 2, 5, 6} where 3, 4 are non-periodic transient states and 1, 2, 5, 6 are non-
periodic positive recurrent states. The absorption probabilities are given by

Û =

(
u31 u32 u35 u36
u41 u42 u45 u46

)

=
1

8

(
3 1 3 1
1 3 1 3

)

.
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Answer to Exercise 41. The chain is not irreducible, its state space can be written as
S = {0} ∪ {1, 2} ∪ {4} ∪ {3, 5, 6} where 0 is a non-periodic transient state, 1, 2 are 2-periodic
transient states, 4 is an absorbing state and 3, 5, 6 are 3-periodic positive recurrent states.
The absorption probabilities are given by

Û =





u03 u04 u05 u06
u13 u14 u15 u16
u23 u24 u25 u26



 =





0 1
2

1
2 0

7
9

1
9

1
9 0

8
9

1
18

1
18 0



 .

Answer to Exercise 42. This is the same Markov chain as in Exercise 40.

Answer to Exercise 43. The state space of X is S = {0, 1, 2, 3, 4, 5} and its transition
matrix is given by

P =











0 0 0 0 0 1
2
3

1
3 0 0 0 0

2
3 0 1

3 0 0 0
1
3

1
3 0 1

3 0 0
1
3 0 1

3 0 1
3 0

0 1
3 0 1

3 0 1
3











.

S can be written as S = {2, 4} ∪ {0, 1, 3, 5} where 2, 4 are non-periodic, transient states and
0, 1, 3, 5 are non-periodic positive recurrent states. The absorption probabilities are given by

Û =

(
u20 u21 u23 u25
u40 u41 u43 u45

)

=

(
1 0 0 0
1 0 0 0

)

This is not surprising at all when you look at the transition diagram for X (draw this your-
self!).

Answer to Exercise 44. The states T, H, L are 2-periodic, transient and K and B are both
absorbing. The absorption probabilities are given by

Û =





uTK uTB

uHK uHB

uLK uLB



 =





2
3

1
3

2
3

1
3

1
3

2
3



 .

Answer to Exercise 45. The states T, H, L are 2-periodic, transient and the states K, B
and G are absorbing. The absorption probabilities are given by

Û =





uTK uTB uTG

uHK uHB uHG

uLK uLB uLG



 =





3
5

1
5

1
5

3
5

1
5

1
5

1
5

2
5

2
5



 .

In particular, the probability that the mouse will escape the house before being caught in a
trap when it starts at the toilet is uTG = 1/5.
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Answer to Exercise 46. Denote by (O) the state ”outside”. Then the states K, B and H
are 2-periodic, transient and the states P and O are absorbing. The absorption probabilities
are given by

Û =





uHP uHO

uKP uKO

uBP uBO



 =
1

8





3 5
4 4
5 3





and, in particular, uBO = 3/8.

Answer to Exercise 47. The probability of ruining the gambler depends on his initial
wealth $a, the total wealth in the game $s and the probability of the gambler winning the
game p and is given by

ua0 =







1− i
s
, p = q,

(

q

p

)i
−
(

q

p

)s

1−
(

q

p

)s , p 6= q,
a ∈ {1, 2, . . . , s− 1}.

Answer to Exercise 48. The long-run proportion of time the mouse spends in the rooms
T, H, K, B, L, is 1/10, 3/10, 2/10, 2/10, 2/10, respectively.
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Chapter 3

Continuous time Markov Chains

Definition 3.0.1 (Continuous time Markov chain). A Z-valued random process X =
(Xt, t ≥ 0) is called a continuous time Markov chain with a state space S if

1. S = {i ∈ Z : ∃ t ≥ 0 such that P(Xt = i) > 0}

2. and it holds that

P(Xt = j|Xs = i,Xsn = in, . . . , Xs1 = i1) = P(Xt = j|Xs = i),

for all n ∈ N0 and all states i, j, in, . . . , i1 ∈ S and times 0 ≤ s1 < s2 < . . . < sn <
s < t such that P(Xs = i,Xsn = in, . . . , Xs1 = i1) > 0.

The first condition means that we only consider the effective states - those states we are
able to reach at some time t and the second condition is called the Markov property. Again,
roughly speaking, it says that to determine the probability distribution of the process at a
future time, we only need to know the current state and not the whole preceding history.

Similarly as in the previous chapter, for a continuous time Markov chain X, we define the
transition probability from state i at time s to state j at time s+ h as

pij(s, s+ h) := P(Xs+h = j|Xs = i)

where i, j ∈ S and s, h ≥ 0. With these, we can create the stochastic matrix P (s, s+ h) =
(pij(s, s+ h))i,j∈S which is called the transition matrix of X from time s to time s+ h.

Definition 3.0.2. If for every h ≥ 0, there is a stochastic matrix P (h) such that

P (s, s+ h) = P (h)

for all s ≥ 0, then X is called a (time) homogeneous continuous time Markov chain.

In the case of continuous time Markov chains, there is no natural notion of a ”step”. Hence,
we cannot expect to obtain a formula analogous to P (k) = P k which we obtained for discrete
time chains. However, it turns out that the fundamental property of transition matrices of a

55
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homogeneous continuous time Markov chain is the Chapman-Kolmogorov equality:

P (s+ t) = P (s) · P (t), s, t ≥ 0.

with P (0) := IS . If we are interested in the probability distribution of Xt, denoted by p(t),
we have that

p(t)T = p(0)TP (t), t ≥ 0,

where p(0) denotes the initial distribution of X, i.e. the vector which contains the probabil-
ities P(X0 = k) > 0 for k ∈ S.

3.1 Generator Q

So far, the definitions and properties are analogous to the discrete time case. The major
exception is that for a homogeneous chain, we do not have only one matrix P but rather a
whole system of matrices (P (t), t ≥ 0) which satisfies the Chapman-Kolmogorov equality1.
Think about it. In order to describe the process X, we need to know P (t) for every t ≥ 0.
When we had the discrete time Markov chains, we could generate the system (P (k), k ∈ N0)
simply by multiplying the matrix P . Is is possible to find one object which can be used to
generate the continuous system (P (t), t ≥ 0)? As it turns out, this really is the case.

Theorem 3.1.1. Assume that the transition probabilities are right continuous functions
at 0 (i.e. limt→0+ pij(t) = δij). Then for all i ∈ S there exists the (finite or infinite) limit

lim
h→0+

1− pii(h)

h
=: qi =: −qii

and for all i, j ∈ S there exists the (finite) limit

lim
h→0+

pij(h)

h
=: qij .

Theorem 3.1.1 assures that we can define the matrix

Q := lim
h→0+

P (h)− IS

h

which is called the intensity matrix, transition rate matrix or (infinitesimal) generator2 of
the Markov chain X. The elements qij for i 6= j are called transition intensities or transition

1A footnote useful if ever you will deal with general Markov processes with a general state space: Here we
have a system of matrices (i.e. linear operators), a notion of a dot ”·” (i.e. matrix multiplication/operator
composition) and a neutral element (i.e. P (0) = IS) with the following properties:

1. P (s+ t) = P (s) · P (t) for all s, t ≥ 0

2. ‖P (t)v − v‖
R|S| → 0 as t → 0+ for every v ∈ [0, 1]|S|.

Such a system is called a strongly continuous semigroup of linear operators and in the case of Markov processes,
this particular semigroup is called the Markov semigroup. Generally, strictly speaking, a strongly continuous
semigroup is a representation of the semigroup (R+,+) on some Banach space X (stochastic matrices in our
case) that is continuous in the strong operator topology.

2The definition of Q might resemble the notion of derivative of the matrix-valued function h 7→ P (h) since
(recall) IS = P (0). This is not a coincidence.
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rates from i ∈ S to j ∈ S. The numbers qi are called exit intensities/rates from the state
i ∈ S. As we will see in the sequel, the matrix Q can be used to generate the whole semigroup
(P (t), t ≥ 0) (via the Kolmogorov forward/backward equations).

For Theorem 3.1.1 and other technical reasons, we will always assume that our continuous-
time Markov chain satisfies the following:

• X is homogeneous,

• transition probabilities are right continuous functions at 0 (i.e. limt→0+ pij(t) = δij),

• X is separable and measurable,

• X has right continuous sample paths,

• ∑j∈S qij = 0 for all i ∈ S.

A typical sample path of a homogeneous continuous time Markov chain is the following:

2 4 6 8 10

2

4

6

t

Xt(ω)

The picture suggests the following definitions: We will define

J0 := 0

Jn+1 := inf(t > 0 : Xt 6= XJn), n ∈ N0.

with the convention that inf ∅ := ∞. A careful reader should stop here. In general, there
is no guarantee that XJn are random variables since Jn are themselves random variables.
However, it can be shown that Jn are really well-defined. The Jn are called the jump times
of X. Further, we can define for n ∈ N0 the following random variables:

Sn+1 :=

{
Jn+1 − Jn, Jn <∞
∞, otherwise.

The random variables Sn are called the holding times.
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2 4 6 8 10

2

4

6

J0
J1 J2 J3 J4

J5

S5

t

Xt(ω)

Finally, let us define the matrix

Q∗ = (q∗ij)i,j∈S , where q∗ij :=

{ qij
qi
1[i 6=j], if qi 6= 0

1[i=j], otherwise.

Theorem 3.1.2. The stochastic process Y = (Yn, n ∈ N0) where Yn := XJn for n ∈ N0

is a homogeneous discrete time Markov chain whose transition matrix is Q∗.

The process Y from Theorem 3.1.2 is called the embedded chain of X. Theorem 3.1.2 says
in particular that if X is in the state i (and stays there for some time), then the probability
that the state which X will reach when it jumps next will be a given state j is

qij
qi

(we assume
that i 6= j and qi 6= 0). A sample path of the embedded chain corresponding to our example
is as follows.

1 2 3 4 5

1

2

3

4

5

n

XJn(ω)
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The next theorem answers the question how long X will stay in i.

Theorem 3.1.3. Let Sn be the holding times of a homogeneous continuous time Markov
chain. Then

Sn+1|Y0, . . . , Yn;S1, . . . , Sn; Jn <∞ ∼ Exp (qYn).

In particular, Theorem 3.1.3 says that the holding times are all independent and exponen-
tially distributed random variables. So, if you ever want to simulate paths of continuous time
Markov chains, it suffices to generate independent exponentially distributed holding times
(with appropriate parameters) and its embedded chain.

The analysis of continuous time Markov chains is done in more steps. First, we need to built
a model. This is typically done in such a way that we define the approximate behaviour of
the process on a small time interval, i.e. we are given the Taylor expansion of pij(h) up to
the first order (or we have to construct it). This is called the infinitesimal definition. In the
next step, we have to find the generator Q. Once we have Q, we are able to obtain the whole
system (P (t), t ≥ 0), which fully describes the process, or the distribution Xt for all t ≥ 0 or
we can analyse the limiting and steady-state behaviour of the process when t→ ∞.

P (h) for small h Q distribution (p(t), t ≥ 0)

semigroup (P (t), t ≥ 0)

steady-state behaviour

Hence, we need to be able to find the generator Q. This is practised in the following exercises.
Also, since we will need some facts about the embedded chain in the sequel, you are also asked
to find its transition matrix Q∗.

Exercise 49 (Poisson process). Consider certain events which repeatedly occur randomly in
continuous time (e.g. incoming calls, customers arriving the the shop). We assume that num-
ber of events which occur in disjoint time intervals are independent random variables which
only depend on the length of these time intervals. Consider a small time interval (t, t+h] and
a positive number λ > 0. We assume that there is exactly one event in the interval (t, t+ h]
with probability λh + o(h), h → 0+, two or more events with probability o(h), h → 0+ and
no event with probability 1− λh+ o(h), h→ 0+.

Let N0 := 0 and let Nt be the number of events which occured in the interval (0, t]. Model
the situation by a homogeneous continuous time Markov chain. Find its generator Q and
find the transition matrix Q∗ of its embedded chain.
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Solution to Exercise 49. The formal definition of the model follows:

Definition 3.1.1. Let λ > 0. The stochastic process N = (Nt, t ≥ 0) of count random
variables is called the Poisson process with parameter λ if

1. N0 = 0,

2. the process N has independent and stationary increments,

3. P(Nt+h −Nt = 1) = λh+ o(h), P(Nt+h −Nt ≥ 2) = o(h) for h→ 0+ for all t ≥ 0.

The first step is to find the transition probabilities pij(h). △

Exercise 50. Show that Definition 3.1.1 is equivallent to the following definition:

Definition 3.1.2. Let λ > 0. The stochastic process N = (Nt, t ≥ 0) of count random
variables is called the Poisson process with parameter λ if

1. N0 = 0,

2. the process N has independent increments,

3. Nt+s −Ns ∼ Po (λs) for all times s, t ≥ 0.

Solution to Exercise 50. Notice how remarkable the claim is: we claim that a process
N which satisfies Definition 3.1.1 where only the Taylor expansion of the distribution of
increments Nt+h − Nt is known, already implies that the increments have to be distributed
according to the Poisson law. △

Exercise 51 (Linear birth-death process). Consider a population of identical reproducing
and dying organisms. Assume that each organism dies within the time interval (t, t+ h] with
probability µh + o(h), h → 0+. Similarly, in (t, t + h], each organism gives birth to exactly
one organism with probability λh + o(h), → 0+, to two or more organisms with probability
o(h), h → 0+ or it will not reproduce with probability 1− λh + o(h), h → 0+. The fates of
individual organisms are independent and µ > 0, λ > 0.

Let Xt be the number of organisms in the population at time t ≥ 0. Model the population
dynamics by a homogeneous continuous time Markov chain X = (Xt, t ≥ 0), find its generator
Q and the transition matrix of the embedded chain Q∗.

Exercise 52 (Telephone switchboard). Consider a telephone switchboard with N lines. As-
sume that there will be exactly one incoming phone call within the time interval (t, t + h]
with probability λh + o(h), h → 0+ and λ > 0. The probability is the same for all t ≥ 0.
The probability that two or more calls will come within the same interval is o(h), h → 0+.
No phone call will come with probability 1− λh + o(h), h → 0+. All the incoming calls are
independent of each other. If all the N lines are engaged, then the incoming phone call is
lost. The length of one phone call is exponentially distributed with the expected value 1/µ,
µ > 0.
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1. Compute the probability that a phone call ends within the time interval (t, t+ h] if we
know that it has not ended by time t.

2. Model the number of engaged lines at time t by a homogeneous continuous time Markov
chain X = (Xt, t ≥ 0). Find the generator Q.

3. Find the transition matrix of the embedded chain Q∗.

Exercise 53 (Factory machine). A factory machine either works or does not work. The time
for which it does work is exponentially distributed with the expected value 1/λ, λ > 0. Then
it breaks and has to be repaired. The time it takes to repair the machine is exponentially
distributed with the expected value 1/µ, µ > 0. Model the state of the machine (works/does
not work) by a homogeneous continuous time Markov chain, find its generator Q and the
transition matrix of its embedded chain Q∗.

Exercise 54 (Unimolecular reaction). Consider a chemical reaction during which the molecules
of the compound A change irreversibly to the molecules of the compound B. Suppose the ini-
tial concentration of A is N molecules. If there are j molecules of A at time t, then each of
these molecules changes to a B molecule within the time interval (t, t + h] with probability
qh+ o(h), h→ 0+ where q > 0. Model the number of A molecules by a homogeneous contin-
uous time Markov chain, find its generator and the transition matrix of its embedded chain
Q∗.

Exercise 55 (Bimolecular reaction). Consider a liquid solution of two chemical compounds
A and B. The chemical reaction is described as follows:

A + B → C

i.e. one A molecule reacts with one B molecule and they produce one C molecule. Let the
initial concentrations of the compounds A,B and C be a, b, and 0 molecules and denote
N := min{a, b}. If there are j molecules of C at time t, then the reaction will produce exactly
one molecule of C within the time interval (t, t+ h] with probability

q(a− j)(b− j)h+ o(h), h→ 0+

for j = 0, 1, . . . , N . Model the concentration of C at time t by a homogeneous continuous
time Markov chain X = (Xt, t ≥ 0), find its generator Q and the transition matrix of its
embedded chain Q∗.

3.2 Classification of states

In this section, we briefly revisit the concept of irreducibility and transience/recurrence of a
Markov chain.

Definition 3.2.1. Let X be a homogeneous continuous time Markov chain with the state
space S. We say that the state j ∈ S is accessible from the state i ∈ S (and write i→ j)
if there is t > 0 such that

Pi(Xt = j) = pij(t) > 0.
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If the states i, j are mutually accessible, then we say that they communicate (and write
i↔ j). X is called irreducible if all its states communicate..

It can be shown that i→ j in X if and only if i→ j in its embedded chain Y .

Definition 3.2.2. Let X be a homogeneous continuous time Markov chain with the state
space S. Denote

Ti(1) := inf(t ≥ J1 : Xt = i),

the first return time to the state i ∈ S. The state i is called

• recurrent if either (qi = 0) or (qi > 0 and Pi(Ti(1) <∞) = 1),

• transient if (qi > 0 and Pi(Ti(1) = ∞) > 0).

If i ∈ S is recurrent, we call it

• positive if either (qi = 0) or (qi > 0 and EiTi(1) <∞),

• null if (qi > 0 and EiTi(1) = ∞).

The intuition behind these definitions is the same as in the discrete time case. If a state is
recurrent, the chain will revisit it in a finite time almost surely. If it is transient, it might
happen (with positive probability), that the state will never be visited again.

In fact, if we consider a chain X which describes a moving particle (on, say, N0), then if the
chain turns out to have only transient states, then the particle drifts to the infinity almost
surely. In this case, the state space should be enriched with the state ∞, an absorbing
state, which may be reached in finite or infinite time. More precisely, for any irreducible
homogeneous continuous time Markov chain X on N0 with transient states, we have for all
i ∈ S that

Pi( lim
t→∞

Xt = ∞) = 1.

Recurrent states, on the other hand, are visited infinitely many times. However, the average
time it may take the process to revisit a given state can be either finite or infinite. These two
options correspond to either positive recurrence or null recurrence of the chain.

The following definition characterizes states according to how long the chain stays in them.

Definition 3.2.3. Let X be a homogeneous continuous time Markov chain with the state
space S. Let i ∈ S.

• If qi = 0, then we call i absorbing.

• If qi ∈ (0,∞), then we call i stable.

• If qi = ∞, then we call i unstable.

Obviously, if qi = 0, then from the definition of the embedded chain we can see, that q∗ii = 1
and this means that i is absorbing (in the embedded chain). The interpretation of qi is the
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rate at which the chain jumps to a different state. The higher qi, the less likely the chain is
to stay in i.

Naturally, we may ask what is the relationship between the states of a continuous time Markov
chain and the states of its embedded chain. This is answered by the following theorem and
exercise below.

Theorem 3.2.1. Let X be a homogeneous continuous time Markov chain with the state
space S and let Y be its embedded chain. Then a state i ∈ S is recurrent in X if and
only if i is recurrent in Y .

However, the statement is not true for positivity of the recurrent states. Indeed, the following
example shows that a continuous time Markov chain can have positive recurrent states (in
the sense of Definition 3.2.2) while its embedded chain has null recurrent states (in the sense
of Definition 2.2.1).

Exercise 56. Let X be a homogeneous continuous time Markov chain with the state space
S = N0 and the generator

Q =













−1 1 0 0 0 · · ·
1 −2 1 0 0

. . .

0 1
4 −1

2
1
4 0

. . .

0 0 1
9 −2

9
1
9

. . .
...

. . .
. . .

. . .
. . .

. . .













.

Use Theorem ?? to show that X has only positive recurrent states but its embedded chain
has null recurrent states.

Solution to Exercise 56. If we look at the structure of the generator Q we see that the
process is a birth-death process with µ0 = 0, λ0 = 1 and µn = 1

n2 = λn for n ∈ N. We have
that ∞∑

n=1

1

λnρn
=

∞∑

n=1

µ1 · . . . · µn
λ0λ1 · . . . · λn

=
∞∑

n=1

1

λ0
= ∞

so that the chain X has recurrent states (by Theorem ??) and

∞∑

n=1

ρn =
∞∑

n=1

λ0 · . . . · λn−1

µ1 · . . . · µn
=

∞∑

n=1

λ0
µn

=
∞∑

n=1

1

n2
<∞

which assures that the states are positive recurrent. However, the transition matrix of the
embedded chain is

Q∗ =










0 1 0 0 · · ·
1
2 0 1

2 0
. . .

0 1
2 0 1

2

. . .
...

. . .
. . .

. . .
. . .










.

which is the transition matrix of a symmetric random walk on N0 with reflecting boundary
at 0. We have already shown that this random walk has null recurrent states. △
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3.3 Kolmogorov differential equations

In this section, we will be able to construct the transition semigroup (P (t), t ≥ 0) of a given
homogeneous continuous time Markov chain. The main ingredient is its generatorQ as follows
from the next theorem.

Theorem 3.3.1 (Kolmogorov differential equations (KDE)). Let X = (Xt, t ≥ 0) be a
homogeneous continuous time Markov chain with the generator Q and the state space S
for which we have that qi <∞ for all i ∈ S.

1. The transition probabilities pij(·) of X are differentiable in (0,∞) and it holds that

P ′(t) = QP (t), t > 0. (3.3.1)

2. If, moreover, for all j ∈ S, the convergence
pij(h)

h
→ qij as h → 0+ is uniform in

i ∈ S, then it also holds that

P ′(t) = P (t)Q, t > 0. (3.3.2)

The first differential equation, (3.3.1), always holds for chains with stable states (i.e. qi <∞
for all i ∈ S) and it is called the Kolmogorov backward equation. The second one, called
the Kolmogorov forward equation holds for example in chains with finite state space (and
stable states).3 Sometimes, in particular when we are given a chain with finite, yet general,
state space, it can be useful to use Theorem 3.3.1 directly and use recursion to compute the
transition probabilities P (t). However, for finite spaces, we know the explicit solution to
both these equations.

Theorem 3.3.2 (Solution to KDE). Let X be a homogeneous continuous time Markov
chain with a finite state space S and stable states. Then both equations (3.3.1) and
(3.3.2) have exactly one solution which satisfies P (0) = IS . The solution is the same for
both equations and can be written as the matrix exponential

P (t) = eQt =
∞∑

k=0

tkQk

k!
, t ≥ 0.

Now, if we want to use Theorem 3.3.2, we have two options. We can either use the definition
of matrix exponential (as an infinite sum) for which we will need to know Qk for all k ∈ N0

or we can use the fact that the solution is matrix exponential directly (for which we will need
the Perron’s formula for holomorphic functions).

Theorem 3.3.3 (Perron’s formula for holomorphic functions). Let f : U(0, R) → C

be a holomorphic function on some R-neighbourhood of 0, 0 < R ≤ ∞ and let A be a

3To remember which one is forward/backward one, just notice that in (3.3.1), the letters Q and P are in
the backward alphabetical order whereas in (3.3.2), the letters go as P, Q (i.e. forward).



3.3. KOLMOGOROV DIFFERENTIAL EQUATIONS 65

square matrix with eigenvalues λ1, λ2, . . . , λk whose multiplicities are m1,m2, . . . ,mk. If
|λj | < R for all j = 1, 2, . . . , k, then

f(A) =
k∑

j=1

1

(mj − 1)!

dmj−1

dλmj−1

[

f(λ)
(λI −A)

ψj(λ)

]

λ=λj

where

ψj(λ) =
det(λI −A)

(λ− λj)mj
.

In particular, if A is a N × N -matrix with only simple eigenvalues (i.e. mj = 1) then the
formula takes the simpler form

f(A) =
N∑

j=1

f(λj)
Adj (λjI −A)

ψj(λj)
.

To sum it up, in order to compute the semigroup (P (t), t ≥ 0), we can use the following:

• forward/backward equation

• P (t) =
∑∞

k=0
tkQk

k! (we need Qk)

• P (t) = eQt (we need Perron’s formula for f(z) = etz)

Exercise 57. Let X be a homogeneous continuous time Markov chain with the state space
S = {0, 1} and the generator

Q =

(
−λ λ
µ −µ

)

where λ > 0 and µ > 0. Compute the transition semigroup (P (t), t ≥ 0) of X and also the
distribution of Xt for all t > 0 if the initial distribution of X on S is p(0)T = (p, q) where
p = 1− q > 0.

Exercise 58. Let X be a homogeneous continuous time Markov chain with the state space
S = {0, 1, 2} and the generator

Q =





−3 3 0
0 0 0
1 1 −2



 .

Compute the transition semigroup (P (t), t ≥ 0) of X and also the distribution of Xt for all
t > 0 if the initial distribution of X is uniform on S.

Exercise 59. Let X be a homogeneous continuous time Markov chain with the state space
S = {0, 1, 2} and the generator

Q =





−2 2 0
1 −3 2
0 2 −2



 .

Compute the transition semigroup (P (t), t ≥ 0) of X and also the distribution of Xt for all
t > 0 if the initial distribution of X is uniform on S.
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3.4 Explosive and non-explosive chains

In this section, we will have a closer look at the number of jumps that can occur within a
finite time interval. Naturally, we distinguish two cases - either the number of jumps is finite,
or infinite with the latter being considered ”badly-behaved”.

Definition 3.4.1 (Regular chains). Let X be a homogeneous continuous time Markov
chain with stable states. Denote

ξ := sup Jn =
∞∑

k=1

Sk.

We say that X is regular or non-explosive, if

Pi(ξ = ∞) = 1

for all i ∈ S. The N0 ∪ {∞}-valued random variable ξ is called the time to explosion.

If a chain X is regular, then within a finite time interval only a finite number of jumps can
occur. For intuition, this is what a sample path of an explosive chain may look like.

1 2 3 4 5

10

20

30

40

ξ = sup Jn

t

Xt(ω)

Theorem 3.4.1 (Characterization of non-explosive chains). Let X be a homogeneous
continuous time Markov chain with the state space S = N0, the generator Q and with
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the embedded chain Y . Then X is non-explosive if and only if

Pi

( ∞∑

k=0

1

qYk

= ∞
)

= 1

for all i ∈ S.

Exercise 60. Decide whether the Poisson process N = (Nt, t ≥ 0) is a regular process or
not.

Exercise 61. Let X be a homogeneous continuous time Markov chain with the state space
S = N0 and generator

Q =













−1 1 0 0 0 · · ·
0 −4 4 0 0

. . .

0 0 −9 9 0
. . .

0 0 0 −16 16
. . .

...
. . .

. . .
. . .

. . .
. . .













.

Decide whether X is explosive or non-explosive.

3.5 Steady-state and long-term behaviour

In order to analyse the long-term behaviour of homogeneous continuous time Markov chains,
we will need an analogue of the stationary distribution discussed in the discrete time case. A
natural definition would be the following.

Definition 3.5.1 (Invariant measure and stationary distribution). Let X = (Xt, t ≥ 0)
be a homogeneous continuous time Markov chain with the state space S and the transition
semigroup (P (t), t ≥ 0).

• A vector ηT = (ηi)i∈S such that ηi ≥ 0 for all i ∈ S and ηT = ηTP (t) for all t ≥ 0,
is called an invariant measure of X.

• An invariant measure η is called the stationary distribution of X, if it is also a
probability distribution on S, i.e. ηi ∈ [0, 1] for all i ∈ S and

∑

i∈S ηi = 1.

As opposed to the discrete time case, the situation is more complicated now. In the discrete
time case, it sufficed to find a probability vector piT such that πT = πTP since then we
could show by induction that also

πT = πTP (n)

for all n ∈ N0. In the continuous time case, we have to use the generator Q. To motivate the
theorems in this section, we are going to give a very informal derivation which will give us
some insight into the formulas used in exercises. Consider the equation for invariant measure
ηT = ηTP (h) written as

ηj =
∑

i∈S
ηipij(h), h ≥ 0.
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This can be rewritten for h > 0 as

ηj − ηjpjj(h) =
∑

i∈S,i 6=j

ηipij(h)

ηj(1− pjj(h)) =
∑

i∈S,i 6=j

ηipij(h)

ηj
1− pjj(h)

h
=

∑

i∈S,i 6=j

ηi
pij(h)

h

Now, taking the limit h→ 0+, (!!!), we obtain

ηjqjj =
∑

i∈S,i 6=j

ηiqij

∑

i∈S
ηiqij = 0

which is the same as
ηTQ = 0T . (3.5.1)

Hence, we see that a vector η satisfies ηT = ηTP (h) at least for all small h > 0 if and only
if it also satisfies the equation ηTQ = 0T . This means that in order to find an invariant
measure of X, we need to solve one equation only. In the case when the chain is regular and
has only recurrent states, the invariant measure indeed exists as proposed by the following
theorem.

Theorem 3.5.1 (Existence of invariant measure). Let X be a regular homogeneous
continuous time Markov chain with the generator Q and the embedded chain Y . Assume
that Y is irreducible and all its states are recurrent. Then X has an invariant measure
η which is the unique (up to a multiplicative constant) positive solution to

ηTQ = 0T .

Furthermore, if
∑

i∈S ηi <∞, then π = (πi)i∈S where

πi =
ηi

∑

k∈S ηk
, i ∈ S,

is the stationary distribution of X.

Exercise 62. Consider a Markov chain X with the state space S = {0, 1} and the generator

Q =

(
−1 1
1 −1

)

.

Show that the stationary distribution of X exists and find it.

Exercise 63. There are N ∈ N workers in a factory, each of whom uses a certain electrical
device. A worker who is not using the device at time t will start using it within the time
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interval (t, t+ h] with probability λh+ o(h), h→ 0+, independently of the other workers. A
worker who is using the device at time t will stop using it within the interval (t, t + h] with
probability µh+ o(h), h → 0+. Here, λ > 0 and µ > 0. Model the number of workers using
the device at time t by a homogeneous continuous time Markov chain. Find its generator Q,
show that its stationary distribution exists and find it.

Exercise 64. Let X be a homogeneous continuous time Markov chain with the state space
S = N0 and the generator

Q =








−1 1 0 0 · · ·
pq −p p2 0 · · ·
p2q 0 −p2 p3 · · ·
...

...
...

...
. . .







.

where 0 < p = 1− q < 1. Decide, whether the stationary distribution of X exists or not and
if it does, find it.

Exercise 65. Let X be a homogeneous continuous time Markov chain with the state space
S = N0 and the generator

Q =










−1 1 0 0 0 · · ·
1 −3 2 0 0 · · ·
1 0 −4 3 0 · · ·
1 0 0 −5 4 · · ·
...

...
...

...
...

. . .










.

Decide, whether the stationary distribution of X exists or not and if it does, find it.

The situation becomes a lot more complicated when the chain is either explosive, or non-
explosive but has transient states. In the following examples, we will see that we cannot say
anything about the existence of the solution to (3.5.1) without additional assumptions unless
the chain is non-explosive and recurrent.

Exercise 66. Let X be a homogeneous continuous time Markov chain with the state space
S = N0 and the generator

Q =













−λ λ 0 0 0 · · ·
λ(1− p1) −λ λp1 0 0

. . .

λ(1− p2) 0 −λ λp2 0
. . .

λ(1− p3) 0 0 −λ λp3
. . .

...
. . .

. . .
. . .

. . .
. . .













.

where λ > 0 and pk ∈ (0, 1) are such that limk→∞
∏k

i=1 pi 6= 0. Show that X is a non-
explosive, transient chain (i.e. irreducible chain whose all states are transient) and show that
there is no positive solution to ηTQ = 0T .
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Solution to Exercise 66. X is non-explosive: We have that qj = λ for all j ∈ N0. Hence

Pi

( ∞∑

k=0

1

qYk

= ∞
)

= Pi

( ∞∑

k=0

1

λ
= ∞

)

= 1

and we may appeal to Theorem 3.4.1.
X is transient: The chain X is recurrent if and only if its embedded chain is recurrent. The
transition matrix of the embedded chain is given by

Q∗ =










0 1 0 0 · · ·
1− p1 0 p1 0

. . .

1− p2 0 0 p2
. . .

...
. . .

. . .
. . .

. . .










.

Obviously, the embedded chain is irreducible. In a standard way, we can use the reduced
system x = Rx to show that the embedded chain is recurrent if and only if

lim
k→∞

k∏

i=1

pi = 0.

This is not surprising, since
∏k

i=1 pi is the probability that the chain will not return to the
state zero in (k + 1) transitions. Hence, if the limit is zero, we will revisit 0 in a finite time,
which is precisely the definition of a recurrent state. Hence, 0 is recurrent and irreducibility
assures that the remaining states are also recurrent. However, in our case we know, that the
limit is not zero which implies that the embedded chain is transient and so is X.
There is no invariant measure: We will show that there is no solution to the equation

ηTQ = 0T .

We obtain

−λη0 + λ
∞∑

k=1

(1− pk)ηk = 0

λη0 − λη1 = 0

λp1η1 − λη2 = 0

λp2η2 − λη3 = 0

...

λpkηk − ληk+1 = 0, k = 2, 3, . . .

The second and the consecutive equations yield

η1 = η0

ηk =
k−1∏

i=1

piη0, k = 2, 3, . . .
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Writing p0 := 1 and plugging this in into the first equation, we obtain

η0 =
∞∑

k=1

(1− pk)

(
k−1∏

i=0

pi

)

η0.

Hence, the equation admits a solution if and only if

∞∑

k=1

(
k−1∏

i=0

pi −
k∏

i=0

pi

)

= 1.

Writing ak :=
∏k

i=0 pi, we can take a partial sum

N∑

k=1

(ak−1 − ak) = a0 − a1 + a1 − a2 + . . .+ aN−1 − aN = a0 − aN = 1−
N∏

i=0

pi.

Now taking the limit N → ∞ and using the fact that limk→∞
∏k

i=1 pi 6= 0, we see that ηTQ =

0T does not admit a solution (in fact, there is a solution if and only if limk→∞
∏k

i=1 pi =
0). △

Exercise 67. Let X be a homogeneous continuous time Markov chain with the state space
S = Z and the generator Q given by

qi,i+1 = λp

qi,i = −λ
qi,i−1 = λq

and qij = 0 otherwise, i, j ∈ Z. Assume that λ > 0 and that p ∈ (0, 1), q := 1 − p and
that p 6= 1

2 . Show that X is a non-explosive, transient Markov chain and find all solutions to
ηTQ = 0T .

Exercise 68. Let X be a homogeneous continuous time Markov chain with the state space
S = N0 and the generator

Q =













−1 1 0 0 0 · · ·
(1− p1) −1 p1 0 0

. . .

4(1− p2) 0 −4 4p2 0
. . .

9(1− p3) 0 0 −9 9p3
. . .

...
. . .

. . .
. . .

. . .
. . .













.

where pk ∈ (0, 1) are such that limk→∞
∏k

i=1 pi 6= 0. Show that X is an explosive chain and
show that there is no positive solution to ηTQ = 0T .

Exercise 69. Let 1
2 < p < 1 and let q := 1 − p. Let X be a homogeneous continuous time

Markov chain with the state space S = Z and the generator Q given by

qi,i+1 = λip

qi,i = −λi
qi,i−1 = λiq
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and qij = 0 otherwise, i, j ∈ Z. Here λi is chosen such that

λi =

{
q, i = −1,−2, . . . ,
(
p
q

)2i
, i = 0, 1, 2, . . .

Show that X is a an explosive Markov chain and find all solutions to ηTQ = 0T .

Exercise 70. Let X be a homogeneous continuous time Markov chain with the state space
S = N0 and the generator

Q =













−1 1 0 0 0 · · ·
1
2 · 4 −3

2 · 4 4 0 0
. . .

0 1
2 · 42 −3

2 · 42 42 0
. . .

0 0 1
2 · 43 −3

2 · 43 43
. . .

...
. . .

. . .
. . .

. . .
. . .













.

Show that X is an explosive chain, find the unique positive solution η to ηTQ = 0T and show
that it converges (i.e. show that

∑∞
i=0 ηi <∞).

Exercise 71. Let 1
2 < p < 1 and let q := 1 − p. Let X be a homogeneous continuous time

Markov chain with the state space S = Z and the generator Q given by

qi,i+1 = λip

qi,i = −λi
qi,i−1 = λiq

and qij = 0 otherwise, i, j ∈ Z. Here λi =
(
p
q

)2|i|
for i ∈ Z. Show that X is a an explosive

Markov chain find all solutions to ηTQ = 0T and show that every such solution is convergent.

In the table below, there are various cases we have encountered. When we write ”solution”,
we always mean positive (i.e. ηi > 0 for all i ∈ S) solution to (3.5.1). When we write
”unique”, we always mean uniqueness up to a multiplicative constant. When we write ”con-
vergent”, we mean, that

∑

i∈S ηi <∞. Unless explicitly stated, all solutions in the table are
non-convergent.

Chain X and its states Solution to ηTQ = 0T

Non-explosive positive recurrent =⇒ unique convergent solution
null recurrent =⇒ unique solution
transient =⇒ no solution

non-unique solution
unique solution

Explosive =⇒ no solution
non-unique solution
unique solution
unique convergent solution
non-unique convergent solution
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3.6 Answers to exercises

Answer to Exercise 49. The state space of the Poisson proces N is S = N0, its generator
Q and the transition matrix of its embedded chain Q∗ are

Q =










−λ λ 0 0 · · ·
0 −λ λ 0

. . .

0 0 −λ λ
. . .

...
. . .

. . .
. . .

. . .










Q∗ =










0 1 0 0 · · ·
0 0 1 0

. . .

0 0 0 1
. . .

...
. . .

. . .
. . .

. . .










.

Answer to Exercise 50. The definitions are equivalent.

Answer to Exercise 51. The state space of the linear birth-death process is S = N0 and
the generator

Q =













0 0 0 0 0 · · ·
µ −(µ+ λ) λ 0 0

. . .

0 2µ −2(µ+ λ) 2λ 0
. . .

0 0 3µ −3(µ+ λ) 3λ
. . .

...
. . .

. . .
. . .

. . .
. . .













.

Its embedded chain is an asymmetric random walk with the absorbing state 0 whose transition
matrix is

Q∗ =













1 0 0 0 0 · · ·
µ

µ+λ
0 λ

µ+λ
0 0

. . .

0 µ
µ+λ

0 λ
µ+λ

0
. . .

0 0 µ
µ+λ

0 λ
µ+λ

. . .
...

. . .
. . .

. . .
. . .

. . .













.

Answer to Exercise 52. The probability that one incoming call ends within the interval
(t, t + h] for small h > 0, is 1 − e−µh. The state space of X is S = {0, 1, . . . , N} and its
generator is

Q =












−λ λ 0 0 · · · 0 0 0
µ −(µ+ λ) λ 0 · · · 0 0 0
0 2µ −(2µ+ λ) λ · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · (N − 1)µ −((N − 1)µ+ λ) λ
0 0 0 0 · · · 0 Nµ −Nµ












.
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The embedded chain of X is a random walk on S with reflecting boundaries and its transition
matrix is

Q∗ =













0 1 0 0 · · · 0 0 0
µ

µ+λ
0 λ

µ+λ
0 · · · 0 0 0

0 2µ
2µ+λ

0 λ
2µ+λ

· · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · (N−1)µ
(N−1)µ+λ

0 λ
(N−1)µ+λ

0 0 0 0 · · · 0 1 0













.

Answer to Exercise 53. The state space of X is S = {0, 1} where 0 represents ”the ma-
chine does not work” and 1 represents ”the machine works”. The generator and the transition
matrix of the embedded chain are

Q =

(
−λ λ
µ −µ

)

, Q∗ =

(
0 1
1 0

)

.

Answer to Exercise 54. The state space of X is S = {0, 1, . . . , N} and its embedded chain
is the left-shift process with absorbing state 0. The generator and transition matrix of the
embedded chain are

Q =












0 0 0 0 · · · 0 0
q −q 0 0 · · · 0 0
0 2q −2q 0 · · · 0 0
0 0 3q −3q · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Nq −Nq












, Q∗ =














1 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 0 0
0 0 0 0 · · · 0 1 0














.

Answer to Exercise 55. The state space of X is S = {0, 1, . . . , N} and its embedded chain
is the right-shift with the absorbing state N . The generator of X is

Q =










−abq abq 0 0 · · · 0 0
0 −(a− 1)(b− 1)q (a− 1)(b− 1)q 0 · · · 0 0
0 0 −(a− 2)(b− 2)q (a− 2)(b− 2)q · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0










,

and the transition matrix of the embedded chain is

Q∗ =












0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 1












.
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Answer to Exercise 56. The chain X is a birth-death process with positive recurrent
states. Its embedded chain is the symmetric random walk which has null-recurrent states.

Answer to Exercise 57. The transition semigroup (P (t), t ≥ 0) is

P (t) =
1

λ+ µ

(
µ+ λe−(λ+µ)t λ− λe−(λ+µ)t

µ− µe−(λ+µ)t λ+ µe−(λ+µ)t

)

.

The distribution of Xt is

p(t)T =
1

λ+ µ

(

µ+ (pλ− qµ)e−(λ+µ), λ− (pλ− qµ)e−(λ+µ)
)

.

Answer to Exercise 58. The transition semigroup (P (t), t ≥ 0) is

P (t) =





e−3t 1− e−3t 0
0 1 0

e−2t − e−3t 1 + e−3t − 2e−2t e−2t



 .

The distribution of Xt is

p(t)T =
1

3

(
e−2t, 3− 2e−2t, e−2t

)
.

Answer to Exercise 59. The transition semigroup (P (t), t ≥ 0) is

P (t) =





1
5 + 2

3e
−2t + 2

15e
−5t 2

5 − 2
5e

−5t 2
5 − 2

3e
−2t + 4

15e
−5t

1
5 − 1

5e
−5t 2

5 − 2
5e

−5t 2
5 − 2

5e
−5t

1
5 − 1

3e
−2t + 2

15e
−5t 2

5 − 2
5e

−5t 2
5 + 1

3e
−2t + 4

15e
−5t



 .

The distribution of Xt is

p(t)T =
1

3

(
3

5
+

1

3
e−2t +

1

15
e−5t,

6

5
− 1

5
e−5t,

6

5
− 1

3
e−2t +

2

15
e−5t

)

.

Answer to Exercise 60. Yes, the Poisson process is regular.

Answer to Exercise 61. X is an explosive chain.

Answer to Exercise 62. The stationary distribution exists (finite, irreducible chain) and
is given by πT =

(
1
2 ,

1
2

)
.

Answer to Exercise 63. The intensity matrix Q of X is given by












−Nλ Nλ 0 0 · · · 0 0 0
µ −(µ+ (N − 1)λ) (N − 1)λ 0 · · · 0 0 0
0 2µ −(2µ+ (N − 2)λ) (N − 2)λ · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · (N − 1)µ −((N − 1)µ+ λ) λ
0 0 0 0 · · · 0 Nµ −Nµ












,
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its stationary distribution exists (finite, irreducible chain) and is given by

πk =

(
N

k

)(
λ

µ

)k (

1 +
λ

µ

)
−N

, k = 0, . . . , N.

Answer to Exercise ??. The intensity matrix of X is given by

Q =







−2 2 0 0
3 −5 2 0
0 6 −8 2
0 0 9 −9






,

its stationary distribution exists (finite, irreducible chain) and is given by π0 = 81
157 which is

the probability that neither of the shop assistants is occupied by a customer. Further, the
stationary distribution of X exists and is given by π1 =

2
3π0, π2 =

2
9π0, π3 =

4
81π0.

Answer to Exercise ??. The intensity matrix of X is given by

Q =







0 0 0 0
1
3 −4

3 1 0
0 2

3 −5
3 1

0 0 1 −1






,

its stationary distribution exists and is given by πT = (1, 0, 0, 0). The mean length of time
spent in state 1 is 3

4 .

Answer to Exercise ??. The stationary distribution of X exists if and only if λ < 2µ. In

this case, we have that π0 =
(

1 + 2λ
2µ−λ

)−1
and πk = π0

λ
µ

(
λ
2µ

)k−1
for k = 1, 2, . . .. The mean

number of customers in the system in equilibrium is 4µλ
4µ2−λ2 .

Answer to Exercise ??. The stationary distribution ofX exists and if we denote by ρ := λ
µ
,

it takes the form πk = ρk

k!

(
∑N

j=0
ρj

j!

)−1
for k = 0, . . . , N .

Answer to Exercise 64. The chain X admits a non-convergent invariant measure η with
ηi =

1
p
η0 for i = 1, 2, . . .. Hence, there is no stationary distribution of X.

Answer to Exercise 65. The chain X admits the stationary distribution which is given by
π0 =

1
2 and πk = 1

(k+1)(k+2) for k = 1, 2, . . .


