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Optimization software

Current availibility (development) of software tools for SP.

of Science and Technology

J.J. Bisshop et al. Paragon Decision Technology | AIMMS

A Meeraus et al. GAMS GAMS

B Kristjansson Maximal Software MPL

R. Fourier et al. Northwestern University AMPL

M. A. H. Dempster et al. | Cambridge University STOCHGEN

E. Fragniere et al. University of Geneva SETSTOCH

A King et al. IBM OSL/SE
COIN-OR SMI

H. I. Gassmann et al. Dalhousie University MSLiP

G. Infanger et al. Statford University DECIS

P. Kall et al. University of Ziirich SLP-IOR

G. Mitra et al. Brusel University SPInE

A. Gaivoronsky Norwegian University SQG

Martin Branda (MFF UK)

SLP-IOR

3/32




Optimization software

SPInE

= Stochastic Programming Integrated Environment (for multistage SLP).

e E. Mesisina, G. Mitra (1997). Modelling and analysis of multistage
stochastic programming problems: A software environment. European
Journal of Operational Research 101, pp 343-359.

MPL (Mathematical Programming Language)
Solvers - FortMP (deterministic), MSLiP (stochastic problems).
MDDB (MultiDimensional DataBases) - Express, Oracle Corp.

Procedures for generating scenarios, for building the deterministic
equivalent model to the stochastic one.
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SLP-IOR

SLP-IOR

= Stochastic Linear Programming System of the Institute for Operations
Research of the University of Ziirich.
The main features

@ SUPPORT of the entire life cycle of a model:

model formulation,

analysis of the model instance,
model solving,

solution analysis.

e CONNECTION to an algebraic modeling system (GAMS).

e availability of the powerful general-purpose solvers connected to GAMS
for solving deterministic equivalents of SLP problems,

e import and stochastic formulation of models written in the AML of
GAMS.

@ SLP-IOR (Borland Delphi 6), solvers (Compaq Visual Fortran 6.1).
o FREE OF CHARGE for academic purposes.
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SLP-IOR

Types of SLP problems included in SLP-IOR

@ two-stage recourse problems with the subclasses fixed recourse,
complete recourse and simple recourse,

@ two-stage simple integer recourse problems,

@ two-stage multiple simple recourse problems (? integer),

@ jointly chance-constrained problems (only RHS stochatic &
nondegenerate multivariate normal distribution),

@ separate chance constraints problems (only RHS stochatic & h;(§)
independent — LP),

@ multistage recourse problems with scenarios, scenario generation.

o NEW:

o Integrated probability constraint (joint and separate),
e CVaR constraint.
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SLP-IOR

w is a random vector on (£, F, P), random parts - affine sums:

n n
gw) = ¢+ Z q'wi, h(w) =K+ Z hwi,
i=1 i—1

n n
Tw) = TO+) Ty, Ww)=W+> W
i=1 i=1
Available probability distributions:

@ Univariate discrete distributions: empirical, uniform, binomial,
hypergeometric, geometric, negative binomial, Poisson.

@ Univariate continuous distributions: uniform, normal, exponencial,
gamma, beta, Cauchy, Weibull, chi-quared, Fisher's F, Student’s t,
extreme value, logistic, lognormal, Pareto, power function, triangular
distributions.

@ Multivariate discrete distributions: empirical and uniform
distribution.

o Multivariate continuous distribution: uniform and normal

distribution.
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SLP-IOR

Setting up the model instance

Menu-driven fashion enables us to set up

© the type of the model,
@ the dimensions,
© the stochastic parts,
@ the probability distribution of the random vector w,
@ the affine stochastic relations.
e Matrix editor - direct edit or import (export):
e Via the Windows Clipboard.
e Internal data format.

SMPS format (CORE, TIME, STOCH),
AML (Algebraic Modeling Language), GAMS.

Transformation between models (stochastic vs. deterministic).

A facility for discretizing probability distributions (recourse models).
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Informagni Bulletin Ceské statistické spoletnosti 1/1992, J. Andgl,
" Diskrétni Gaussovo rozdéleni”
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SLP-IOR

Two-stage recourse problems: EVPI, VSS, RFS

Facilities for analyzing the model instance and the solution (ONLY for
two-stage recourse problems).
e EV < WS < HN < EEV, EVPI = HN — WS, VSS = EEV — HN.

e For continuous distributions SLP-IOR offers sampling for estimating
EEV, WS.

e The reliability of the first-stage solution (RFS) for fixed x =
probability that no recourse will be needed

RFS =P{w: T(w)x > h(w)}.

(inequalities in the second stage).

@ Checking the complete recourse property and the simple recourse
structure.

@ Computing the recourse objective function for a given first stage
decision x.
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SLP-IOR

Test problem batteries

@ Import in SMPS format.
@ Randomly generated problem batteries:

o deterministic LP problems,
e recourse problems with guaranteed existence of an optiomal solution,
e jointly chance-constrained problems with a known solution.

@ Operations that can be performed on each element of the battery

e discretizing the probability distribution,

e endowing the test problems with a normal distribution,

e injecting a fixed distribution,

e selection of a set of solvers (summary as LaTeX tableaus).
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The solver library of SLP-IOR

General purpose LP solvers

HiPlex - simplex method (1994).

HOPDM - primal-dual interior-point method (1996).
Minos - simplex method (1995).

OB1 - several interior point methods (1989).

XMP - simplex method (1986).
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The solver library of SLP-IOR

Special purpose LP solvers

BPMPD - augmented interior-point method (1996).
MSLIiP - nested Benders decomposition method (1992).

e Gassmann (1990), MSLiP: A computer code for the multistage
stochastic linear programming problem, Mathematical Programming
47, 707-423.

QDECOM - regularized decomposition algorithm (1985).
SHOR?2 - decomposition scheme based on r-algorithm (1998).
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The solver library of SLP-IOR

Solvers for recourse problems

DAPPROX
SDECOM - stochastic decomposition method
e Popela: SDECOMP - random sampling withim the L-shaped algorithm.

Simple recourse:
SHOR1

@ SRAPPROX - recommended, only RHS stochastic.

e Popela: LSRAPPROX - discrete approximations, L-shaped algorithm,
lower and upper bounds.
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The solver library of SLP-IOR

Solvers for jointly chance-constrained problems

Only RHS stochatic & nondegenerate multivariate normal distribution!

e PCSPIOR
o PROBALL - recommended
e Uses Minos 5.4 for solving LP subproblems

PROCON

For computing the normal distribution function and its gradient:

o PCSPNORS3 of Szantai,
o NORSUBS of Deak.
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The solver library of SLP-IOR

Solver for simple integer recourse

@ SIRD2SCR - convex hull method implemented by Mayer and van der
Vlerk (1994).

o K. Haneveland, L. Stougie, M.H. van der Vlerk (1996). An algorithm
for the construction of convex hulls in simple integer recourse
programming. Annals of Operations Research, 64, pp. 67-81.

e Uses SRAPPROX for solving simple recourse subproblems.

e Finite discrete distribution.
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The solver library of SLP-IOR

Solver for multiple simple recourse

@ MScr2Scr - transformation method (to simple continuous recourse)
of van der Vlerk, implemented by Mayer and van der Vlerk (2001).

e M.H. van der Vlerk (2005). On multiple simple recourse models.
Mathematical Methods of Operations Research, 62, pp. 225-242.
e Uses SRAPPROX for solving simple recourse subproblems.
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MSLiP

Nested Benders decomposition, MSLiP

e Gassmann (1990), MSLiP: A computer code for the multistage
stochastic linear programming problem. Mathematical Programming
47, 707-423.

e J. Dupacova, J. Hurt, J. Stepan (2002), Stochastic modeling in
economics and finance, Kluwer Academic Publishers (P. Popela)

e L-shaped alg. for two stage models, some modifications for recourse
problems.
o MSLiP (MSLSHAP).

e P. Kall, J. Mayer (2005), Stochastic linear programming, International
Series in Operations Research & Management Science , Vol. 80,
Springer. (Pages 29-53)
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MSLiP

MSLiP

=Multistage Stochastic Linear Programming - " nested Benders
decomposition with added algorithmic features”.

@ Support of an arbitrary number of time periods and finite discrete
distributions with Markovian structure.
Scenario TREE = a set of nodes K = {1,..., K1} with stages
Kt ={Ki-1+1,..., K¢} and probabilities py,...,pr >0, > i, Pn = 1,
ap the ancestor of the node n,
D(n) the set of descentants of the node n,
t(n) the time stage of the node n.
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MSLiP

Nested formulation of the discrete MSLP

For starting node (n = 1)

R = miﬁn {C1TX1 4+ st. Axi=b, [ <xy<u, P> Ql(Xl)},
X1,V1
Qla) = Y. B o).
meD(1) "
For nested stages n=2,..., K71
Fo(xa,) = miﬁn {chx,, + 9, s.t. Woxp = hy — Tpxa,,
XnyUn

In < xp < up, 79n > Qn(Xn)}7

Qulx) = > PmEa(x).
méeD(n) Pn

For final stage n=Kr_1+1,...,Kr

Fn(xa,) = min {chx,, s.t. Wxp = hp — Tpxa,s Im < xp < u,,}.
Xn
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MSLiP

(M)(n) Master program = n-th nested two-stage problem:

Fo(xa,) = ming 9, ¢ xo +Un
s.t.

Waxn

Ix,

Ix,

Un

Qn(Xn)

IV IVIA

hn — TnXana
Un,
/

ns
Qn(xn), convex constraint,

ZmG’D(n) %: Fm(X”)'

F1 = Fi(xa,), where we set x,, =0, Wi = A and h; = b.
Weset ¥, =0forn=Ky_1+1,...,KT.
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MSLiP

(RM)(n) Relaxed Master program, n=1,..., Kt:

Fo(xa,) = Mminy, 9, ¢! Xn + U
S.t.

W, xn

Fnxn

Dpxn, + 19,

Ix,

Ix,

VAN IV IV

hn — ThXa,,

fa, feasibility cuts
dy, optimality cuts
Up,

In.

lt_l = Fl(xal), where we set x;, =0, Wiy = A and h; = b.
(RM)(n), n= Kr_1+1,..., Ky, compensatory bounds ¥, and cuts are

not involved.

Martin Branda (MFF UK)

SLP-IOR 24 / 32



MSLiP

(RD)(n) Dual problem to the relaxed master problem (RM)(n),
n = 2, ey KTZ

max 7rnT(h,,— T,,xan)+a,,Tf,,+ﬂan,,+)\nT/,,—u,,Tu,,
71'nyC‘fnaﬁny/\ml—’ln

s.t.
W,TWn‘i‘a,z—Fn‘i‘ﬂ,TDn‘i‘)\n_T,U/n = Cp,
1 Bn = 1a
an;/BmAna,UJn > 0,
Th unrestricted.

We set ap, Bp =0for n=Kyr_1+1,....Kr
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(0)

@ Set 195,0) =0foralln=1,..., Kr_q,
@ Solve
{0

) — arg min {clTxl st.Axy=b, h <x3 < ul,}
X1
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MSLiP

Algorithm MSLiP

(1)
@ Solve the dual problem (RD)(m) to the (RM)(m), Vm € D(n).
We get
o dual optimal solution (77, ar,, By, m,/f,‘,,) Vm € D(n),
e or feasible direction (ﬂJ o/ ,ﬂ Y m(/) 1 ()) in which the dual
problem to the subproblem m( ) € D( ) is unbounded, i.e.

Ty (Bm(y = Winxn) + 00 s fin + X vl = 13,5y tim > 0.
— feasibility cut of the feasible set of (MR)(n):

. L .
i) Wem X 2 Ty B + Xy Fn + Ny I

———
(Fn)j- (fa);

J
G)'m = Hm(ytm
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MSLiP

Algorithm MSLiP

2
( )o If 9, < Qn(xn) — optimality cut of the feasible set of (MR)(n)
(Dn)i.
> P T Xa+ U >
meD(n)
> Z Pm [anhm + af,,fm + ﬂ,",,dm + /\fn/t(m) — ,ufnut(m)} .

meD(n)

(dn)i

e Else if ¥, > Qn(x,) then we have optimal solution x, of (MR)(n).
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MSLiP

Fast-forward-fast-back (FFFB)

e FORWARD pass (t=1,..., T, n= K¢ —1,..., K;) terminates by:
e infeasibility of the relaxed master program (RM)(n) — add feasibility
cut to (RM)(an) & BACKTRACKING,
e obtaining optimal solutions %X, for all n=1,..., Kt — BACKWARD
pass.
e BACKTRACKING (n — aj) terminates by:

o feasibility of the relaxed master program (RM)(a,) — FORWARD pass,
o reaching the root node with an infeasible (RM)(1) — MSLP is
infeasible.

@ BACKWARD pass always goes through all nodes (adding optimality
cuts if necessary).

e No optimality cuts have been added — optimal solution,
e else — FORWARD pass.
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MSLiP

MSLiP

The algorithm (FFFB) terminates in a finite number of iterations.
@ If termination occurs after BACKWARD pass then the current
solution is optimal.
Validity of

o feasibility cuts ~ feasible solutions of (M)(n) are not cut off.

e optimality cuts ~ objective function of (RM)(n) yields a lower bound
to the objective function (M)(n).

Cuts generated by the algorithm are valid.

n F(BACKWARD) (FORWARD),,
1 1

<F <F
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= Quadratic DECOMposizion, regularizing quadratic term in the objective
(two-stage).
(RMQ) Relaxed Master program

F = mincgmcx, + > mep PmVU"
s.t.

Ax

Fx

D™Mx + 19™

Ix

Ix

+

IV IA IV IV

Al

b,

f,

d™ Ym € D,

u?

I.
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Thank you for your attention.
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