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Optimization software

Current availibility (development) of software tools for SP.

J.J. Bisshop et al. Paragon Decision Technology AIMMS

A Meeraus et al. GAMS GAMS
B Kristjansson Maximal Software MPL

R. Fourier et al. Northwestern University AMPL

M. A. H. Dempster et al. Cambridge University STOCHGEN

E. Fragniere et al. University of Geneva SETSTOCH

A King et al. IBM OSL/SE
COIN-OR SMI

H. I. Gassmann et al. Dalhousie University MSLiP
G. Infanger et al. Statford University DECIS

P. Kall et al. University of Zürich SLP-IOR
G. Mitra et al. Brusel University SPInE
A. Gaivoronsky Norwegian University SQG

of Science and Technology
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Optimization software

SPInE

= Stochastic Programming Integrated Environment (for multistage SLP).

E. Mesisina, G. Mitra (1997). Modelling and analysis of multistage
stochastic programming problems: A software environment. European
Journal of Operational Research 101, pp 343-359.

MPL (Mathematical Programming Language)

Solvers - FortMP (deterministic), MSLiP (stochastic problems).

MDDB (MultiDimensional DataBases) - Express, Oracle Corp.

Procedures for generating scenarios, for building the deterministic
equivalent model to the stochastic one.
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SLP-IOR

SLP-IOR

= Stochastic Linear Programming System of the Institute for Operations
Research of the University of Zürich.
The main features

SUPPORT of the entire life cycle of a model:

model formulation,
analysis of the model instance,
model solving,
solution analysis.

CONNECTION to an algebraic modeling system (GAMS).

availability of the powerful general-purpose solvers connected to GAMS
for solving deterministic equivalents of SLP problems,
import and stochastic formulation of models written in the AML of
GAMS.

SLP-IOR (Borland Delphi 6), solvers (Compaq Visual Fortran 6.1).

FREE OF CHARGE for academic purposes.
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SLP-IOR

Types of SLP problems included in SLP-IOR

two-stage recourse problems with the subclasses fixed recourse,
complete recourse and simple recourse,

two-stage simple integer recourse problems,

two-stage multiple simple recourse problems (? integer),

jointly chance-constrained problems (only RHS stochatic &
nondegenerate multivariate normal distribution),

separate chance constraints problems (only RHS stochatic & hi (ξ)
independent → LP),

multistage recourse problems with scenarios, scenario generation.

NEW:

Integrated probability constraint (joint and separate),
CVaR constraint.
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SLP-IOR

ω is a random vector on (Ω,F ,P), random parts - affine sums:

q(ω) = q0 +
n∑

i=1

qiωi , h(ω) = h0 +
n∑

i=1

hiωi ,

T (ω) = T 0 +
n∑

i=1

T iωi , W (ω) = W 0 +
n∑

i=1

W iωi .

Available probability distributions:

Univariate discrete distributions: empirical, uniform, binomial,
hypergeometric, geometric, negative binomial, Poisson.

Univariate continuous distributions: uniform, normal, exponencial,
gamma, beta, Cauchy, Weibull, chi-quared, Fisher’s F, Student’s t,
extreme value, logistic, lognormal, Pareto, power function, triangular
distributions.

Multivariate discrete distributions: empirical and uniform
distribution.

Multivariate continuous distribution: uniform and normal
distribution.
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SLP-IOR

Setting up the model instance

Menu-driven fashion enables us to set up
1 the type of the model,
2 the dimensions,
3 the stochastic parts,
4 the probability distribution of the random vector ω,
5 the affine stochastic relations.

Matrix editor - direct edit or import (export):

Via the Windows Clipboard.
Internal data format.

SMPS format (CORE, TIME, STOCH),

AML (Algebraic Modeling Language), GAMS.

Transformation between models (stochastic vs. deterministic).

A facility for discretizing probability distributions (recourse models).
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SLP-IOR

Diskrétńı Gaussovo rozděleńı

Informačńı Bulletin České statistické společnosti 1/1992, J. Anděl,
”Diskrétńı Gaussovo rozděleńı”.

ϕ(x) =
1√
2π

e−
x2

2

∞∑
k=−∞

ϕ(k)
?
= 1

Maple9.5
= 1.000000005.
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SLP-IOR

Diskrétńı Gaussovo rozděleńı

∞∑
k=−∞

ϕ(k) = 1 + 2
∞∑

k=1

e−2k2π2
> 1.

(Jarńık, Integrálńı počet II.)

Martin Branda (MFF UK) SLP-IOR 10 / 32



SLP-IOR

Two-stage recourse problems: EVPI, VSS, RFS

Facilities for analyzing the model instance and the solution (ONLY for
two-stage recourse problems).

EV ≤ WS ≤ HN ≤ EEV , EVPI = HN −WS , VSS = EEV − HN.

For continuous distributions SLP–IOR offers sampling for estimating
EEV, WS.

The reliability of the first-stage solution (RFS) for fixed x =
probability that no recourse will be needed

RFS = P{ω : T (ω)x ≥ h(ω)}.

(inequalities in the second stage).

Checking the complete recourse property and the simple recourse
structure.

Computing the recourse objective function for a given first stage
decision x .
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SLP-IOR

Test problem batteries

Import in SMPS format.

Randomly generated problem batteries:

deterministic LP problems,
recourse problems with guaranteed existence of an optiomal solution,
jointly chance-constrained problems with a known solution.

Operations that can be performed on each element of the battery

discretizing the probability distribution,
endowing the test problems with a normal distribution,
injecting a fixed distribution,
selection of a set of solvers (summary as LaTeX tableaus).
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The solver library of SLP-IOR

General purpose LP solvers

HiPlex - simplex method (1994).

HOPDM - primal-dual interior-point method (1996).

Minos - simplex method (1995).

OB1 - several interior point methods (1989).

XMP - simplex method (1986).
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The solver library of SLP-IOR

Special purpose LP solvers

BPMPD - augmented interior-point method (1996).

MSLiP - nested Benders decomposition method (1992).

Gassmann (1990), MSLiP: A computer code for the multistage
stochastic linear programming problem, Mathematical Programming
47, 707-423.

QDECOM - regularized decomposition algorithm (1985).

SHOR2 - decomposition scheme based on r-algorithm (1998).

Martin Branda (MFF UK) SLP-IOR 14 / 32



The solver library of SLP-IOR

Solvers for recourse problems

DAPPROX

SDECOM - stochastic decomposition method

Popela: SDECOMP - random sampling withim the L-shaped algorithm.

Simple recourse:

SHOR1

SRAPPROX - recommended, only RHS stochastic.

Popela: LSRAPPROX - discrete approximations, L-shaped algorithm,
lower and upper bounds.
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The solver library of SLP-IOR

Solvers for jointly chance-constrained problems

Only RHS stochatic & nondegenerate multivariate normal distribution!

PCSPIOR

PROBALL - recommended

Uses Minos 5.4 for solving LP subproblems

PROCON

For computing the normal distribution function and its gradient:

PCSPNOR3 of Szantai,
NORSUBS of Deak.
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The solver library of SLP-IOR

Solver for simple integer recourse

SIRD2SCR - convex hull method implemented by Mayer and van der
Vlerk (1994).

K. Haneveland, L. Stougie, M.H. van der Vlerk (1996). An algorithm
for the construction of convex hulls in simple integer recourse
programming. Annals of Operations Research, 64, pp. 67-81.
Uses SRAPPROX for solving simple recourse subproblems.
Finite discrete distribution.
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The solver library of SLP-IOR

Solver for multiple simple recourse

MScr2Scr - transformation method (to simple continuous recourse)
of van der Vlerk, implemented by Mayer and van der Vlerk (2001).

M.H. van der Vlerk (2005). On multiple simple recourse models.
Mathematical Methods of Operations Research, 62, pp. 225-242.
Uses SRAPPROX for solving simple recourse subproblems.
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The solver library of SLP-IOR
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MSLiP

Nested Benders decomposition, MSLiP

Gassmann (1990), MSLiP: A computer code for the multistage
stochastic linear programming problem. Mathematical Programming
47, 707-423.

J. Dupacova, J. Hurt, J. Stepan (2002), Stochastic modeling in
economics and finance, Kluwer Academic Publishers (P. Popela)

L-shaped alg. for two stage models, some modifications for recourse
problems.
MSLiP (MSLSHAP).

P. Kall, J. Mayer (2005), Stochastic linear programming, International
Series in Operations Research & Management Science , Vol. 80,
Springer. (Pages 29-53)
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MSLiP

MSLiP

=Multistage Stochastic Linear Programming - ”nested Benders
decomposition with added algorithmic features”.

Support of an arbitrary number of time periods and finite discrete
distributions with Markovian structure.

Scenario TREE = a set of nodes K = {1, . . . ,KT} with stages
Kt = {Kt−1 + 1, . . . ,Kt} and probabilities p1, . . . , pT > 0,

∑
n∈Kt

pn = 1,
an the ancestor of the node n,
D(n) the set of descentants of the node n,
t(n) the time stage of the node n.
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MSLiP

Nested formulation of the discrete MSLP

For starting node (n = 1)

F1 = min
x1,ϑ1

{
cT
1 x1 + ϑ1 s.t. Ax1 = b, l1 ≤ x1 ≤ u1, ϑ1 ≥ Q1(x1)

}
,

Q1(x1) =
∑

m∈D(1)

pm

pn
Fm(x1).

For nested stages n = 2, . . . ,KT−1

Fn(xan) = min
xn,ϑn

{
cT
n xn + ϑn s.t. Wnxn = hn − Tnxan ,

ln ≤ xn ≤ un, ϑn ≥ Qn(xn)
}
,

Qn(xn) =
∑

m∈D(n)

pm

pn
Fm(xn).

For final stage n = KT−1 + 1, . . . ,KT

Fn(xan) = min
xn

{
cT
n xn s.t. Wxn = hn − Tnxan , lm ≤ xn ≤ un

}
.
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MSLiP

(M)(n) Master program = n-th nested two-stage problem:

Fn(xan) = minxn,ϑn cT
n xn + ϑn

s.t.
Wnxn = hn − Tnxan ,

Ixn ≤ un,
Ixn ≥ ln,
ϑn ≥ Qn(xn), convex constraint,

Qn(xn) =
∑

m∈D(n)
pm

pn
Fm(xn).

F1 = F1(xa1), where we set xa1 = 0, W1 = A and h1 = b.
We set ϑn = 0 for n = KT−1 + 1, . . . ,KT .
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MSLiP

(RM)(n) Relaxed Master program, n = 1, . . . ,KT :

F̃n(xan) = minxn,ϑn cT
n xn + ϑn

s.t.
Wnxn = hn − Tnxan ,
Fnxn ≥ fn, feasibility cuts

Dnxn + 1ϑn ≥ dn, optimality cuts
Ixn ≤ un,
Ixn ≥ ln.

F̃1 = F̃1(xa1), where we set xa1 = 0, W1 = A and h1 = b.
(RM)(n), n = KT−1 + 1, . . . ,KT , compensatory bounds ϑn and cuts are
not involved.
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MSLiP

(RD)(n) Dual problem to the relaxed master problem (RM)(n),
n = 2, . . . ,KT :

max
πn,αn,βn,λn,µn

πT
n (hn − Tnxan) + αT

n fn + βT
n dn + λT

n ln − µT
n un

s.t.
πT

n Wn + αT
n Fn + βT

n Dn + λn − µn = cn,
1Tβn = 1,

αn, βn, λn, µn ≥ 0,
πn unrestricted.

We set αn, βn = 0 for n = KT−1 + 1, . . . ,KT
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MSLiP

Algorithm MSLiP

(0)

Set ϑ
(0)
n = 0 for all n = 1, . . . ,KT−1,

Solve

x
(0)
1 = arg min

x1

{
cT
1 x1 s.t. Ax1 = b, l1 ≤ x1 ≤ u1,

}
.
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MSLiP

Algorithm MSLiP

(1)

Solve the dual problem (RD)(m) to the (RM)(m), ∀m ∈ D(n).
We get

dual optimal solution (π∗
m, α∗

m, β∗
m, λ∗m, µ∗

m),∀m ∈ D(n),

or feasible direction (πj
m(j), α

j
m(j), β

j
m(j), λ

j
m(j), µ

j
m(j)) in which the dual

problem to the subproblem m(j) ∈ D(n) is unbounded, i.e.

πj
m(j)

(
bm(j) −Wmxn

)
+ αj

m(j)fm + λj
m(j)lm − µj

m(j)um > 0.

→ feasibility cut of the feasible set of (MR)(n):

πj
m(j)Wm︸ ︷︷ ︸
(Fn)j·

xn ≥ πj
m(j)bm(j) + αj

m(j)fm + λj
m(j)lm − µj

m(j)um︸ ︷︷ ︸
(fn)j

.
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MSLiP

Algorithm MSLiP

(2)

If ϑn < Qn(xn) → optimality cut of the feasible set of (MR)(n)

(Dn)i·︷ ︸︸ ︷∑
m∈D(n)

pmπi
mTm xn + ϑn ≥

≥
∑

m∈D(n)

pm

[
πi

mhm + αi
mfm + βi

mdm + λi
mlt(m) − µi

mut(m)

]
︸ ︷︷ ︸

(dn)i

.

Else if ϑn ≥ Qn(xn) then we have optimal solution xn of (MR)(n).
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MSLiP

Fast-forward-fast-back (FFFB)

FORWARD pass (t = 1, . . . ,T , n = Kt − 1, . . . ,Kt) terminates by:

infeasibility of the relaxed master program (RM)(n) → add feasibility
cut to (RM)(an) & BACKTRACKING,
obtaining optimal solutions x̂n for all n = 1, . . . ,KT → BACKWARD
pass.

BACKTRACKING (n → an) terminates by:

feasibility of the relaxed master program (RM)(an) → FORWARD pass,
reaching the root node with an infeasible (RM)(1) → MSLP is
infeasible.

BACKWARD pass always goes through all nodes (adding optimality
cuts if necessary).

No optimality cuts have been added → optimal solution,
else → FORWARD pass.
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MSLiP

MSLiP

The algorithm (FFFB) terminates in a finite number of iterations.

If termination occurs after BACKWARD pass then the current
solution is optimal.

Validity of
feasibility cuts ∼ feasible solutions of (M)(n) are not cut off.
optimality cuts ∼ objective function of (RM)(n) yields a lower bound
to the objective function (M)(n).

Cuts generated by the algorithm are valid.

”F̃
(BACKWARD)
1 ≤ F1 ≤ F̃

(FORWARD)
1 ”
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MSLiP

QDECOM

= Quadratic DECOMposizion, regularizing quadratic term in the objective
(two-stage).
(RMQ) Relaxed Master program

F̃ = minx ,ϑm cT xn +
∑

m∈D pmϑm + 1
2

∥∥x − x (i−1)
∥∥2

s.t.
Ax = b,
Fx ≥ f ,

Dmx + 1ϑm ≥ dm,∀m ∈ D,
Ix ≤ u,
Ix ≥ l .
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MSLiP

Thank you for your attention.
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