
Twofish: A 128-Bit Block Cipher

Bruce Schneier∗ John Kelsey† Doug Whiting‡ David Wagner§ Chris Hall¶

Niels Ferguson ‖

15 June 1998

Abstract

Twofish is a 128-bit block cipher that accepts a variable-length key up to 256 bits. The cipher is a
16-round Feistel network with a bijective F function made up of four key-dependent 8-by-8-bit S-boxes,
a fixed 4-by-4 maximum distance separable matrix over GF(28), a pseudo-Hadamard transform, bitwise
rotations, and a carefully designed key schedule. A fully optimized implementation of Twofish encrypts
on a Pentium Pro at 17.8 clock cycles per byte, and an 8-bit smart card implementation encrypts at
1660 clock cycles per byte. Twofish can be implemented in hardware in 14000 gates. The design of both
the round function and the key schedule permits a wide variety of tradeoffs between speed, software size,
key setup time, gate count, and memory. We have extensively cryptanalyzed Twofish; our best attack
breaks 5 rounds with 222.5 chosen plaintexts and 251 effort.

Keywords: Twofish, cryptography, cryptanalysis, block cipher, AES.
Current web site: http://www.counterpane.com/twofish.html

∗Counterpane Systems, 101 E Minnehaha Parkway, Minneapolis, MN 55419, USA; schneier@counterpane.com.
†Counterpane Systems; kelsey@counterpane.com.
‡Hi/fn, Inc., 5973 Avenida Encinas, Suite 110, Carlsbad, CA 92008, USA; dwhiting@hifn.com.
§University of California Berkeley, Soda Hall, Berkeley, CA 94720, USA; daw@cs.berkeley.edu.
¶Counterpane Systems; hall@counterpane.com.
‖Counterpane Systems; niels@counterpane.com.

1

Contents

1 Introduction 3

2 Twofish Design Goals 3

3 Twofish Building Blocks 4
3.1 Feistel Networks 4
3.2 S-boxes 5
3.3 MDS Matrices 5
3.4 Pseudo-Hadamard Transforms 5
3.5 Whitening 5
3.6 Key Schedule 5

4 Twofish 5
4.1 The Function F 7
4.2 The Function g 7
4.3 The Key Schedule 8
4.4 Round Function Overview 12

5 Performance of Twofish 12
5.1 Performance on Large Microprocessors 12
5.2 Performance on Smart Cards 15
5.3 Performance on Future Microprocessors 16
5.4 Hardware Performance 17

6 Twofish Design Philosophy 18
6.1 Performance-Driven Design 18
6.2 Conservative Design 19
6.3 Simple Design 20
6.4 S-boxes 21
6.5 The Key Schedule 22

7 The Design of Twofish 23
7.1 The Round Structure 23
7.2 The Key-dependent S-boxes 24
7.3 MDS Matrix 27
7.4 PHT 29
7.5 Key Addition 29
7.6 Feistel Combining Operation 29
7.7 Use of Different Groups 29
7.8 Diffusion in the Round Function . . . 29
7.9 One-bit Rotation 30
7.10 The Number of Rounds 31
7.11 The Key Schedule 31
7.12 Reed-Solomon Code 36

8 Cryptanalysis of Twofish 36
8.1 Differential Cryptanalysis 36
8.2 Extensions to Differential Cryptanal-

ysis . 41
8.3 Search for the Best Differential Char-

acteristic 41
8.4 Linear Cryptanalysis 44
8.5 Interpolation Attack 45

8.6 Partial Key Guessing Attacks 46
8.7 Related-key Cryptanalysis 46
8.8 A Related-Key Attack on a Twofish

Variant 48
8.9 Side-Channel Cryptanalysis and

Fault Analysis 50
8.10 Attacking Simplified Twofish 50

9 Trap Doors in Twofish 52

10 When is a Cipher Insecure? 53

11 Using Twofish 53
11.1 Chaining Modes 53
11.2 One-Way Hash Functions 53
11.3 Message Authentication Codes 53
11.4 Pseudo-Random Number Generators . 53
11.5 Larger Keys 54
11.6 Additional Block Sizes 54
11.7 More or Fewer Rounds 54
11.8 Family Key Variant: Twofish-FK . . . 54

12 Historical Remarks 56

13 Conclusions and Further Work 57

14 Acknowledgments 58

A Twofish Test Vectors 65
A.1 Intermediate Values 65
A.2 Full Encryptions 67

2

1 Introduction

In 1972 and 1974, the National Bureau of Standards
(now the National Institute of Standards and Tech-
nology, or NIST) issued the first public request for an
encryption standard. The result was DES [NBS77],
arguably the most widely used and successful en-
cryption algorithm in the world.
Despite its popularity, DES has been plagued with
controversy. Some cryptographers objected to the
“closed-door” design process of the algorithm. The
debate about whether DES’ key is too short for ac-
ceptable commercial security has raged for many
years [DH79], but recent advances in distributed key
search techniques have left no doubt in anyone’s
mind that its key is simply too short for today’s
security applications [Wie94, BDR+96]. Triple-
DES has emerged as an interim solution in many
high-security applications, such as banking, but it
is too slow for some uses. More fundamentally,
the 64-bit block length shared by DES and most
other well-known ciphers opens it up to attacks
when large amounts of data are encrypted under the
same key.
In response to a growing desire to replace DES,
NIST announced the Advanced Encryption Stan-
dard (AES) program in 1997 [NIST97a]. NIST so-
licited comments from the public on the proposed
standard, and eventually issued a call for algorithms
to satisfy the standard [NIST97b]. The intention is
for NIST to make all submissions public and even-
tually, through a process of public review and com-
ment, choose a new encryption standard to replace
DES.
NIST’s call requested a block cipher. Block ciphers
can be used to design stream ciphers with a variety of
synchronization and error extension properties, one-
way hash functions, message authentication codes,
and pseudo-random number generators. Because of
this flexibility, they are the workhorse of modern
cryptography.
NIST specified several other design criteria: a longer
key length, larger block size, faster speed, and
greater flexibility. While no single algorithm can
be optimized for all needs, NIST intends AES to be-
come the standard symmetric algorithm of the next
decade.
Twofish is our submission to the AES selection pro-
cess. It meets all the required NIST criteria—128-
bit block; 128-, 192-, and 256-bit key; efficient on
various platforms; etc.—and some strenuous design
requirements, performance as well as cryptographic,
of our own.

Twofish can:

• Encrypt data at 285 clock cycles per block on
a Pentium Pro, after a 12700 clock-cycle key
setup.

• Encrypt data at 860 clock cycles per block on
a Pentium Pro, after a 1250 clock-cycle key
setup.

• Encrypt data at 26500 clock cycles per block
on a 6805 smart card, after a 1750 clock-cycle
key setup.

This paper is organized as follows: Section 2 dis-
cusses our design goals for Twofish. Section 3 de-
scribes the building blocks and general design of the
cipher. Section 4 defines the cipher. Section 5 dis-
cusses the performance of Twofish. Section 6 talks
about the design philosophy that we used. In Sec-
tion 7 we describe the design process, and why the
various choices were made. Section 8 contains our
best cryptanalysis of Twofish. In Section 9 we dis-
cuss the possibility of trapdoors in the cipher. Sec-
tion 10 compares Twofish with some other ciphers.
Section 11 discusses various modes of using Twofish,
including a family-key variant. Section 12 contains
historical remarks, and Section 13 our conclusions
and directions for future analysis.

2 Twofish Design Goals

Twofish was designed to meet NIST’s design criteria
for AES [NIST97b]. Specifically, they are:

• A 128-bit symmetric block cipher.

• Key lengths of 128 bits, 192 bits, and 256 bits.

• No weak keys.

• Efficiency, both on the Intel Pentium Pro and
other software and hardware platforms.

• Flexible design: e.g., accept additional key
lengths; be implementable on a wide variety
of platforms and applications; and be suitable
for a stream cipher, hash function, and MAC.

• Simple design, both to facilitate ease of analy-
sis and ease of implementation.

Additionally, we imposed the following performance
criteria on our design:

• Accept any key length up to 256 bits.

3

• Encrypt data in less than 500 clock cycles per
block on an Intel Pentium, Pentium Pro, and
Pentium II, for a fully optimized version of the
algorithm.

• Be capable of setting up a 128-bit key (for op-
timal encryption speed) in less than the time
required to encrypt 32 blocks on a Pentium,
Pentium Pro, and Pentium II.

• Encrypt data in less than 5000 clock cycles per
block on a Pentium, Pentium Pro, and Pen-
tium II with no key setup time.

• Not contain any operations that make it inef-
ficient on other 32-bit microprocessors.

• Not contain any operations that make it inef-
ficient on 8-bit and 16-bit microprocessors.

• Not contain any operations that reduce its ef-
ficiency on proposed 64-bit microprocessors;
e.g., Merced.

• Not include any elements that make it ineffi-
cient in hardware.

• Have a variety of performance tradeoffs with
respect to the key schedule.

• Encrypt data in less than less than 10 millisec-
onds on a commodity 8-bit microprocessor.

• Be implementable on a 8-bit microprocessor
with only 64 bytes of RAM.

• Be implementable in hardware using less than
20,000 gates.

Our cryptographic goals were as follows:

• 16-round Twofish (without whitening) should
have no chosen-plaintext attack requiring
fewer than 280 chosen plaintexts and less than
2N time, where N is the key length.

• 12-round Twofish (without whitening) should
have no related-key attack requiring fewer
than 264 chosen plaintexts, and less than 2N/2

time, where N is the key length.

Finally, we imposed the following flexibility goals:

• Have variants with a variable number of
rounds.

• Have a key schedule that can be precomputed
for maximum speed, or computed on-the-fly
for maximum agility and minimum memory
requirements. Additionally, it should be suit-
able for dedicated hardware applications: e.g.,
no large tables.

• Be suitable as a stream cipher, one-way hash
function, MAC, and pseudo-random number
generator, using well-understood construction
methods.

• Have a family-key variant to allow for differ-
ent, non-interoperable, versions of the cipher.

We feel we have met all of these goals in the design
of Twofish.

3 Twofish Building Blocks

3.1 Feistel Networks

A Feistel network is a general method of transform-
ing any function (usually called the F function) into
a permutation. It was invented by Horst Feistel
[FNS75] in his design of Lucifer [Fei73], and popular-
ized by DES [NBS77]. It is the basis of most block ci-
phers published since then, including FEAL [SM88],
GOST [GOST89], Khufu and Khafre [Mer91], LOKI
[BPS90, BKPS93], CAST-128 [Ada97a], Blowfish
[Sch94], and RC5 [Riv95].
The fundamental building block of a Feistel network
is the F function: a key-dependent mapping of an
input string onto an output string. An F function
is always non-linear and possibly non-surjective1:

F : {0, 1}n/2 × {0, 1}N 7→ {0, 1}n/2

where n is the block size of the Feistel Network, and
F is a function taking n/2 bits of the block and N
bits of a key as input, and producing an output of
length n/2 bits. In each round, the “source block”
is the input to F , and the output of F is xored with
the “target block,” after which these two blocks swap
places for the next round. The idea here is to take
an F function, which may be a weak encryption al-
gorithm when taken by itself, and repeatedly iterate
it to create a strong encryption algorithm.
Two rounds of a Feistel network is called a “cycle”
[SK96]. In one cycle, every bit of the text block has
been modified once.2

1A non-surjective F function is one in which not all outputs in the output space can occur.
2The notion of a cycle allows Feistel networks to be compared with unbalanced Feistel networks [SK96, ZMI90] such as

MacGuffin [BS95] (cryptanalyzed in [RP95a]) and Bear/Lion [AB96b], and with SP-networks (also called uniform transforma-
tion structures [Fei73]) such as IDEA, SAFER, and Shark [RDP+96] (see also [YTH96]). Thus, 8-cycle (8-round) IDEA is
comparable to 8-cycle (16-round) DES and 8-cycle (32-round) Skipjack.

4

Twofish is a 16-round Feistel network with a bijec-
tive F function.

3.2 S-boxes

An S-box is a table-driven non-linear substitution
operation used in most block ciphers. S-boxes vary
in both input size and output size, and can be cre-
ated either randomly or algorithmically. S-boxes
were first used in Lucifer, then DES, and afterwards
in most encryption algorithms.
Twofish uses four different, bijective, key-dependent,
8-by-8-bit S-boxes. These S-boxes are built using
two fixed 8-by-8-bit permutations and key material.

3.3 MDS Matrices

A maximum distance separable (MDS) code over a
field is a linear mapping from a field elements to b
field elements, producing a composite vector of a+ b
elements, with the property that the minimum num-
ber of non-zero elements in any non-zero vector is at
least b+ 1 [MS77]. Put another way, the “distance”
(i.e., the number of elements that differ) between
any two distinct vectors produced by the MDS map-
ping is at least b + 1. It can easily be shown that
no mapping can have a larger minimum distance be-
tween two distinct vectors, hence the term maximum
distance separable. MDS mappings can be repre-
sented by an MDS matrix consisting of a × b ele-
ments. Reed-Solomon (RS) error-correcting codes
are known to be MDS. A necessary and sufficient
condition for an a× b matrix to be MDS is that all
possible square submatrices, obtained by discarding
rows or columns, are non-singular.
Serge Vaudenay first proposed MDS matrices as a
cipher design element [Vau95]. Shark [RDP+96]
and Square [DKR97] use MDS matrices (see also
[YMT97]), although we first saw the construction
used in the unpublished cipher Manta3 [Fer96].
Twofish uses a single 4-by-4 MDS matrix over
GF(28).

3.4 Pseudo-Hadamard Transforms

A pseudo-Hadamard transform (PHT) is a sim-
ple mixing operation that runs quickly in software.
Given two inputs, a and b, the 32-bit PHT is defined
as:

a′ = a+ b mod 232

b′ = a+ 2b mod 232

SAFER [Mas94] uses 8-bit PHTs extensively for dif-
fusion. Twofish uses a 32-bit PHT to mix the out-
puts from its two parallel 32-bit g functions. This
PHT can be executed in two opcodes on most mod-
ern microprocessors, including the Pentium family.

3.5 Whitening

Whitening, the technique of xoring key material be-
fore the first round and after the last round, was used
by Merkle in Khufu/Khafre, and independently in-
vented by Rivest for DES-X [KR96]. In [KR96], it
was shown that whitening substantially increases the
difficulty of keysearch attacks against the remain-
der of the cipher. In our attacks on reduced-round
Twofish variants, we discovered that whitening sub-
stantially increased the difficulty of attacking the ci-
pher, by hiding from an attacker the specific inputs
to the first and last rounds’ F functions.

Twofish xors 128 bits of subkey before the first Feis-
tel round, and another 128 bits after the last Feistel
round. These subkeys are calculated in the same
manner as the round subkeys, but are not used any-
where else in the cipher.

3.6 Key Schedule

The key schedule is the means by which the key bits
are turned into round keys that the cipher can use.
Twofish needs a lot of key material, and has a com-
plicated key schedule. To facilitate analysis, the key
schedule uses the same primitives as the round func-
tion.

4 Twofish

Figure 1 shows an overview of the Twofish block ci-
pher. Twofish uses a 16-round Feistel-like structure
with additional whitening of the input and output.
The only non-Feistel elements are the 1-bit rotates.
The rotations can be moved into the F function to
create a pure Feistel structure, but this requires an
additional rotation of the words just before the out-
put whitening step.

The plaintext is split into four 32-bit words. In the
input whitening step, these are xored with four key
words. This is followed by sixteen rounds. In each

3Manta is a block cipher with a large block size and an emphasis on long-term security rather than speed. It uses an SP-like
network with DES as the S-boxes and MDS matrices for the permutations.

5

15
more
rounds

one
round

PHT g

g

g g g g

g g g g

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

(((((((((((((((((((((((((((((((((

(((((((((((((((((((((((((((((((((

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

(((((((((((((((((((((((((((((((((

(((((((((((((((((((((((((((((((((

S-box 1

S-box 2

S-box 3

MDS

g

:
:

K4 K5 K6 K7

K0 K1 K2 K3
input
whitening

undo
last
swap

output
whitening

<<<8

S-box 0

S-box 1

S-box 2

S-box 3

MDS

K2r+9

K2r+8

F

S-box 0

g

P (128 bits)

C (128 bits)

>>>1

<<<1

Figure 1: Twofish

6

round, the two words on the left are used as input
to the g functions. (One of them is rotated by 8
bits first.) The g function consists of four byte-wide
key-dependent S-boxes, followed by a linear mix-
ing step based on an MDS matrix. The results of
the two g functions are combined using a Pseudo-
Hadamard Transform (PHT), and two keywords are
added. These two results are then xored into the
words on the right (one of which is rotated left by 1
bit first, the other is rotated right afterwards). The
left and right halves are then swapped for the next
round. After all the rounds, the swap of the last
round is reversed, and the four words are xored with
four more key words to produce the ciphertext.
More formally, the 16 bytes of plaintext p0, . . . , p15
are first split into 4 words P0, . . . , P3 of 32 bits each
using the little-endian convention.

Pi =
3∑
j=0

p(4i+j) · 28j i = 0, . . . , 3

In the input whitening step, these words are xored
with 4 words of the expanded key.

R0,i = Pi ⊕Ki i = 0, . . . , 3

In each of the 16 rounds, the first two words are
used as input to the function F , which also takes
the round number as input. The third word is xored
with the first output of F and then rotated right by
one bit. The fourth word is rotated left by one bit
and then xored with the second output word of F .
Finally, the two halves are exchanged. Thus,

(Fr,0, Fr,1) = F (Rr,0, Rr,1, r)
Rr+1,0 = ROR(Rr,2 ⊕ Fr,0, 1)
Rr+1,1 = ROL(Rr,3, 1)⊕ Fr,1
Rr+1,2 = Rr,0

Rr+1,3 = Rr,1

for r = 0, . . . , 15 and where ROR and ROL are func-
tions that rotate their first argument (a 32-bit word)
left or right by the number of bits indicated by their
second argument.
The output whitening step undoes the ‘swap’ of the
last round, and xors the data words with 4 words
of the expanded key.

Ci = R16,(i+2) mod 4 ⊕Ki+4 i = 0, . . . , 3

The four words of ciphertext are then written as 16
bytes c0, . . . , c15 using the same little-endian conver-
sion used for the plaintext.

ci =
⌊

Cbi/4c

28(i mod 4)

⌋
mod 28 i = 0, . . . , 15

4.1 The Function F

The function F is a key-dependent permutation on
64-bit values. It takes three arguments, two input
words R0 and R1, and the round number r used to
select the appropriate subkeys. R0 is passed through
the g function, which yields T0. R1 is rotated left
by 8 bits and then passed through the g function to
yield T1. The results T0 and T1 are then combined
in a PHT and two words of the expanded key are
added.

T0 = g(R0)
T1 = g(ROL(R1, 8))
F0 = (T0 + T1 +K2r+8) mod 232

F1 = (T0 + 2T1 +K2r+9) mod 232

where (F0, F1) is the result of F . We also define the
function F ′ for use in our analysis. F ′ is identical to
the F function, except that it does not add any key
blocks to the output. (The PHT is still performed.)

4.2 The Function g

The function g forms the heart of Twofish. The in-
put word X is split into four bytes. Each byte is
run through its own key-dependent S-box. Each S-
box is bijective, takes 8 bits of input, and produces
8 bits of output. The four results are interpreted as
a vector of length 4 over GF(28), and multiplied by
the 4×4 MDS matrix (using the field GF(28) for the
computations). The resulting vector is interpreted
as a 32-bit word which is the result of g.

xi =
⌊
X/28i⌋ mod 28 i = 0, . . . , 3

yi = si[xi] i = 0, . . . , 3
z0
z1
z2
z3

 =

 · · · · ·
... MDS

...
· · · · ·

 ·


y0
y1
y2
y3


Z =

3∑
i=0

zi · 28i

where si are the key-dependent S-boxes and Z is the
result of g. For this to be well-defined, we need to
specify the correspondence between byte values and
the field elements of GF(28). We represent GF(28)
as GF(2)[x]/v(x) where v(x) = x8 +x6 +x5 +x3 + 1
is a primitive polynomial of degree 8 over GF(2).
The field element a =

∑7
i=0 aix

i with ai ∈ GF(2)

7

is identified with the byte value
∑7
i=0 ai2

i. This is
in some sense the “natural” mapping; addition in
GF(28) corresponds to a xor of the bytes.

The MDS matrix is given by:

MDS =


01 EF 5B 5B
5B EF EF 01
EF 5B 01 EF
EF 01 EF 5B


where the elements have been written as hexadeci-
mal byte values using the above defined correspon-
dence.

4.3 The Key Schedule

The key schedule has to provide 40 words of ex-
panded key K0, . . . ,K39, and the 4 key-dependent
S-boxes used in the g function. Twofish is defined
for keys of length N = 128, N = 192, and N = 256.
Keys of any length shorter than 256 bits can be used
by padding them with zeroes until the next larger
defined key length.

We define k = N/64. The key M consists of 8k
bytes m0, . . . ,m8k−1. The bytes are first converted
into 2k words of 32 bits each

Mi =
3∑
j=0

m(4i+j) · 28j i = 0, . . . , 2k − 1

and then into two word vectors of length k.

Me = (M0,M2, . . . ,M2k−2)
Mo = (M1,M3, . . . ,M2k−1)

A third word vector of length k is also derived from
the key. This is done by taking the key bytes
in groups of 8, interpreting them as a vector over
GF(28), and multiplying them by a 4× 8 matrix de-
rived from an RS code. Each result of 4 bytes is then
interpreted as a 32-bit word. These words make up
the third vector.


si,0
si,1
si,2
si,3

 =

 · · · · ·... RS
...

· · · · ·

 ·



m8i
m8i+1
m8i+2
m8i+3
m8i+4
m8i+5
m8i+6
m8i+7


Si =

3∑
j=0

si,j · 28j

for i = 0, . . . , k − 1, and

S = (Sk−1, Sk−2, . . . , S0)

Note that S lists the words in “reverse” order. For
the RS matrix multiply, GF(28) is represented by
GF(2)[x]/w(x), where w(x) = x8 +x6 +x3 +x2 +1 is
another primitive polynomial of degree 8 over GF(2).
The mapping between byte values and elements of
GF(28) uses the same definition as used for the MDS
matrix multiply. Using this mapping, the RS matrix
is given by:

RS =


01 A4 55 87 5A 58 DB 9E
A4 56 82 F3 1E C6 68 E5
02 A1 FC C1 47 AE 3D 19
A4 55 87 5A 58 DB 9E 03


The three vectors Me, Mo, and S form the basis of
the key schedule.

4.3.1 Additional Key Lengths

Twofish can accept keys of any byte length up to
256 bits. For key sizes that are not defined above,
the key is padded at the end with zero bytes to the
next larger length that is defined. For example, an
80-bit key m0, . . . ,m9 would be extended by setting
mi = 0 for i = 10, . . . , 15 and treating it as a 128-bit
key.

4.3.2 The Function h

Figure 2 shows an overview of the function h. This
is a function that takes two inputs—a 32-bit word
X and a list L = (L0, . . . , Lk−1) of 32-bit words of
length k—and produces one word of output. This
function works in k stages. In each stage, the four
bytes are each passed through a fixed S-box, and
xored with a byte derived from the list. Finally,
the bytes are once again passed through a fixed S-
box, and the four bytes are multiplied by the MDS
matrix just as in g. More formally: we split the
words into bytes.

li,j =
⌊
Li/28j⌋ mod 28

xj =
⌊
X/28j⌋ mod 28

for i = 0, . . . , k − 1 and j = 0, . . . , 3. Then the se-
quence of substitutions and xors is applied.

yk,j = xj j = 0, . . . , 3

8

q0 q0

q0 q0

q0 q0

q0 q0

q0 q0

g

g

g

g
? ? ? ?

?

CC

CC

? ? ? ?

?�

? ? ? ?

?�

? ? ? ?

?�

? ? ? ?

?�

MDS

Z

X

k = 4
k < 4

k > 2
k = 2

L3

L2

L1

L0

q1 q1

q1q1

q1q1

q1 q1

q1 q1

Figure 2: The function h

9

If k = 4 we have

y3,0 = q1[y4,0]⊕ l3,0
y3,1 = q0[y4,1]⊕ l3,1
y3,2 = q0[y4,2]⊕ l3,2
y3,3 = q1[y4,3]⊕ l3,3

If k ≥ 3 we have

y2,0 = q1[y3,0]⊕ l2,0
y2,1 = q1[y3,1]⊕ l2,1
y2,2 = q0[y3,2]⊕ l2,2
y2,3 = q0[y3,3]⊕ l2,3

In all cases we have

y0 = q1[q0[q0[y2,0]⊕ l1,0]⊕ l0,0]
y1 = q0[q0[q1[y2,1]⊕ l1,1]⊕ l0,1]
y2 = q1[q1[q0[y2,2]⊕ l1,2]⊕ l0,2]
y3 = q0[q1[q1[y2,3]⊕ l1,3]⊕ l0,3]

Here, q0 and q1 are fixed permutations on 8-bit val-
ues that we will define shortly. The resulting vector
of yi’s is multiplied by the MDS matrix, just as in
the g function.

z0
z1
z2
z3

 =

 · · · · ·
... MDS

...
· · · · ·

 ·


y0
y1
y2
y3


Z =

3∑
i=0

zi · 28i

where Z is the result of h.

4.3.3 The Key-dependent S-boxes

We can now define the S-boxes in the function g by

g(X) = h(X,S)

That is, for i = 0, . . . , 3, the key-dependent S-box
si is formed by the mapping from xi to yi in the h
function, where the list L is equal to the vector S
derived from the key.

4.3.4 The Expanded Key Words Kj

The words of the expanded key are defined using the
h function.

ρ = 224 + 216 + 28 + 20

Ai = h(2iρ,Me)
Bi = ROL(h((2i+ 1)ρ,Mo), 8)
K2i = (Ai +Bi) mod 232

K2i+1 = ROL((Ai + 2Bi) mod 232, 9)

The constant ρ is used here to duplicate bytes; it
has the property that for i = 0, . . . , 255, the word iρ
consists of four equal bytes, each with the value i.
The function h is applied to words of this type. For
Ai the byte values are 2i, and the second argument
of h is Me. Bi is computed similarly using 2i+ 1 as
the byte value and Mo as the second argument, with
an extra rotate over 8 bits. The values Ai and Bi
are combined in a PHT. One of the results is further
rotated by 9 bits. The two results form two words
of the expanded key.

4.3.5 The Permutations q0 and q1

The permutations q0 and q1 are fixed permutations
on 8-bit values. They are constructed from four dif-
ferent 4-bit permutations each. For the input value
x, we define the corresponding output value y as
follows:

a0, b0 = bx/16c, x mod 16
a1 = a0 ⊕ b0
b1 = a0 ⊕ ROR4(b0, 1)⊕ 8a0 mod 16

a2, b2 = t0[a1], t1[b1]
a3 = a2 ⊕ b2
b3 = a2 ⊕ ROR4(b2, 1)⊕ 8a2 mod 16

a4, b4 = t2[a3], t3[b3]
y = 16 b4 + a4

where ROR4 is a function similar to ROR that ro-
tates 4-bit values. First, the byte is split into two
nibbles. These are combined in a bijective mixing
step. Each nibble is then passed through its own 4-
bit fixed S-box. This is followed by another mixing
step and S-box lookup. Finally, the two nibbles are
recombined into a byte. For the permutation q0 the
4-bit S-boxes are given by

t0 = [8 1 7 D 6 F 3 2 0 B 5 9 E C A 4]
t1 = [E C B 8 1 2 3 5 F 4 A 6 7 0 9 D]
t2 = [B A 5 E 6 D 9 0 C 8 F 3 2 4 7 1]
t3 = [D 7 F 4 1 2 6 E 9 B 3 0 8 5 C A]

where each 4-bit S-box is represented by a list of the
entries using hexadecimal notation. (The entries for
the inputs 0, 1, . . . , 15 are listed in order.) Similarly,
for q1 the 4-bit S-boxes are given by

t0 = [2 8 B D F 7 6 E 3 1 9 4 0 A C 5]
t1 = [1 E 2 B 4 C 3 7 6 D A 5 F 9 0 8]
t2 = [4 C 7 5 1 6 9 A 0 E D 8 2 B 3 F]
t3 = [B 9 5 1 C 3 D E 6 4 7 F 2 0 8 A]

10

PHT

PHT

hh

hh

hh

hh

MDS

h

MDS

g

MDS

g

MDS

h

M0

M1M3

2i

2i

2i

2i+ 1

2i+ 1

2i+ 1

2i+ 1

<<<8R1

<<<8 <<<9

2i

M2

S0 S1

R0 F0

F1

Figure 3: A view of a single round F function (128-bit key)

11

4.4 Round Function Overview

Figure 3 shows a more detailed view of how the func-
tion F is computed each round when the key length
is 128 bits. Incorporating the S-box and round-
subkey generation makes the Twofish round function
look more complicated, but is useful for visualizing
exactly how the algorithm works.

5 Performance of Twofish

Twofish has been designed from the start with per-
formance in mind. It is efficient on a variety of plat-
forms: 32-bit CPUs, 8-bit smart cards, and dedi-
cated VLSI hardware. More importantly, though,
Twofish has been designed to allow several layers of
performance tradeoffs, depending on the relative im-
portance of encrytion speed, key setup, memory use,
hardware gate count, and other implementation pa-
rameters. The result is a highly flexible algorithm
that can be implemented efficiently in a variety of
cryptographic applications.

All these options are interoperable; these are sim-
ply implementation trade-offs and do not affect the
mathematics of Twofish. One end of a communi-
cation could use the fastest Pentium II implemen-
tation, and the other the cheapest hardware imple-
mentation.

5.1 Performance on Large Micropro-
cessors

Table 1 gives Twofish’s performance, encryption or
decryption, for different key scheduling options and
on several modern microprocessors using different
languages and compilers. The times for encryption
and decryption are usually extremely close, so only
the encryption time is given. There is no time re-
quired to set up the algorithm except for key setup.
The time required to change a key is the same as
the time required to setup a key. The approximate
total code size (in bytes) of the routines for encryp-
tion, decryption, and key setup is also listed, where
available.

All timing data is given in clock cycles per block, or
clock cycles to set up the complete key. For exam-
ple, on a Pentium Pro a fully optimized assembly-
language version of Twofish can encrypt or decrypt
data in 285 clock cycles per block, or 17.8 clock cy-
cles per byte, after a 12700-clock key setup (equiv-
alent to encrypting 45 blocks). On a 200 MHz

Pentium Pro microprocessor, this translates to a
throughput of just under 90 Mbits/sec.

We have implemented four different keying options.
All of our keying options precompute Ki for i =
0, . . . , 39 and use 160 bytes of RAM to store these
constants. The differences occur in the way the
function g is implemented. There are several other
possible keying options, each with slightly different
setup/throughput tradeoffs, but the examples listed
below are representative of the range of possibilities.

Full Keying This option performs the full key
precomputations. Using 4 Kb of table space, each
S-box is expanded to a 8-by-32-bit table that com-
bines both the S-box lookup and the multiply by
the column of the MDS matrix. Using this option, a
computation of g consists of four table lookups, and
three xors. Encryption and decyption speeds are
constant regardless of key size.

Partial Keying For applications where few blocks
are encrypted with a single key, it may not make
sense to build the complete key schedule. The par-
tial keying option precomputes the four S-boxes in 8-
by-8 bit tables, and uses four fixed 8-by-32-bit MDS
tables to perform the MDS multiply. This reduces
the key-schedule table space to 1 Kb. For each byte,
the last of the q-box lookups is in fact incorporated
into the MDS table, so only k of the q-boxes are
incorporated into the 8-by-8-bit S-box table that is
built by the key schedule. Encryption and decryp-
tion speed are again constant regardless of key size.

Minimal Keying For applications where very few
blocks are encrypted with a single key, there is a
further possible optimization. Compared to partial
keying, one less layer of q-boxes is precomputed into
the S-box table, and the remaining q-box is done
during the encryption. For the 128-bit key this is
particularly efficient as precomputing the S-boxes
now consists of copying the table of the appropriate
q-box and xoring it with a constant (which can be
done word-by-word instead of byte-by-byte). This
option uses a 1 Kb table to store the partially pre-
computed S-boxes. The necessary key bytes from
S are of course precomputed as they are needed in
every round.

Zero Keying The zero keying option does not
precompute any of the S-boxes, and thus needs no
extra tables. Instead, every entry is computed on

12

Processor Language Keying Code Clocks to Key Clocks to Encrypt
Option Size 128-bit 192-bit 256-bit 128-bit 192-bit 256-bit

Pentium Pro/II Assembly Compiled 8900 12700 15400 18100 285 285 285
Pentium Pro/II Assembly Full 8450 7800 10700 13500 315 315 315
Pentium Pro/II Assembly Partial 10700 4900 7600 10500 460 460 460
Pentium Pro/II Assembly Minimal 13600 2400 5300 8200 720 720 720
Pentium Pro/II Assembly Zero 9100 1250 1600 2000 860 1130 1420
Pentium Pro/II MS C Full 11200 8000 11200 15700 600 600 600
Pentium Pro/II MS C Partial 13200 7100 9700 14100 800 800 800
Pentium Pro/II MS C Minimal 16600 3000 7800 12200 1130 1130 1130
Pentium Pro/II MS C Zero 10500 2450 3200 4000 1310 1750 2200
Pentium Pro/II Borland C Full 14100 10300 13600 18800 640 640 640
Pentium Pro/II Borland C Partial 14300 9500 11200 16600 840 840 840
Pentium Pro/II Borland C Minimal 17300 4600 10300 15300 1160 1160 1160
Pentium Pro/II Borland C Zero 10100 3200 4200 4800 1910 2670 3470
Pentium Assembly Compiled 8900 24600 26800 28800 290 290 290
Pentium Assembly Full 8200 11300 14100 16000 315 315 315
Pentium Assembly Partial 10300 5500 7800 9800 430 430 430
Pentium Assembly Minimal 12600 3700 5900 7900 740 740 740
Pentium Assembly Zero 8700 1800 2100 2600 1000 1300 1600
Pentium MS C Full 11800 11900 15100 21500 630 630 630
Pentium MS C Partial 14100 9200 13400 19800 900 900 900
Pentium MS C Minimal 17800 3800 11100 16900 1460 1460 1460
Pentium MS C Zero 11300 2800 3900 4900 1740 2260 2760
Pentium Borland C Full 12700 14200 18100 26100 870 870 870
Pentium Borland C Partial 14200 11200 16500 24100 1100 1100 1100
Pentium Borland C Minimal 17500 4700 12100 19200 1860 1860 1860
Pentium Borland C Zero 11800 3700 4900 6100 2150 2730 3270
UltraSPARC C Full 16600 21600 24900 750 750 750
UltraSPARC C Partial 8300 13300 19900 930 930 930
UltraSPARC C Minimal 3300 11600 16600 1200 1200 1200
UltraSPARC C Zero 1700 3300 5000 1450 1680 1870
PowerPC 750 C Full 12200 17100 22200 590 590 590
PowerPC 750 C Partial 7800 12200 17300 780 780 780
PowerPC 750 C Minimal 2900 9100 14200 1280 1280 1280
PowerPC 750 C Zero 2500 3600 4900 1030 1580 2040
68040 C Full 16700 53000 63500 96700 3500 3500 3500
68040 C Partial 18100 36700 47500 78500 4900 4900 4900
68040 C Minimal 23300 11000 40000 71800 8150 8150 8150
68040 C Zero 16200 9800 13300 17000 6800 8600 10400

Table 1: Twofish performance with different key lengths and options

13

the fly. The key setup time consists purely of com-
puting the Ki values and S. For an application that
cannot have any key setup time, the time it takes to
encrypt one block is the sum of the key setup time
and encryption time for the zero keying option.

Compiled In this option, available only in assem-
bly language, the subkey constants are directly em-
bedded into a key-specific copy of the code, saving
memory fetches and allowing the use of the Pentium
LEA opcode to perform both the PHT and the sub-
key addition all in a single clock. Some additional
setup time is required, as well as about an extra
5000 bytes of memory to hold the “compiled” code,
but this option allows the fastest execution time of
285 clocks per block on the Pentium Pro. The setup
time for a Pentium more than doubles over the full
keying case, because of its smaller cache size, but the
Pentium MMX setup time is still comparable to the
Pentium Pro setup time. However, almost all the ex-
tra time required is consumed merely in copying the
code; the table does not reflect the fact that, once
a single key has been initialized, future keys can be
compiled at a cost of only a few hundred more clocks
than full key schedule time.

Language, Compiler, and Processor Choice
As with most algorithms, the choices of language and
compiler can have a huge impact on performance. It
is clear that the Borland C 5.0 compiler chosen as the
standard AES reference is not the best optimizing
compiler. For example, the Microsoft Visual C++
4.2 compiler generates Twofish code that is at least
20% faster than Borland on a Pentium computer,
with both set to optimize for speed (630 clocks per
block for Microsoft Visual C++ 4.2 versus 870 clocks
per block for Borland C 5.0); on a Pentium Pro/II,
the difference between the compilers is not quite as
large (e.g., 600 clocks/block vs. 640 clocks/block),
but it is still significant. Part of the difference stems
from the inability of the Borland compiler to gener-
ate intrinsic rotate instructions, despite documenta-
tion claiming that it is possible. This problem alone
accounts for nearly half of the speed difference be-
tween Borland and Microsoft. The remaining speed
difference comes simply from poorer code genera-
tion. The Borland compiler is uniformly slower than
Microsoft’s compiler. The encryption speed in Mi-
crosoft C of 40 Pentium clocks per byte (i.e., 630
clocks/block at 16 bytes/block) is over ten percent
faster than the best known DES assembly language
implementation on the same platform. However,
coding the Twofish algorithm in assembly language

achieves speeds of 285 clocks, achieving a very sig-
nificant speedup over any of the C implementations.

To make matters even more complicated, the as-
sembly language that optimizes performance on a
Pentium (or Pentium MMX) is drastically different
from the assembly language required to maximize
speed on a Pentium Pro or Pentium II, even though
the final code size and speed achieved on each plat-
form are almost identical. For example, the Pen-
tium Pro/II CPUs can only perform one memory
read per clock cycle, while the Pentium and Pen-
tium MMX can perform two. However, the Pentium
Pro/II can peform two ALU operations per clock in
addition to memory accesses, while the Pentium can
process only a total of two ALU operations or mem-
ory accesses per clock. These (and other) significant
architectural differences result in the fact that run-
ning the optimal Pentium Twofish encryption code
on a Pentium Pro results in a slowdown of nearly
2:1, and vice versa! Fortunately, it is relatively sim-
ple to detect the CPU type at run-time and select
which version of the assembly code to use. Another
anomaly is that the key schedule setup time is con-
siderably faster (43%) on the Pentium MMX CPU
than on the Pentium, not because the key schedule
uses any MMX instructions, but simply because of
the larger cache size of the MMX chip.

Empirically, there also seems to be some anomalous
behavior of the C compilers. In almost all cases, the
encryption and decryption routines in C achieved
speeds within a few percent of each other. However,
there were cases in the table where the two speeds
differed by considerably more than ten percent (we
used the larger number in the table), which is very
odd because the “inner loop” C code used is vir-
tually identical. We also noted several cases where
compiler switches which seemed unrelated to per-
formance optimization sometimes caused very large
changes in timings.

It should be noted that performance numbers for
Pentium II processors are almost identical in all
cases to those for a Pentium Pro, which is not sur-
prising since Intel claims they have the same core.
The Pentium and Pentium MMX achieve almost
identical speeds for encryption and decryption, al-
though, as noted above, the MMX key setup times
are faster, due mainly to the larger cache size.

The bottom line is that, when comparing the rela-
tive performance of different algorithms, using the
same language and compiler for all implementations
helps to make the comparison meaningful, but it
does not guarantee a valid measure of the relative
speeds. We have listed many different software per-

14

formance metrics across platforms and languages to
facilitate speed comparisons between Twofish and
other algorithms. Our belief is that, on any given
platform (e.g., Pentium Pro), the assembly language
performance numbers are the best numbers to use
to gauge absolute performance, since they are unaf-
fected by the vagaries and limitations of the compiler
(e.g., inability to produce rotate opcodes). High-
level languages (e.g., C, Java) are also important
because of the ease of porting to different platforms,
but once an algorithm becomes standardized, it will
ultimately be coded in assembly for the most popu-
lar platforms.

Code and Data Size As shown in Table 1, the
code size for a fully optimized Twofish on a Pen-
tium Pro ranges from about 8450 bytes in assem-
bler to 14100 bytes in Borland C. In assembler, the
encryption and decryption routines are each about
2250 bytes in size; the remaining 4000 bytes of code
are in the key scheduling routines, but about 2200
bytes of that total can be discarded if only 128-bit
keys are needed. In Borland C, the encryption and
decryption routines are each about 4500 bytes in
length, and the key schedule routine is slightly less
than 5000 bytes. Note that each routine fits easily
within the code cache of a Pentium or a Pentium
Pro. These sizes are larger than Blowfish but very
similar to a fully optimized assembly language ver-
sion of DES. Note that, with the exception of the
zero keying option, the code sizes in the table are
for fully unrolled implementations; in either C or as-
sembler, it is possible to achieve significantly smaller
code sizes using loops with round counters, at a cost
in performance.
In addition to the code, there are about 4600 bytes of
fixed tables for the MDS matrix, q0, and q1 required
for key setup, and each key requires about 4300 bytes
of key-dependent data tables for the full keying op-
tion. During encryption or decryption, these tables
fit easily in the Pentium data cache. The other key-
ing options use less data and table space, as dis-
cussed above.

Total Encryption Times Any performance mea-
sures that do not take key setup into account are
only valid for asymptotically large amounts of text.
For shorter messages, performance is the sum of key
setup and encryption. For very short messages, the
key setup time can overwhelm the encryption speed.
Table 2 gives Twofish’s performance on the Pen-
tium Pro (assembly-language version), both 128-bit

key setup and encryption, for a variety of message
lengths. This table assumes the best of our imple-
mentations for the particular length of text.

5.2 Performance on Smart Cards

Twofish has been implemented on a 6805 CPU,
which is a typical smart card processor, with several
different space–time tradeoff options. Our different
options result in the following numbers:

RAM Code and Clocks Time per block
(bytes) Table Size per Block @ 4MHz

60 2200 26500 6.6 msec
60 2150 32900 8.2 msec
60 2000 35000 8.7 msec
60 1760 37100 9.3 msec

The code size includes both encryption and decryp-
tion.4 The block encryption and decryption times
are almost identical. If only encryption is required,
minor improvements in code size and speed can be
obtained. The only key schedule precomputation
time required in this implementation is the Reed-
Solomon mapping used to generate the S-box key
material S from the key M , which requires slightly
over 1750 clocks per key. This setup time could
be cut considerably at the cost of two additional
512-byte ROM tables. It should also be observed
that the lack of a second index register on the 6805
has a significant impact on the code size and perfor-
mance, so a different CPU with multiple index reg-
isters (e.g., 6502) might be a better fit for Twofish.

Size and speed estimates for larger key sizes are very
straightforward, given the 128-bit implementation.
The extra code size is fairly negligible—less than 100
extra bytes for a 192-bit key, and less than 200 bytes
for a 256-bit key. The encryption time per block in-
creases by less than 2600 clocks per block (for any
of the code size/speed tradeoffs above) for 192-bit
keys, and by about 5200 clocks per block for 256-bit
keys. Similarly, the key schedule precomputation in-
creases to 2550 clocks for 192-bit keys, and to 3400
clocks for 256-bit keys.

The 60 bytes of RAM for the smart card implemen-
tation include 16 bytes for the plaintext/ciphertext
block and 16 bytes for the key. If the 16 key bytes
and the extra 8 bytes of the Reed-Solomon results
(S) are retained in memory between encryption op-
erations, the remaining 36 bytes of RAM are avail-
able for other functions, and there is zero startup

4For comparison purposes: DES on a 6805 takes about 2K code, 23 bytes of RAM, and 20000 clock cycles per block.

15

Plaintext Keying Clocks Clocks to Total Clocks
(bytes) Option to Key Encrypt per Byte
16 Zero 1250 860 131.9
32 Zero 1250 1720 92.8
64 Zero 1250 4690 73.3
128 Zero 1250 6880 63.5
256 Partial 4900 7360 47.9
512 Full 7800 10080 34.9
1K Full 7800 20160 27.3
2K Full 7800 40320 23.5
4K Compiled 12700 72960 20.9
8K Compiled 12700 145920 19.4
16K Compiled 12700 291840 18.6
32K Compiled 12700 583680 18.2
64K Compiled 12700 1167360 18.0
1M Compiled 12700 18677760 17.8

Table 2: Best speed to encrypt a message with a new 128-bit key on a Pentium Pro

time for the next encryption operation with the same
key. Note that larger key sizes also require more
RAM to store the larger keys and the larger Reed-
Solomon results. In some applications it might be
viable to store all key material in non-volatile mem-
ory, reducing the RAM requirements of the imple-
mentation significantly.
Observe that it is possible to save further ROM space
by computing q0 and q1 lookups using the underly-
ing 4-bit construction, as specified in Section 4.3.5.
Such a scheme would replace 512 bytes of ROM ta-
ble with 64 bytes of ROM and a small subroutine
to compute the full 8-bit q0 and q1, saving perhaps
350 bytes of ROM; unfortunately, encryption speed
would decrease by a factor of ten or more. Thus, this
technique is only of interest in smart card applica-
tions for which ROM size is extremely critical but
performance is not. Nonetheless, such an approach
illustrates the implementation flexibility afforded by
Twofish.

5.3 Performance on Future Micro-
processors

Given the ever-advancing capabilities of CPUs, it is
worthwhile to make some observations about how
the Twofish algorithm will run on future proces-
sors, including Intel’s Merced. Not many details are
known about Merced, other than that it includes an
Explicitly Parallel Instruction Computing (EPIC)
architecture, as well the ability to run existing Pen-
tium code. EPIC is related to VLIW architectures
that allow many parallel opcodes to be executed at

once, while the Pentium allows only two opcodes in
parallel, and the Pentium Pro/Pentium II may pro-
cess up to three opcodes per clock. However, access
to memory tables is limited in most VLIW imple-
mentations to only a few parallel operations, and we
expect similar restrictions to hold for Merced. For
example, an existing Philips VLIW CPU can pro-
cess up to five opcodes in parallel, but only two of
the opcodes can read from memory.

Since Twofish relies on 8-bit non-linear S-boxes, it
is clear that table access is an integral part of the
algorithm. Thus, Twofish might not be able to take
advantage of all the parallel execution units avail-
able on a VLIW processor. However, there is still
plenty of parallelism in Twofish that can be well-
utilized in an optimized VLIW software implemen-
tation. Equally important, the alternative of not
using large S-boxes, while it may allow greater paral-
lelism, also naturally involves less non-linearity and
thus generally requires more rounds. For example,
Serpent [BAK98], based on “inline” computation
of 4-bit S-boxes, may experience a relatively larger
speedup than Twofish on a VLIW CPU, but Serpent
also requires 32 rounds, and is considerably slower
to start with.

It should also be noted that, as with most encryp-
tion algorithms, the primitive operations used in
Twofish could very easily be added to a CPU in-
struction set to improve software performance sig-
nificantly. Future mainstream CPUs may include
such support for the new AES standard. However,
it is also worthwhile to remember that DES has been

16

a standard for more than twenty years, and no pop-
ular CPU has added instruction set support for it,
even though DES software performance would ben-
efit greatly from such features.

5.4 Hardware Performance

No actual logic design has been implemented for
Twofish, but estimates in terms of gates for each
building block have been made. As in software, there
are many possible space–time tradeoffs in hardware
implementations of Twofish. Thus, it is not mean-
ingful to give just one figure for the speed and size
attributes of Twofish in hardware. Instead, we will
try to outline several of the options and give esti-
mate for speed and gate count of several different
architectures.

For example, the round subkeys could be precom-
puted and stored in a RAM, or they could be com-
puted on the fly. If computed on the fly, the h func-
tion logic could be time-multiplexed between sub-
keys and the round function to save size at a cost in
speed, or the logic could be duplicated, adding gates
but perhaps running twice as fast. If the subkeys
were precomputed, the h function logic would be
used during a key setup phase to compute the sub-
keys, saving gates but adding a startup time roughly
equal to one block encryption time. Similarly, a sin-
gle h function logic block could be time-multiplexed
between computing T0 and T1, halving throughput
but saving even more gates.

As another example of the possible tradeoffs, the S-
boxes could be precomputed and stored in on-chip
RAMs, allowing faster operation because there is no
need to ripple through several layers of key mate-
rial xors and q permutations. The addition of such
RAMs (e.g., eight 256-byte RAMs) would perhaps
double or triple the size of the logic, and it would
also impose a significant startup time on key change
to initialize the RAMs. Despite these disadvantages,
such an architecture might raise the throughput by
a factor of two or more (particularly for the larger
key sizes), so for high-performance systems with in-
frequent re-keying, this option may be attractive.

The construction method specified in Section 4.3.5
for building the 8-bit permutations q0 and q1 from
four 4-bit permutations was selected mainly to min-
imize gate count in many hardware implementations
of Twofish. These permutations can be built either
directly in logic gates or as full 256-byte ROMs in
hardware, but such a ROM is usually several times
larger than the direct logic implementation. Since
each full h block in hardware (see Figure 2) involves

six q0 blocks and six q1 blocks (for N = 128), the
gate savings mount fairly quickly. The circuit delays
in building q0 or q1 using logic gates are typically at
least as fast as those using ROMs, although this met-
ric is certainly somewhat dependent on the particu-
lar silicon technology and circuit library available.

It should also be noted that the Twofish round struc-
ture can be very nicely pipelined to break up the
overall function into smaller and much faster blocks
(e.g., q’s, key xors, MDS, PHT, subkey addition,
Feistel xor). None of these operations individu-
ally is slow, but trying to run all of them in a
single clock cycle does affect the cycle time. In
ECB mode, counter mode, or an interleaved chain-
ing mode, the throughput can be dramatically in-
creased by pipelining the Twofish round structure.
As a very simple example of two-level pipelining, we
could compute the qi’s, key xors, and MDS multiply
for one block during “even” clocks, while the PHT,
subkey addition, and Feistel xor would be computed
on the “odd” clocks; a second block is processed in
parallel on the alternate clock cycles. Using care-
ful balancing of circuit delays between the two clock
phases, this approach allows us to cut the logic delay
in half, thus running the clock at twice the speed of
an unpipelined approach. Such an approach does
not require duplicating the entire Twofish round
function logic, but merely the insertion of one extra
layer of clocked storage elements (128 bits). Thus,
for a very modest increase in gate count, throughput
can be doubled, assuming that the application can
use one of these cipher modes. It is clear that this
general approach can be applied with more levels of
pipelining to get higher throughput, although dimin-
ishing returns are achieved past a certain point. For
even higher levels of performance, multiple indepen-
dent engines can be used to achieve linear speedups
at a linear cost in gates. We see no problem meet-
ing NSA’s requirement to “be able to encrypt data
at a minimum of 1 Gb/s, pipelined if necessary, in
existing technology” [McD97].

Table 3 gives hardware size and speed estimates for
the case of 128-bit keys. Depending on the architec-
ture, the logic will grow somewhat in size for larger
keys, and the clock speed (or startup time) may in-
crease, but it is believed that a 128-bit AES scheme
will be acceptable in the market long enough that
most vendors will choose to implement that recom-
mended key length. These estimates are all based
on existing 0.35 micron CMOS technology. All the
examples in the table are actually quite small in to-
day’s technology, except the final (highest perfor-
mance non-pipelined) instance, but even that is very

17

Gate h Clocks Pipeline Clock Throughput Startup
count blocks per Block Levels Speed (Mbits/sec) clocks Comments
14000 1 64 1 40 MHz 80 4 Subkeys on the fly
19000 1 32 1 40 MHz 160 40
23000 2 16 1 40 MHz 320 20
26000 2 32 2 80 MHz 640 20
28000 2 48 3 120 MHz 960 20
30000 2 64 4 150 MHz 1200 20
80000 2 16 1 80 MHz 640 300 S-box RAMs

Table 3: Hardware tradeoffs (128-bit key)

doable today and will become fairly inexpensive as
the next generation silicon technology (0.25 micron)
becomes the industry norm.

6 Twofish Design Philosophy

In the design of Twofish, we tried to stress the fol-
lowing principles:

Performance When comparing different options,
compare them on the basis of relative perfor-
mance.

Conservativeness Do not design close to the edge.
In other words, leave a margin for error and
provide more security than is provably re-
quired. Also, try to design against attacks that
are not yet known.

Simplicity Do not include ad hoc design elements
without a clear reason or function. Try to de-
sign a cipher whose details can be easily kept
in one’s head.

These principles were applied not only to the overall
design of Twofish, but to the design of the S-boxes
and the key schedule.

6.1 Performance-Driven Design

The goal of performance-driven design is to build
and evaluate ciphers on the basis of performance
[SW97]. The early post-DES cipher designs would
often compete on the number of rounds in the cipher.
The original FEAL paper [SM88], for example, dis-
cussed the benefits of a stronger round function and

fewer rounds. Other cipher designs of the period—
REDOC II [CW91], LOKI [BPS90] and LOKI 93
[BKPS93], IDEA [LM91, LMM91]—only considered
performance as an afterthought. Khufu/Khafre
[Mer91] was the first published algorithm that ex-
plicitly used operations that were efficient on 32-bit
microprocessors; SEAL [RC94, RC97] is a more re-
cent example. RC2 [Riv97, KRRR98] was designed
for 16-bit microprocessors, SOBER [Ros98] for 8-bit
ones. Other, more recent designs, do not seem to
take performance into account at all. Two 1997 de-
signs, SPEED [Zhe97]5 and Zhu-Guo [ZG97], are sig-
nificantly slower than alternatives that existed years
previous.

Arbitrary metrics, such as the number of rounds,
are not good measures of performance. What is im-
portant is the cipher’s speed: the number of clock
cycles per byte encrypted. When ciphers are ana-
lyzed according to this property, the results can be
surprising [SW97]. RC5 might have twice the num-
ber of rounds of DES,6 but since its round function
is more than twice as fast as DES’, RC5 is faster
than DES on most microprocessors.

Even when cryptographers made efforts to use effi-
cient 32-bit operations, they often lacked a full ap-
preciation of low-level software optimization princi-
ples associated with high-performance CPUs. Thus,
many algorithms are not as efficient as they could
be. Minor modifications in the design of Blow-
fish [Sch94], SEAL [RC94, RC97], and RC4 [Sch96]
could improve performance without affecting secu-
rity [SW97] (or, alternatively, increase the algo-
rithms’ complexity without affecting performance).
In designing Twofish, we tried to evaluate all design
decisions in terms of performance.

5Speed has been cryptanalyzed in [HKSW98, HKR+98].
6Here we use the term “round” in the traditional sense: as it was defined by DES [NBS77] and has been used to describe

Feistel-network ciphers ever since. The RC5 documentation [Riv95] uses the term “round” differently: one RC5-defined round
equals two Feistel rounds.

18

Since NIST’s platform of choice was the Intel Pen-
tium Pro [NIST97b], we concentrated on that plat-
form. However, we did not ignore performance on
other 32-bit CPUs, as well as 8-bit and 16-bit CPUs.
If there is any lesson from the past twenty years of
microprocessors, it is that the high end gets bet-
ter and the low end never goes away. Yesterday’s
top-of-the-line CPUs are currently in smart cards.
Today’s CPUs will eventually be in smart cards,
while the 8-bit microprocessors will move to devices
even smaller. The only thing we did not consider
in our performance metrics are bitslice implementa-
tions [Bih97, SAM97, NM97], since these can only
be used in very specialized applications and often
require unrealistic implementations: e.g., 32 simul-
taneous ECB encryptions, or 32 interleaved IVs.7

6.1.1 Performance-driven Tradeoffs

During our design, we constantly evaluated the rel-
ative performance of different modifications to our
round function. Twofish’s round function encrypts
at about 20 clock cycles; 16 rounds translates to
about 320 clock cycles per block encrypted. When
we contemplated a change to the round function, we
evaluated it in terms of increasing or decreasing the
number of rounds to keep performance constant.
Three examples:

• We could have added a data-dependent rota-
tion to the output of the two MDS matrices
in each round. This would add 10 clock cycles
to the round function on the Pentium (2 on
the Pentium Pro). To keep the performance
constant, we would have to reduce the num-
ber of rounds to 11. The question to ask is:
Are 11 rounds of the modified cipher more or
less secure than 16 rounds of the unmodified
cipher?

• We could have removed the one-bit rotation.
This would have saved clocks equivalent to one
Twofish round. Are 17 rounds of this new
round function more or less secure than 16
rounds of the old one?

• We could have defined the key-dependent S-
boxes using the whole key, instead of half
of it. This would have doubled key setup
time on high-end machines, and halved en-
cryption speed on memory-poor implementa-
tions (where the S-boxes could not be precom-
puted). On memory-poor machines, we would

have to cut the number of rounds in half to
be able to afford this. Are 8 rounds of this
improved cipher better than 16 rounds of the
current design?

This analysis is necessarily dependent on the micro-
processor architecture the algorithm is being com-
pared on. While we focused on the Intel Pentium
architecture, we also tried to keep 8-bit smart card
and hardware implementations in mind. For exam-
ple, we considered using a 8-by-8 MDS matrix over
GF(24) to ensure a finer-grained diffusion, instead of
a 4-by-4 MDS matrix over GF(28); the former would
have been no slower on a Pentium but at least twice
as slow on a low-memory smart card.

6.2 Conservative Design

There has been considerable research in design-
ing ciphers to be resistant to known attacks
[Nyb91, Nyb93, OCo94a, OCo94b, OCo94c, Knu94a,
Knu94b, Nyb94, DGV94b, Nyb95, NK95, Mat96,
Nyb96], such as differential [BS93], linear [Mat94],
and related-key cryptanalysis [Bih94, KSW96,
KSW97]. This research has culminated in strong
cipher designs—CAST-128 [Ada97a] and MISTY
[Mat97] are probably the most noteworthy—as well
as some excellent cryptanalytic theory.

However, it is dangerous to rely solely on theory
when designing ciphers. Ciphers provably secure
against differential cryptanalysis have been attacked
with higher-order differentials [Lai94, Knu95b] or
the interpolation attack [JK97]: KN -cipher [NK95]
was attacked in [JK97, SMK98], Kiefer [Kie96] in
[JK97], and a version of CAST in [MSK98a]. The
CAST cipher cryptanalyzed in [MSK98a] is not
CAST-128, but it does illustrate that while the
CAST design procedure [AT93, HT94] can create
ciphers resistant to differential and linear cryptanal-
ysis, it does not create ciphers resistant to whatever
form of cryptanalysis comes next. SNAKE [LC97],
another cipher provably secure against differential
and linear cryptanalysis, was successfully broken us-
ing the interpolation attack [MSK98b]. When de-
signing a cipher, it is prudent to assume that new
attacks will be developed in order to break it.

We took a slightly different approach in our design.
Instead of trying to optimize Twofish against known
attacks, we tried to make Twofish strong against
both known and unknown attacks. While it is im-
possible to optimize a cipher design for resisting

7One AES submission, Serpent [BAK98], uses ideas from bitslice implementations to create a cipher that is very efficient on
32-bit processors while sacrificing performance on 8-bit microprocessors.

19

attacks that are unknown, conservative design and
over-engineering can instill some confidence.

Many elements of Twofish reflect this philosophy.
We used well-studied design elements throughout
the algorithm. We started with a Feistel network,
probably the most studied block-cipher structure,
instead of something newer like an unbalanced Feis-
tel network [SK96, ZMI90] or a generalized Feistel
network [Nyb96].

We did not implement multiplication mod 216 + 1
(as in IDEA or MMB [DGV93]) or data-dependent
rotations (as in RC58 or Akelarre [AGMP96]9) for
non-linearity. The most novel design elements we
used—MDS matrices and PHTs—are only intended
for diffusion (and are used in Square [DKR97] and
SAFER, respectively).

We used key-dependent S-boxes, because they of-
fer adequate protection against known statistical at-
tacks and are likely to offer protection to any un-
known similar attacks. We defined Twofish at 16
rounds, even though our analysis cannot break any-
where near that number. We added one-bit rota-
tions to prevent potential attacks that relied solely
on the byte structure. We designed a very thorough
key schedule to prevent related-key and weak-key
attacks.

6.3 Simple Design

A guiding design principle behind Twofish is that
the round function should be simple enough for us
to keep in our heads. Anecdotal evidence from al-
gorithms like FEAL [SM88], CAST, and Blowfish
indicates that complicated round functions are not
always better than simple ones. Also, complicated
round functions are harder to analyze and rely on
more ad-hoc arguments for security (e.g., REDOC-
II [CW91]).

However, with enough rounds, even bad round func-
tions can be made to be secure.10 Even a simple
round function like TEA’s [WN95] or RC5’s seems
secure after 32 rounds [BK98]. In Twofish, we tried
to create a simple round function and then iterate it
more than enough times for security.

6.3.1 Reusing Primitives

One of the ways to simplify a design is to reuse the
same primitives in multiple parts of a cipher. Cryp-
tographic design does not lend itself to the adage
of not putting all your eggs in one basket. Since
any particular “basket” has the potential of break-
ing the entire cipher, it makes more sense to use
as few baskets as possible—and to scrutinize those
baskets intensely.
To that end, we used essentially the same construc-
tion (8-by-8-bit key-dependent S-boxes consisting of
alternating fixed permutations and subkey xors fol-
lowed by an MDS matrix followed by a PHT) in
both the key schedule and the round function. The
differences were in the key material used (the round
function’s g function uses a list of key-derived words
processed by an RS code; the key schedule’s h func-
tion uses individual key bytes directly) and the rota-
tions. The rotations represent a performance-driven
design tradeoff: putting the additional rotations into
F would have unacceptably slowed down the cipher
performance on high-end machines. The use of the
RS code to derive the key material for g adds sub-
stantial resistance to related-key attacks.
While many algorithms reuse the encryption oper-
ation in their key schedule (e.g., Blowfish, Panama
[DC98], RC4, CRISP [Lee96], YTH [YTH96]), and
several alternative DES key schedules reuse the DES
operation [Knu94b, BB96], we are unaware of any
that reuse the same primitives in exactly this man-
ner.11 We feel that doing so greatly simplifies the
analysis of Twofish, since the same kinds of analysis
can apply to the cipher in two different ways.

6.3.2 Reversibility

While it is essential that any block cipher be re-
versible, so that ciphertext can be decrypted back
into plaintext, it is not necessary that the identi-
cal function be used for encryption and decryption.
Some block ciphers are reversible with changes only
in the key schedule (e.g., DES, IDEA, Blowfish),
while others require different algorithms for encryp-
tion and decryption (e.g., SAFER, Serpent, Square).
The Twofish encryption and decryption round func-
tions are slightly different, but are built from the

8RC5’s security is almost wholly based on data-dependent rotations. Although initial cryptanalysis was promising [KY95]
(see also [Sel98]), subsequent research [KM97, BK98] suggests that there is considerably more to learn about the security
properties of data-dependent rotations.

9Akelarre was severely broken in [FS97, KR97].
10Student cryptography projects bear this observation out. At 16 rounds, the typical student cipher fares rather badly against

a standard suite of statistical tests. At 32 rounds, it looks better. At 128 rounds, even the worst designs look very good.
11The closest idea is an alternate DES key schedule that uses the DES round function, both the 32-bit block input and 48-bit

key input, to create round subkeys [Ada97b].

20

same blocks. That is, it is simple to build a hardware
or software module that does both encryption and
decryption without duplicating much functionality,
but the exact same module cannot both encrypt and
decrypt.
Note that having the cipher work essentially the
same way in both directions is a nice feature in
terms of analysis, since it lets analysts consider
chosen-plaintext and chosen-ciphertext attacks at
once, rather than considering them as separate at-
tacks with potentially radically different levels of dif-
ficulty [Cop98].

6.4 S-boxes

The security of a cipher can be very sensitive to the
particulars of its S-boxes: size, number, values, us-
age. Ciphers invented before the public discovery of
differential cryptanalysis sometimes used arbitrary
sources for their S-box entries.
Randomly constructed known S-boxes are unlikely
to be secure. Khafre uses S-boxes taken from the
RAND tables [RAND55], and it is vulnerable to dif-
ferential cryptanalysis [BS92]. NewDES [Sco85],12

with S-boxes derived from the Declaration of Inde-
pendence [Jeff+76], could be made much stronger
with good S-boxes. DES variants with random fixed
S-boxes are very likely to be weak [BS93, Mat95],
and CMEA was weakened extensively because of a
poor S-box choice [WSK97].
Some cipher designers responded to this threat by
carefully crafting S-boxes to resist known attacks—
DES [Cop94], snDES [KPL93, Knu93c, KLPL95],
CAST [MA96, Ada97a]—while others relied on ran-
dom key-dependent S-boxes for security—Khufu,
Blowfish, WAKE [Whe94].13 The best existing at-
tack on Khufu breaks 16 rounds [GC94], while the
best attack on Blowfish breaks only four [Rij97]. Ser-
pent [BAK98] reused the DES S-boxes.
GOST [GOST89] navigated a middle course: each
application has different fixed S-boxes, turning them
into an application-specific family key.

6.4.1 Large S-boxes

S-boxes vary in size, from GOST’s 4-by-4-bit S-
boxes to Tiger’s 8-by-64-bit S-boxes [AB96b]. Large
S-boxes are generally assumed to be more secure
than smaller ones—a view we share—but at the
price of increased storage requirements; DES’ eight

6-by-4-bit S-boxes require 256 bytes of storage, while
Blowfish’s four 8-by-32-bit S-boxes require 4 kilo-
bytes. Certainly input size matters more than out-
put size; an 8-by-64-bit S-box can be stored in 2
kilobytes, while a 16-by-16-bit S-box requires 128
kilobytes. (Note that there is a limit to the advan-
tages of making S-boxes bigger. S-boxes with small
input size and very large output size tend to have
very good linear approximations; S-boxes with suffi-
ciently large outputs relative to input size are guar-
anteed to have at least one perfect linear approxi-
mation [Bih95].)

Twofish used the same solution as Square: mid-sized
S-boxes (8-by-8-bit) used to construct a large S-box
(8-by-32-bit).

6.4.2 Algorithmic S-boxes

S-boxes can either be large tables, like DES,
Khufu/Khafre, and YLCY [YLCY98], or derived
algebraically, like FEAL, LOKI-89/LOKI-91 (and
LOKI97 [Bro98]), IDEA, and SAFER. The advan-
tage of the former is that there is no mathematical
structure that can potentially be used for cryptanal-
ysis. The advantage of the latter is that the S-boxes
are more compact, and can be more easily imple-
mented in applications where the ROM or RAM for
large tables is not available.

Algebraic S-boxes can result in S-boxes that are
vulnerable to differential cryptanalysis: [Mur90]
against FEAL, and [Knu93a, Knu93b] against
LOKI. Higher-order differential cryptanalysis is es-
pecially powerful against algorithms with simple al-
gebraic S-boxes [Knu95b, JK97, SMK98]. Both tab-
ular and algebraic techniques, however, can be used
to generate S-boxes with given cryptographic prop-
erties, simply by testing the results of the generation
algorithm.

In Twofish we tried to do both: we chose to build our
8-by-8-bit S-boxes algorithmically out of random 4-
by-4-bit S-boxes. However, we chose the 4-by-4-bit
S-boxes randomly and then extensively tested the re-
sulting 8-by-8-bit S-boxes against the cryptographic
properties we required. This idea is similar to the
one used in CS-cipher [SV98].

12Despite the algorithm name, NewDES is neither a DES variant nor a new algorithm based on DES.
13The WAKE design has several variants [Cla97, Cla98]; neither the basic algorithm nor its variants have been extensively

cryptanalyzed.

21

6.4.3 Key-dependent S-boxes

S-boxes are either fixed for all keys or key depen-
dent. It is our belief that ciphers with key-dependent
S-boxes are, in general, more secure than fixed S-
boxes.

There are two different philosophies regarding key-
dependent S-boxes. In some ciphers, the S-box is
constructed specifically to ensure that no two entries
are identical—Khufu and WAKE—while others sim-
ply create the S-box randomly and hope for the best:
REDOC II [CW91] and Blowfish [Sch94]. The latter
results in a simpler key schedule, but may result in
weaknesses (e.g., a weakness in reduced-round vari-
ants of Blowfish [Vau96a]). Another strategy is to
generate key-dependent S-boxes from a known se-
cure S-box and a series of strict mathematical rules:
e.g., Biham-DES [BB94].

Most key-dependent S-boxes are created by some
process completely orthogonal to the underlying ci-
pher. SEAL, for example, uses SHA [NIST93] to
create its key-dependent S-boxes. Blowfish uses re-
peated iterations of itself. The results are S-boxes
that are effectively random, but the cost is an enor-
mous performance penalty in key-setup time.14 An
alternative is to build the S-boxes using fairly sim-
ple operations from the key. This results in a much
faster key setup, but unless the creation algorithm
is extensively cryptanalyzed together with the en-
cryption algorithm, unwanted synergies could lead
to attacks on the resulting cipher.

To avoid differential (as well as high-order differ-
ential, linear, and related-key) attacks, we made
the small S-boxes key dependent. It is our belief
that while random key-dependent S-boxes can of-
fer acceptable security if used correctly, the bene-
fits of a surjective S-box are worth the additional
complexities that constructing them entails. So, to
avoid attacks based on non-surjective round func-
tions [BB95, RP95b, RPD97, CWSK98], we made
the 8-by-8-bit S-boxes, as well as the 8-by-32-bit S-
boxes, bijective.

However, there is really no such thing as a key-
dependent S-box. Twofish uses a complex multi-
stage series of S-boxes and round subkeys that are
often precomputed as key-dependent S-boxes for ef-
ficiency purposes. (For example, see Figure 3 on
page 11.) We often used this conceptualization when
carrying out our own cryptanalysis against Twofish.

6.5 The Key Schedule

An algorithm’s key schedule is the mechanism that
distributes key material to the different parts of the
cipher that need it, expanding the key material in
the process. This is necessary for three reasons:

• There are fewer key bits provided as input to
the cipher than are needed by the cipher.

• The key bits used in each round must be
unique to the round, in order to avoid “slide”
attacks [Wag95b].

• The cipher must be secure against an attacker
with partial knowledge or control over some
key bits.

When key schedules are poorly designed, they often
lead to strange properties of the cipher: large classes
of equivalent keys, self-inverse keys, etc. These prop-
erties can often aid an attacker in a real-world at-
tack. For example, the DES weak (self-inverse) keys
have been exploited in many attacks on larger cryp-
tographic mechanisms built from DES [Knu95a], and
the S-1 [Anon95] cipher was broken due to a bad
key-schedule design [Wag95a]. Even worse, they can
make attacks on the cipher easier, and some at-
tacks on the cipher will be focused directly at the
key schedule, such as related-key differential attacks
[KSW96, KSW97]. These attacks can be especially
devastating when the cipher is used in a hash func-
tion construction.
Key schedules can be divided into several broad cate-
gories [CDN98]. In some key schedules, knowledge of
a round subkey uniquely specifies bits of other round
subkeys. In some ciphers the bits are just reused, as
in DES, IDEA, and LOKI, and in others some ma-
nipulation of the round subkeys is required to de-
termine the other round subkeys: e.g., CAST and
SAFER. Other key schedules are designed so that
knowledge of one round subkey does not directly
specify bits of other round subkeys. Either the round
subkey itself is used to generate the other round sub-
keys in some cryptographically secure manner, as in
RC5 and CS-Cipher, or a one-way function is used
to generate the sound subkeys (sometimes the block
cipher itself): e.g., Blowfish, Serpent [BAK98], ICE
[Kwa97], and Shark.
Some simple design principles guided our develop-
ment of the key schedule for Twofish:

• Design the Key Schedule for the Ci-
pher. This is not simply a cryptographic
PRNG grafted onto the cipher; the Twofish

14For example, setting up a single Blowfish key takes as much time as encrypting 520 blocks, or 4160 bytes, of data.

22

key schedule is instead an integral part of the
whole cipher design.

• Reuse the Same Primitives. The Twofish
key schedule’s subkey generation mechanism,
h, is built from the same primitives as the
Twofish round function. This allowed us to
apply much of the same analysis to both the
round function and the subkey generation.
This also makes for a relatively simple picture
of the cipher and key schedule together. It is
reasonable to consider one round’s operations,
and the derivation of its subkeys, at the same
time.

• Use All Key Bytes the Same Way. All
key material goes through h (or g, which is
the same function). That is, the only way a
key bit can affect the cipher is after it defines
a key-dependent S-box. This allows us to ana-
lyze the properties of the key schedule in terms
of the properties of the byte permutations.

• Make It Hard to Attack Both S-box and
Subkey Generation. The key material used
to derive the key-dependent S-boxes in g is de-
rived from the key using an RS code having
properties similar to those of the MDS matrix.
Deriving the key material in this way maxi-
mizes the difficulties of an attacker trying to
mount any kind of related-key attack on the
cipher, by giving him conflicting requirements
between controlling the S-box keys and con-
trolling the subkeys.

6.5.1 Performance Issues

For large messages, performance of the key schedule
is minor compared to performance of the encryption
and decryption functions. For smaller messages, key
setup can overwhelm encryption speed. In the de-
sign of Twofish, we tried to balance these two items.
Our performance criteria included:

• The key schedule must be precomputable for
maximal efficiency. This involves trying to
minimize the amount of storage required to
keep the precomputed key material.

• The key schedule must work “on the fly,” de-
riving each block of subkey material as it is
needed, with as little required memory as pos-
sible.

• The key schedule must be reasonably efficient
for hardware implementations.

• The key schedule must have minimal latency
for changing keys.15

If performance were not an issue, it would make
sense to simply use a one-way hash function to ex-
pand the key into the subkeys and S-box entries, as
is done in Khufu, Blowfish, and SEAL. However, the
AES efficiency requirements make such an approach
unacceptable. This led to a much simpler key sched-
ule with much more complicated analysis.

The key schedule design of some other ciphers has
led to various undesirable properties. These proper-
ties, such as the existence of equivalent keys; DES-
style weak, semi-weak, and quasi-weak keys; and
DES-style complementation properties, do not nec-
essarily make the cipher weak. However, they tend
to make it harder to use the cipher securely. With
our key schedule, we can make convincing arguments
that none of these properties exists.

7 The Design of Twofish

7.1 The Round Structure

Twofish was designed as a Feistel network, because
it is one of the most studied block cipher building
blocks. Additionally, use of a Feistel network means
that the F function need only be calculated in one
direction.16 This means that we were able to use
operations in our F function that are inefficient in
the other direction, and make do with tables and
constants for one direction only. Contrast this with
an SP-network, which must execute its encryption
function in both the forward and backward direc-
tions.

15In its comments on the AES criteria, the NSA suggested that “a goal should be that two blocks could be enciphered with
different keys in virtually the same time as two blocks could be enciphered with the same key” [McD97]. The cynical reader
would immediately conclude that the NSA is concerned with the efficiency of their brute-force keysearch machines. However,
there are implementations where key agility is a valid concern. Key-stretching techniques can always be used to frustrate
brute-force attacks [QDD86, KSHW98]. A better defense, of course, is to always use keys too large to make a brute-force search
practicable, and to generate them randomly.

16In fact, the F function can be non-surjective, as it is in DES or Blowfish.

23

7.2 The Key-dependent S-boxes

A fundamental component of Twofish is the set of
four key-dependent S-boxes. These must have sev-
eral properties:

• The four different S-boxes need to actually be
different, in terms of best differential and lin-
ear characteristics and other kinds of analysis.

• Few or no keys may cause the S-boxes used
to be “weak,” in the sense of having high-
probability differential or linear characteris-
tics, or in the sense of having a very simple
algebraic representation.

• There should be few or no pairs of keys that
define the same S-boxes. That is, changing
even one bit of the key used to define an S-
box should always lead to a different S-box.
In fact, these pairs of keys should lead to ex-
tremely different S-boxes.

7.2.1 The Fixed Permutations q0 and q1

The construction method for building q0 and q1 from
4-bit permutations (specified in Section 4.3.5) was
chosen because it decreases hardware and memory
costs for some implementations, as discussed pre-
viously, without adding any apparent weaknesses to
the cipher. It is helpful to recall that these individual
fixed-byte permutations are used only to construct
the key-dependent S-boxes, which, in turn, are used
only within the h and g functions. In particular, the
individual characteristics of q0 and q1 are not terri-
bly relevant (except perhaps in some related-key at-
tacks), because Twofish always uses at least three of
these permutations in series, with at least two xors
with key material bytes. Consideration was initially
given to using random full 8-bit permutations for
q0 and q1, as well as algebraically derived permuta-
tions (e.g., multiplicative inverses over GF(28)) that
have slightly better individual permutation charac-
teristics, but no substantial improvement was found
when composite keyed S-boxes were constructed and
compared to the q0 and q1 used in Twofish.
The q0 and q1 permutations were chosen by random
search, constructing random 4-bit permutations t0,
t1, t2, and t3 for each. Using the notation of Matsui
[Mat96], we define

DPmax(q) = max
a 6=0,b

Pr
X

[q(X ⊕ a)⊕ q(X) = b]

and

LPmax(q) = max
a,b 6=0

(
2 Pr
X

[X · a = q(X) · b]− 1
)2

where q is the mapping DPmax and LPmax are be-
ing computed for, the probabilities are taken over
a uniformly distributed X, and the operator · com-
putes the overall parity of the bitwise-and of its two
operands. Only fixed permutations with DPmax ≤
10/256, LPmax ≤ 1/16, and fewer than three fixed
points were accepted as potential candidates. These
criteria alone rejected over 99.8 percent of all ran-
domly chosen permutations of the given construc-
tion. Pairs of permutations meeting these criteria
were then evaluated as potential (q0, q1) pairs, com-
puting various metrics when combined with key ma-
terial into Twofish’s S-box structure, as described
below.

The actual q0 and q1 chosen were one of several
pairs with virtually identical statistics that were
found with only a few tens of hours of searching
on Pentium class computers. Each permutation has
DPmax = 10/256 and LPmax = 1/16; q0 has one
fixed point, while q1 has two fixed points.

7.2.2 The S-boxes

Each S-box is defined with two, three, or four bytes
of key material, depending on the Twofish key size.
This is done as follows for 128-bit Twofish keys:

s0(x) = q1[q0[q0[x]⊕ s0,0]⊕ s1,0]
s1(x) = q0[q0[q1[x]⊕ s0,1]⊕ s1,1]
s2(x) = q1[q1[q0[x]⊕ s0,2]⊕ s1,2]
s3(x) = q0[q1[q1[x]⊕ s0,3]⊕ s1,3]

where the si,j are the bytes derived from the key
bytes using the RS matrix. Note that with equal
key bytes, no pair of these S-boxes is equal. When
all si,j = 0, s0(x) = q1[s1(q−1

1 [x])]. There are other
similar relationships between S-boxes. We have not
been able to find any weaknesses resulting from this,
so long as q0 and q1 have no high-probability differ-
ential characteristics.

In some sense this construction is similar to a rotor
machine citeDK85, with two different types of rotor
(q0 and q1). The first rotor is fixed, and the fixed
offset between two rotors specified by a key byte.
We did not find any useful cryptanalysis from this
parallel, but someone else might.

For the 128-bit key, we have experimentally verified
that each N/8-bit key used to define a byte permuta-
tion results in a distinct permutation. For example,
in the case of a 128-bit key, the S-box s0 uses 16 bits
of key material. Each of the 216 s0 permutations

24

defined is distinct, as is also the case for s1, s2, and
s3. We have not yet exhaustively tested longer key
length, but we conjecture that all S-boxes generated
by our construction are distinct. We also conjecture
that this would be the case for almost all choices of
q0 and q1 meeting the basic criteria discussed above.

7.2.3 Exhaustive and Statistical Analysis

Given the fixed permutations q0 and q1, and the def-
initions for how to construct s0, s1, s2, and s3 from
them, we have performed extensive testing of the
characteristics of these key-dependent S-boxes. In
the 128-bit key case, all testing has been performed
exhaustively, which is feasible because each S-box
uses only 16 bits of key material. In many cases,
however, only statistical (i.e., Monte Carlo) testing
has been possible for the larger key sizes. In this
section, we present and discuss these results. It is
our hope to complete exhaustive testing over time
for the larger key sizes where feasible, but the prob-
ability distributions obtained for the statistical tests
give us a fairly high degree of confidence that no
surprises are in store.

Table 4 shows the DPmax distribution for the var-
ious key sizes. A detailed explanation of the for-
mat of this table will also help in understanding the
other tables in this section. An asterisk (∗) next to
a key size in the tables discussed in this section in-
dicates that the entries in that row are a statistical
distribution using Monte Carlo sampling of key bits,
not an exhaustive test. For example, in Table 4,
only the 256-bit key row uses statistical sampling;
the 128-bit and 192-bit cases involve an exhaustive
test. Clearly, the maximum value from a statistical
sample is not a guaranteed maximum. Note that,
for 128-bit keys, each S-box has a DPmax value no
larger than 18/256. The remaining columns give the
distribution of observed DPmax values. Each entry
is expressed as the negative base-2 logarithm of the
fraction of S-boxes with the given value (or value
range), with blank entries indicating that no value
in the range was found. For example, in the N = 128
case only 1 of every 212.0 key-dependent S-boxes has
DPmax = 18/256, while over half (1 in 20.9) have
DPmax = 12/256. These statistics are taken over
all four S-boxes (s0, s1, s2, s3), so a total of 4× 216

(i.e., 256K) S-boxes were evaluated for the 128-bit
key case. Each Monte Carlo sampling involves at
least 216 S-boxes, but in many cases the number is
considerably larger.

Table 5 shows the distribution of LPmax for the
various key sizes. Observe that the vast majority

of all Twofish S-boxes have LPmax < (88/256)2,
although there is a small fraction of S-boxes with
larger values. For 128-bit keys, no Twofish S-box
has an LPmax value greater than (100/256)2, while
the maximum value is somewhat higher for larger
key sizes. Monte Carlo statistics are given for the
larger two key sizes, since the computational load
for computing LPmax is roughly a factor of fifteen
higher than for DPmax.

The distribution of the number of permutation fixed
points for various key sizes is given in Table 6. A
fixed point of an S-box si is a value x for which
x = si(x). This metric does not necessarily have
any direct cryptographic signficance. However, it is
a useful way to verify that the S-boxes are behaving
similarly to random S-boxes, since it is possible to
compute the theoretical distribution of fixed points
for random S-boxes. The probabilities for random
S-boxes is given in the last row. (The probabil-
ity of n fixed points is approximately e−1/n!.) The
Twofish S-box distributions of fixed points over all
keys match theory fairly well.

The metrics discussed so far give us a fair level of
confidence that the Twofish method of constructing
key-dependent S-boxes does a reasonable job of ap-
proximating a random set of S-boxes, when viewed
individually. Another possible concern is how dif-
ferent the various Twofish S-boxes are from each
other, for a given key length. This issue is of par-
ticular interest in dealing with related-key attacks,
but it also has an important bearing on the ability
of an attacker to model the S-boxes. Despite the
fact that the Twofish S-boxes are key-dependent, if
the entire set (or large subsets) of S-boxes, taken as
a black box, are very closely related, the benefit of
key-dependency is severely weakened. As a patho-
logical example, consider a fixed 8-bit permutation
q[x] which has very good DPmax and LPmax val-
ues, but which is used as a key-dependent family
of S-boxes simply by defining sk(x) = q[x] ⊕ k. It
is true that each sk permutation also has good in-
dividual metrics, but the class of s permutations is
so closely related that conventional differential and
linear cryptanalysis techniques can probably be ef-
fectively applied without knowing the key k. The
Twofish S-box structure has been carefully designed
with this issue in mind.

In one class of related-key attacks, an attacker at-
tempts to modify the key bytes in such a way as to
minimize the differences in the round subkey values
Ai, Bi. Since the Twofish S-box structure is used
in computing Ai and Bi, with Me and Mo as key
material, respectively, a measure of the differential

25

− log2(Pr(DPmax = x/256))
Key Size Max Value x = 8 x = 10 x = 12 x = 14 x = 16 x = 18 x = 20 x = 22 x = 24
128 bits 18/256 15.4 1.3 0.9 4.1 8.0 12.0
192 bits 24/256 15.2 1.3 0.9 4.1 8.0 12.2 16.5 20.8 25.0
256 bits∗ 22/256 15.1 1.3 0.9 4.1 8.0 12.2 16.7 22.0

Table 4: DPmax over all keys

− log2(Pr(LPmax = (x/256)2))
Key Size Max Value x = 56..63 64..71 72..79 80..87 88..95 96..103 104..111
128 bits (100/256)2 9.3 1.0 1.2 4.2 8.0 12.4
192 bits∗ (104/256)2 9.3 1.0 1.2 4.2 8.2 12.2 17.0
256 bits∗ (108/256)2 9.4 1.0 1.2 4.2 8.1 12.5 17.4

Table 5: LPmax over all keys.

− log2(Pr(# fixed points = x))
Key Size Max Value x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10
128 bits 8 1.4 1.4 2.4 4.1 6.0 8.2 11.1 14.1 17.0
192 bits 10 1.4 1.4 2.4 4.0 6.0 8.4 10.9 13.8 16.8 19.8 23.4
256 bits∗ 10 1.4 1.4 2.4 4.0 6.0 8.4 10.9 13.7 16.8 21.0 21.0
random 1.4 1.4 2.4 4.0 6.0 8.3 10.9 13.7 16.7 19.9 23.2

Table 6: Number of fixed points over all keys

characteristics of Ai (or Bi) across keys will help us
understand both how different the S-boxes are from
each other and how likely such an attack is to suc-
ceed.

To this end, let us first look at how many consec-
utive values of Ai with a fixed xor difference can
be generated for two different keys. Without loss of
generality, we consider only Ai, and in particular we
consider a change in only the key material Me that
affects one of the four S-boxes. Let yi be the out-
put sequence for one S-box used in generating the
sequence Ai, and the sequence for another key be
y′i. Consider the difference sequence y∗i = yi ⊕ y′i.
For example, in the 128-bit key case, with 16 bits of
key material per S-box, there are about 231 pairs of
distinct keys for each S-box, so there would be 231

such difference sequences, each of length 20. What
is the probability of having a “run” of n consecu-
tive equal values in the sequence? If n can be made
to approach 20, then a related-key attack might be
able to control the entire sequence of Ai values, and,
even worse, our belief in the independence of the
key-dependent S-boxes must be called seriously into
question. Note that an attacker has exactly 16 bits
of freedom for a single S-box in the 128-bit key case,
so intuitively it seems unlikely that he should be able

to force a given difference sequence that is very long.

Table 7 shows the distribution of run lengths of
the same xor difference y∗i for consecutive i. For
random byte sequences, we would theoretically ex-
pect that Pr(xor run length = n) should be roughly
2−8(n−1), which matches quite nicely with the be-
havior observed in the table. It can be seen that
the probability of injecting a constant difference
into more than five consecutive subkey entries is ex-
tremely low, which is reassuring.

Table 8 shows the results of measuring this same
property in a different way. Instead of requiring a
run of n consecutive identical differences, this metric
is similar to a “mini”-DPmax, computed over only
the 20 input values used in the subkey generation
(e.g., 0, 2, 4, . . . , 38). The quantity measured is the
maximum number of equal differences out of the 20
values generated, across key pairs. In other words,
while it may be difficult to generate a large run, is
it possible to generate equal values in a large frac-
tion of the set of differences? The results are again
very encouraging, showing that it is extremely diffi-
cult to force more than five or six differences to be
identical. This also shows that it is not possible to
influence only a few Ai, as that would require many
zero differences.

26

− log2(Pr(xor run length = n))
Key Size Max Value n = 1 n = 2 n = 3 n = 4 n = 5
128 bits 5 0.01 7.98 15.95 23.89 30.00
192 bits∗ 4 0.01 7.98 15.93 23.69
256 bits∗ 5 0.01 7.98 15.93 24.02 30.29

Table 7: Subkey xor difference run lengths

− log2(Pr(max # equal xor differences = n))
Key Size Max Value x = 1 x = 2 x = 3 x = 4 x = 4 x = 6 x = 7
128 bits 7 1.1 0.9 5.9 11.6 17.6 23.9 31.0
192 bits∗ 7 1.1 0.9 5.9 11.7 17.8 23.9 29.0
256 bits∗ 7 1.1 0.9 5.9 11.7 17.7 23.8 29.3

Table 8: “Mini”-DPmax subkey distribution

For every metric discussed here, a similar distribu-
tion using randomly generated 8-bit permutations
has been generated for purposes of comparison. For
example, DPmax was computed for a set of 216

randomly generated permutations, and the result-
ing distribution of DPmax values compared to that
of the Twofish key-dependent S-boxes. For each
metric, the probability distributions looked virtu-
ally identical to those obtained for the Twofish set
of key-dependent S-boxes, except for small fluctua-
tions on the tail ends of the distribution, as should
be expected. This similarity is comforting, as is the
fact that the probability distributions for each met-
ric look quite similar across key sizes. These results
help confirm our belief that, from a statistical stand-
point, the Twofish S-box sets behave largely like a
randomly chosen set of permutations.

7.3 MDS Matrix

The four bytes output from the four S-boxes are mul-
tiplied by a 4-by-4 MDS matrix over GF(28). This
matrix multiply is the principal diffusion mechanism
in Twofish. The MDS property here guarantees that
the number of changed input bytes plus the number
of changed output bytes is at least five. In other
words, any change in a single input byte is guaran-
teed to change all four output bytes, any change in
any two input bytes is guaranteed to change at least
three output bytes, etc. More than 2127 such MDS
matrices exist, but the Twofish MDS matrix is also
carefully chosen with the property of preserving the
number of bytes changed even after the rotation in
the round function.

The MDS matrix used in Twofish has fixed coeffi-

cients. Initially, some thought was given to mak-
ing the matrix itself key-dependent, but such a
scheme would require the verification that the key-
dependent values in fact formed an MDS matrix,
adding a non-trivial computational load to the key
selection and key scheduling process. However, it
should be noted that there are many acceptable
MDS matrices, even with the extended properties
discussed below.

For software implementation on a modern micropro-
cessor, the MDS matrix multiply is normally imple-
mented using four lookup tables, each consisting of
256 32-bit words, so the particular coefficients used
in the matrix do not affect performance. However,
for smart cards and in hardware, “simple” coeffi-
cients, as in Square [DKR97], can make implemen-
tations cheaper and faster. Unlike the MDS matrix
used in Square, Twofish does not use the inverse ma-
trix for decryption because of its Feistel structure,
nor is there a requirement that the matrix be a cir-
culant matrix.

However, because of the rotation applied after the
xor within the round function, it is desirable to se-
lect the MDS matrix carefully to preserve the dif-
fusion properties even after the rotation. For both
encryption and decryption, a right rotation by one
bit occurs after the xor. This direction of rotation
is chosen to preserve the MDS property with respect
to the PHT addition a+2b, since the rotation undoes
the shift applied to b as part of the PHT. It is true
that the most significant bit of b is still “lost” in this
half of the PHT, but the MDS properties for three
of the bytes are still fully guaranteed with respect
to b, and they are met with probability 254/255 for
the fourth byte.

27

The effect of the rotation on the unshifted PHT ad-
ditions also needs to be addressed. A single byte
input change to the MDS matrix will change all four
output bytes, which affect the round function out-
put, but after rotation there is no such guarantee. If
a byte value difference of 1 is one output from the
matrix multiply, performing a 32-bit rotate on the
result will shift in one bit from the next byte in the
32-bit word and shift out the only non-zero bit. The
MDS matrix coefficients in Twofish are carefully se-
lected so that, if a byte difference 1 is output from
the matrix multiply with a single byte input change,
the next highest byte is guaranteed to have its least
significant bit changed too. Thus, if the rotation
shifts out the only original flipped bit, it will also
shift in a flipped bit from the next byte.

The construction used to preserve this property af-
ter rotation is actually very simple. The idea is to
choose a small set of non-zero elements of GF(28)
with the property that, for each pair x, y in the set,
if x∗a = 1, then y ∗a (i.e., y/x) has the least signifi-
cant bit set. Observe that this property is reflexive;
i.e., if x = y, then y/x = 1, so the property holds. It
is intuitively obvious (and empirically verified) that
the probability that two random field elements sat-
isfy this property is roughly one half, so it should
not be difficult to find such sets of elements. Also,
since over 75% of all 4-by-4 matrices over GF(28)
are MDS, the hope of finding such a matrix sounds
reasonable.

A computer search was executed over all primitive
polynomials of degree eight, looking for sets of three
“simple” elements x,y,z with the above property.
Simple in this context means that x ∗ a for arbi-
trary a can be easily computed using at most a few
shifts and xors. Several dozen sets of suitable val-
ues were found, each of which allowed several MDS
matrixes with the three values. The primitive poly-
nomial v(x) = x8 + x6 + x5 + x3 + x0 was selected,
together with the field elements 1, EF, and 5B (us-
ing hexadecial notation and the field element to byte
value correspondence of Section 4). The element EF
is actually β−2 + β−1 + 1, where β is a root of v(x),
and 5B is β−2 + 1, so multiplication by these ele-
ments consists of two LFSR right shifts mod v(x),
plus a few byte xors.

Another constraint imposed on the Twofish MDS
matrix is that no row (or column) of the matrix be
a rotation of another row (or column) of the matrix.
This property guarantees that all single-byte input
differences result in unique output differences, even
when rotations over 8 bits are applied to the output,
as is done in generating the round subkeys. This con-

straint did not seem to limit the pool of candidate
matrices significantly. In fact, the Twofish MDS ma-
trix actually exhibits a much stronger property: all
1020 MDS output differences for single-byte input
changes are distinct from all others, even under bit-
wise rotations by each of the rotation values in the
range 6..26. The subkey generation routine takes
advantage of this property to help thwart related-
key differential attacks. For all single byte input
changes, the rotation of the output 32-bit word B
by eight bits has an output difference that is guar-
anteed to be unique from output differences in the
unrotated A quantity.

There are many MDS matrices containing only
the three elements 1, EF, and 5B. The particular
Twofish matrix was also chosen to maximize the
minimum binary Hamming weight of the output dif-
ferences over all single-byte input differences. This
Twofish MDS matrix guarantees that any single-
byte input change will produce an output Hamming
difference of at least eight bits, in addition to the
property that all four output bytes will be affected.
In fact, as shown in the table below, only 7 of the
1020 possible single-byte input differences result in
output differences with Hamming weight difference
eight; the remaining 1013 differences result in higher
Hamming weights. Also, only one of the seven out-
puts with Hamming weight 8 has its most significant
bit set, meaning that at least eight bits will be af-
fected even in the PHT term T0 + 2T1 for 1019 of
the 1020 possible single-byte input differences. In-
put differences in two bytes are guaranteed to affect
three output bytes, and they can result in an output
Hamming difference of only three bits, with proba-
bility 0.000018; the probability that the output dif-
ference Hamming weight is less than eight bits for
two byte input differences is only 0.00125, which is
less than the corresponding probability (0.0035) for
a totally random binomial distribution.

Hamming Number of Number with
Weight occurrences MSB Set

8 7/1020 1
9 23/1020 4
10 42/1020 15

There are many other MDS matrices, using either
the same or another set of simple field elements, that
can guarantee the same minimum output Hamming
difference, and the particular matrix chosen is repre-
sentative of the class. No higher minimum Hamming
weight was found for any matrices with such simple
elements.

28

It is fairly obvious that this matrix multiply can be
implemented at high speed with minimal cost, both
in hardware and in firmware on a smart card.

It should also be noted that a very different type of
construction could be used to preserve MDS prop-
erties on rotation. Use of an 8-by-8 MDS matrix
over GF(24) will guarantee eight output 4-bit nib-
ble changes for every input nibble change. Because
the changes now are nibble-based, a one-bit rotation
may shift the only non-zero bit of a nibble out of
a byte, but the other nibble remains entirely con-
tained in the byte. In fact, it can easily be seen that
this construction preserves the MDS property nicely
even for multi-bit rotations. Unfortunately, 8-by-8
MDS matrices over GF(24) are nowhere nearly as
plentiful as 4-by-4 matrices over GF(28), so very lit-
tle freedom is available to pick simple coefficients.
The best construction for such a matrix seems to
be an extended RS-(15,7) code over GF(24), which
requires considerably more gates in hardware and
more tables in smart card firmware than the Twofish
matrix. Because of this additional cost, we decided
not to use an 8-by-8 MDS matrix over GF(24).

The actual transformation defined by the MDS ma-
trix is purely linear over GF(2). That is, each of the
output bits is the xor of a subset of the input bits.

7.4 PHT

The PHT operation, including the addition of the
round subkeys, was chosen to facilitate very fast op-
eration on the Pentium CPU family using the LEA
(load effective address) opcodes. The LEA opcodes
allow the addition of one register to a shifted (by
1,2,4,8) version of another register, along with a 32-
bit constant, all in a single clock cycle, with the re-
sult placed in an arbitrary Pentium register. For
best performance, a version of the encryption and
decryption code can be “compiled” for a given key,
with the round subkeys inserted as constant values
in LEA opcodes in the instruction stream. This ap-
proach requires a full instantiation in memory of the
code for each key in use, but it provides a speedup
for bulk encryption.

Instead of using 4 key-dependent S-boxes, a 4-by-4
MDS matrix, and the PHT, we could have used 8
key-dependent S-boxes and an 8-by-8 MDS matrix
over GF(28). Such a construction would be easier
to analyse and would have nicer properties, but it
is much slower in virtually all implementations and
would not be worth it.

7.5 Key Addition

As noted in the previous section, the round subkeys
are combined with the PHT output via addition to
enable optimal performance on the Pentium CPU
family. From a cryptographic standpoint, an xor

operation could have been used, but it would reduce
the best Pentium software performance for bulk en-
cryption. It should be noted that using addition
instead of xor does impose a minor gate count and
speed penalty in hardware, but this additional over-
head was considered to be well worth the extra per-
formance in software. On a smart card, using addi-
tion instead of xor has virtually no impact on code
size or speed.

7.6 Feistel Combining Operation

Twofish uses xor to combine the output of F with
the target block. This is done primarily for sim-
plicity; xor is the most efficient operation in both
hardware and software. We chose not to use addi-
tion (used in MD4 [Riv91], MD5 [Riv92], RIPEMD-
160 [DBP96] and SHA [NIST93]), or a more compli-
cated combining function like Latin squares (used in
DESV [CDN95]). We did not implement dynamic
swapping [KKT94] or any additional complexity.

7.7 Use of Different Groups

By design, the general ordering of operations in
Twofish alternates as follows: 8-by-8 S-box, MDS
matrix, addition, and xor. The underlying alge-
braic operations thus alternate between non-linear
table lookup, a GF(2)-linear combination of the bits
by the MDS matrix, integer addition mod 232, and
GF(2) addition (xor). Within the S-boxes, several
levels of alternating xor and 8-by-8 permutations
are applied. The goal of this ordering is to help de-
stroy any hope of using a single algebraic structure
as the basis of an attack. No two consecutive oper-
ations use the same structure, except for the PHT
and the key addition that are designed to be merged
for faster implementations.

7.8 Diffusion in the Round Function

There are two major mechanisms for providing diffu-
sion in the round function. The first is the MDS ma-
trix multiply, which ensures that each output byte
depends on all input bytes. The two outputs of the
g functions (T0 and T1) are then combined using a
PHT so that both of them will affect both 32-bit

29

Feistel xor quantities. The half of the PHT involv-
ing the quantity T0 + 2T1 will lose the most signif-
icant bit of T1 due to the multiply by two. This
bit could be regained using some extra operations,
but the software performance would be significantly
decreased, with very little apparent cryptographic
benefit. In general, the most significant byte of this
PHT output will still have a non-zero output differ-
ence with probability 254/255 over all 1-byte input
differences.

We cannot guarantee that a single byte input change
to the F function will change 7 or 8 of the output
bytes of F . The reason is that the carries in the
addition of the PHT can remove certain byte differ-
ences. For example, an addition with constant might
turn a difference of 0000018016 into 0000008016. The
chances of this happening depend on the distance
between the two bits that influence each other. A
large reduction in the number of changed bytes is
very unlikely.

7.9 One-bit Rotation

Within each round, both of the 32-bit words that
are xored with the round function results are also
rotated by a single bit. One word is rotated before
the xor, and one after the xor. This structure pro-
vides symmetry for decryption in the sense that the
same software pipeline structure can be applied in
either direction. By rotating a single bit per round,
each 32-bit quantity is used as an input to the round
function once in each of the eight possible bit align-
ments within the byte.

These rotations in the Twofish round functions were
included specifically to help break up the byte-
aligned nature of the S-box and MDS matrix oper-
ations, which we feared might otherwise permit at-
tacks using statistics based on strict byte alignment.
For example, Square uses an 8-by-8-bit permutation
and an MDS matrix in a fashion fairly similar to
Twofish, but without any rotations. An early draft
of the Square paper proposed a very simple and pow-
erful attack, based solely on such byte statistics, that
forced the authors to increase the number of rounds
from six to eight. Also, an attack against SAFER
is based on the cipher’s reliance on a byte structure
[Knu95c].

Choosing a rotation by an odd number of bits en-
sures that each of the four 32-bit words are used as
input to the g function in each of the eight possible
bit positions within a byte. Rotating by only one bit
position helps optimize performance on the Pentium

CPU (which, unlike the Pentium Pro, has a one-
clock penalty for multi-bit rotations) and on smart
card CPUs (which generally do not have multi-bit
rotate opcodes). Limiting rotations to single-bit also
helps minimize hardware costs, since the wiring over-
head of fixed multi-bit rotations is not negligible.

There are three downsides to the rotations in
Twofish. First, there is a minor performance im-
pact (less than 7% on the Pentium) in software due
to the extra rotate opcodes. Second, the rotations
make the cipher non-symmetric in that the encryp-
tion and decryption algorithms are slightly differ-
ent, thus requiring distinct code for encryption and
decryption. It is only the rotations that separate
Twofish from having a “reversible” Feistel structure.
Third, the rotates make it harder to analyze the ci-
pher for security against differential and linear at-
tacks. In particular, they make the simple technique
of merely counting active S-boxes quite a bit more
complicated. On the other hand, it is much harder
for the attacker to analyze the cipher. For instance,
it is much harder to find iterative characteristics,
since the bits do not line up. The rotates also make
it harder to use the same high-probability charac-
teristic several times as the bits get rotated out of
place. On the whole, the advantages were considered
to outweigh the disadvantages.

It is possible to convert Twofish to a pure Feistel
structure by incorporating round-dependent rota-
tion amounts in F , and adding some fixed rotations
just before the output whitening. This might be a
useful view of the cipher for analysis purposes, but
we do not expect any implementation to use such a
structure.

The rotations were also very carefully selected to
work together with the PHT and the MDS matrix
to preserve the MDS difference properties for single
byte input differences to g. In particular, for both
encryption and decryption, the one-bit right rotation
occurs after the Feistel xor with the PHT output.
The MDS matrix was chosen to guarantee that a 32-
bit word rotate right by one bit will preserve the fact
that all four bytes of the 32-bit word are changed
for all single input byte differences. Thus, placing
the right rotation after the xor preserves this prop-
erty. However, during decryption, the rotate right
is done after the xor with the Feistel quantity in-
volving T0 + 2T1. Note that, in this case, the rotate
right puts the 2T1 quantity back on its byte bound-
ary, except that the most significant bit has been
lost. Therefore, given a single input byte difference
that affects only T1, the least significant three bytes
of the Feistel xor output are guaranteed to change

30

after the rotation, and the most significant byte will
change with probability 254/255.
The fact that the rotate left by one bit occurs be-
fore the Feistel xors during encryption guarantees
that the same relative ordering (i.e., rotate right af-
ter xor) occurs during decryption, preserving the
difference-property for both directions. Also, per-
forming one rotation before and one after the Feistel
xor imposes a symmetry between encryption and
decryption that helps guarantee very similar soft-
ware performance for both operations on the Pen-
tium CPU family, which has only one ALU pipeline
capable of performing rotations.

7.10 The Number of Rounds

Sixteen rounds corresponds to 8 cycles, which seems
to be the norm for block ciphers. DES, IDEA, and
Skipjack all have 8 cycles. Twofish was defined to
have 16 rounds primarily out of pessimism. Al-
though our best non-related-key attack only breaks 5
rounds of the cipher, we cannot be sure that undis-
covered cryptanalysis techniques do not exist that
can do better. Hence, we consider 16 rounds to be
a good balance between our natural skepticism and
our desire to optimize performance.
Even so, we took pains to ensure that the Twofish
key schedule works with a variable number of
rounds. It is easy to define Twofish variants with
more or fewer rounds.

7.11 The Key Schedule

To understand the design of the key schedule, it is
necessary to consider how key material is used in
Twofish:

The Whitening Subkeys 128 bits of key mate-
rial are xored into the plaintext block before en-
cryption, and another 128 bits after encryption.
Since the rest of the encryption is a permutation,
this can be seen as selecting among as many as 2256

different (but closely related) 128-bit to 128-bit per-
mutations. This key material has the effect of mak-
ing many cryptanalytic attacks a little more difficult,
at a very low cost. Note that nearly all the added
strength against cryptanalytic attack is added by the
xor of subkeys into the input to the first and last
rounds’ F functions.

The Round Subkeys 64 bits of key material are
combined into the output of each round’s F function

using addition modulo 232. The F function with-
out the round subkey addition is a permutation on
64-bit values; the round subkey selects among one
of 264 closely related permutations in each round.
These subkeys must be slightly different per round,
to prevent a slide attack, as will be discussed below.

The Key-dependent S-boxes To create the S-
boxes, the key is mapped down to a block of data half
its size, and that block of data is used to specify the
S-boxes for the whole cipher. As discussed before,
the key-dependent S-boxes are derived by alternat-
ing fixed S-box lookups with xors of key material.

7.11.1 Equivalence of Subkeys

In this section, we discuss whether different se-
quences of subkeys can give equivalent encryption
functions. Recall that F ′ is the F function without
the addition of the round subkeys. For this analysis
we keep the function F ′ constant. That is, we only
vary the subkeys Ki and not S. The properties of
a Feistel cipher ensure that no pair of 2-round sub-
key sequences can be equivalent for all inputs. It
is natural to ask next whether any pairs of three se-
quential rounds’ subkeys can exist that cause exactly
the same encryption.
For a pair of subkey sequences, (k0, k1, k2) and
(k∗0 , k

∗
1 , k
∗
2), to be equivalent in their effects, every

input block (L0, R0) must encrypt to the same out-
put block (L1, R2) for both sequences of subkeys.
Note that k0 6= k∗0 and k2 6= k∗2 ; as we would other-
wise have two sequences of 2-round keys that would
define the same 2-round encryption function. We
have the following equalities

R1 = R0 ⊕ (k0 + F ′(L0))
R∗1 = R0 ⊕ (k∗0 + F ′(L0))
L1 = L0 ⊕ (k1 + F ′(R1))
L1 = L0 ⊕ (k∗1 + F ′(R∗1))
R2 = R1 ⊕ (k2 + F ′(L1))
R2 = R∗1 ⊕ (k∗2 + F ′(L1))

where⊕ represents bitwise xoring, and + represents
32-bit word-wise addition. Using the two equations
for L1 we get

k1 + F ′(R1) = k∗1 + F ′(R∗1)
δ1 = F ′(R1)− F ′(R∗1)

where δ1 = k∗1−k1 is fixed. Let T = F ′(L0)+k0 and
observe that when L0 goes over all possible values,
so does T . We get

δ1 = F ′(R0 ⊕ T)− F ′(R0 ⊕ (T + δ0)) (1)

31

where δ0 = k∗0 − k0. Note that δ1 and δ0 depend
only on the round keys, and that the equation must
hold for all values of R0 and T . Set T = 0 and look
at the cases R0 = 0 and R0 = δ0. We get

F ′(0)− F ′(δ0) = δ1 = F ′(δ0)− F ′(0) = −δ1

The substraction here is modulo 232 for each of the
two 32-bit words. That leaves us with the following
possible values for δ1:

δ1 ∈ {(0, 0), (0, 231), (231, 0), (231, 231)}

These are the possible difference values at the out-
put of F ′ in equation 1. We can easily convert them
to difference values at the input of the PHT of F ′.
Each of the possible values for δ1 corresponds to ex-
actly one possible value for (δT0 , δT1):

(δT0 , δT1) ∈ {(0, 0), (0, 231), (231, 0), (231, 231)}

We can write down the analogue to equation 1 for
g:

δT0 = g(R′ ⊕ T ′)− g(R′ ⊕ (T ′ + δ′0))

for all R′ and T ′ and where δ′0 is the appropriate half
of δ0. Observe that for the specific values of δT0 that
are possible, subtraction and xor are the same. For
T ′ = 0 this translates in a simple differential equa-
tion

δT0 = g(R′)⊕ g(R′ ⊕ δ′0)

for all R′. We know that g has only one perfect
differential: 0 7→ 0, so we conclude that δ′0 = 0.
Similarly, we can conclude that the other half of δ0
must also be zero, and thus δ0 = 0. This is a con-
tradiction, as k0 6= k∗0 .
We conclude that there are no two sets of 3-round
subkey sequences that result in the same encryption
function.

A Conjecture About Equivalent Subkeys in
Twofish We believe that, for up to 16 rounds of
Twofish, there are no pairs of equivalent round keys,
where equivalent round keys lead to the same en-
cryption/decryption function for all possible inputs.
There simply do not appear to be enough degrees of
freedom in choosing the different subkeys to make
pairs of equivalent subkey sequences in as few as 16
rounds. However, we have been unable to prove this.
We also conjecture that there are no pairs of Twofish
keys that lead to identical encryptions for all inputs.
(Recall that the Twofish keys are used to derive both
subkey sequences and also S-boxes.) The function g
depends only on half the key entropy, but within
that restriction we have verified that no two keys

lead to the same function g. This property does
not guarantee that the round function F has no
key-equivalences (since other key material is added
into the outputs of the PHT), but it provides partial
heuristic evidence for that contention.

7.11.2 Byte Sequences

The subkeys in Twofish are generated by using the
h function, which can be seen as four key-dependent
S-boxes followed by an MDS matrix. The input to
the S-boxes is basically a counter. In this section we
analyze the sequences of outputs that this construc-
tion can generate.
All key material is used to define key-dependent S-
boxes in h, which are then used to derive subkeys.
Each S-box gets a sequence of inputs, (0, 2, 4, . . . , 38)
or (1, 3, 5, . . . , 39). The S-box generates a corre-
sponding sequence of outputs. The corresponding
outputs from the four S-boxes are combined using
the MDS matrix multiply to produce the sequence
of Ai and Bi words, and those words are processed
with the PHT (with a couple of rotations thrown
in) to produce a pair of subkey words. Analyzing
these byte sequences thus gives us important insights
about the whole key schedule.
We can model each byte sequence generated by a
key-dependent S-box as a randomly selected non-
repeating byte sequence of length 20. This allows us
to make many useful predictions about the likelihood
of finding keys or pairs of keys with various interest-
ing properties. Because we will be analyzing the key
schedule using this assumption in the remainder of
this section, we should discuss how reasonable it is
to treat this byte sequence as randomly generated.
As discussed in Section 7.2.3 we have not found any
statistical deviations between our key-dependent S-
boxes and the random model in any of our extensive
statistical tests.
We are looking at 20-byte-long sequences of distinct
bytes. There are 256!/236! of those sequences, which
is close to 2159.

7.11.3 Equivalent S-box Keys

We have verified that there are no equivalent S-box
keys that generate the same sequence of 20 bytes. In
the random model, the chance of this happening for
the N = 256 case is about 263 · 2−159 = 2−96. This
is the chance of such equivalent S-boxes existing at
all.
In fact, if we peel off one layer of our q construction
and assume the rest of the construction is random,

32

we can improve that bound. Without loss of gener-
ality we look at17:

s0(x) = q0[q0[q1[q1[q0[x]⊕ k0]⊕ k1]⊕ k2]⊕ k3]

Identical sequences are possible only if the inputs to
that last q0 fixed permutation are identical for both
sequences. That means that the task of finding a
pair of identical sequences comes down to a simple
task: finding a pair of (k0, k1, k2) byte values that
leads to a pair of sequences before the xor with k3
that have a fixed xor difference. Then, k3 can be
changed to include that xor difference, and identical
sequences of inputs will go into that last q0 S-box.
Let

t[i] := q0[q1[q1[q0[i]⊕ k0]⊕ k1]⊕ k2]

The goal is to find a pair of t[i] sequences such that

t[i]⊕ t∗[i] = constant

Let us assume that t generates a random sequence.
The chances of any pair of t, t∗ generating such a
constant difference is about 2−151. This brings the
chance of finding a pair with such a constant differ-
ence down to 247 · 2−151 = 2−104.

7.11.4 Byte Difference Sequences

Let us consider the more general problem of how
to get a given 20-byte difference sequence between
a pair of S-boxes. Suppose we have two S-boxes,
each defined using 32 bits of key material, which
are not equal, but which must be chosen to give us
a given difference sequence in the xor of their byte
sequences. We can estimate the probability of a pair
of 4-byte inputs existing with the desired xor differ-
ence sequence as 263 · 2−159 = 2−96. Note that this
is the probability that such a pair of inputs exists,
not the probability that a random pair of keys will
have this property.

7.11.5 The A and B Sequences

From the properties of the byte sequences, we can
discuss the properties of the A and B sequences gen-
erated by each key M .

Ai = MDS(s0(i,M), s1(i,M), s2(i,M), s3(i,M))

Since the MDS matrix multiply is invertible, and
since i is different for each round’s subkey words gen-
erated, we can see that no A or B value can repeat
itself.

Similarly, we can see from the construction of h that
each key byte affects exactly one S-box used to gen-
erate A or B. Changing a single key byte always
alters every one of the 20 bytes of output from that
S-box, and so always alters every word in the 20-
word A or B sequence to which it contributes.

Consider a single byte of output from one of the S-
boxes. If we cycle any one of the key bytes that con-
tributes to that S-box through all 256 possible val-
ues, the output of the S-box will also cycle through
all 256 possible values. If we take four key bytes
that contribute to four different S-boxes, and we cy-
cle those four bytes through all possible values, then
the result of h will also cycle through all possible
values. This proves that A and B are uniformly dis-
tributed for all key lengths, assuming the key M is
uniformly distributed.

7.11.6 Difference Sequences in A and B

Let us also consider difference sequences. If we have
a specific difference sequence we want to see in A,
we are faced with an interesting problem: since the
MDS matrix multiply is xor-linear, each desired
output xor from the matrix multiply allows only
one possible input xor. This means that:

1. A zero output xor difference in A can occur
only with a zero output xor difference in all
four of the byte sequences used to build A.

2. Only 1020 possible output differences (out of
the 232) in Ai can occur with a single “active”
(altered) S-box. Most differences require all
four S-boxes used to form Ai to be active.

3. Each desired output xor in A requires a spe-
cific output xor in each of the four byte se-
quences used to form A. This means that get-
ting any desired difference sequence into all 20
Ai values requires getting a desired xor se-
quence into all four 20-byte sequences. (Note
that if the desired output xor in Ai is an ap-
propriate value, up to three of the four byte
sequences can be identical without much trou-
ble, simply by leaving their key material un-
changed.) As mentioned above, this is very
unlikely to be possible for a randomly chosen
difference pattern in the A sequence. (There
are of course difference sequences of Ai’s that
can occur.)

17For ease of discussion, we number the key bytes as k0..k3 going into one S-box. The actual byte ordering for s0 and a
256-bit key’s subkey-generating S-box is k0, k8, k16, k24. The numbering of the key bytes has no effect on the security arguments
in this section.

33

The above analysis is of course also valid for the B
sequence.

7.11.7 The Sequence (K2i,K2i+1)

As Ai and Bi are uniformly distributed (over all
keys), so are all the Ki. As all pairs (Ai, Bi) are
distinct, all the pairs (K2i,K2i+1) are distinct, al-
though it might happen that Ki = Kj for any pair
of i and j.

7.11.8 Difference Sequences in the Subkeys

Difference sequences in A and B translate into dif-
ference sequences in (K2i,K2i+1). However, while it
is natural to consider A and B difference sequences
in terms of xor differences, subkeys can reasonably
be considered either as xor differences or as differ-
ences modulo 232. Thus, we may discuss difference
sequences:

D[i,M,M∗] = Ki,M −Ki,M∗

X[i,M,M∗] = Ki,M ⊕Ki,M∗

where the difference is computed between the key
value M and M∗.

7.11.9 XOR Differences in the Subkeys

Each round, the subkeys are added to the results of
the PHT of two g functions, and the results of those
additions are xored into half of the cipher block. An
xor difference in the subkeys has a fairly high prob-
ability of passing through the addition operation and
ending up in the cipher block. (The probability of
this is determined by the Hamming weight of the
xor difference, not counting the highest-order bit.)
However, to get into the subkeys, a xor difference
must first pass through the first addition.
Consider

x+ y = z

(x⊕ δ0) + y = z ⊕ δ1

Let k be the number of bits set in δ0, not counting
the highest-order bit. Then, the highest probability
value for δ1 is δ0, and the probability that this will
hold is 2−k. This is true because addition and xor

are very closely related operations. The only differ-
ence between the two is the carry between bit posi-
tions. If flipping a given bit changes the carry into
the next bit position, this alters the output xor dif-
ference. This happens with probability 1/2 per bit.
The situation is more complex for multiple adjacent

bits, but the general rule still holds: for every bit in
the xor difference not in the high-order bit position,
the probability that the difference will pass through
correctly is cut in half.
For the subkey generation, consider an xor differ-
ence, δ0, in A. This affects two subkey words:

K2i = Ai +Bi

K2i+1 = ROL(Ai + 2Bi, 9)

where the additions are modulo 232. If we assume
these xor differences propagate independently in
the two subkeys (which appears to be the case), we
see that this leads to an xor difference of δ0 in the
even subkey word with probability 2−k, and the xor

difference ROL(δ0, 9) in the odd subkey with the
same probability. The most probable xor difference
in the round’s subkey block thus occurs with prob-
abiity 2−2k. A desired xor difference sequence for
all 20 pairs of subkey words is thus quite difficult to
get to work when k ≥ 3, assuming the desired xor

difference sequence can be created in the A sequence
at all.
When the xor difference is in B, the result is slightly
more complicated; the most probable xor difference
in a round’s pair of subkey words may be either
2−(2k−1) or 2−2k, depending on whether or not the
xor difference in B covers the next-to-highest-order
bit.

7.11.10 Differences in the Subkeys

An xor difference in A or B is easy to analyze in
terms of additive differences modulo 232: an xor

difference with k active bits has 2k equally likely
additive differences. Note that if we have a addi-
tive difference in A, we get it in both subkey words,
just rotated left nine bits in the odd subkey word.
Thus, k-bit xor differences lead to a given additive
difference in a pair of subkey words with probabil-
ity 2−k. (The rotation does not really complicate
things much for the attacker, who knows where the
changed bits are.)
Note that when additive subkey differences modulo
232 are used in an attack, they survive badly through
the xor with the plaintext block. We estimate that
xor differences are much more likely to be directly
useful in mounting an attack.

7.11.11 Properties of the Key Schedule and
Cipher

One NIST requirement is that the AES candidates
have no weak keys. Here we argue that Twofish has

34

none.

Equivalent Keys A pair of equivalent keys,
M,M∗, is a pair of keys that encrypt all plaintexts
into the same ciphertexts. We are almost certain
that there are no equivalent keys in Twofish. There
is no pair of keys, M,M∗, that gives the same sub-
key sequence. This is easy to see; to get identical
subkeys, we have to get an identical A and B se-
quence at the same time, which requires getting all
eight of the key scheduling S-boxes to give the same
output for the same input for two different keys. We
have verified that this cannot be done.
It is conceivable that different sequences of subkeys
and different S-boxes in g could end up producing
the same encryption function, thus giving equiva-
lent keys. This seems extremely unlikely to us, but
we cannot prove that such equivalent keys do not
exist.

Self-Inverse Keys Self-inverse keys are keys for
which encrypting a block of data twice with the same
key gives back the original data. We do not believe
that self-inverse keys exist for Twofish. Keys cannot
generate a self-inverse sequence of subkeys, because
the same round subkey value can never appear more
than once in the cipher. Again, it is conceivable
that some keys are self-inverse despite using differ-
ent subkeys at different points, but it is extremely
unlikely.

Pairs of Inverse Keys A pair of inverse keys is a
pair of keys M0,M1, such that EM0(EM1(X)) = X,
for all X. Pairs of these keys that have identical
subkeys, just running backwards, are astronomically
unlikely to exist at all. For this to work, each S-box
must have a pair of keys that reverses it. This is
a kind of collision property; for each S-box, it has
probability 2−96 of existing at all.

Simple Relations A key complementation prop-
erty exists when:

EM (P) = C ⇒ EM ′(P ′) = C ′

where P ′, C ′, and K ′ are the bitwise complement
of P,C, and K, respectively. No such property has
been observed for Twofish.
More generally, a simple relation [Knu94b] is defined
as:

EM (P) = C ⇒ Ef(M)(g(P,M)) = h(C,M)

where f , g, and h are simple functions. We have
found no simple relations for Twofish, and strongly
doubt that they exist.

7.11.12 Key-dependent Characteristics and
Weak Keys

The concept of a key-dependent characteristic seems
to have been introduced in [BB93] in their cryptanal-
ysis of Lucifer, and also appears in [DGV94a] in an
analysis of IDEA.18 The idea is that certain iterative
properties of the block cipher useful to an attacker
become more effective against the cipher for a spe-
cific subset of keys.

A differential attack on Twofish may consider xor-
based differences, additive differences, or both. If an
attacker sends xor differences through the PHT and
subkey addition steps, his differential characteristic
probabilities will be dependent on the subkey values
involved. In general, low-weight subkeys will give
an attacker some advantage, but this advantage is
relatively small. (Zero bits in the subkeys improve
the probabilities of cleanly getting xor-based differ-
ential characteristics through the subkey addition.)
Since there appears to be no special way to choose
the key to make the subkey sequence especially low
weight, we do not believe this kind of key-dependent
differential characteristic will have any relevance in
attacking Twofish.

A much more interesting issue in terms of key-
dependent characteristics is whether the key-
dependent S-boxes are ever generated with espe-
cially high probability differential or high bias linear
characteristics. The statistical analysis presented
earlier shows that the best linear and differential
characteristics over all possible keys are still quite
unlikely.

Note that the structure of both differential and
linear attacks in Twofish is such that such at-
tacks appear to generally require good characteris-
tics through at least three of the four key-dependent
S-boxes (if not all four), so a single high-probability
differential or linear characteristic for one S-box will
not create a weakness in the cipher as a whole.

18See [Haw98] for further cryptanalysis of IDEA weak keys.

35

7.12 Reed-Solomon Code

The RS structure helps defend against many possible
related-key attacks by diffusing the key material in
a direction “orthogonal” to the flow used in comput-
ing the 8-by-8-bit S-boxes of Twofish. For example,
a single byte change in the key is guaranteed to affect
all four key-dependent S-boxes in g. Since RS codes
are MDS [MS77], the minimum number of different
bytes between distinct 12-byte vectors generated by
the RS code is guaranteed to be at least five. Notice
that any attempt in a related-key attack to affect
only a single byte in the computation of A or B is
guaranteed to affect all four bytes in the computa-
tion of T0 and T1. The S-box keys are used in reverse
order from the associated key bytes so that related-
key material is used in a different order in the round
function than in the subkey generation.
The reversible RS code used in Twofish was cho-
sen via computer search to minimize implementation
cost. The code generator polynomial is

x4 + (α+
1
α

)x3 + αx2 + (α+
1
α

)x+ 1

where α is a root of the primitive polynomial w(x)
used to define the field.
Because all of these coefficients are “simple,” this RS
computation is easily performed with no tables, us-
ing only a few shifts and xor operations; this is par-
ticularly attractive for smart cards and hardware im-
plementations. This computation is only performed
once per key schedule setup per 64 bits of key, so
the concern in choosing an RS code with such sim-
ple coefficients was not the performance overhead,
but saving ROM space or gates. Precomputing the
RS remainders requires only 8 bytes of RAM on a
smart card for 128-bit keys.
Note that the RS matrix multiply can be imple-
mented as a simple loop using the generator polyno-
mial without storing the coefficients of the RS ma-
trix.

8 Cryptanalysis of Twofish

We have spent over one thousand man-hours at-
tempting to cryptanalyze Twofish. A summary of
our successful attacks is as follows:

• 5-round Twofish (without the post-whitening)
with 222.5 chosen plaintext pairs and 251 com-
putations of the function g.

• 10-round Twofish (without the pre- and post-
whitening) with a chosen-key attack, requiring
232 chosen plaintexts and about 211 adaptive
chosen plaintexts, and about 232 work.

The fact that Twofish seems to resist related-key at-
tacks well is arguably the most interesting result, be-
cause related-key attacks give the attacker the most
control over the cipher’s inputs. Conventional crypt-
analysis allows an attacker to control both the plain-
text and ciphertext inputs into the cipher. Related-
key cryptanalysis gives the attacker an additional
way into a cipher: the key schedule. A cipher that
is resistant to attacks with related keys is necessarily
resistant to simpler techniques that only involve the
plaintext and ciphertext.19

Based on our analysis, we conjecture that there ex-
ists no more efficient attack on Twofish than brute
force. That is, we conjecture that the most effi-
cient attack against Twofish with a 128-bit key has a
complexity of 2128, the most efficient attack against
Twofish with a 192-bit key has a complexity of 2192,
and the most efficient attack against Twofish with a
256-bit key has a complexity of 2256.

8.1 Differential Cryptanalysis

This attack breaks a 5-round Twofish variant with a
128-bit key, without the post-whitening, with 222.5

chosen plaintexts and 251 work. Due to the high
computational requirements, we have not imple-
mented this attack, though we have validated some
of its elements. We also discuss an attack on four
rounds of Twofish with no post-xor requiring 232

work, and attacks on a Twofish variant with fixed S-
boxes breaking six rounds with 267 work, and break-
ing seven rounds with 2131 work. None of the attacks
appears to be extensible to enough rounds to pose
any substantial threat to the full 16 round Twofish.

8.1.1 Overview of the Attack

The general idea of the attack is to force a character-
istic for the F function of the form (a, b)→ (X, 0) to
occur in the second round. We realize this character-
istic internally by causing the same low Hamming-
weight xor difference to occur in the outputs of both
g computations in the second round of the cipher.
When this happens, and there are k bits in that
xor difference, there is a 2−k probability that the

19We have discussed the relevance of related-key attacks to practical implementations of a block cipher in [KSW96, KSW97].
Most importantly, related-key attacks affect a cipher’s ability to be used as a one-way hash function.

36

output of the PHT will be unchanged in one of its
two words. That, in turn, leads to a detectable pat-
tern in the output difference from the third round,
and thus to a detectable pattern (with a great deal
of work) in the output difference in the output from
the cipher’s fifth round.

8.1.2 The differential

The attack requires that we get a specific, pre-
dictable difference sequence. We choose:

r ∆Rr,0 ∆Rr,1 ∆Rr,2 ∆Rr,3

0 0 0 a′ b′

1 a b 0 0
2 0 X a b
3 Y Z 0 X
4 Q R Y Z
5 S T Q R

where the table gives the difference patterns for
the round values for each of the 5 rounds, and
where a′ = ROL(a, 1), b′ = ROR(b, 1). We have
Z = ROL(a, 1)⊕ F2,1, and the low-order bit of F2,1
is guaranteed to be zero; also, we choose a so that
the low-order bit of ROL(a, 1) is also zero. Then
the difference Z is detectable, because the low-order
bit of Z is always zero. To recognize right pairs, we
shall (roughly speaking) guess the last-round sub-
key and decrypt up one round, checking whether the
low-order bit of the difference is as expected. There
are also several other ways to distinguish the Y, Z
difference, but they do not change the difficulty of
the attack. Note that X, Y , Z, S, T , Q, and R are
all differences whose values we do not care about, so
long as the low-order bit of Z is always zero.
The only critical event for this attack occurs at r =
2, where we need the characteristic (a, b) → (0, X)
to happen with high probability. Based on the prop-
erties of the MDS matrix, we know that there are
three single-byte output xors for s0 that lead to an
output xor of g with Hamming weight of only 8. If
the same one of those differences goes into the MDS
matrix in both g computations in the second round,
then, with probability 2−8, we get an offsetting pair
of values in the two g outputs; one g output has some
value added to it modulo 232, and the other output
has the same value subtracted from it. When the
outputs go through the PHT, they lead to only one
output word from the whole F being changed, which
is what makes this attack possible. Therefore, we
choose a = (α, 0, 0, 0) to be a single-byte difference
in s0, and b = ROR(a, 8) so that the single-byte
difference into the second g computation in round 2
lines up with the single-byte difference in a.

The thing that makes this attack hard is getting that
event to occur several times in succession. We choose
input structures to guarantee that, after 222.5 cho-
sen plaintexts, we are very likely to get at least one
batch of 2048 “right pairs,” which have the 5-round
differential characteristic shown above. With 2048
successive events of this kind, we can mount an at-
tack in which we attempt to recover the S-box en-
tries. When our guess is successful, these will be
correct, and we will be able to recover most of the
key.

8.1.3 The Input Structure

The input structure works as follows: The input pair
is

(A,B,C,D), (A∗, B∗, C∗, D∗)

The input structures we use must thus accomplish
two things:

1. Select 2n plaintext pairs in such a way that
there is a high probability of at least one pair
being a right pair. Recall that a right pair is
a pair that follows the whole differential char-
acteristic described above.

2. For each plaintext pair generated in the pre-
vious step, generate about 2048 related plain-
text pairs, such that if the first plaintext pair
is a right pair, so are all 2048 related plaintext
pairs.

The first step allows us to get the characteristic
through; the second step allows us to mount the
whole 5-round attack, by giving us enough data to
recover the low bits of the S-box entries.

Getting One Potential Right Pair Let us con-
sider pairs of inputs to the F function in the second
round. We must first get a desired xor difference to
occur in the output of the active S-box of the attack,
inside the g function computation. This xor differ-
ence must occur in the output of the active S-box
s0 in both parallel g functions in the second round’s
F function. We will call a pair of texts for which
this happens a potential right pair. We expect there
to be between three and four output xor differences
from s0 that will lead to some 8-bit output xor dif-
ference from the whole g function, and we do not
care which of these differences we hit. However, we
do not know s0, and so we cannot expect to choose
the best bytewise input difference to s0 to get one of
our desired xor differences.

37

Simulations show that, with a randomly selected s0,
a randomly selected (non-zero) input xor difference
has about a 1/2 probability of causing any desired
output xor difference, when it is tried on all 256
possible input values. (That is, s0[i]⊕ s0[i⊕ δ] will
hit any desired output xor with probability about
1/2, for any nonzero δ, when i is stepped through all
possible byte values.) Our structure attempts to get
this sequence of inputs into the same byte position
in both parallel g functions in the second round’s F
function at the same time. This requires 256 differ-
ent input pairs, there is a probability of 1/2 of one
of them being a potential right pair for each of the
three or four useful s0 output xors. This will gen-
erate a potential right pair with probability 7/8 if
there are three useful s0 output xors.

There is a complication to all this. The second
round’s F function input is the right half of the
plaintext, xored with the first round’s F function
output. Since we do not know the first round’s F
function output, we cannot directly control the in-
puts to the second round. Instead, we must guess
the xor of the high-order byte of each word of the F
function output. (This ignores the input whitening,
but that merely offsets our guess and has no effect.)
This means that, to have at least a 7/8 probability
of getting one potential right pair, we must try 216

different input pairs.

Getting Right Pairs from Potential Right
Pairs A potential right pair has the property that
it is getting the same xor difference in the output
of both parallel g functions in the second round. Be-
cause this xor difference has a Hamming weight of
only 8, the probability is at least 2−8 that the two g
functions will have a very useful relationship mod-
ulo 232: one g function will have some value added
to it modulo 232; the other g function in the same
plaintext will have that value subtracted from it.

Consider two random values, U and V . If we xor

some nonzero value with Hamming weight 8, T , into
both, it is possible that each time a bit in U is
changed from a zero to a one, the corresponding bit
in V is changed from a one to a zero. When this
happens:

U + V = (U ⊕ T) + (V ⊕ T) (2)

This is what happens in a right pair.

For any U and T , the values of V for which this holds
are characterized by (U⊕T⊕V)∧T = 0 where the ∧
is the bitwise-and operation. That is, in all bit posi-
tions where T has a 1-bit, the bit values of U and V

must be opposite. Looking only at one bit position,
xoring T into both U and V changes one of the bits
to be added from zero to one, and the other bit to
be added from one to zero. Thus, the result remains
the same. When T has a Hamming weight of 8, then
2−8 of all V values will satisfy equation 2 for given
U and T .
From a single potential right pair, we must now try
many different values for the input to the second g
function in the second round, without altering the
high-order byte values. When we try about 256 dif-
ferent values of this kind with a potential right pair,
we expect to get a real right pair. This can be
done by changing any of the bytes that go to the
second round’s second g function, without changing
any other bytes. This means that, from potential
right pair (A,B,C,D), (A∗, B∗, C∗, D∗), we derive
a new potential right pair by leaving the relation-
ship between the pair the same, but altering D in
its low-order two bytes.
Because we do not know which of the plaintext pairs
described above has the potential right pair, we must
apply this process to all of them. Thus, we gener-
ate 256 different plaintext pairs for each of the 216

plaintext pairs we already have, giving 224 plaintext
pairs. Out of all this, we expect to get at least one
right pair.
In Section 8.3.1, we found empirically that a char-
acteristic of the form (a, b) → (0, X) for the round
function has a probability of about 2−20. This allows
us to improve the probability of the characteristic for
the F function, and reduce the number of plaintext
pairs needed to about 220.

Turning One Right Pair into 2048 Right Pairs
We now have 220 plaintext pairs, of which at least
one is, with fairly high probability, a right pair. Un-
fortunately, to mount the 5-round attack, we need
a batch of 2048 such pairs. The reason we need
2048 pairs is that we will recover two bits of infor-
mation about each entry in each S-box; this makes
for 2 · 4 · 256 = 2048 unknown bits, and each of the
2048 pairs give us one bit of information on those un-
knowns. Once we have recovered information on all
(or most) S-box entries, we can then readily recover
the keying material entering each S-box by brute
force.
Consider, again, equation 2. We already saw that
this equation is equivalent to (U ⊕ T ⊕ V) ∧ T = 0.
This implies ((U ⊕W)⊕ T ⊕ (V ⊕W))∧ T = 0, for
any value of W . So if we have a (U, V, T) that satis-
fies equation 2, then (U ⊕W,V ⊕W,T) also satisfies
that equation for any value of W .

38

This gives us a way to derive many plaintext pairs
from one right pair. If we have a right pair
(A,B,C,D), (A∗, B∗, C∗, D∗), then we can generate
a new right pair, (Ai, Bi, Ci, Di), (A∗i , B

∗
i , C

∗
i , Di).

To do this, we must manipulate the Ci, Di values in
such a way that the same xor difference occurs in
the output of both g functions in the second round.
In doing this, we face the same constraints as in get-
ting a desired output xor difference from s0, and
so we use the same solution: send in the same byte
inputs to s1 in C and D. We then alter the byte in-
puts to s1 in the altered Ci and Di in the same way,
so that the same actual pair of inputs occurs in s1
in both g functions. This is guaranteed to give the
same output xor in both g functions. The C∗i , D

∗
i

values have the same relationship to the Ci, Di val-
ues as do the C∗, D∗ values to the C,D values.

This introduces still one more complication to our
input structure. We again do not know the out-
put from the first round’s F function, and so do not
know how to get identical bytes into s1 in the second
round. We must try 256 different possible values in
our inputs, to deal with all possible byte xors be-
tween the s1 input in C and in D in the second
round. This increases the total number of batches
of plaintext pairs requested by a factor of 256.

Summary of the Input Structure To get a five
round attack to work, the input structure is highly
complex. We thus summarize how it is built:

1. We fix A and B throughout the attack.

2. Let the bytes of C,D be denoted by
(c0, c1, c2, c3),(d0, d1, d2, d3). We fix c3, d2, d3.

3. We let c1 range over all possible values, and
force d1 = c1.

4. We let c2 range over 16 possible values.

5. We let the pair (c0, d0) range over any 1450
possible values; those values can be arbitrary,
so long as they are distinct.

6. Finally, we form all 28 · 16 · 1450 = 222.5 possi-
ble combinations of c1, d1, c2, (c0, d0), and get
the encryption of the 222.5 resulting plaintexts.
This gives us 244 possible plaintext pairs which
can be chosen from the set of available texts;
we shall use them as described below. The in-
tuition is that 244 > 218 · 256 · 2048, so it is
plausible that there could be enough plaintext
pairs, if the input structure is well-chosen.

Using the Structure We shall describe how we
use the available plaintexts to construct the neces-
sary plaintext pairs. First, we guess the value v of
the byte xor mentioned above (used to ensure that
the s1 inputs are the same in round 2). From now
on, we shall think of v as fixed. We can restrict our
attention to those plaintext pairs (C,D), (C∗, D∗)
with c1 ⊕ c∗1 = v; for those pairs, we’ll also have
d1 ⊕ d∗1 = v for free; and those two relations ensure
that the byte inputs into s1 match up in the second
round as desired if we have guessed v correctly. This
gives us about 244/28 = 236 plaintext pairs with ap-
propriate values of (c1, d1), (c∗1, d

∗
1). We shall also

insist that c2 = c∗2; this reduces the number of us-
able plaintext pairs to 236/16 = 232.

Next let’s look for a right pair. Suppose that some
value of (C,D), (C∗, D∗) leads to a right pair. Then
we note that what makes this a right pair depends
only on (c0, d0), (c∗0, d

∗
0). Therefore, given any one

right pair, you can easily get a batch of 232/14502 =
2048 right pairs by fixing (c0, d0), (c∗0, d

∗
0) and letting

c1, c
∗
1, c2, c

∗
2 range over all possible values such that

c1 ⊕ c∗1 = v and c2 = c∗2.

Based on these observations, we try each of the 14502

possibilities for (c0, d0), (c∗0, d
∗
0) in turn, testing each

of them for a right pair. When we find one right
pair, the structure ensures we’ll find 2048 simulta-
neous right pairs.

8.1.4 Recovering Key Material

We describe next how to use a batch of 2048 simul-
taneous right pairs to recover all of the key mate-
rial entering the S-boxes. We focus on one value of
(c0, d0), (c∗0, d

∗
0), considering it fixed; the issue is how

to identify whether it contains 2048 right pairs, and
if so, how to recover key material.

Suppose we knew we had a batch of right pairs.
Then, the difference T is visible from a ciphertext
pair, and T = ROL(Z, 1) ⊕ ∆F4,1. Of course, we
know that the low-order bit of Z is zero; therefore,
we need only look at T and F4,1 mod 4. We let
t0, t1 be the outputs of the two g functions in round
four, so that F4,1 = t0 + 2t1 + K17 mod 232. We
guess the low-order bit of K17, so that the low-order
bit of F4,1 depends only on the low-order bit of t0,
and the next-lowest bit of F4,1 depends only on an
xor of the low-order bit from t1, the next-lowest
bit from t0 (and possibly the low-order bit of t0, de-
pending on K17 mod 2). This, in turn, means that
the next-lowest bit of the observable difference T de-
pends only on the xor of low-order bits from the g
function outputs.

39

At this stage, we could guess the key material en-
tering the S-boxes, compute the low-order bits of
t0 and t1 for each ciphertext pair, and check our
guess against the observed values of T . However,
this would already require 264 work for a 128-bit
key, and 2128 work for a 256-bit key, which is too
high for comfort. Therefore, we propose an alter-
nate analysis method with much lower complexity.

Our key recovery technique is based on establish-
ing and solving linear equations. We construct
2 · 4 · 256 = 2048 formal unknowns xi,j,k ∈ GF(2) as
two linear combinations on each of the 256 entries
in each of the four S-boxes. For example, x0,3,17
would represent the low-order bit of the output of
the MDS matrix when applied to s3(17); similarly
for the other x’s. The main observation is that
the observable difference T gives us one equation
on those unknowns, for each ciphertext pair which
arises from a right pair. This is true because the low-
order bit of t0 is obtained as a GF(2)-linear combi-
nation of x’s, namely x0,0,p⊕x0,1,q⊕x0,2,r⊕x0,3,s if
the input to g is (p, q, r, s). With this idea in mind,
we use our batch of 2048 pairs to generate 2048 lin-
ear equations on the 2048 unknowns. This system
can be solved by standard linear algebra techniques
(such as Gaussian elimination, although a more so-
phisticated algorithm is more appropriate since we
will have a very sparse matrix).

Therefore, our algorithm for identifying right pairs
and recovering key material is as follows. Look at
the 2048 candidate pairs generated by one value of
(c0, d0), (c∗0, d

∗
0), using them to generate a system of

2048 linear equations on 2048 unknowns. If this sys-
tem of linear equations has no solution, then we
know that those candidate pairs do not represent
right pairs, and we may move on to another value of
(c0, d0), (c∗0, d

∗
0). (When we are looking at the wrong

value of (c0, d0), (c∗0, d
∗
0), the system of linear equa-

tions will be inconsistent with good probability, and
thus the cost of filtering should not be too high.)
Otherwise, we solve the system of linear equations,
thus obtaining two bits of information on each S-
box entry (or on most of them). This enables us
to isolate the key material entering each S-box, and
solve for each S-box in turn. The key material enter-
ing, say, s0 can be recovered by a brute force search
using the known values of x·,0,·; this between 216

work (for a 128-bit key) and 232 work (for a 256-
bit key). (Alternatively, the key material entering
s0 could be recovered by a table lookup in a 216–
232-entry table.) If some S-box does not admit any
choice of keys, then we can also reject the batch of
2048 candidate pairs, and move on to another value

of (c0, d0), (c∗0, d
∗
0). However, when we finally en-

counter a right pair, this procedure will recover all
of the key material entering the S-boxes. Finally,
the rest of the key can be recovered by other tech-
niques; for example, see below for a more effective
differential attack which works when the S-boxes are
known.
In the end, we reject each wrong batch of pairs
with about 20482 work, on average, and recover the
key material from the right pairs with at most 232

work. This leads to a total work factor of about
14502 · 20482 · 256 + 232 = 251; in addition, the at-
tack needs about 222.5 chosen plaintexts.

8.1.5 Refinements and Extensions

Attacking Four Rounds The above structure
can be used in a much easier 4-round attack. The
attacker can immediately rule out all but the right
batch of ciphertext pairs, since he can see the Z dif-
ference word directly. He can then mount a 232 effort
search for S; the right key will reveal an unchanged
low-order bit in A after g is computed. The total
work expected is 232 trial g computations.

Known g Keys We can also consider a variant of
Twofish with known S-boxes in g. In this case, we
can use the same basic attack, but push it through
more rounds.
Consider a 6-round Twofish variant with this input
structure. To expose the low-order bit of the Z dif-
ference, we must now guess the last round’s subkey.
A correct guess will allow us to compute the fifth
round’s g functions, which will allow us to recognize
the sequence of right pairs by the low-order bit of
the Z difference, just as in the above attack. There
is an improvement, however: we only really need
to know the first g computation result in the fifth
round, since the PHT has the effect of making the
low-order bit of the second word of F function out-
put dependent only on that value and one bit of the
fifth round subkey. This means we need to know
only the first input to the g function in the fifth
round, which means we need only guess 32 bits of
the sixth round subkey. The resulting attack breaks
six rounds with about 267 work.
Consider a 7-round Twofish variant with this input
structure. We now need to know the whole input to
the sixth round F function. If we guess the whole
seventh round subkey, and 32 bits of the sixth round
subkey, we can mount the same attack. We thus get
an attack with 2131 work, which is of some theoret-
ical interest against 192-bit and 256-bit keys.

40

It may also be possible to improve the number of
plaintexts required by a factor of several thousand,
because we now know the difference tables for our
S-boxes.

8.2 Extensions to Differential Crypt-
analysis

8.2.1 Higher-Order Differential Cryptanaly-
sis

Higher-order differential cryptanalysis looks at
higher order relations (e.g., quadratic) between pairs
of plaintext and ciphertexts [Lai94, Knu95b]. These
attacks seem to work best against algorithms with
simple algebraic functions, only a few rounds, and
poor short-term diffusion. In particular, we are
not aware of any higher-order differential attack
reported in the open literature that is successful
against more than 6 rounds of the target cipher. We
cannot find any higher-order differentials that can
be exploited in the cryptanalysis of Twofish.

8.2.2 Truncated Differentials

Attacks using truncated differentials apply a dif-
ferential attack to only a partial block [Knu95b].
We have not found any truncated attacks against
Twofish. The almost complete diffusion within a
round function makes it very difficult to isolate a
portion of the block and ignore the rest of the block.
Truncated differential attacks are most often suc-
cessful when most of the cipher’s internal compo-
nents operate on narrow bit paths; Twofish’s 64-bit-
wide F function seems to make truncated differential
characteristics hard to find. Additionally, truncated
differential attacks are often difficult to extend to
more than a few rounds in a cipher. We believe that
Twofish is secure against truncated differential at-
tacks.

8.3 Search for the Best Differential
Characteristic

When assessing the security of ciphers built out of
S-boxes and simple diffusion boxes, it is often easy
to obtain a crude lower bound on the complexity of
a differential attack by simply bounding the num-
ber of active S-boxes that must be involved in any
successful differential characteristic. (An inactive S-
box is one that is fed with the trivial characteristic
0→ 0; all others are considered active.) If any differ-
ential characteristic of sufficient length must include

at least n active S-boxes, and there is no character-
istic for any of the S-boxes with probability greater
than DPmax, then one can conclude that the proba-
bility of any differential characteristic can be at most
(DPmax)n. Of course, this approach often results
in extremely crude and conservative bounds, in the
sense that the true complexity of mounting a practi-
cal differential attack is often much higher than the
bound indicates. Nonetheless, when (DPmax)n is
sufficiently small, the results can provide powerful
evidence of the cipher’s security against differential
cryptanalysis.

We follow this approach to develop additional ev-
idence that Twofish is likely to be secure against
differential attacks. Section 7.2.3 already provides
convenient values of DPmax for us; the hard part
is to determine a bound on the number n of active
S-boxes.

Our approach was based on the observation that the
number of active S-boxes can be counted by examin-
ing the active bytes positions of the examined differ-
ential characteristics. By an active byte of a differen-
tial characteristic, we mean one that has a non-zero
difference at that position of the characteristic. Of
course, an S-box in the F function is active exactly
when its input byte is active, so characterizing the
pattern of active bytes in a given differential charac-
teristic allows us to count the number of S-boxes it
includes. Moreover, due to the heavily byte-oriented
nature of the F function, we can obtain bounds on
the propagation of active bytes through the F func-
tion; for example, if there is one active byte at the
input to the F function, there must be at least four
active bytes at its output. Furthermore, knowing
the pattern of active bytes in the difference at the
output of the F function lets one derive constraints
on the pattern of active bytes at the inputs of F
functions at neighboring rounds.

For convenience, we introduce a simple notation to
indicate the location of active bytes: a x repre-
sents an (unspecified) non-zero byte difference (and
thus an active byte position), while a 0 represents a
zero byte difference (and thus an inactive byte po-
sition). An even shorter notation treats the string
specification of active bytes as a binary string, and
packs it into a hexadecimal string for more con-
venient display. For example, the characteristic
0000000000B4000C16 → 591FE4720123450016 for
the F function might be represented in our first no-
tation as 00000x0x → xxxxxxx0, which indicates
that two of the byte positions in the input differ-
ence are active and all but one of the bytes in the
output difference are active; a shorter form for the

41

same characteristic is 0516 → FE16. Thus, any one
such pattern represents a large class of possible dif-
ferential characteristics.

In this approach, we can count the minimum number
of S-boxes over all differential characteristic by fully
searching the set of all patterns of active bytes. Our
implementation used Matsui’s algorithm for pruned
search of all differential characteristics [Mat95]. We
conservatively assumed that a good analyst might be
able to bypass the first round of Twofish and mount
a 3-R attack, thus needing to cover only rounds 2–13.
Therefore, we concentrated our efforts on 12-round
characteristics.

When implementing this approach, it is difficult to
model the effects of the one-bit rotations and the
PHT precisely, since they introduce non-linear de-
pendence across byte boundaries. To simplify the
task, we considered a restricted model that intro-
duces two small inaccuracies:

1. We ignore the one-bit rotations. (In some
cases, the one-bit rotations can cause diffusion
across byte boundaries in a form that we did
not model.)

2. A few troublesome differential characteristics
for the PHT are ignored: namely, those
that rely on a carry bit propagating through
at least 8 bit positions. For example, the
characteristic (01FFFE8016, 01FFFE8016) →
(0000010016, 0000008016) for the PHT has
positive probability, yet it is not considered in
our model. These sorts of characteristics were
omitted because they are harder to character-
ize in full generality, and also because they
have very low probability. (Experiments sug-
gest that the previous example has a probabil-
ity of perhaps 2−36 or so.)

Any attack which does not violate this model must
obey our bounds below.

In this model, we found that there are no good high-
probability differential characteristics covering more
than 12 rounds of Twofish. Our results show that,
under this model, the best 12-round differential char-
acteristic must involve at least 20 active S-boxes.

The reasoning is as follows. Our implementation
of Matsui’s algorithm took too long to search the
space of all differential characteristics that were 9
rounds or longer, so we were forced to generalize
from data on characteristics covering 8 or fewer
rounds. The program did show that covering 4
rounds requires at least 6 active S-boxes, covering 6

rounds requires at least 10 active S-boxes, and cov-
ering 8 rounds requires at least 14 active S-boxes.
Of course, any 12-round characteristic must include
a sub-characteristic covering the first 4 rounds and a
sub-characteristic covering the last 8 rounds; there-
fore, any characteristic covering 12 rounds must in-
clude at least 6 + 14 = 20 active S-boxes. (This
bound is probably not tight.)
For example, one of the best 8-round characteristics
found was

1 88->FE (2 active)
2 88<-00 (0 active)
3 88->00 (2 active)
4 88<-F0 (4 active)
5 00->F0 (0 active)
6 00<-F0 (4 active)
7 88->F0 (2 active)
8 88<-00 (0 active)
9 88 00

Here we see that the characteristics for the F func-
tion were 8816 → FE16, 0 → 0, 8816 → F016, and so
on.
We may now add in the results of Section 7.2.3.
For all 128-bit keys, we are guaranteed that
DPmax ≤ 18/256, so any attacker would need at
least (DPmax)−20 ≈ 276.6 chosen plaintexts; for 192-
bit keys, we have DPmax ≤ 24/256, so the best an
attacker could hope for is an attack needing 268.3

chosen plaintexts. Of course, even if these attacks
were possible, they could only work for a very small
class of weak keys (constituting about 2−48 of the
128-bit keyspace, or in the second case, about 2−64

of the 192-bit keyspace).
It is much more natural to demand that the at-
tack work for a significant percentage of all keys. In
this case, DPmax = 12/256 is a more representative
value (for all key sizes), and then any differential at-
tack working for a significant fraction of the keyspace
would require at least 288.3 chosen plaintexts. This
already rules out all practical attacks.
These estimates are likely to significantly underesti-
mate the complexity of a differential attack. We list
here some of the practical barriers a real attacker
would have to surmount:

1. The attacker would have to find specific dif-
ferences for the active byte positions that
fit together and that still make the attack
work. This involves picking specific differ-
ences, where the average probability of any
particular differential of an S-box is of course
much lower than the maximum probability.

42

(Doing so is already hard within the model;
the one-bit rotations make it even harder, since
they eliminate any hope for good iterative
characteristics.)

2. Those specific differences would have to prop-
agate through the key-dependent S-boxes, the
MDS matrix, the PHT, and the subkey ad-
dition with high probability. The PHT and
subkey addition are particularly thorny barri-
ers: in our model, the attacker was not charged
with the cost of pushing a difference through
them, but in real life, the overall probability
of the differential characteristic would be sig-
nificantly reduced by the combined probabili-
ties of passing the non-trivial round character-
istics through the PHT and subkey addition.
An attacker would have to find a way to min-
imize those costs. Because the PHT and the
subkey addition rely on addition modulo 232,
pushing a difference with significant probabil-
ity through requires a difference with relatively
low Hamming weight. However, this imposes
significant constraints on the difference pushed
through the MDS matrix; and Section 7 shows
that it is very difficult to cause the difference
at the output MDS matrix to have low Ham-
ming weight.

3. The attacker would most probably have to
find a high-probability characteristic for each
of the four S-boxes s0, . . . , s3 at the same time.
We have seen earlier that attaining DPmax
for even one S-box requires exceptional luck—
only about 2−12 of all 128-bit keys attain
DPmax = 18/256 at any one S-box—and at-
taining DPmax at all four S-boxes places even
more constraints on the key. Of course, even
for the small class of weak keys where this con-
straint is satisfied, the attacker would have to
learn which input and output differences for
the S-box attain that maximum, and iden-
tify a way to piece them together into full 12-
round characteristics. Since the S-boxes are
key-dependent, even the former task is non-
trivial, and the latter may well be impossible
in most cases.

Therefore, we believe that any realistic differential
attack is likely to require many more texts, in prac-
tice, than our bound might indicate.
A brief note on the implications of these results is in
order. Recall that our model is an imperfect ideal-
ization of Twofish; in some cases, the abstraction has
introduced inaccuracies. The right way to interpret

these results, then, is to conclude that any differ-
ential attack which respects this model is extremely
unlikely to succeed.

This provides compelling evidence that attackers
who respect our model will probably get nowhere.
But what about the adversary who “breaks the
rules”?

We believe that piecing together an attack that
avoids the difficulties imposed by our model will not
be easy. There are three choices:

1. Try to take advantage of the one-bit rotations.
We believe that the one-bit rotations make
cryptanalysis harder, if they have any effect at
all. By forcing neighboring characteristics for
the round function to “line up” with shifted
versions of each other, the one-bit rotation
makes it very hard to piece together several
short characteristics into a useful characteris-
tic covering many rounds. As an important
special case, this should make good iterative
characteristics very hard to find (if they even
exist). As another important special case, if s0
(say) has only one input difference with proba-
bility DPmax, it makes it difficult to use that
input difference every time that s0 is active;
this serves to increase the difficulty of finding
high-probability characteristics even further.

2. Try to model the PHT more accurately than
we have done. This might be an promising
avenue for further exploration. However, the
characteristics for the PHT which we mod-
eled inaccurately are hard to use in real at-
tacks: they are rare (which means they are
hard to piece together with good character-
istics for other cipher components), and they
typically have a very low probability.

3. Try to do both at the same time. This should
be even harder than either of the above.

While our results with this model do not rule out
the possibility that such an approach to differen-
tial cryptanalysis might be made to work, it seems
clear that the analyst will be hard-pressed to achieve
much success.

In short, all evidence available to us suggests that
differential attacks on Twofish are likely to be well
out of reach for the foreseeable future.

43

8.3.1 Differential characteristics of F

We ran a test for differential characteristics of the F
function with one active byte in each 4-byte g input
and at most 4 active bytes at the 8-byte F output.
We found some interesting differentials. For exam-
ple:

Prob. Differential
2−20 x000 0x00 → 0000 xxxx
2−26 x000 0x00 → 0000 0xxx
2−22 x000 0x00 → xxxx 0000
2−26 000x x000 → 0000 xx0x
2−21 000x x000 → 0000 xxxx
2−22 000x x000 → xxxx 0000
2−20 00x0 000x → 0000 xxxx
2−22 00x0 000x → xxxx 0000
2−14 0x00 0000 → 0x0x 0x0x

These probabilities are very approximate as they de-
rive from numerical experiments with not too many
samples. Note that in all but the last of these, the
two active input bytes are going through the same
key-dependent S-box due to the 8-bit rotate at the
input of the second g function. The leading cause of
all of these differentials seems to be that these two
bytes generate the same output differential from the
S-box, and thus the same differential at the output
of the MDS matrix. With some positive probability,
the PHT maps this into an output differential where
one half is zero. This probability depends on the bit
pattern of the differential just before the PHT.

The last characteristic has a different explanation.
The input differential results in a differential at the
output of the MDS matrix that has a relatively high
chance of being converted into a 0x0x pattern after a
constant is added to it. For example, the differential
03f2037a16 has a fair chance of being converted to
a 0x0x pattern after a 32-bit addition.

All of these characteristics have a relatively low
probability. We have not found any attack that di-
rectly relates to this property, but it provides a use-
ful starting point for further research. In particular,
upper bounds on the differential characteristics of F
of this type could be used to improve our bound on
the best differential characteristic for the full cipher.

8.4 Linear Cryptanalysis

We perform a similar analysis to that of Section 8.3
in the context of linear cryptanalysis. The approach
is much the same, as are the results.

Our model is much as before: it is centered around
the pattern of active bytes, and it involves a few
inaccuracies in special cases. (Here a byte position
is considered active if any of its bits are active in
the linear approximation for that round; i.e., if the
mask Γ selects at least one bit from that byte posi-
tion.) Our characterization of linear approximations
for the PHT was a bit weaker than the correspond-
ing analysis for differential attacks; as a result, our
model is less accurate than before. In particular:

1. As before, the one-bit rotations are not always
treated properly.

2. More importantly, our model of the PHT fails
to accurately treat some low-probability ap-
proximations for the PHT where there are
fewer active bytes at the output than at the
input.

Because of the second limitation, our model should
be considered only a heuristic; it may fail to capture
some important features of the round function.
A search for the best linear characteristics within
this model found that every 12-round characteristic
has at least 36 active S-boxes. Here is an example
of one characteristic we found:

1 FE->FF (1 active)
2 FF<-FF (2 active)
3 FF->DD (4 active)
4 CC<-DD (6 active)
5 CC->00 (0 active)
6 CC<-00 (6 active)
7 CC->77 (4 active)
8 00<-77 (0 active)
9 00->77 (4 active)

10 66<-77 (6 active)
11 66->00 (0 active)
12 66<-00 (3 active)
13 66 07

The first few approximations for the F function are
0116 → FF16, 2216 → FF16, 3316 → DD16, and so on.
To translate these results into an estimated attack
complexity, we turn to the results of Section 7.2.3.
We have LPmax ≤ (108/256)2, so this suggests an
attacker would need at least (LPmax)−36 ≈ 289.6

known plaintexts; and such an analysis would only
work for a very small class of weak keys (represent-
ing about 2−49.6 of the keyspace for 128-bit keys, or
about 2−68 of the 192-bit keyspace).
It is much more natural to demand that the attack
work for a significant percentage of all keys. In this

44

case, LPmax = (80/256)2 is a much more represen-
tative value, and thus in this model any linear at-
tack working for a significant fraction of the keyspace
would require at least 2120.8 chosen plaintexts.
These results are only heuristic estimates, and prob-
ably overestimate the probability of the best linear
characteristic. Nonetheless, they present some use-
ful evidence for the security of Twofish against linear
cryptanalysis.

8.4.1 Multiple Linear Approximations

Multiple linear approximations [KR94, KR95] allow
one to combine the bias of several high-probability
linear approximations. However, it only provides a
significant advantage over traditional linear crypt-
analysis when there are a number of linear approxi-
mations whose bias is close to that of the best linear
approximation. In practice, this seems to improve
linear attacks by a small constant factor. Hence, we
do not feel that Twofish is vulnerable to this kind of
cryptanalysis.

8.4.2 Non-linear Cryptanalysis

Another generalization of linear cryptanalysis looks
at non-linear relations [KR96a]: e.g., quadratic re-
lations. While this attack, combined with the tech-
nique of multiple approximations [KR94], managed
to improve the best linear attack against DES a
minute amount [SK98], we do not believe it can be
brought to bear against Twofish for the same reasons
that it is immune to linear cryptanalysis.

8.4.3 Generalized Linear Cryptanalysis

This generalization of linear cryptanalysis uses the
notion of binary I/O sums [HKM95, Har96, JH96].
An attacker attempts to find a statistical imbalance
that can be described as the result of some group op-
eration on some function of the plaintext and some
function of the ciphertext. We have not found any
such statistical imbalances, and believe Twofish to
be immune to this kind of analysis.

8.4.4 Partitioning Cryptanalysis

Partitioning cryptanalysis is another generalization
of linear cryptanalysis [Har96, JH96, HM97].20 An
attacker trying to carry out a partitioning attack
is generally trying to find some way of partitioning
the input and output spaces of the round function

so that knowledge of which partition the input to a
round is in gives some information about which par-
tition the output from a round is in. This can be seen
as a general form of a failure of the block cipher to
get good confusion; an attacker after N rounds can
distinguish the output from the Nth round from a
random block of bits, because the output is some-
what more likely to be in one specific partition than
in any of the others. This can be used in a straight-
forward way to attack the last round of the cipher.

We have been unable to find any useful way to par-
tition the input and output spaces of the Twofish F
function or a Twofish round that works consistently
across many keys, because of the key-dependent S-
boxes. For the 128-bit key case, there are 264 differ-
ent F functions, presumably each with its own most
useful partitioning. We are not aware of any general
way to partition F ’s inputs and outputs to facilitate
such attacks.

8.4.5 Differential-linear Cryptanalysis

Differential-linear cryptanalysis uses a combination
of techniques from both differential and linear crypt-
analysis [LH94]. Due to the need to cover the
last part of the cipher with two copies of a lin-
ear characteristic, the bias of the linear character-
istic is likely to be extremely small unless the lin-
ear portion of the attack is confined to just three
or four rounds. (The available linear characteristics
for Twofish’s round function have a relatively low
probability, and are very hard to combine due to
the MDS and PHT mappings.) This means that the
cryptanalyst would need to cover almost all of the
rounds with the differential characteristic, making
a differential-linear analysis not much more power-
ful than a purely differential analysis. Therefore, we
feel that differential-linear cryptanalysis is unlikely
to be successful against the Twofish structure. In
our analysis, we have found no differential-linear at-
tacks that work against Twofish.

8.5 Interpolation Attack

The interpolation attack [JK97, MSK98b] is effective
against ciphers that use simple alegbraic functions.
The principle of the attack is simple: if the cipher-
text can be represented as a polynomial or rational
expresson (with N coefficients) of the plaintext, then
the polynomial or rational expression can be recon-
structed using N plaintext/ciphertext pairs.

20Similar ideas can be found in [Vau96b].

45

However, interpolation attacks are often only work-
able against ciphers with a very small number of
rounds, or against ciphers whose rounds functions
have very low algebraic degree. Twofish’s S-boxes
already have relatively large algebraic degree, and
the combination of operations from different alge-
braic groups (including both addition mod 232 and
xor) should help increase the degree even further.
Therefore, we believe that Twofish is secure against
interpolation attacks after even only a small number
of rounds.

8.6 Partial Key Guessing Attacks

A good key schedule should have the property that,
when an attacker guesses some subset of the key bits,
he does not learn very much about the subkey se-
quence or other internal operations in the cipher.
The Twofish key schedule has this property.

Consider an attacker who guesses the even words
of the key Me. He learns nothing of the key S to g.
For each round subkey block, he now knows Ai. If he
guesses K0, he can compute the corresponding K1.
He can carry this attack out against as many round
subkeys as he likes, but each guess takes 32 bits. We
can see no way for the attacker to actually test the
96-bit guess that it would take to attack even one
round’s subkey in this way on the full Twofish.

An alternative is to guess the key input S to g. This
is only half the length of the full key M , but provides
no information about the round keys Ki. The dif-
ferential attack described in Section 8.1 is the best
way we were able to find to test such a partial key
guess. We can see no way to test a guess of S on the
full sixteen round Twofish.

8.7 Related-key Cryptanalysis

Related-key cryptanalysis [Bih94, KSW96, KSW97]
uses a cipher’s key schedule to break plaintexts en-
crypted with related keys. In its most advanced
form, differential related-key cryptanalysis, both
plaintexts and keys with chosen differentials are used
to recover the keys. This type of analysis has had
considerable success against ciphers with simplistic
key schedules—e.g., GOST [GOST89] and 3-Way
[DGV94b]—and is a realistic attack in some circum-
stances. A conventional attack is usually judged
in terms of the number of plaintexts or ciphertexts
needed for the attack, and the level of access to the
cipher needed to get those texts (e.g., known plain-
text, chosen plaintext, adaptive chosen plaintext).

8.7.1 Resistance to Related-key Slide At-
tacks

A “slide” attack occurs in an iterated cipher when
the encryption of one block for rounds 1 through n
is the same as the encryption of another block for
rounds s + 1 to s + n. An attacker can look at
two encryptions, and can slide the rounds forward
in one of them relative to another. S-1 [Anon95]
can be broken with a slide attack [Wag95a]. Travois
[Yuv97] has identical round functions, and can also
be broken with a slide attack. Conventional slide at-
tacks allow one to break the cipher with only known-
or chosen-plaintext queries; however, as we shall see
next, there is a generalization to related-key attacks
as well.
Related-key slide attacks were first discovered by Bi-
ham in his attack on a DES variant [Bih94]. To
mount a related-key slide attack on Twofish, an at-
tacker must find a pair of keys M,M∗ such that
the key-dependent S-boxes in g are unchanged, but
the subkey sequences slide down one round. This
amounts to finding, for each of the eight byte-
permutations used for subkey generation, a change
in the keys such that:

si(j,M) = si(j + 2s,M∗)

for n values of j. In total, this requires 8n of these
relations to hold.
Let us look in more detail for a fixed key M . Let
m ∈ {5, . . . , 8} be the number of S-boxes used to
compute the round keys that are affected by the dif-
ference between M and M∗. Observe that m ≥ 5
due to the restriction that S cannot change and the
properties of the RS matrix that at least 5 inputs
must change to keep the output constant. There are
at most

(8
m

)
232m−128 possible choices of M∗. We

have a total of nm 8-bit relations that need to be sat-
isfied. The expected number of M∗ that satisfy these
relations is thus

(8
m

)
·2−8nm+32m−128. For n ≥ 4 this

is dominated by the case m = 5; we will ignore the
other cases for now. So for each M we can expect
about 238−40n keys M∗ that support a slide attack
for n ≥ 4. This means that any specific key is un-
likely to support a slide attack with n ≥ 4. Over all
possible key pairs, we expect 2293−40n pairs M,M∗

for which a slide of n ≥ 4 occurs. Thus, it is unlikely
that a pair exists at all with n ≥ 8.

Swapping Key Halves It is worth considering
what happens when we swap key halves. That is,
we swap the key bytes so that the values of Me and
Mo are exchanged. In that case, the sequence of Ai

46

and Bi values totally changes, because of the differ-
ent index values used. We can see no useful attack
that could come from this.

Permuting the Subkeys Although there is no
known attack stemming from it, it is interesting to
ask whether there exist pairs of keys that give per-
mutations of one another’s subkeys. There are 20!
ways that the rounds’ subkey blocks could be per-
muted. This is almost as large as 264, and so there
may very well be pairs of keys that give permuta-
tions of one another’s round subkey blocks.

8.7.2 Resistance to Related-key Differential
Attacks

A related-key differential attack seeks to mount a
differential attack on a block cipher through the
key, as well as or instead of through the plain-
text/ciphertext port. Against Twofish, such an at-
tack must control the subkey difference sequence for
at least the rounds in the middle. For the sake
of simplifying discussions of the attack, let us con-
sider an attacker who wants to put a chosen subkey
difference into the middle twelve rounds’ subkeys.
That is, he wants to change M to M∗, and control
D[i,M,M∗] for i = 12..35. At the same time, he
needs to keep the g function, and thus the key S,
from changing. All else being equal, the longer the
key, the more freedom an attacker has to mount a
related-key differential attack. We thus will assume
the use of 256-bit keys for the remainder of this sec-
tion. Note that a successful related-key attack on
128- or 192-bit keys that gets only zero subkey differ-
ences in the rounds whose subkey differences it must
control translates directly to an equivalent related-
key attack on 256-bit keys.

Consider the position of the attacker if he attempts a
related-key differential attack with different S keys.
This must result in different g outputs for all inputs,
since we know that there are no pairs of S values
that lead to identical S-boxes. Assuming the pair of
S values does not lead to linearly related S-boxes, it
will not be possible to compensate for this change
in S with changes in the subkeys in single rounds.
The added difficulty is approximately that of adding
24 active S-boxes to the existing related-key attack.
For this reason, we believe that any useful related-
key attack will require a pair of keys that keeps S
unchanged.

8.7.3 The Zero Difference Case

The simplest related-key attack to analyze is the one
that keeps both S and also the middle twelve rounds’
subkeys unchanged. It thus seeks to generate iden-
tical A and B sequences for twelve rounds, and thus
to keep the individual byte sequences used to derive
A and B identical.

The RS code used to derive S from M strictly limits
the ways an attacker can change M without alter-
ing S. The attacker must try to keep the number of
active subkey generating S-boxes as low as possible,
since each active S-box is another constraint on his
attack. The attacker can keep the number of active
S-boxes down to five without altering S, and so this
is what he should do. With only the key bytes af-
fecting these five subkey generation S-boxes active,
he can alter between one and four bytes in all five S-
boxes; the nature of the RS matrix is that if he needs
to alter four bytes in any one of these S-boxes, he
must alter bytes in all five. In practice, in order to
maximize his control over the byte sequences gener-
ated by these S-boxes, he must alter four bytes in
all five active S-boxes.

To get zero subkey differences, the attacker must
get zero differences in the byte sequences generated
by all five active S-boxes. Consider a single such
byte sequence: the attacker tries to find a pair of
four-byte key inputs such that they lead to identical
byte sequences in the middle twelve rounds, which
means the middle twelve bytes. There are 263 pairs
of key inputs from which to choose, and about 295

possible byte sequences available. If the byte se-
quences behave more-or-less like random functions
of the key inputs, this implies that it is extremely
unlikely that an attacker can find a pair of key in-
puts that will get identical byte sequences in these
middle twelve rounds. We discuss this kind of anal-
ysis of byte sequences in Section 7.11.2. From this
analysis, we would not expect to see a pair of keys
for even one S-box with more than eight successive
bytes unchanged, and we would expect even eight
successive bytes of unchanged byte sequence to re-
quire control of all four key bytes into the S-box.
We would expect a specific pair of key bytes to be
required to generate these similar byte sequences.

To extend this to five active S-boxes, we expect there
to be, at best, a single pair of values for the twenty
active key bytes that leave the middle eight subkeys
unchanged.

47

8.7.4 Other Difference Sequences

An attacker who has control of the xor difference
sequences in Ai, Bi does not necessarily have great
control over the xor or modulo 232 difference se-
quence that appears in the subkeys.
First, we must consider the context of a related-key
differential attack. The attacker does not generally
know all of the key bytes generating either Ai or Bi.
Instead, he knows the xor difference sequence in Ai
and Bi.
Consider an Ai value with an xor difference of δ.
If the Hamming weight of δ is k, not including the
high-order bit, then the best estimate for the xor

difference that ends up in the two subkey words for
a given round generally has probability about 2−2k.
(Control of the Ai, Bi xor difference sequence does
not make controlling the subkey xor differences sub-
stantially easier.)
Consider an Ai value with an xor difference of δ.
If the Hamming weight of δ is k, then the best esti-
mate for the modulo 232 difference of the two subkey
words for a given round has probability about 2−k.
This points out one of the difficulties in mount-
ing any kind of successful related-key attack with
nonzero Ai, Bi difference sequences. If an attacker
can find a difference sequence for Ai, Bi that keeps
k = 3, and needs to control the subkey differences
for twelve rounds, he has a probability of about 2−72

of getting the most likely xor subkey difference se-
quence, and about 2−36 of getting the most likely
modulo 232 difference sequence.

8.7.5 Probability of a Successful Attack
With One Related-Key Query

We consider the use of the RS matrix in deriving
S from M to be a powerful defense against related-
key differential attacks, because it forces an attacker
to keep at least five key generation S-boxes active.
Our analysis suggests that any useful control of the
subkey difference sequence requires that each active
S-box in the attack have all four key bytes changed.
Further, our analysis suggests that, for nearly any
useful difference sequence, each active S-box in the
attack has a specific pair of defining key bytes it
needs to work. An attacker specifying his key rela-
tion in terms of bytewise xor has five pairs of se-
quences of four key bytes each, which he wants to
get. This leaves him with a probability of a pair
of keys with his desired relation actually leading to
the desired attack of about 2−115, which moves the
attack totally outside the realm of practical attacks.

So long as an attacker is unable to improve this,
either by finding a way to get useful difference se-
quences into the subkeys without having so many ac-
tive key bytes, or by finding a way to mount related-
key attacks with different S values for the different
keys, we do not believe that any kind of related-key
differential attack is feasible.

Note the implication of this: clever ways to control a
couple extra rounds’ subkey differences are not going
to make the attacks feasible, unless they also allow
the attacker to use far fewer active key bytes. For
reference, note that with one altered key byte per ac-
tive subkey generation S-box, the attacker ends up
with a 2−39 probability that a pair of related keys
will yield an attack; with two key bytes per active
S-box, this increases to 2−78; with three key bytes
per active S-box, it increases to 2−117. In practice,
this means that any key relation requiring more than
one byte of key changed per active S-box appears to
be impractical.

8.7.6 Conclusions

Our analysis suggests that related-key differential
attacks against the full Twofish are not workable.
Note, however, that we have spent less time work-
ing on resistance to chosen key attacks, such as will
be available to an attacker if Twofish is used in the
straightforward way to define a hash function. For
this reason, we recommend that more analysis be
done before Twofish is used in the straightforward
way as a hash function, and we note that it appears
to be much more secure to use Twofish in this way
with 128-bit keys than with 256-bit keys, despite the
fact that this also slows the speed of a hash function
down by a factor of two.

8.8 A Related-Key Attack on a
Twofish Variant

8.8.1 Overview of the Attack

Results We define a partial chosen key attack on
a 10-round Twofish variant without the pre- or post
xors. The attack requires us to control twenty se-
lected bytes of the key, and to set them differently for
a pair of related keys K,K∗. The remaining twelve
bytes of the two keys, which are the same for both
keys, are unknown to us; recovering them is the ob-
jective of the attack. This attack can be converted
into a related-key differential attack, but it requires
2155 randomly selected related key pairs be tried be-
fore one will prove vulnerable to the attack.

48

The attack requires two keys chosen to have the de-
sired relation. Under K, it requires about 1024 cho-
sen plaintexts. Under K∗, it requires about 232 cho-
sen plaintexts, and about 211 adaptive chosen plain-
texts. The resulting attack recovers the twelve un-
known key bytes with about 232 effort.

How The Attack Works We start by request-
ing one plaintext encrypted under key K, and 264

related plaintexts encrypted under K∗. We expect
one of these to be a right pair, which means it will
give the same result for its left ciphertext half under
K∗ as the original plaintext block did under key K.
We request another plaintext from K and K∗ to ver-
ify that this was really a right pair, rather than just
an accidental occurrence. We now vary the plain-
texts requested under K∗, to isolate and learn the
differential properties of each S-box in g. This allows
us to learn S. With knowledge of the active twenty
key bytes of the attack, and knowledge of S, we are
able to learn the remaining twelve bytes of key, and
thus to break the cipher.

8.8.2 Finding a Key Pair

The first step in the attack is finding a pair of keys,
K,K∗, with some fixed xor relationship, such that
we get a useful subkey difference sequence, while
leaving the S key unchanged. We described above
how such keys can exist. Here, we assume the exis-
tence of some pair of keys with a subkey xor differ-
ence sequence zero in rounds 1..8 but with nonzero
xor subkey differences in rounds 0 and 9.

Structure of the Key Pair Based on the discus-
sion above, we assume that the keys K,K∗ differ in
twenty bytes, with the changed bytes selected in such
a way to leave S unchanged between the two keys,
and to change all four key bytes used to define five
of the S-boxes used for subkey generation. We note
that a random pair of keys chosen to have this prop-
erty has only a 2−155 probability of being the pair
of keys that will generate our desired subkey differ-
ence sequence. This makes this attack impractical as
a differential related-key attack, though an attacker
who is able to control the active twenty bytes of key
involved in a pair of keys could mount the attack for
a chosen pair of keys. (That is, the attacker could
choose the values of the active twenty bytes of both
K and K∗, while remaining ignorant of the other
twelve bytes of K and K∗, which must be identical
for both keys. The attacker would then attempt to
learn those remaining twelve bytes of key.)

Subkey Differences We actually care only about
the subkey difference in the round subkey words. Re-
call that the subkey words are generated from a pair
of 32-bit words, which are generated from the sub-
key generation S-boxes. Let’s call these values U, V
and U∗, V ∗. We don’t know any of U, V, U∗, V ∗, but
we do know U ′ = U ⊕ U∗ and V ′ = V ⊕ V ∗.

8.8.3 Choosing the Plaintexts to Request

From U ′, V ′, it is possible to generate a set of about
232

xor difference values that we can expect to see
result from the changed subkeys when they’re used
in the F function in the first round. We thus do the
following:

1. Request the encryption of some fixed 128-bit
block A,B,C,D under key K.

2. For each of the 232 different 64-bit xor dif-
ference values, Xi, Yi, we might expect from
U ′, V ′, request the encryption of 128-bit block
A,B,C ⊕Xi, D ⊕ Yi).

3. Consider only those ciphertexts from the sec-
ond step that lead to the same right half of
ciphertext as the encryption under K in the
first step. We may need to request one more
encryption under both K and K∗, if we have
more than one such ciphertext. The goal is
to determine the output xor from the first
round’s F function when the input is A,B,
under the two keys. (The only difference in
the output is caused by the difference in round
subkeys.)

8.8.4 Extracting the Key Material

At this point, we know the single xor difference from
the F function. We can now learn the S-boxes in the
g function. To do this, we replace the high-order
byte of A in the right pair with 256 different values.
Thus, we request the encryption of Aj , B, C,D un-
der K∗. This causes one of 256 possible xor dif-
ferences in the g function output. We expect to
have to try about 512 requests with different xor

difference values Xi, Yi, where these values are de-
rived from the Xi, Yi values that generated the orig-
inal right pair based on the possible xor differences
in g. We thus request 512 plaintexts of the form
Aj , B, C ⊕ Xi, D ⊕ Yi) to be encrypted under K∗.
One of these, we expect to be a right pair, which we
can recognize, again, by the fact that the right half of

49

the ciphertext is the same for Aj , B, C,D encrypted
under K, and for Aj , B, C ⊕ Xi, D ⊕ Yi encrypted
under K∗.

After carrying this out for each of the Aj , we have
good information about the xor differences being
generated from g by the changes between A and Aj
as input. In particular, we will note the fourteen
cases where we probably got 8-bit Hamming weights
in the output xor difference of g. This information
should be enough to brute-force this S-box, s3. That
is, we try all 232 possible S-boxes for s3, and expect
one to be the best fit for our data.

We repeat the attack for each of the other bytes in
A, so that we recover all four S-boxes in g. When
we know these S-boxes, this means we know S. Note
that at the beginning of the attack, we already know
twenty of the thirty-two key bytes used. More im-
portantly, due to the structure of the RS matrix used
to derive S from the raw key bytes, we know all but
three bytes used to derive each four byte “row” of
values in S. This allows us to guess and check the
remaining key bytes three bytes at a time, thus re-
covering the entire key.

8.9 Side-Channel Cryptanalysis and
Fault Analysis

Resistance to these attacks was not part of the AES
criteria, and hence not a major concern in this de-
sign. However, we do have these comments to make
on the design.

Side-channel cryptanalysis [KSWH98b] uses infor-
mation about the cipher in addition to the plaintext
or ciphertext. Examples include timing [Koc96],
power consumption (including differential power
analysis [Koc98]), NMR scanning, and electronic
emanations.21 With many algorithms it is possi-
ble to reconstruct the key from these side channels.
While total resistance to side-channel cryptanalysis
is probably impossible, we note that Twofish exe-
cutes in constant time on most processors.

Fault analysis [BDL97, BS97] can be used to suc-
cessfully cryptanalyze this cipher. Again, we believe
that total resistance to fault analysis is an impossi-
ble design constraint for a cipher. The resistance to
fault analysis of any block cipher can be improved
using classical fault tolerance techniques.

8.10 Attacking Simplified Twofish

8.10.1 Twofish with Known S-boxes

As discussed above, our differential attack on
Twofish with fixed S-boxes works for 6-round
Twofish, and requires only 267 effort. A 7-round
differential attack requires 2131 effort.
Additionally, much of Twofish’s related-key attack
resistance comes from the derivation of the S-boxes,
so a related-key attack is much easier against a
known S-box variant.

8.10.2 Twofish Without Round Subkeys

We attack a Twofish variant without any sub-
keys, thus whose whole key material is in the key-
dependent S-boxes. The attack requires about 233

chosen plaintexts; it breaks the Twofish variant with
about 236 effort, even when the cipher has a 128-bit
key. (Note that this is the amount of key material
used to define the S-boxes in normal Twofish with a
256-bit key.)
It is obvious that a Twofish variant with fixed S-
boxes and no subkeys would be insecure—there
would be no key material injected. We develop a
slide attack on Twofish with any number of rounds,
and a 128-bit key. (The Twofish key would be 256
bits, but since we never use more than 128 bits of
key in the key-dependent S-boxes, the effective key
size is 128 bits.)
Note that this attack would not work if we used
round subkeys that were simply counter values, as
would happen if we used the identity permutation for
all the key-scheduling S-boxes. We are not currently
aware of any attack on such a Twofish variant.

Overview of the Attack In a slide attack, we at-
tempt to find a pair of plaintexts, (P, P ∗), such that
P ∗ has the same value as the intermediate value af-
ter one or more rounds of encrypting P . If we can
find and expose this value, we gain direct access to
the results of a single round of the cipher; we then
attack that single round to recover the key.
Our attack has two parts:

1. We must first find a pair of plaintexts, (P, P ∗),
such that P ∗ is the result of encrypting P with
one round.

2. We use this pair to derive four relations on g
and thus determine the specific S-boxes used
in g. This yields the effective key of the cipher.

21The NSA refers to this particular side channel as “TEMPEST.”

50

Finding Our Related Pair of Texts Twofish
is a Feistel cipher, operating on two 64-bit halves in
each block. We use the representation where the left
half of the block is the input to the Feistel function,
and the halves are swapped after each round. Let
(L0, R0) represent a given pair of 64-bit halves in-
put into the cipher, and let (LN , RN) represent the
resulting ciphertext. To mount this attack, we need
to find some (L0, R0, L1) such that L1 is the value
of the left half of the block after the first round. To
test whether we have such a pair, we can try en-
crypting (L0, R0) and (L1, L0). When we have a
triple with the desired properties, we get (LN , RN)
from the first encryption, and (LN+1, LN) from the
second encryption.
We use a trick by Biham [Bih94] to get such a pair
of plaintexts with only 233 chosen plaintexts: we
choose a fixed L0, and encrypt it with 232 randomly
selected R0 values as (L0, R0). We then encrypt the
same L0 with 232 random R1 values, as (R1, L0).
By the birthday paradox, we expect to see one pair
of values for which R1 = R0 ⊕ F (L0). To find this
pair, we sort the ciphertexts from the first batch of
encryptions on their left halves, and the ciphertexts
from the second batch of encryptions on their right
halves. When we find a match, the probability is
good that we have a pair with the desired property.

Extracting g Values Once we have this triple
(L0, R0, L1), we also have two relations on F :
F (L0) = R0 ⊕ L1 and F (LN) = RN ⊕ LN+1. Note,
however, that we do not yet have direct g values.
Instead, we have two instances of the results of com-
bining two g outputs with a PHT. Since we have the
actual PHT output values, we can simply undo the
PHT, yielding relations on g. Our pair has given us
two relations on F , and thus four relations on g.

Extracting the S-boxes The g outputs are the
result of applying four key-dependent S-boxes to the
input bytes, and then combining those bytes with an
MDS matrix multiply. Since the MDS multiply is
invertible, we invert it to get back the actual S-box
outputs for all four different values. If those values
are all different, then we have four bytes of output
from each S-box. We can try all 232 possible key
input values for each S-box, and see which ones are
consistent with the results; for most sets byte values,
only one or two S-boxes will match them. We thus
learn each key-dependent S-box in g, perhaps with
a couple of alternative values. We try all possible
alternatives against any plaintext/ciphertext values

we have available, and very quickly recover the cor-
rect S-boxes. Since this is the only key material in
this Twofish variant, the attack is done.

8.10.3 Twofish with Non-bijective S-boxes

We decided early in the design process to use purely
bijective S-boxes. One rationale was to ensure that
the 64-bit round function be bijective. That way,
iterative 2-round differential characteristics cannot
exist; when they do exist, they often result in
the highest-probability multi-round characteristic,
so avoiding them should help to reduce the risk of a
successful differential attack. Also, attacks based
on non-surjective round functions [BB95, RP95b,
RPD97, CWSK98] are sure to fail when the 64-bit
Feistel round function is bijective.22

We argue here that this was a good design decision,
by showing that a Twofish variant which uses non-
bijective S-boxes is likely to be much easier to break.
Observe that when q0 and q1 are non-bijective, their
3-way composition into si is likely to be even more
non-surjective than either of q0 or q1 on its own. It
is easily seen that the expected size of the range of
a random function on 8 bits (such as q0 or q1) is
r1 = 1 − (1 − 1/256)256 ≈ 1 − e−1 ≈ 0.632. When
we compose such a function twice, its expected range
becomes r2 = 1−(1−1/256)256r1 ≈ 1−e−r1 ≈ 0.469;
and the expected size of the range of a 3-way compo-
sition will be r3 ≈ 1− e−r2 ≈ 0.374. In other words,
we expect that only about 96 = 0.374 × 256 of all
possible 8-bit values can appear as the output of S.
Therefore, the output of the h function can attain
only about 226.3 ≈ 964 possible values, and the 64-
bit Feistel function can attain only about 252.6 of all
264 possible outputs. This is certainly a rather large
certificational weakness. (This gets worse when the
key size grows, since the number of compositions of
the q functions gets larger.)
We point out a serious differential attack when us-
ing non-bijective S-boxes. Consider the probabil-
ity p∆x that a given input difference ∆x yields a
collision in the S-box output; i.e., ∆x 7→ 0. Let
p =

∑
∆x 6=0 p∆x/255 be the average probability

over all non-zero input differences, and let m =
max∆x6=0 p∆x be the maximum probability over all
non-zero input differences. We have E p = 3/256;
also, Pr(p ≥ 2/256) ≈ 0.78, Pr(p ≥ 10/256) ≈ 0.02,
and Pr(p ≥ 16/256) ≈ 0.0002. As for the distri-
bution of m, empirically Em ≈ 11.7/256; experi-
ments suggest Pr(m ≥ 10/256) ≈ 0.975, Pr(m ≥
16/256) ≈ .04, and Pr(m ≥ 22/256) ≈ 0.0002.

22Vaudenay’s attack on Blowfish took advantage of non-bijectivity in the Blowfish round function [Vau96a].

51

Consider a Twofish variant with non-bijective S-
boxes and no rotations. We obtain a 2-round iter-
ative differential characteristic with probability m,
and thus a 13-round differential characteristic with
probability m6. We find that, for 97.5% of the keys,
one can break the variant with about 228 chosen
plaintexts; for 4% of the keys, it can be broken with
224 chosen plaintexts; and for a class of weak keys
consisting of 0.02% of the keys, the variant cipher
can be broken with roughly 221 chosen plaintexts.
(Of course, one can trade off the number of texts
needed against the size of the weak key class; the
figures given are just examples of points on a smooth
curve.)
Next we consider a Twofish variant with non-
bijective S-boxes, but with all rotations left intact.
If we look at any 2-round differential characteris-
tic whose first round is the trivial characteristic and
whose second round involves just one active S-box,
we expect its probability to be about p. One dif-
ficulty is that the rotations prevent us from finding
an iterative 2-round characteristic. However, we can
certainly piece together 6.5 different 2-round differ-
ential characteristics (each of the right form so it will
have probability about p) to find a 13-round char-
acteristic with expected probability p6. (The latter
probability can probably be improved to about 3p6,
due to the extra degrees of freedom, but as we are
only doing a back-of-the-envelope estimate anyway,
we will omit these considerations.) Thus, we can
find a differential attack that succeeds with about
239 chosen plaintexts for the majority (about 78%)
of the keys; also, for 2% of the keys, this variant
can be broken with 228 chosen plaintexts; and for a
class of weak keys consisting of 0.02% of the keys,
the variant cipher can be broken with roughly 224

chosen plaintexts.
This analysis clearly shows the value of bijective S-
boxes in stopping differential cryptanalysis. Also,
it helps motivate the benefit of the rotations: they
make short iterative characteristic much harder to
find, thereby conferring (we hope) some additional
resistance against differential attacks.

9 Trap Doors in Twofish

We assert that Twofish has no trap doors. As de-
signers, we have made every effort to make Twofish
secure against all known (and unknown) cryptanal-
yses, and we have made no effort to build in a secret
way of breaking Twofish. However, there is no way
to prove this, and not much reason for anyone to
believe us. We can offer some assurances.

In this paper, we have outlined all of the design ele-
ments of Twofish and our justifications for including
them. We have explained, in great detail, how we
chose Twofish’s “magic constants”: the RS code, q0,
q1, and the MDS matrix. There are no mysterious
design elements; everything has an explicit purpose.
Moreover, we feel that the use of key-dependent S-
boxes makes it harder to install a trap door into the
cipher. As difficult as it is to create a trap door for a
particular set of carefully constructed S-boxes, it is
much harder to create one that works with all pos-
sible S-boxes or even a reasonably useful subset of
them (of relative size 2−20 or so).

Additionally, any trap door would have to survive
16 rounds of Twofish. It would have to work even
though there is almost perfect diffusion in each
round. It would have to survive the pre- and post-
whitening. These design elements have long been
known to make any patterns difficult to detect; trap
doors would be no different.

None of this constitutes a proof. Any reasonable
proof of general security for a block cipher would
also prove P 6= NP. Rather than outlining the proof
here, we would likely skip the AES competition and
go collect our Fields Medal.

However, we have made headway towards a philo-
sophical proof. Assume for a moment that, despite
the difficulties listed above, we did manage to put
a trap door into Twofish. This would imply one of
two things:

One, that we have invented a powerful new cryptan-
alytic attack and have carefully crafted Twofish to
be resistant to all known attacks but vulnerable to
this new one. We cannot prove that this is not true.
However, we can point out that as cryptographers we
would achieve much more fame and glory by publish-
ing our powerful new cryptanalytic attack. In fact,
we would probably publish it along with this paper,
making sure Twofish is immune so that we can prof-
itably attack the other AES submissions.

The other possibility is that we have embedded a
trap door into the Twofish magic constants and then
transformed them by some means so that finding
them would be a statistical impossibility (see [Har96]
for some discussion of this possibility). The re-
sulting construction would seem immune to current
cryptanalytic techniques, but we as designers would
know a secret transformation rule that we could ap-
ply to facilitate cryptanalysis. Again, we cannot
prove that this is not true. However, it has been
shown that this type of cipher, called a “master-key
cryptosystem,” is equivalent to a public-key cryp-
tosystem [BFL96]. Again, as cryptographers we

52

would achieve far greater recognition by publishing
a public-key cryptosystem that is not dependent on
factoring [RSA78] or the discrete logarithm problem
[DH76, ElG85, NIST94]. And the resulting algo-
rithm’s dual capabilities as both a symmetric and
public-key algorithm would make it far more flexi-
ble than the AES competition.

There is a large gap between a weakness that
is exploitable in theory and one that is ex-
ploitable in practice. Even the best attack
against DES (a linear-cryptanalysis-like attack com-
bining quadratic approximations and a multiple-
approximation method) requires just under 243

plaintext/ciphertext blocks [SK98], which is equiva-
lent to about 64 terabytes of plaintext/ciphertext en-
crypted under a single key. A useful trap door would
need to work with much less plaintext—a few thou-
sand blocks—or it would have to reduce the effec-
tive keyspace to something on the order of 272. We
believe that, given the quality of the public crypt-
analytic research community, it would be impossible
to put a weakness of this magnitude into a block
cipher and have it remain undetected through the
AES process. And we would be foolish to even try.

10 When is a Cipher Insecure?

More and more recent ciphers are being defined
with a variable number of rounds: e.g., SAFER-K64
[Mas94], RC5, and Speed [Zhe97]. This means that
it is impossible to categorically state that a given
cipher construction is insecure: there might always
be a number of rounds n for which the cipher is still
secure. However, while this might theoretically be
true, this is not a useful engineering definition of “se-
cure.” After all, the user of the cipher actually has to
choose how many rounds to use. In a performance-
driven model, it is useful to compare ciphers of equal
speed, and compare their security, or compare ci-
phers of equal security and compare their speeds.
For example, FEAL-32 is secure against both differ-
ential and linear attacks. Its speed is 65 clock cycles
per byte of encryption, which makes it less desirable
than faster, also secure, alternatives.

With that in mind, Table 9 gives performance met-
rics for block and stream ciphers on the Pentium
processor.23

11 Using Twofish

11.1 Chaining Modes

All standard block-cipher chaining modes work with
Twofish: CBC, CFB, OFB, counter [NBS80]. We
are aware of no problems with using Twofish with
any commonly used chaining mode. (See [Sch96] for
a detailed comparison of the various modes of op-
eration.) A cryptanalyst considering OFB-, CFB-,
or CBC-mode encryption with Twofish may collapse
the pre- and post-xor of key material into a single
xor, but does not appear to benefit much from this.

11.2 One-Way Hash Functions

The most common way of using a block cipher
as a hash function is a Davies-Meyer construction
[Win84]:

Hi = Hi−1 ⊕ EMi(Hi−1)
There are fifteen other variants [Pre93]. We believe
that Twofish can be used securely in any of these for-
mats; note, however, that the key schedule has been
analyzed mainly for related-key attacks, not for the
class of chosen-key attack that hash functions must
resist. Additionally, the 128-bit block size makes
straightforward use of the Davies-Meyer construc-
tion useful only when collision-finding attacks can
be expected to be unable to try 264 trial hashes to
find a collision.
As keys that are non-standard sizes have equivalent
keys that are longer, any use of Twofish in a Davies-
Meyer construction must ensure that only a single
key length is used.

11.3 Message Authentication Codes

Any one-way hash function can be used to build
a message authentication code using existing tech-
niques [BCK96]. Again, we believe Twofish’s strong
key schedule makes it very suitable for these con-
structions.

11.4 Pseudo-Random Number Gen-
erators

Twofish can also be used as a primitive in a
pseudo-random number generator suitable for gen-
erating session keys, public-key parameters, proto-
col nonces, and so on [Plu94, KSWH98a, Gut98,
KSWH98c].

23These metrics are based on theoretical analyses of the algorithms and actual hand-tooled assembly-language implementa-
tions [SW97, PRB98].

53

Algorithm Key Length Width (bits) Rounds Cycles Clocks/Byte
Twofish variable 128 16 8 18.1
Blowfish variable 64 16 8 19.8
Square 128 128 8 8 20.3
RC5-32/16 variable 64 32 16 24.8
CAST-128 128 64 16 8 29.5
DES 56 64 16 8 43
Serpent 128, 192, 256 128 32 32 45
SAFER (S)K-128 128 64 8 8 52
FEAL-32 64, 128 64 32 16 65
IDEA 128 64 8 8 74
Triple-DES 112 64 48 24 116

Table 9: Performance of different block ciphers (on a Pentium)

11.5 Larger Keys

Even though it would be straightforward to extend
the Twofish key schedule scheme to larger key sizes,
there is currently no definition of Twofish for key
lengths greater than 256 bits. We urge caution in
trying to extend the key length; our experience with
Twofish has taught us that extending the key length
can have important security implications.

11.6 Additional Block Sizes

There is no definition of Twofish for block lengths
other than 128 bits. While it may be theoretically
possible to extend the construction to larger block
sizes, we have not evaluated these constructions at
all. We urge caution in trying to extend the block
size; many of the constructions we use may not scale
well to 256 bits, 512 bits, or larger blocks.

11.7 More or Fewer Rounds

Twofish is defined to have 16 rounds. We designed
the key schedule to allow natural extensions to more
or fewer rounds if and when required. We strongly
advise against reducing the number of rounds. We
believe it is safe to increase the number of rounds,
although we see no need to do so.

11.8 Family Key Variant: Twofish-
FK

We often see systems that use a proprietary vari-
ant of an existing cipher, altered in some hopefully
security-neutral way to prevent that system from in-
teroperating with standard implementations of the

cipher. A family key is a way of designing this into
the algorithm: each different family key is used to
define a different variant of the cipher. In some
sense, the family key is like an additional key to
the cipher, but in general, it is acceptable for the
family key to be very computationally expensive to
change. We would expect nearly all Twofish imple-
mentations that used any family key to use only one
family key.
Our goals for the family key algorithm are as follows:

• No family key variant should be substantially
weaker than the original cipher.

• Related-key attacks between different un-
known but related family keys, or between
a known family key and the original cipher,
should be hard to mount.

• The family key should not merely reorder the
set of 128-by-128-bit permutations provided by
the cipher; it should change that set.

A Twofish family key is simply a 256-bit random
Twofish key. This key, FK, is used to derive several
blocks of bits, as follows:

1. Preprocessing Step:

This step is done once per family key.

(a) T0 = FK.
(b) T1 = (EFK(0), EFK(1))⊕ FK.
(c) T2 = EFK(2).
(d) T3 = EFK(3).
(e) T4 = First 8 bytes of EFK(4).

Note that, using our little-endian convention,
the small integers used as plaintext inputs
should occur in the first plaintext byte.

54

2. Key Scheduling Step: This step is done once
per key used under this family key.

(a) Before subkey generation, T0 is xored
into the key, using as many of the leading
bytes of T0 as necessary.

(b) After subkey generation, T2 is xored into
the pre-xor subkeys, T3 is xored into the
post-xor subkeys, and T4 is xored into
each round’s 64-bit subkey block.

(c) Before the cipher’s S-boxes are derived,
T1 is xored into the key. Once again, we
use as many of the leading bytes of T1 as
we need. Each byte of the key is then
passed through the byte permutation q0,
and the result is passed through the RS
matrix to get S. Note that the definition
of T1 means that the effect of the first
xor of FK into the key is undone.

Note the properties of the alterations made by any
family key:

• The keyspace is simply permuted for the initial
subkey generation.

• The subkeys are altered in a simple way. How-
ever, there is strong evidence that this alter-
ation cannot occur by changing keys, based on
the same difference sequence analysis used in
discussing related-key attacks on Twofish.

• The S-boxes used in the cipher are altered in a
powerful way, but one which does not alter the
basic required properties of the key schedule.
Getting no changes in the S-boxes used in the
cipher still requires changing at least five bytes
of key, and those five bytes of key must change
five of the S-boxes used for subkey generation.

11.8.1 Analysis

Effects of Family Keys on Cryptanalysis We
are not aware of any substantial difference in the
difficulty of cryptanalyzing the family key version
of the cipher rather than the regular version. The
cipher’s operations are unchanged by the family
key; only subkey and S-box generation are changed.
However, they are changed in simple ways; the S-
boxes are generated in exactly the same way as be-
fore, but the key material provided to them is pro-
cessed in a simple way first; the round subkeys are
generated in the same way as before (again, with
the key material processed in a simple way first), and

then have a constant 64-bit value xored in. Related-
key attacks of the kind we have been able to consider
are made slightly harder, rather than easier, by this
64-bit value. The new constants xored into the pre-
and post-xor subkeys simply permute the input and
output space of the cipher in a very simple way.

Related Keys Across Family Keys Related-
key attacks under the same family key appear, as
we said above, to be at least as hard as related-
key attacks in normal Twofish. There is still the
question, however, of whether there are interesting
related keys across different family keys. It is hard
to see how such related keys would be used, but the
analysis may be worth pursuing anyway.
An interesting question, from the perspective of an
attacker, is whether there are pairs of keys that
give identical subkeys except for the constant val-
ues xored into them, and that also give identical
S-boxes. By allowing an attacker to put a constant
xor into all round subkeys, such pairs of keys would
provide a useful avenue of attack.
This can be done by finding a pair of related fam-
ily keys, FK,FK∗, which are identical in their first
128 bits, and a pair of 128-bit cipher keys, M,M∗,
such that M generates the same set of S-boxes with
FK that M∗ does with FK∗. For a random pair of
M,M∗ values, this has probability 2−64 of happen-
ing. Thus, an attacker given complete control over
M,M∗ and knowledge of FK,FK∗ can find such a
pair of keys and family keys. However, this does not
seem to translate into any kind of clean related-key
attack; the attacker must actually choose the specific
keys used.
We do not consider this to be a valid attack against
the system. In general, related-key attacks between
family keys seem unrealistic, but one which also re-
quires the attacker to be able to choose specific key
values he is trying to recover is also pointless.

A Valid Related-key Attack An attacker can
also try to find quadruples FK,FK∗,M,M∗ such
that the subkey generation and the S-box genera-
tion both get identical values. This requires that

T0 ⊕M = T ∗0 ⊕M∗

T1 ⊕M = T ∗1 ⊕M∗

If FK,FK∗ have the property that

T0 ⊕ T ∗0 = T1 ⊕ T ∗1 = δ

then related-key pairs M,M⊕δ will put a fixed xor

difference into every round subkey, and may allow

55

some kind of related-key attack. Again, we do not
think this is an interesting attack; the attacker must
force the family keys to be chosen this way, since the
probability that any given pair of family keys will
work this way is (for 128-bit cipher keys) 2−128. We
do not expect such relationships to occur by chance
until about 264 family keys are in use.

12 Historical Remarks

Twofish originated from an attempt to take the origi-
nal Blowfish design and modify it for a 128-bit block.
We wanted to leverage the speed and good diffusion
of Blowfish, while also improving it where we could.
We wanted the new cipher to have a bijective F func-
tion, a much more efficient key schedule, and to be
implementable in custom hardware and smart cards
in addition to 32-bit processors (i.e., have smaller
tables). And we wanted it to be even faster than
Blowfish (per byte encrypted), if possible.

Initial thoughts were to have the Blowfish round
structure operate on the four 32-bit subblocks in a
circular structure, but there were problems getting
the diffusion to work in both the encryption and
decryption directions. Having two parallel Blow-
fish round functions and letting them interact via a
two-dimensional Feistel structure ran into the same
problems. Our solution was to have a single Feistel
structure with two Blowfish-like 32-bit round func-
tions and to combine them using a PHT (an idea
stolen from SAFER). This idea also provided nearly
complete avalanche during the round.

Round subkeys are required to avoid slide attacks
against identical round functions. We used addition
instead of xor to take advantage of the Pentium
LEA opcode and implement them in effectively zero
time.

We used 8-by-8-bit S-boxes and an MDS matrix (an
idea stolen from Square, although Square uses a sin-
gle fixed S-box) instead of random 8-by-32-bit S-
boxes, both to simplify the key schedule and ensure
that the g function is bijective. This construction
ensured that Twofish would be efficient on 32-bit
processors (by precomputing the S-boxes and MDS
matrix into four 8-by-32-bit S-boxes) while still al-
lowing it to be computed on the fly in smart cards.
And since our MDS matrix is only ever computed
in one direction, we did not have to worry about
the matrix’s efficiency in the reverse direction (which
Square had to consider).

The construction also gave us considerable perfor-
mance flexibility. We worked hard to keep this flex-

ibility, so implementers would have a choice of how
much key pre-processsing to do depending on the
amount of plaintext to be encrypted. And we tried
to maintain these tradeoffs for 32-bit microproces-
sors, 8-bit microprocessors, and custom hardware.

Since one goal was to be able to keep the com-
plete design in our heads, any complication that did
not have a clear purpose was deleted. Additional
complications we chose not to introduce were key-
dependent MDS matrices or round-dependent vari-
ations on the byte ordering and the PHT. We also
toyed with the idea of swapping 32-bit words within
the Feistel halves (something we called the “twist”),
but abandoned it because we saw no need for the
additional complexity.

We did keep in the one-bit rotations of the target
block, primarily to reduce the vulnerability to any
attack based on byte boundaries. The particular
manifestation of this one-bit rotation was due to a
combination of performance and cryptanalytic con-
cerns.

We considered using all the key bytes, rather than
just half, to define the key-dependent S-boxes. Un-
fortunately, this made the key setup time for high-
end machines unreasonably large, and also made en-
cryption too slow on low-end machines. By dropping
this to half the key bits, these performance figures
were improved substantially. By carefully selecting
how the key bytes are folded down to half their size
before being used to generate the cipher’s S-boxes,
we were able to ensure that pairs of keys with the
same S-boxes would have very different subkey se-
quences.

The key schedule gave us the most trouble. We had
to resist the temptation to build a cryptographic key
schedule like the ones used by Blowfish, Khufu, and
SEAL, because low-end implementations needed to
be able to function with minimal additional memory
and, if necessary, to compute the subkeys as needed
by the cipher. However, a simple key schedule can
be an important weak point in a cipher design, leav-
ing the whole cipher vulnerable to partial-key guess-
ing attacks, related-key attacks, or to attacks based
on waiting for especially weak keys to be selected
by a user. Though our final key schedule is rather
complex, it is conceptually much simpler than many
of our intermediate designs. Reusing many of the
primitives of the cipher (each round’s subkeys are
generated by a computation nearly identical to the
one that goes on inside the round function, except
for the specific inputs involved) made it possible to
investigate properties of both the key schedule and
of the cipher at the same time.

56

We spent considerable time choosing q0 and q1.
Since these provide the primary non-linearity in the
cipher, they had to be strong. We wanted to be
able to construct them algebraically, for applications
where storing 512 bytes of fixed tables was not possi-
ble. In the end, we built permutations from random
parameters, and tested the permutations against our
required criteria.
And finally, we cryptanalyzed Twofish. We cryptan-
alyzed and cryptanalyzed and cryptanalyzed, right
up to the morning of the submission deadline. We’re
still cryptanalyzing; there’s no stopping.

13 Conclusions and Further
Work

We have presented Twofish, the rationale behind its
design, and the results of our initial cryptanalysis.
Design and cryptanalysis go hand in hand—it is im-
possible to do one without the other—and it is only
in the analysis that the strength of an algorithm can
be demonstrated.
During the design process, we learned several lessons
about cipher design:

• The encryption algorithm and key schedule
must be designed in tandem; subtle changes
in one affect the other. It is not enough to de-
sign a strong round function and then to graft
a strong key schedule onto it (unless you are
satisfied with an inefficient and inelegant con-
struction, like Blowfish has); both must work
together.

• There is no such thing as a key-dependent S-
box, only a complicated multi-stage nonlin-
ear function that is implemented as a key-
dependent S-box for efficiency.

• Keys should be as short as possible. It is much
harder to design an algorithm with a long key
than an algorithm with a short key. Through-
out our design process, we found it easier to
design and analyze Twofish with a 128-bit key
than Twofish with a 192- or 256-bit key.

• Build a cipher with strong local encryption and
let the round function handle the global diffu-
sion. Designing Twofish in this manner made
it very hard to mount any statistical cryptan-
alytical attacks.

• Consider performance at every stage of the de-
sign. Having a code optimization guru on our

team from the beginning drastically changed
the way we looked at design tradeoffs, to the
ultimate benefit of Twofish.

• Analysis can go on forever. If the submission
deadline were not on 15 June 1998, we would
still be cryptanalyzing and tweaking Twofish.

We believe Twofish to be an ideal algorithm choice
for AES. It is efficient on large microprocessors,
smart cards, and dedicated hardware. The multiple
layers of performance tradeoffs in the key schedule
make it suitable for a variety of implementations.
And the attention to cryptographic detail in the
design—both the encryption function and the key
schedule—make it suitable as a codebook, output-
feedback and cipher-feedback stream cipher, one-
way hash function, and pseudo-random number gen-
erator.

We welcome any new cryptanalysis from the crypto-
graphic community. We plan on continuing to eval-
uate Twofish all through the AES selection process.
Specifically:

• Whether the number of rounds can safely be
reduced. At this point our best non-related-
key attack—a differential attack—can only
break five rounds. If no better attacks are
found after a few years, it may be safe to
reduce the number of rounds to 14 or even
12. Twelve-round Twofish can encrypt and de-
crypt data at about 250 clock cycles per block
on a Pentium, Pentium Pro, and Pentium II.

• Whether there are alternative fixed tables that
increase security. We have chosen both the
MDS matrix and the fixed permutations, q0
and q1, to meet our mathematical require-
ments. In the event we find better constants
that make Twofish even harder to cryptana-
lyze, we may want to revise the algorithm.

• Whether we can define a Twofish variant with
fixed S-boxes. This variant would have a faster
key-setup time than the algorithm presented
here—about 1200 clock cycles instead of 7800
clock cycles on a Pentium Pro—and the same
encryption and decryption speeds. Further re-
search is required on what the fixed S-boxes
would look like, and how much data could be
safely encrypted with this variant.

• Whether we can improve our lower bound on
the complexity of a differential attack.

57

Developing Twofish was a richly rewarding experi-
ence, and one of our most satisfying cryptographic
projects to date. We look forward to the next phase
of the AES selection process.

14 Acknowledgments

The authors would like to thank Carl Ellison, Paul
Kocher, and Randy Milbert, who read and com-
mented on drafts of the paper, and Beth Fried-
man, who copyedited the (almost) final version of
the paper. Additionally, the authors would like
to thank NIST for initiating the AES process, and
Miles Smid, Jim Foti, and Ed Roback for putting
up with a never-ending steam of questions and com-
plaints about its details. This work has been funded
by Counterpane Systems and Hi/fn Inc.

References

[AB96a] R. Anderson and E. Biham, “Two Prac-
tical and Provably Secure Block Ciphers:
BEAR and LION,” Fast Software Encryp-
tion, Third International Workshop Proceed-
ings, Springer-Verlag, 1996, pp. 113–120.

[AB96b] R. Anderson and E. Biham, “Tiger: A Fast
New Hash Function,” Fast Software Encryp-
tion, Third International Workshop Proceed-
ings, Springer-Verlag, 1996, pp. 89–97.

[Ada97a] C. Adams, “Constructing Symmetric Ci-
phers Using the CAST Design Procedure,”
Designs, Codes and Cryptography, v.12, n.3,
Nov 1997, pp. 71–104.

[Ada97b] C. Adams, “DES-80,” Workshop on Selected
Areas in Cryptography (SAC ’97) Workshop
Record, School of Computer Science, Car-
leton University, 1997, pp. 160–171.

[AGMP96] G. Álvarez, D. De la Guia, F. Montoya, and
A. Peinado, “Akelarre: A New Block Cipher
Algorithm,” Workshop on Selected Areas in
Cryptography (SAC ’96) Workshop Record,
Queens University, 1996, pp. 1–14.

[Anon95] Anonymous, “this looked like it might be in-
teresting,” sci.crypt Usenet posting, 9 Aug
1995.

[AT93] C.M. Adams and S.E. Tavares, “Designing
S-boxes for Ciphers Resistant to Differential
Cryptanalysis,” Proceedings of the 3rd Sym-
posium on State and Progress of Research in
Cryptography, Rome, Italy, 15–16 Feb 1993,
pp. 181–190.

[BAK98] E. Biham, R. Anderson, and L. Knud-
sen, “Serpent: A New Block Cipher Pro-
posal,” Fast Software Encryption, 5th In-
ternational Workshop Proceedings, Springer-
Verlag, 1998, pp. 222–238.

[BB93] I. Ben-Aroya and E. Biham, “Differen-
tial Cryptanalysis of Lucifer,” Advances in
Cryptology — CRYPTO ’93 Proceedings,
Springer-Verlag, 1994, pp. 187–199.

[BB94] E. Biham and A. Biryukov, “How to
Strengthen DES Using Existing Hardware,”
Advances in Cryptology — ASIACRYPT ’94
Proceedings, Springer-Verlag, 1994, pp. 398–
412.

[BB95] E. Biham and A. Biryukov, “An Improve-
ment of Davies’ Attack on DES,” Advances
in Cryptology — EUROCRYPT ’94 Proceed-
ings, Springer-Verlag, 1995, pp. 461–467.

[BB96] U. Blumenthal and S. Bellovin, “A Bet-
ter Key Schedule for DES-Like Ciphers,”
Pragocrypt ’96 Proceedings, 1996, pp. 42–54.

[BCK96] M. Bellare, R. Canetti, and H. Karwczyk,
“Keying Hash Functions for Message Au-
thentication,” Advances in Cryptology —
CRYPTO ’96 Proceedings, Springer-Verlag,
1996, pp. 1–15.

[BDL97] D. Boneh, R.A. DeMillo, and R.J. Lipton
“On the Importance of Checking Crypto-
graphic Protocols for Faults,” Advances in
Cryptology — EUROCRYPT ’97 Proceed-
ings, Springer-Verlag, 1997, pp. 37–51.

[BDR+96] M. Blaze, W. Diffie, R. Rivest, B. Schneier,
T. Shimomura, E. Thompson, and M.
Weiner, “Minimal Key Lengths for Symmet-
ric Ciphers to Provide Adequate Commercial
Security,” Jan 1996.

[BFL96] M. Blaze, J. Feigenbaum, and F. T.
Leighton, Master-Key Cryptosystems, DI-
MACS Technical Report 96-02, Rutgers Uni-
versity, Piscataway, 1996.

[Bih94] E. Biham, “New Types of Cryptanalytic At-
tacks Using Related Keys,” Journal of Cryp-
tology, v. 7, n. 4, 1994, pp. 229–246.

[Bih95] E. Biham, “On Matsui’s Linear Cryptanal-
ysis,” Advances in Cryptology — EURO-
CRYPT ’94 Proceedings, Springer-Verlag,
1995, pp. 398–412.

[Bih97] E. Biham, “A Fast New DES Implemen-
tation in Software,” Fast Software Encryp-
tion, 4th International Workshop Proceed-
ings, Springer-Verlag, 1997, pp. 260–271.

58

[BK98] A. Biryukov and E. Kushilevitz, “Improved
Cryptanalysis of RC5,” Advances in Cryp-
tology — EUROCRYPT ’98 Proceedings,
Springer-Verlag, 1998, pp. 85–99.

[BKPS93] L. Brown, M. Kwan, J. Pieprzyk, and J. Se-
berry, “Improving Resistance to Differential
Cryptanalysis and the Redesign of LOKI,”
Advances in Cryptology — ASIACRYPT ’91
Proceedings, Springer-Verlag, 1993, pp. 36–
50.

[BPS90] L. Brown, J. Pieprzyk, and J. Seberry,
“LOKI: A Cryptographic Primitive for Au-
thentication and Secrecy Applications,” Ad-
vances in Cryptology — AUSCRYPT ’90
Proceedings, Springer-Verlag, 1990, pp. 229–
236.

[Bro98] L. Brown, “Design of LOK97,” draft AES
submission, 1998.

[BS92] E. Biham and A. Shamir, “Differential
Cryptanalysis of Snefru, Khafre, REDOC II,
LOKI, and Lucifer,” Advances in Cryptol-
ogy — CRYPTO ’91 Proceedings, Springer-
Verlag, 1992, pp. 156–171.

[BS93] E. Biham and A. Shamir, Differential Crypt-
analysis of the Data Encryption Standard,
Springer-Verlag, 1993.

[BS95] M. Blaze and B. Schneier, “The MacGuf-
fin Block Cipher Algorithm,” Fast Software
Encryption, Second International Workshop
Proceedings, Springer-Verlag, 1995, pp. 97–
110.

[BS97] E. Biham and A. Shamir, “Differential Fault
Analysis of Secret Key Cryptosystems,” Ad-
vances in Cryptology — CRYPTO ’97 Pro-
ceedings, Springer-Verlag, 1997, pp. 513–525.

[CDN95] G. Carter, E. Dawson, and L. Nielsen,
“DESV: A Latin Square Variation of DES,”
Proceedings of the Workshop on Selected Ar-
eas in Cryptography (SAC ’95), Ottawa,
Canada, 1995, pp. 158–172.

[CDN98] G. Carter, E. Dawson, and L. Nielsen,,
“Key Schedules of Iterative Block Ciphers,”
Third Australian Conference, ACISP ’98,
Springer-Verlag, to appear.

[Cla97] C.S.K. Clapp, “Optimizing a Fast Stream
Cipher for VLIW, SIMD, and Super-
scalar Processors,” Fast Software Encryp-
tion, 4th International Workshop Proceed-
ings, Springer-Verlag, 1997, pp. 273–287.

[Cla98] C.S.K. Clapp, “Joint Hardware/Software
Design of a Fast Stream Cipher,” Fast Soft-
ware Encryption, 5th International Work-
shop Proceedings, Springer-Verlag, 1998, pp.
75–92.

[CM98] H. Chabanne and E. Michon, “JER-
OBOAM” Fast Software Encryption, 5th In-
ternational Workshop Proceedings, Springer-
Verlag, 1998, pp. 49–59.

[Cop94] D. Coppersmith, “The Data Encryption
Standard (DES) and its Strength Against
Attacks,” IBM Journal of Research and De-
velopment, v. 38, n. 3, May 1994, pp. 243–
250.

[Cop98] D. Coppersmith, personal communication,
1998.

[CW91] T. Cusick and M.C. Wood, “The REDOC-II
Cryptosystem,” Advances in Cryptology —
CRYPTO ’90 Proceedings, Springer-Verlag,
1991, pp. 545–563.

[CWSK98] D. Coppersmith, D. Wagner, B. Schneier,
and J. Kelsey, “Cryptanalysis of
TWOPRIME,” Fast Software Encryption,
5th International Workshop Proceedings,
Springer-Verlag, 1998, pp. 32–48.

[Dae95] J. Daemen, “Cipher and Hash Function De-
sign,” Ph.D. thesis, Katholieke Universiteit
Leuven, Mar 95.

[DBP96] H. Dobbertin, A. Bosselaers, and B. Pre-
neel, “RIPEMD-160: A Strengthened Ver-
sion of RIPEMD,” Fast Software Encryp-
tion, Third International Workshop Proceed-
ings, Springer-Verlag, 1996, pp. 71–82.

[DC98] J. Daemen and C. Clapp, “Fast Hashing
and Stream Encryption with PANAMA,”
Fast Software Encryption, 5th Interna-
tional Workshop Proceedings, Springer-
Verlag, 1998, pp. 60–74.

[DGV93] J. Daemen, R. Govaerts, and J. Vandewalle,
“Block Ciphers Based on Modular Arith-
metic,” Proceedings of the 3rd Symposium
on: State and Progress of Research in Cryp-
tography, Fondazione Ugo Bordoni, 1993, pp.
80–89.

[DGV94a] J. Daemen, R. Govaerts, and J. Vande-
walle, “Weak Keys for IDEA,” Advances in
Cryptology — EUROCRYPT ’93 Proceed-
ings, Springer-Verlag, 1994, pp. 159–167.

[DGV94b] J. Daemen, R. Govaerts, and J. Vandewalle,
“A New Approach to Block Cipher Design,”
Fast Software Encryption, Cambridge Secu-
rity Workshop Proceedings, Springer-Verlag,
1994, pp. 18–32.

59

[DH76] W. Diffie and M. Hellman, “New Directions
in Cryptography,” IEEE Transactions on In-
formation Theory, v. IT-22, n. 6, Nov 1976,
pp. 644–654.

[DH79] W. Diffie and M. Hellman, “Exhaustive
Cryptanalysis of the NBS Data Encryption
Standard,” Computer, v. 10, n. 3, Mar 1979,
pp. 74–84.

[DK85] C. Deavours and L.A. Kruh, Machine Cryp-
tography and Modern Cryptanalysis, Artech
House, Dedham MA, 1985.

[DKR97] J. Daemen, L. Knudsen, and V. Rijmen,
“The Block Cipher Square,” Fast Soft-
ware Encryption, 4th International Work-
shop Proceedings, Springer-Verlag, 1997, pp.
149–165.

[ElG85] T. ElGamal, “A Public-Key Cryptosystem
and a Signature Scheme Based on Discrete
Logarithms,” IEEE Transactions on Infor-
mation Theory, v. IT-31, n. 4, 1985, pp. 469–
472.

[Fei73] H. Feistel, “Cryptography and Computer
Privacy,” Scientific American, v. 228, n. 5,
May 1973, pp. 15–23.

[Fer96] N. Ferguson, personal communication, 1996.

[FNS75] H. Feistel, W.A. Notz, and J.L. Smith,
“Some Cryptographic Techniques for
Machine-to-Machine Data Communications,
Proceedings on the IEEE, v. 63, n. 11, 1975,
pp. 1545–1554.

[FS97] N. Ferguson and B. Schneier, “Cryptanalysis
of Akelarre,” Workshop on Selected Areas in
Cryptography (SAC ’97) Workshop Record,
School of Computer Science, Carleton Uni-
versity, 1997, pp. 201–212.

[GC94] H. Gilbert and P. Chauvaud, “A Chosen-
Plaintext Attack on the 16-Round Khufu
Cryptosystem,” Advances in Cryptology —
CRYPTO ’94 Proceedings, Springer-Verlag,
1994, pp. 359–368.

[GOST89] GOST, Gosudarstvennyi Standard 28147-89,
“Cryptographic Protection for Data Pro-
cessing Systems,” Government Committee
of the USSR for Standards, 1989.

[Gut98] P. Gutmann, “Software Generation of Ran-
dom Numbers for Cryptographic Purposes,”
Proceedings of the 1998 Usenix Security
Symposium, 1998, pp. 243–257.

[Har96] C. Harpes, Cryptanalysis of Iterated Block
Ciphers, ETH Series on Information Pro-
cessing, v. 7, Hartung-Gorre Verlang Kon-
stanz, 1996.

[Haw98] P. Hawkes, “Differential-Linear Weak Key
Classes of IDEA,” Advances in Cryptology
— EUROCRYPT ’98 Proceedings, Springer-
Verlag, 1998, pp. 112–126.

[HKM95] C. Harpes, G. Kramer, and J. Massey,
“A Generalization of Linear Cryptanalysis
and the Applicability of Matsui’s Piling-up
Lemma,” Advances in Cryptology — EURO-
CRYPT ’95 Proceedings, Springer-Verlag,
1995, pp. 24–38.

[HKR+98] C. Hall, J. Kelsey, V. Rijmen, B. Schneier,
and D. Wagner, “Cryptanalysis of SPEED,”
unpublished manuscript, 1998.

[HKSW98] C. Hall, J. Kelsey, B. Schneier, and D.
Wagner, “Cryptanalysis of SPEED,” Finan-
cial Cryptography ’98 Proceedings, Springer-
Verlag, 1998, to appear.

[HM97] C. Harpes and J. Massey, “Partitioning
Cryptanalysis,” Fast Software Encryption,
4th International Workshop Proceedings,
Springer-Verlag, 1997, pp. 13–27.

[HT94] H.M. Heys and S.E. Tavares, “On the
Security of the CAST Encryption Algo-
rithm,” Canadian Conference on Electrical
and Computer Engineering, 1994, pp. 332–
335.

[Jeff+76] T. Jefferson et al., “Declaration of Indepen-
dence,” Philadelphia PA, 4 Jul 1776.

[JH96] T. Jakobsen and C. Harpes, “Bounds
on Non-Uniformity Measures for General-
ized Linear Cryptanalysis and Partitioning
Cryptanalysis,” Pragocrypt ’96 Proceedings,
1996, pp. 467–479.

[JK97] T. Jakobsen and L. Knudsen, “The Interpo-
lation Attack on Block Ciphers,” Fast Soft-
ware Encryption, 4th International Work-
shop Proceedings, Springer-Verlag, 1997, pp.
28–40.

[Kie96] K. Kiefer, “A New Design Concept for
Building Secure Block Ciphers,” Proceed-
ings of the 1st International Conference on
the Theory and Applications of Cryptogra-
phy, Pragocrypt ’96, CTU Publishing House,
1996, pp. 30–41.

[KKT94] T. Kaneko, K. Koyama, and R. Terada, “Dy-
namic Swapping Schemes and Differential
Cryptanalysis,” IEICE Tranactions, v. E77-
A, 1994, pp. 1328–1336.

60

[KLPL95] K. Kim, S. Lee, S. Park, and D. Lee, “Se-
curing DES S-boxes Against Three Robust
Cryptanalysis,” Proceedings of the Work-
shop on Selected Areas in Cryptography
(SAC ’95), Ottawa, Canada, 1995, pp. 145–
157.

[KM97] L.R. Knudsen and W. Meier, “Differential
Cryptanalysis of RC5,” European Transac-
tions on Communication, v. 8, n. 5, 1997,
pp. 445–454.

[Knu93a] L.R. Knudsen, “Cryptanalysis of LOKI,”
Advances in Cryptology — ASIACRYPT
’91, Springer-Verlag, 1993, pp. 22–35.

[Knu93b] L.R. Knudsen, “Cryptanalysis of LOKI91,”
Advances in Cryptology — AUSCRYPT ’92,
Springer-Verlag, 1993, pp. 196–208.

[Knu93c] L.R. Knudsen, “Iterative Characteristics of
DES and s2DES,” Advances in Cryptology
— CRYPTO ’92, Springer-Verlag, 1993, pp.
497–511.

[Knu94a] L.R. Knudsen, “Block Ciphers — Analysis,
Design, Applications,” Ph.D. dissertation,
Aarhus University, Nov 1994.

[Knu94b] L.R. Knudsen, “Practically Secure Feis-
tel Ciphers,” Fast Software Encryption,
Cambridge Security Workshop Proceedings,
Springer-Verlag, 1994, pp. 211–221.

[Knu95a] L.R. Knudsen, “New Potentially ‘Weak’
Keys for DES and LOKI,” Advances in
Cryptology — EUROCRYPT ’94 Proceed-
ings, Springer-Verlag, 1995, pp. 419–424.

[Knu95b] L.R. Knudsen, “Truncated and Higher Or-
der Differentials,” Fast Software Encryp-
tion, 2nd International Workshop Proceed-
ings, Springer-Verlag, 1995, pp. 196–211.

[Knu95c] L.R. Knudsen, “A Key-Schedule Weakness
in SAFER K-64,” Advances in Cryptology—
CRYPTO ’95 Proceedings, Springer-Verlag,
1995, pp. 274–286.

[Koc96] P. Kocher, “Timing Attacks on Implemen-
tations of Diffie-Hellman, RSA, DSS, and
Other Systems,” Advances in Cryptology —
CRYPTO ’96 Proceedings, Springer-Verlag,
1996, pp. 104–113.

[Koc98] P. Kocher, personal communication, 1998.

[KPL93] K. Kim, S. Park, and S. Lee, “Reconstruc-
tion of s2DES S-Boxes and their Immunity
to Differential Cryptanalysis,” Proceedings
of the 1993 Japan-Korea Workshop on In-
formation Security and Cryptography, Seoul,
Korea, 24–26 October 1993, pp. 282–291.

[KR94] B. Kaliski Jr., and M. Robshaw, “Linear
Cryptanalysis Using Multiple Approxima-
tions,” Advances in Cryptology — CRYPTO
’94 Proceedings, Springer-Verlag, 1994, pp.
26–39.

[KR95] B. Kaliski Jr., and M. Robshaw, “Linear
Cryptanalysis Using Multiple Approxima-
tions and FEAL,” Fast Software Encryption,
Second International Workshop Proceedings,
Springer-Verlag, 1995, pp. 249–264.

[KR96a] L. Knudsen and M. Robshaw, “Non-Linear
Approximations in Linear Cryptanalysis,”
Advances in Cryptology — EUCROCRYPT
’96, Springer-Verlag, 1996, pp. 224–236.

[KR96] J. Kilian and P. Rogaway, “How to Protect
DES Against Exhaustive Key Search,” Ad-
vances in Cryptology — CRYPTO ’96 Pro-
ceedings, Springer-Verlag, 1996, pp. 252–267.

[KR97] L.R. Knudsen and V. Rijmen, “Two Rights
Sometimes Make a Wrong,” Workshop on
Selected Areas in Cryptography (SAC ’97)
Workshop Record, School of Computer Sci-
ence, Carleton University, 1997, pp. 213–
223.

[KRRR98] L.R. Knudsen, V. Rijmen, R. Rivest, and
M. Robshaw, “On the Design and Security
of RC2,” Fast Software Encryption, 5th In-
ternational Workshop Proceedings, Springer-
Verlag, 1998, pp. 206–221.

[KSHW98] J. Kelsey, B. Schneier, C. Hall, and D. Wag-
ner, “Secure Applications of Low-Entropy
Keys,” Information Security. First Inter-
national Workshop ISW ’97 Proceedings,
Springer-Verlag, 1998, 121–134.

[KSW96] J. Kelsey, B. Schneier, and D. Wagner,
“Key-Schedule Cryptanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES,” Ad-
vances in Cryptology — CRYPTO ’96 Pro-
ceedings, Springer-Verlag, 1996, pp. 237–251.

[KSW97] J. Kelsey, B. Schneier, and D. Wag-
ner, “Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2,
and TEA,” Information and Communica-
tions Security, First International Confer-
ence Proceedings, Springer-Verlag, 1997, pp.
203–207.

[KSWH98a] J. Kelsey, B. Schneier, D. Wagner, and
C. Hall, “Cryptanalytic Attacks on Pseu-
dorandom Number Generators,” Fast Soft-
ware Encryption, 5th International Work-
shop Proceedings, Springer-Verlag, 1998, pp.
168–188.

61

[KSWH98b] J. Kelsey, B. Schneier, D. Wagner, and C.
Hall, “Side Channel Cryptanalysis of Prod-
uct Ciphers,” ESORICS ’98 Proceedings,
Springer-Verlag, 1998, to appear.

[KSWH98c] J. Kelsey, B. Schneier, D. Wagner, and C.
Hall, “Yarrow: A Pseudorandom Number
Generator,” in preparation.

[Kwa97] M. Kwan, “The Design of ICE Encryp-
tion Algorithm,” Fast Software Encryp-
tion, 4th International Workshop Proceed-
ings, Springer-Verlag, 1997, pp. 69–82.

[KY95] B.S. Kaliski and Y.L. Yin, “On Differ-
ential and Linear Cryptanalysis of the
RC5 Encryption Algorithm,” Advances
in Cryptology—CRYPTO ’95 Proceedings,
Springer-Verlag, 1995, pp. 445–454.

[Lai94] X. Lai, “Higher Order Derivations and
Differential Cryptanalysis,” Communica-
tions and Cryptography: Two Sides of
One Tapestry, Kluwer Academic Publishers,
1994, pp. 227–233.

[LC97] C.-H. Lee and Y.-T. Cha, “The Block Ci-
pher: SNAKE with Provable Resistance
Against DC and LC Attacks,” Proceedings
of JW-ISC ’97, KIISC and ISEC Group of
IEICE, 1997, pp. 3–17.

[Lee96] M. Leech, “CRISP: A Feistel Network with
Hardened Key Scheduling,” Workshop on
Selected Areas in Cryptography (SAC ’96)
Workshop Record, Queens University, 1996,
pp. 15–29.

[LH94] S. Langford and M. Hellman, “Differential-
Linear Cryptanalysis,” Advances in Cryptol-
ogy — CRYPTO ’94 Proceedings, Springer-
Verlag, 1994, pp. 17–26.

[LM91] X. Lai and J. Massey, “A Proposal for a
New Block Encryption Standard,” Advances
in Cryptology — EUROCRYPT ’90 Proceed-
ings, Springer-Verlag, 1991, pp. 389–404.

[LMM91] X. Lai, J. Massey, and S. Murphy, “Markov
Ciphers and Differential Cryptanalysis,” Ad-
vances in Cryptology — CRYPTO ’91 Pro-
ceedings, Springer-Verlag, 1991, pp. 17–38.

[MA96] S. Mister and C. Adams, “Practical S-Box
Design,” Workshop on Selected Areas in
Cryptography (SAC ’96) Workshop Record,
Queens University, 1996, pp. 61–76.

[Mad84] W.E. Madryga, “A High Performance En-
cryption Algorithm,” Computer Security: A
Global Challenge, Elsevier Science Publish-
ers, 1984, pp. 557–570.

[Mas94] J.L. Massey, “SAFER K-64: A Byte-
Oriented Block-Ciphering Algorithm,” Fast
Software Encryption, Cambridge Security
Workshop Proceedings, Springer-Verlag,
1994, pp. 1–17.

[Mat94] M. Matsui, “Linear Cryptanalysis Method
for DES Cipher,” Advances in Cryptology
— EUROCRYPT ’93 Proceedings, Springer-
Verlag, 1994, pp. 386–397.

[Mat95] M. Matsui, “On Correlation Between the Or-
der of S-Boxes and the Strength of DES,”
Advances in Cryptology — EUROCRYPT
’94 Proceedings, Springer-Verlag, 1995, pp.
366–375.

[Mat96] M. Matsui, “New Structure of Block Ci-
phers with Provable Security Against Differ-
ential and Linear Cryptanalysis,” Fast Soft-
ware Encryption, 3rd International Work-
shop Proceedings, Springer-Verlag, 1996, pp.
205–218.

[Mat97] M. Matsui, “New Block Encryption Al-
gorithm MISTY,” Fast Software Encryp-
tion, 4th International Workshop Proceed-
ings, Springer-Verlag, 1997, pp. 54–68.

[McD97] T.J. McDermott, “NSA comments on crite-
ria for AES,” letter to NIST, National Secu-
rity Agency, 2 Apr 97.

[Mer91] R.C. Merkle, “Fast Software Encryption
Functions,” Advances in Cryptology —
CRYPTO ’90 Proceedings, Springer-Verlag,
1991, pp. 476–501.

[MS77] F.J. MacWilliams and N.J.A. Sloane, “The
Theory of Error-Correcting Codes,” North-
Holland, Amsterdam, 1977.

[MSK98a] S. Moriai, T. Shimoyama, and T. Kaneko,
“Higher Order Differential Attack of a CAST
Cipher,” Fast Software Encryption, 5th In-
ternational Workshop Proceedings, Springer-
Verlag, 1998, pp. 17–31.

[MSK98b] S. Moriai, T. Shimoyama, and T. Kaneko,
“Interpolation Attacks of the Block Cipher:
SNAKE,” unpublished manuscript, 1998.

[Mur90] S. Murphy, “The Cryptanalysis of FEAL-
4 with 20 Chosen Plaintexts,” Journal of
Cryptology, v. 2, n. 3, 1990, pp. 145–154.

[NBS77] National Bureau of Standards, NBS FIPS
PUB 46, “Data Encryption Standard,” Na-
tional Bureau of Standards, U.S. Depart-
ment of Commerce, Jan 1977.

62

[NBS80] National Bureau of Standards, NBS FIPS
PUB 46, “DES Modes of Operation,” Na-
tional Bureau of Standards, U.S. Depart-
ment of Commerce, Dec 1980.

[NIST93] National Institute of Standards and Technol-
ogy, “Secure Hash Standard,” U.S. Depart-
ment of Commerce, May 1993.

[NIST94] National Institute of Standards and Tech-
nologies, NIST FIPS PUB 186, “Digital Sig-
nature Standard,” U.S. Department of Com-
merce, May 1994.

[NIST97a] National Institute of Standards and Technol-
ogy, “Announcing Development of a Federal
Information Standard for Advanced Encryp-
tion Standard,” Federal Register, v. 62, n. 1,
2 Jan 1997, pp. 93–94.

[NIST97b] National Institute of Standards and Technol-
ogy, “Announcing Request for Candidate Al-
gorithm Nominations for the Advanced En-
cryption Standard (AES),” Federal Register,
v. 62, n. 117, 12 Sep 1997, pp. 48051–48058.

[NK95] K. Nyberg and L.R. Knudsen, “Provable Se-
curity Against Differential Cryptanalysis,”
Journal of Cryptology, v. 8, n. 1, 1995, pp.
27–37.

[NM97] J. Nakajima and M. Matsui, “Fast Software
Implementation of MISTY on Alpha Pro-
cessors,” Proceedings of JW-ISC ’97, KIISC
and ISEC Group of IEICE, 1997, pp. 55–63.

[Nyb91] K. Nyberg, “Perfect Nonlinear S-boxes,” Ad-
vances in Cryptology — EUROCRYPT ’91
Proceedings, Springer-Verlag, 1991, pp. 378–
386.

[Nyb93] K. Nyberg, “On the Construction of
Highly Nonlinear Permutations,” Advances
in Cryptology — EUROCRYPT ’92 Proceed-
ings, Springer-Verlag, 1993, pp. 92–98.

[Nyb94] K. Nyberg, “Differentially Uniform Map-
pings for Cryptography,” Advances in Cryp-
tology — EUROCRYPT ’93 Proceedings,
Springer-Verlag, 1994, pp. 55–64.

[Nyb95] K. Nyberg, “Linear Approximation of Block
Ciphers,” Advances in Cryptology — EURO-
CRYPT ’94 Proceedings, Springer-Verlag,
1995, pp. 439–444.

[Nyb96] K. Nyberg, “Generalized Feistel Networks,”
Advances in Cryptology — ASIACRYPT ’96
Proceedings, Springer-Verlag, 1996, pp. 91–
104.

[OCo94a] L. O’Connor, “Enumerating Nondegener-
ate Permutations,” Advances in Cryptology
— EUROCRYPT ’93 Proceedings, Springer-
Verlag, 1994, pp. 368–377.

[OCo94b] L. O’Connor, “On the Distribution of Char-
acteristics in Bijective Mappings,” Advances
in Cryptology — EUROCRYPT ’93 Proceed-
ings, Springer-Verlag, 1994, pp. 360–370.

[OCo94c] L. O’Connor, “On the Distribution of Char-
acteristics in Composite Permutations,” Ad-
vances in Cryptology — CRYPTO ’93 Pro-
ceedings, Springer-Verlag, 1994, pp. 403–412.

[Plu94] C. Plumb, “Truly Random Numbers,” Dr.
Dobbs Journal, v. 19, n. 13, Nov 1994, pp.
113-115.

[Pre93] B. Preneel, Analysis and Design of Crypto-
graphic Hash Functions, Ph.D. dissertation,
Katholieke Universiteit Leuven, Jan 1993.

[PRB98] B. Preneel, V. Rijmen, A. Bosselaers, “Re-
cent Developments in the Design of Conven-
tional Cryptographic Algorithms,” State of
the Art and Evolution of Computer Security
and Industrial Cryptography, Lecture Notes
in Computer Science, B. Preneel, R. Gov-
aerts, J. Vandewalle, Eds., Springer-Verlag,
1998, to appear.

[QDD86] J.-J. Quisquater, Y. Desmedt, and M. Davio,
“The Importance of ‘Good’ Key Schedul-
ing Schemes,” Advances in Cryptology —
CRYPTO ’85 Proceedings, Springer-Verlag,
1986, pp. 537–542.

[RAND55] RAND Corporation, A Million Random Dig-
its with 100,000 Normal Deviates, Glencoe,
IL, Free Press Publishers, 1955.

[RC94] P. Rogaway and D. Coppersmith, “A
Software-Optimized Encryption Algorithm,”
Fast Software Encryption, Cambridge Secu-
rity Workshop Proceedings, Springer-Verlag,
1994, pp. 56–63.

[RC97] P. Rogaway and D. Coppersmith, “A
Software-Optimized Encryption Algo-
rithm,” full version of [RC94], available at
http://www.cs.ucdavis.edu/~rogaway/
papers/seal.ps, 1997.

[RDP+96] V. Rijmen, B. Preneel, A. Bosselaers, and E.
DeWin, “The Cipher SHARK,” Fast Soft-
ware Encryption, 3rd International Work-
shop Proceedings, Springer-Verlag, 1996, pp.
99–111.

[Rij97] V. Rijmen, Cryptanalysis and Design of Iter-
ated Block Ciphers, Ph.D. thesis, Katholieke
Universiteit Leuven, Oct 1997.

63

[RIPE92] Research and Development in Advanced
Communication Technologies in Europe,
RIPE Integrity Primitives: Final Report
of RACE Integrity Primitives Evaluation
(R1040), RACE, June 1992.

[Riv91] R.L. Rivest, “The MD4 Message Digest
Algorithm,” Advances in Cryptology —
CRYPTO ’90 Proceedings, Springer-Verlag,
1991, pp. 303–311.

[Riv92] R.L. Rivest, “The MD5 Message Digest Al-
gorithm,” RFC 1321, Apr 1992.

[Riv95] R.L. Rivest, “The RC5 Encryption Algo-
rithm,” Fast Software Encryption, 2nd In-
ternational Workshop Proceedings, Springer-
Verlag, 1995, pp. 86–96.

[Riv97] R. Rivest, “A Description of the RC2(r) En-
cryption Algorithm,” Internet-Draft, work
in progress, June 1997.

[Ros98] G. Rose, “A Stream Cipher Based on Lin-
ear Feedback over GF(28),” Third Australian
Conference, ACISP ’98, Springer-Verlag, to
appear.

[RP95a] V. Rijmen and B. Preneel, “Cryptanalysis
of MacGuffin,” Fast Software Encryption,
Second International Workshop Proceedings,
Springer-Verlag, 1995, pp. 353–358.

[RP95b] V. Rijmen and B. Preneel, “On Weaknesses
of Non-surjective Round Functions,” Pro-
ceedings of the Workshop on Selected Ar-
eas in Cryptography (SAC ’95), Ottawa,
Canada, 1995, pp. 100–106.

[RPD97] V. Rijman, B. Preneel and E. DeWin, “On
Weaknesses of Non-surjective Round Func-
tions,” Designs, Codes, and Cryptography, v.
12, n. 3, 1997, pp. 253–266.

[RSA78] R. Rivest, A. Shamir, and L. Adleman,
“A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communi-
cations of the ACM, v. 21, n. 2, Feb 1978,
pp. 120–126.

[SAM97] T. Shimoyama, S. Amada, and S. Moriai,
“Improved Fast Software Implementation of
Block Ciphers,” Information and Commu-
nications Security, First International Con-
ference, ICICS ’97 Proceedings, Springer-
Verlag, 1997, pp. 203–207.

[Sch94] B. Schneier, “Description of a New Variable-
Length Key, 64-Bit Block Cipher (Blow-
fish),” Fast Software Encryption, Cambridge
Security Workshop Proceedings, Springer-
Verlag, 1994, pp. 191–204.

[Sch96] B. Schneier, Applied Cryptography, Second
Edition, John Wiley & Sons, 1996.

[Sco85] R. Scott, “Wide Open Encryption Design
Offers Flexible Implementation,” Cryptolo-
gia, v. 9, n. 1, Jan 1985, pp. 75–90.

[Sel98] A.A. Selçuk, “New Results in Linear Crypt-
analysis of RC5,” Fast Software Encryp-
tion, 5th International Workshop Proceed-
ings, Springer-Verlag, 1998, pp. 1–16.

[SK96] B. Schneier and J. Kelsey, “Unbalanced
Feistel Networks and Block Cipher De-
sign,” Fast Software Encryption, 3rd In-
ternational Workshop Proceedings, Springer-
Verlag, 1996, pp. 121–144.

[SK98] T. Shimoyama and T. Kaneko, “Quadratic
Relation of S-box and Its Application to
the Linear Attack of Full Round DES,” Ad-
vances in Cryptology — CRYPTO ’98 Pro-
ceedings, Springer-Verlag, 1998, in prepara-
tion.

[SM88] A. Shimizu and S. Miyaguchi, “Fast Data
Encipherment Algorithm FEAL,” Advances
in Cryptology — EUROCRYPT ’87 Proceed-
ings, Springer-Verlag, 1988, pp. 267–278.

[SMK98] T. Shimoyama, S. Moriai, and T. Kaneko,
“Improving the Higher Order Differential
Attack and Cryptanalysis of the KN Ci-
pher,” Information Security. First Inter-
national Workshop ISW ’97 Proceedings,
Springer-Verlag, 1998, pp. 32–42.

[SV98] J. Stern and S. Vaudenay, “CS-Cipher,”
Fast Software Encryption, 5th Interna-
tional Workshop Proceedings, Springer-
Verlag, 1998, pp. 189–205.

[SW97] B. Schneier and D. Whiting, “Fast Soft-
ware Encryption: Designing Encryption Al-
gorithms for Optimal Speed on the Intel
Pentium Processor,” Fast Software Encryp-
tion, 4th International Workshop Proceed-
ings, Springer-Verlag, 1997, pp. 242–259.

[Vau95] S. Vaudenay, “On the Need for Multi-
permutations: Cryptanalysis of MD4 and
SAFER,” Fast Software Encryption, Sec-
ond International Workshop Proceedings,
Springer-Verlag, 1995, pp. 286–297.

[Vau96a] S. Vaudenay, “On the Weak Keys in Blow-
fish,” Fast Software Encryption, 3rd Inter-
national Workshop Proceedings, Springer-
Verlag, 1996, pp. 27–32.

64

[Vau96b] S. Vaudenay, “An Experiment on DES Sta-
tistical Cryptanalysis,” 3rd ACM Confer-
ence on Computer and Communications Se-
curity, ACM Press, 1996, pp. 139–147.

[Wag95a] D. Wagner, “Cryptanalysis of S-1,” sci.crypt
Usenet posting, 27 Aug 1995.

[Wag95b] D. Wagner, personal communication, 1995.

[WH87] R. Winternitz and M. Hellman, “Chosen-key
Attacks on a Block Cipher,” Cryptologia, v.
11, n. 1, Jan 1987, pp. 16–20.

[Whe94] D. Wheeler, “A Bulk Data Encryp-
tion Algorithm,” Fast Software Encryption,
Cambridge Security Workshop Proceedings,
Springer-Verlag, 1994, pp. 127–134.

[Wie94] M.J. Wiener, “Efficient DES Key Search,”
TR-244, School of Computer Science, Car-
leton University, May 1994.

[Win84] R.S. Winternitz, “Producing One-Way Hash
Functions from DES,” Advances in Cryp-
tology: Proceedings of Crypto 83, Plenum
Press, 1984, pp. 203–207.

[WN95] D. Wheeler and R. Needham, “TEA, a Tiny
Encryption Algorithm,” Fast Software En-
cryption, 2nd International Workshop Pro-
ceedings, Springer-Verlag, 1995, pp. 97–110.

[WSK97] D. Wagner, B. Schneier, and J. Kelsey,
“Cryptanalysis of the Cellular Message En-
cryption Algorithm,” Advances in Cryptol-
ogy — CRYPTO ’97 Proceedings, Springer-
Verlag, 1997, pp. 526–537.

[YLCY98] X. Yi, K.Y. Lam, S.X. Cheng, and X.H.
You, “A New Byte-Oriented Block Cipher,”
Information Security. First International
Workshop ISW ’97 Proceedings, Springer-
Verlag, 1998, 209–220.

[YMT97] A.M. Youssef, S. Mister, and S.E. Tavares,
“On the Design of Linear Transformations
for Substitution Permutation Encryption
Networks,” Workshop on Selected Areas in
Cryptography (SAC ’97) Workshop Record,
School of Computer Science, Carleton Uni-
versity, 1997, pp. 40–48.

[YTH96] A.M. Youssef, S.E. Tavares, and H.M. Heys,
“A New Class of Substitution-Permutation
Networks,” Workshop on Selected Areas in
Cryptography (SAC ’96) Workshop Record,
Queens University, 1996, pp. 132–147.

[Yuv97] G. Yuval, “Reinventing the Travois: Encry-
tion/MAC in 30 ROM Bytes,” Fast Soft-
ware Encryption, 4th International Work-
shop Proceedings, Springer-Verlag, 1997, pp.
205–209.

[ZG97] F. Zhu and B.-A. Guo, “A Block-Ciphering
Algorithm Based on Addition-Multiplication
Structure in GF(2n),” Workshop on Selected
Areas in Cryptography (SAC ’97) Workshop
Record, School of Computer Science, Car-
leton University, 1997, pp. 145–159.

[Zhe97] Y. Zheng, “The SPEED Cipher,” Finan-
cial Cryptography ’97 Proceedings, Springer-
Verlag, 1997, pp. 71–89.

[ZMI90] Y. Zheng, T. Matsumoto, and H. Imai, “On
the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Un-
proved Hypotheses,” Advances in Cryptol-
ogy — CRYPTO ’89 Proceedings, Springer-
Verlag, 1990, pp. 461–480.

[ZPS93] Y. Zheng, J. Pieprzyk, and J. Seberry,
“HAVAL — A One-Way Hashing Algorithm
with Variable Length of Output,” Advances
in Cryptology — AUSCRYPT ’92 Proceed-
ings, Springer-Verlag, 1993, pp. 83–104.

A Twofish Test Vectors

A.1 Intermediate Values

The following file shows the intermediate values of
three Twofish computations. This particular im-
plementation does not swap the halves but instead
applies the F function alternately between the two
halves.

FILENAME: "ecb_ival.txt"

Electronic Codebook (ECB) Mode
Intermediate Value Tests

Algorithm Name: TWOFISH
Principal Submitter: Bruce Schneier, Counterpane Systems

==========

KEYSIZE=128

KEY=00000000000000000000000000000000

;
;makeKey: Input key --> S-box key [Encrypt]
; 00000000 00000000 --> 00000000
; 00000000 00000000 --> 00000000
; Subkeys
; 52C54DDE 11F0626D Input whiten
; 7CAC9D4A 4D1B4AAA
; B7B83A10 1E7D0BEB Output whiten
; EE9C341F CFE14BE4
; F98FFEF9 9C5B3C17 Round subkeys
; 15A48310 342A4D81
; 424D89FE C14724A7
; 311B834C FDE87320
; 3302778F 26CD67B4
; 7A6C6362 C2BAF60E
; 3411B994 D972C87F
; 84ADB1EA A7DEE434
; 54D2960F A2F7CAA8
; A6B8FF8C 8014C425
; 6A748D1C EDBAF720
; 928EF78C 0338EE13
; 9949D6BE C8314176
; 07C07D68 ECAE7EA7
; 1FE71844 85C05C89
; F298311E 696EA672
;

65

PT=00000000000000000000000000000000

Encrypt()

R[-1]: x= 00000000 00000000 00000000 00000000.
R[0]: x= 52C54DDE 11F0626D 7CAC9D4A 4D1B4AAA.
R[1]: x= 52C54DDE 11F0626D C38DCAA4 7A0A91B6. t0=C06D4949. t1=41B9BFC1.
R[2]: x= 55A538DE 5C5A4DB6 C38DCAA4 7A0A91B6. t0=7C4536B9. t1=67A58299.
R[3]: x= 55A538DE 5C5A4DB6 899063BD 893E49A9. t0=60DAC1A4. t1=2D84C23D.
R[4]: x= 2AE61A96 84BC42D3 899063BD 893E49A9. t0=607AAEAD. t1=6ED2DBF9.
R[5]: x= 2AE61A96 84BC42D3 F14F2618 821B5F36. t0=067D0B49. t1=318EACB4.
R[6]: x= 0FFE0AD1 D6B87B70 F14F2618 821B5F36. t0=58554EDB. t1=62585CF7.
R[7]: x= 0FFE0AD1 D6B87B70 CD0D38A1 C069BD9B. t0=839B0017. t1=B3A89DB0.
R[8]: x= A85CE579 DE2661CE CD0D38A1 C069BD9B. t0=E9BC6975. t1=F0DDA4C3.
R[9]: x= A85CE579 DE2661CE 7A39754C 973ABD2A. t0=54687CDF. t1=9044BF4B.
R[10]: x= 013077D7 B3528BA1 7A39754C 973ABD2A. t0=77FC927F. t1=8B8678CC.
R[11]: x= 013077D7 B3528BA1 D57933FD F8EA8B1B. t0=E3C81108. t1=828E7493.
R[12]: x= 64F0EAA1 DA27090C D57933FD F8EA8B1B. t0=B33C25D6. t1=83068533.
R[13]: x= 64F0EAA1 DA27090C F64F1005 99149A52. t0=A0AA2F81. t1=FFF30DB7.
R[14]: x= B0681C46 606D0273 F64F1005 99149A52. t0=114C17C5. t1=EB143CFF.
R[15]: x= B0681C46 606D0273 EB27628F 2C51191D. t0=677DA87D. t1=989D1459.
R[16]: x= C1708BA9 9522A3CE EB27628F 2C51191D. t0=9357B338. t1=AC9926BF.
R[17]: x= 5C9F589F 322C12F6 2FECBFB6 5AC3E82A.

CT=9F589F5CF6122C32B6BFEC2F2AE8C35A

Decrypt()

CT=9F589F5CF6122C32B6BFEC2F2AE8C35A

R[17]: x= 5C9F589F 322C12F6 2FECBFB6 5AC3E82A.
R[16]: x= C1708BA9 9522A3CE EB27628F 2C51191D. t0=9357B338. t1=AC9926BF.
R[15]: x= B0681C46 606D0273 EB27628F 2C51191D. t0=677DA87D. t1=989D1459.
R[14]: x= B0681C46 606D0273 F64F1005 99149A52. t0=114C17C5. t1=EB143CFF.
R[13]: x= 64F0EAA1 DA27090C F64F1005 99149A52. t0=A0AA2F81. t1=FFF30DB7.
R[12]: x= 64F0EAA1 DA27090C D57933FD F8EA8B1B. t0=B33C25D6. t1=83068533.
R[11]: x= 013077D7 B3528BA1 D57933FD F8EA8B1B. t0=E3C81108. t1=828E7493.
R[10]: x= 013077D7 B3528BA1 7A39754C 973ABD2A. t0=77FC927F. t1=8B8678CC.
R[9]: x= A85CE579 DE2661CE 7A39754C 973ABD2A. t0=54687CDF. t1=9044BF4B.
R[8]: x= A85CE579 DE2661CE CD0D38A1 C069BD9B. t0=E9BC6975. t1=F0DDA4C3.
R[7]: x= 0FFE0AD1 D6B87B70 CD0D38A1 C069BD9B. t0=839B0017. t1=B3A89DB0.
R[6]: x= 0FFE0AD1 D6B87B70 F14F2618 821B5F36. t0=58554EDB. t1=62585CF7.
R[5]: x= 2AE61A96 84BC42D3 F14F2618 821B5F36. t0=067D0B49. t1=318EACB4.
R[4]: x= 2AE61A96 84BC42D3 899063BD 893E49A9. t0=607AAEAD. t1=6ED2DBF9.
R[3]: x= 55A538DE 5C5A4DB6 899063BD 893E49A9. t0=60DAC1A4. t1=2D84C23D.
R[2]: x= 55A538DE 5C5A4DB6 C38DCAA4 7A0A91B6. t0=7C4536B9. t1=67A58299.
R[1]: x= 52C54DDE 11F0626D C38DCAA4 7A0A91B6. t0=C06D4949. t1=41B9BFC1.
R[0]: x= 52C54DDE 11F0626D 7CAC9D4A 4D1B4AAA.
R[-1]: x= 00000000 00000000 00000000 00000000.

PT=00000000000000000000000000000000

==========

KEYSIZE=192

KEY=0123456789ABCDEFFEDCBA98765432100011223344556677

;
;makeKey: Input key --> S-box key [Encrypt]
; EFCDAB89 67452301 --> B89FF6F2
; 10325476 98BADCFE --> B255BC4B
; 77665544 33221100 --> 45661061
; Subkeys
; 38394A24 C36D1175 Input whiten
; E802528F 219BFEB4
; B9141AB4 BD3E70CD Output whiten
; AF609383 FD36908A
; 03EFB931 1D2EE7EC Round subkeys
; A7489D55 6E44B6E8
; 714AD667 653AD51F
; B6315B66 B27C05AF
; A06C8140 9853D419
; 4016E346 8D1C0DD4
; F05480BE B6AF816F
; 2D7DC789 45B7BD3A
; 57F8A163 2BEFDA69
; 26AE7271 C2900D79
; ED323794 3D3FFD80
; 5DE68E49 9C3D2478
; DF326FE3 5911F70D
; C229F13B B1364772
; 4235364D 0CEC363A
; 57C8DD1F 6A1AD61E
;
PT=00000000000000000000000000000000

Encrypt()

R[-1]: x= 00000000 00000000 00000000 00000000.
R[0]: x= 38394A24 C36D1175 E802528F 219BFEB4.
R[1]: x= 38394A24 C36D1175 9C263D67 5E68BE8F. t0=988C8223. t1=33D1ECEC.
R[2]: x= C8F5099F 0C4B8F53 9C263D67 5E68BE8F. t0=E8C880BC. t1=19C23B0A.
R[3]: x= C8F5099F 0C4B8F53 69948F5E E67C030F. t0=C615F1F6. t1=17AE5B7E.
R[4]: x= 07633866 59421079 69948F5E E67C030F. t0=90AB32AA. t1=7F56EB43.
R[5]: x= 07633866 59421079 C015BE79 149B9CEC. t0=52971E00. t1=F6BC546D.
R[6]: x= A042B99D 709EF54B C015BE79 149B9CEC. t0=DAA00849. t1=2D2F5FCE.
R[7]: x= A042B99D 709EF54B 0CD39FA6 B250BEDA. t0=EE03FB5B. t1=FB5A051C.
R[8]: x= F7B097FA 9E5C4FF7 0CD39FA6 B250BEDA. t0=09A1B597. t1=18041948.
R[9]: x= F7B097FA 9E5C4FF7 77FC8B29 CC2B3F88. t0=99C9694E. t1=F1687F43.
R[10]: x= A279C718 421A8D38 77FC8B29 CC2B3F88. t0=5D174956. t1=2F7D5E04.
R[11]: x= A279C718 421A8D38 5B1A0904 12FEBF99. t0=5BC40012. t1=78D2617B.
R[12]: x= E4409C22 702548A2 5B1A0904 12FEBF99. t0=C251B3CE. t1=4AC0BD46.
R[13]: x= E4409C22 702548A2 5DDAA2A1 EFB2F051. t0=91BC2070. t1=6FC0BBF3.
R[14]: x= 8561A604 825D2480 5DDAA2A1 EFB2F051. t0=A7D24F8E. t1=84878F62.
R[15]: x= 8561A604 825D2480 5CC6CB7B 62A2CE64. t0=93690387. t1=0EB8FA83.

R[16]: x= 17738CD3 B5142D18 5CC6CB7B 62A2CE64. t0=5FE8370B. t1=F3D5AB78.
R[17]: x= E5D2D1CF DF9CBEA9 B8131F50 4822BD92.

CT=CFD1D2E5A9BE9CDF501F13B892BD2248

Decrypt()

CT=CFD1D2E5A9BE9CDF501F13B892BD2248

R[17]: x= E5D2D1CF DF9CBEA9 B8131F50 4822BD92.
R[16]: x= 17738CD3 B5142D18 5CC6CB7B 62A2CE64. t0=5FE8370B. t1=F3D5AB78.
R[15]: x= 8561A604 825D2480 5CC6CB7B 62A2CE64. t0=93690387. t1=0EB8FA83.
R[14]: x= 8561A604 825D2480 5DDAA2A1 EFB2F051. t0=A7D24F8E. t1=84878F62.
R[13]: x= E4409C22 702548A2 5DDAA2A1 EFB2F051. t0=91BC2070. t1=6FC0BBF3.
R[12]: x= E4409C22 702548A2 5B1A0904 12FEBF99. t0=C251B3CE. t1=4AC0BD46.
R[11]: x= A279C718 421A8D38 5B1A0904 12FEBF99. t0=5BC40012. t1=78D2617B.
R[10]: x= A279C718 421A8D38 77FC8B29 CC2B3F88. t0=5D174956. t1=2F7D5E04.
R[9]: x= F7B097FA 9E5C4FF7 77FC8B29 CC2B3F88. t0=99C9694E. t1=F1687F43.
R[8]: x= F7B097FA 9E5C4FF7 0CD39FA6 B250BEDA. t0=09A1B597. t1=18041948.
R[7]: x= A042B99D 709EF54B 0CD39FA6 B250BEDA. t0=EE03FB5B. t1=FB5A051C.
R[6]: x= A042B99D 709EF54B C015BE79 149B9CEC. t0=DAA00849. t1=2D2F5FCE.
R[5]: x= 07633866 59421079 C015BE79 149B9CEC. t0=52971E00. t1=F6BC546D.
R[4]: x= 07633866 59421079 69948F5E E67C030F. t0=90AB32AA. t1=7F56EB43.
R[3]: x= C8F5099F 0C4B8F53 69948F5E E67C030F. t0=C615F1F6. t1=17AE5B7E.
R[2]: x= C8F5099F 0C4B8F53 9C263D67 5E68BE8F. t0=E8C880BC. t1=19C23B0A.
R[1]: x= 38394A24 C36D1175 9C263D67 5E68BE8F. t0=988C8223. t1=33D1ECEC.
R[0]: x= 38394A24 C36D1175 E802528F 219BFEB4.
R[-1]: x= 00000000 00000000 00000000 00000000.

PT=00000000000000000000000000000000

==========

KEYSIZE=256

KEY=0123456789ABCDEFFEDCBA987654321000112233445566778899AABBCCDDEEFF

;
;makeKey: Input key --> S-box key [Encrypt]
; EFCDAB89 67452301 --> B89FF6F2
; 10325476 98BADCFE --> B255BC4B
; 77665544 33221100 --> 45661061
; FFEEDDCC BBAA9988 --> 8E4447F7
; Subkeys
; 5EC769BF 44D13C60 Input whiten
; 76CD39B1 16750474
; 349C294B EC21F6D6 Output whiten
; 4FBD10B4 578DA0ED
; C3479695 9B6958FB Round subkeys
; 6A7FBC4E 0BF1830B
; 61B5E0FB D78D9730
; 7C6CF0C4 2F9109C8
; E69EA8D1 ED99BDFF
; 35DC0BBD A03E5018
; FB18EA0B 38BD43D3
; 76191781 37A9A0D3
; 72427BEA 911CC0B8
; F1689449 71009CA9
; B6363E89 494D9855
; 590BBC63 F95A28B5
; FB72B4E1 2A43505C
; BFD34176 5C133D12
; 3A9247F7 9A3331DD
; EE7515E6 F0D54DCD
;
PT=00000000000000000000000000000000

Encrypt()

R[-1]: x= 00000000 00000000 00000000 00000000.
R[0]: x= 5EC769BF 44D13C60 76CD39B1 16750474.
R[1]: x= 5EC769BF 44D13C60 D38B6C9F A23B7169. t0=29C0736C. t1=E4D3D68D.
R[2]: x= 99424DFF FBC14BFC D38B6C9F A23B7169. t0=9D16BBB3. t1=64AD7A3F.
R[3]: x= 99424DFF FBC14BFC 698BE047 6A997290. t0=E66B9D19. t1=B87B2DFD.
R[4]: x= 2C125DD7 5A526278 698BE047 6A997290. t0=0BB41F61. t1=3945E62C.
R[5]: x= 2C125DD7 5A526278 E35CD910 7CB57D06. t0=D5397903. t1=F35A3092.
R[6]: x= D5178F25 00D35CC5 E35CD910 7CB57D06. t0=8C8927A1. t1=C3D8103E.
R[7]: x= D5178F25 00D35CC5 D8447F91 65C2BD96. t0=4D8B7489. t1=0B2FC79F.
R[8]: x= FF92E109 DF621C97 D8447F91 65C2BD96. t0=C1176720. t1=F301CE95.
R[9]: x= FF92E109 DF621C97 28BFEFF5 D45666FB. t0=9F3BEC03. t1=77BD388E.
R[10]: x= BB79AD2E AA410F41 28BFEFF5 D45666FB. t0=8C6DB451. t1=0B8B72BA.
R[11]: x= BB79AD2E AA410F41 6576A3ED BFF8215E. t0=8A317EF8. t1=A1EAEAAE.
R[12]: x= 4A6BBAFF 439F4766 6576A3ED BFF8215E. t0=8F8307AA. t1=472014C3.
R[13]: x= 4A6BBAFF 439F4766 F7186836 04CA5304. t0=CEB0BBE1. t1=C12302BE.
R[14]: x= CBD3C29D BC31FEBE F7186836 04CA5304. t0=5CF5C93C. t1=C1033512.
R[15]: x= CBD3C29D BC31FEBE D4E77B7C 5415D5D3. t0=853A6BB2. t1=9F09EB26.
R[16]: x= 85411C2B 7777DC05 D4E77B7C 5415D5D3. t0=877AF61D. t1=4B61EEC7.
R[17]: x= E07B5237 B8342305 CAFC0C9F 20FA7CE8.

CT=37527BE0052334B89F0CFCCAE87CFA20

Decrypt()

CT=37527BE0052334B89F0CFCCAE87CFA20

R[17]: x= E07B5237 B8342305 CAFC0C9F 20FA7CE8.
R[16]: x= 85411C2B 7777DC05 D4E77B7C 5415D5D3. t0=877AF61D. t1=4B61EEC7.
R[15]: x= CBD3C29D BC31FEBE D4E77B7C 5415D5D3. t0=853A6BB2. t1=9F09EB26.
R[14]: x= CBD3C29D BC31FEBE F7186836 04CA5304. t0=5CF5C93C. t1=C1033512.
R[13]: x= 4A6BBAFF 439F4766 F7186836 04CA5304. t0=CEB0BBE1. t1=C12302BE.
R[12]: x= 4A6BBAFF 439F4766 6576A3ED BFF8215E. t0=8F8307AA. t1=472014C3.
R[11]: x= BB79AD2E AA410F41 6576A3ED BFF8215E. t0=8A317EF8. t1=A1EAEAAE.
R[10]: x= BB79AD2E AA410F41 28BFEFF5 D45666FB. t0=8C6DB451. t1=0B8B72BA.
R[9]: x= FF92E109 DF621C97 28BFEFF5 D45666FB. t0=9F3BEC03. t1=77BD388E.
R[8]: x= FF92E109 DF621C97 D8447F91 65C2BD96. t0=C1176720. t1=F301CE95.

66

R[7]: x= D5178F25 00D35CC5 D8447F91 65C2BD96. t0=4D8B7489. t1=0B2FC79F.
R[6]: x= D5178F25 00D35CC5 E35CD910 7CB57D06. t0=8C8927A1. t1=C3D8103E.
R[5]: x= 2C125DD7 5A526278 E35CD910 7CB57D06. t0=D5397903. t1=F35A3092.
R[4]: x= 2C125DD7 5A526278 698BE047 6A997290. t0=0BB41F61. t1=3945E62C.
R[3]: x= 99424DFF FBC14BFC 698BE047 6A997290. t0=E66B9D19. t1=B87B2DFD.
R[2]: x= 99424DFF FBC14BFC D38B6C9F A23B7169. t0=9D16BBB3. t1=64AD7A3F.
R[1]: x= 5EC769BF 44D13C60 D38B6C9F A23B7169. t0=29C0736C. t1=E4D3D68D.
R[0]: x= 5EC769BF 44D13C60 76CD39B1 16750474.
R[-1]: x= 00000000 00000000 00000000 00000000.

PT=00000000000000000000000000000000

A.2 Full Encryptions

The following file shows a number of (plaintext, ci-
phertext, key) pairs. These pairs are related, and
can easily be tested automatically. The plaintext of
each entry is the ciphertext of the previous one. The
key of each entry is made up of the ciphertext two
and three entries back. We believe that these test
vectors provide a thorough test of a Twofish imple-
mentation.

FILENAME: "ecb_tbl.txt"

Electronic Codebook (ECB) Mode
Tables Known Answer Test
Tests permutation tables and MDS matrix multiply tables.

Algorithm Name: TWOFISH
Principal Submitter: Bruce Schneier, Counterpane Systems

==========

KEYSIZE=128

I=1
KEY=00000000000000000000000000000000
PT=00000000000000000000000000000000
CT=9F589F5CF6122C32B6BFEC2F2AE8C35A

I=2
KEY=00000000000000000000000000000000
PT=9F589F5CF6122C32B6BFEC2F2AE8C35A
CT=D491DB16E7B1C39E86CB086B789F5419

I=3
KEY=9F589F5CF6122C32B6BFEC2F2AE8C35A
PT=D491DB16E7B1C39E86CB086B789F5419
CT=019F9809DE1711858FAAC3A3BA20FBC3

I=4
KEY=D491DB16E7B1C39E86CB086B789F5419
PT=019F9809DE1711858FAAC3A3BA20FBC3
CT=6363977DE839486297E661C6C9D668EB

I=5
KEY=019F9809DE1711858FAAC3A3BA20FBC3
PT=6363977DE839486297E661C6C9D668EB
CT=816D5BD0FAE35342BF2A7412C246F752

I=6
KEY=6363977DE839486297E661C6C9D668EB
PT=816D5BD0FAE35342BF2A7412C246F752
CT=5449ECA008FF5921155F598AF4CED4D0

I=7
KEY=816D5BD0FAE35342BF2A7412C246F752
PT=5449ECA008FF5921155F598AF4CED4D0
CT=6600522E97AEB3094ED5F92AFCBCDD10

I=8
KEY=5449ECA008FF5921155F598AF4CED4D0
PT=6600522E97AEB3094ED5F92AFCBCDD10
CT=34C8A5FB2D3D08A170D120AC6D26DBFA

I=9
KEY=6600522E97AEB3094ED5F92AFCBCDD10
PT=34C8A5FB2D3D08A170D120AC6D26DBFA
CT=28530B358C1B42EF277DE6D4407FC591

I=10
KEY=34C8A5FB2D3D08A170D120AC6D26DBFA
PT=28530B358C1B42EF277DE6D4407FC591
CT=8A8AB983310ED78C8C0ECDE030B8DCA4

:
:
:

I=48
KEY=137A24CA47CD12BE818DF4D2F4355960
PT=BCA724A54533C6987E14AA827952F921

CT=6B459286F3FFD28D49F15B1581B08E42

I=49
KEY=BCA724A54533C6987E14AA827952F921
PT=6B459286F3FFD28D49F15B1581B08E42
CT=5D9D4EEFFA9151575524F115815A12E0

==========

KEYSIZE=192

I=1
KEY=00
PT=00000000000000000000000000000000
CT=EFA71F788965BD4453F860178FC19101

I=2
KEY=00
PT=EFA71F788965BD4453F860178FC19101
CT=88B2B2706B105E36B446BB6D731A1E88

I=3
KEY=EFA71F788965BD4453F860178FC191010000000000000000
PT=88B2B2706B105E36B446BB6D731A1E88
CT=39DA69D6BA4997D585B6DC073CA341B2

I=4
KEY=88B2B2706B105E36B446BB6D731A1E88EFA71F788965BD44
PT=39DA69D6BA4997D585B6DC073CA341B2
CT=182B02D81497EA45F9DAACDC29193A65

I=5
KEY=39DA69D6BA4997D585B6DC073CA341B288B2B2706B105E36
PT=182B02D81497EA45F9DAACDC29193A65
CT=7AFF7A70CA2FF28AC31DD8AE5DAAAB63

I=6
KEY=182B02D81497EA45F9DAACDC29193A6539DA69D6BA4997D5
PT=7AFF7A70CA2FF28AC31DD8AE5DAAAB63
CT=D1079B789F666649B6BD7D1629F1F77E

I=7
KEY=7AFF7A70CA2FF28AC31DD8AE5DAAAB63182B02D81497EA45
PT=D1079B789F666649B6BD7D1629F1F77E
CT=3AF6F7CE5BD35EF18BEC6FA787AB506B

I=8
KEY=D1079B789F666649B6BD7D1629F1F77E7AFF7A70CA2FF28A
PT=3AF6F7CE5BD35EF18BEC6FA787AB506B
CT=AE8109BFDA85C1F2C5038B34ED691BFF

I=9
KEY=3AF6F7CE5BD35EF18BEC6FA787AB506BD1079B789F666649
PT=AE8109BFDA85C1F2C5038B34ED691BFF
CT=893FD67B98C550073571BD631263FC78

I=10
KEY=AE8109BFDA85C1F2C5038B34ED691BFF3AF6F7CE5BD35EF1
PT=893FD67B98C550073571BD631263FC78
CT=16434FC9C8841A63D58700B5578E8F67

:
:
:

I=48
KEY=DEA4F3DA75EC7A8EAC3861A9912402CD5DBE44032769DF54
PT=FB66522C332FCC4C042ABE32FA9E902F
CT=F0AB73301125FA21EF70BE5385FB76B6

I=49
KEY=FB66522C332FCC4C042ABE32FA9E902FDEA4F3DA75EC7A8E
PT=F0AB73301125FA21EF70BE5385FB76B6
CT=E75449212BEEF9F4A390BD860A640941

==========

KEYSIZE=256

I=1
KEY=00
PT=00000000000000000000000000000000
CT=57FF739D4DC92C1BD7FC01700CC8216F

I=2
KEY=00
PT=57FF739D4DC92C1BD7FC01700CC8216F
CT=D43BB7556EA32E46F2A282B7D45B4E0D

I=3
KEY=57FF739D4DC92C1BD7FC01700CC8216F00000000000000000000000000000000
PT=D43BB7556EA32E46F2A282B7D45B4E0D
CT=90AFE91BB288544F2C32DC239B2635E6

I=4
KEY=D43BB7556EA32E46F2A282B7D45B4E0D57FF739D4DC92C1BD7FC01700CC8216F
PT=90AFE91BB288544F2C32DC239B2635E6
CT=6CB4561C40BF0A9705931CB6D408E7FA

I=5
KEY=90AFE91BB288544F2C32DC239B2635E6D43BB7556EA32E46F2A282B7D45B4E0D
PT=6CB4561C40BF0A9705931CB6D408E7FA
CT=3059D6D61753B958D92F4781C8640E58

I=6
KEY=6CB4561C40BF0A9705931CB6D408E7FA90AFE91BB288544F2C32DC239B2635E6
PT=3059D6D61753B958D92F4781C8640E58

67

CT=E69465770505D7F80EF68CA38AB3A3D6

I=7
KEY=3059D6D61753B958D92F4781C8640E586CB4561C40BF0A9705931CB6D408E7FA
PT=E69465770505D7F80EF68CA38AB3A3D6
CT=5AB67A5F8539A4A5FD9F0373BA463466

I=8
KEY=E69465770505D7F80EF68CA38AB3A3D63059D6D61753B958D92F4781C8640E58
PT=5AB67A5F8539A4A5FD9F0373BA463466
CT=DC096BCD99FC72F79936D4C748E75AF7

I=9
KEY=5AB67A5F8539A4A5FD9F0373BA463466E69465770505D7F80EF68CA38AB3A3D6
PT=DC096BCD99FC72F79936D4C748E75AF7
CT=C5A3E7CEE0F1B7260528A68FB4EA05F2

I=10

KEY=DC096BCD99FC72F79936D4C748E75AF75AB67A5F8539A4A5FD9F0373BA463466
PT=C5A3E7CEE0F1B7260528A68FB4EA05F2
CT=43D5CEC327B24AB90AD34A79D0469151

:
:
:

I=48
KEY=2E2158BC3E5FC714C1EEECA0EA696D48D2DED73E59319A8138E0331F0EA149EA
PT=248A7F3528B168ACFDD1386E3F51E30C
CT=431058F4DBC7F734DA4F02F04CC4F459

I=49
KEY=248A7F3528B168ACFDD1386E3F51E30C2E2158BC3E5FC714C1EEECA0EA696D48
PT=431058F4DBC7F734DA4F02F04CC4F459
CT=37FE26FF1CF66175F5DDF4C33B97A205

68

