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Previous lecture

Measure of risk assigns a real number to any random variable L
(loss).
Favorite risk mesures:

variance: var(L) = E(L− EL)2

standard deviation sd(L) = (E(L− EL)2)
1
2

semivariance: rs(L) = E
[
max (0, L− EL)2

]
mean absolute deviation: ra(L) = E|L− EL|
mean absolute semideviation: ras(L) = E [max (0, L− EL)]

Value at Risk (VaR):
VaRα(L) = inf {l ∈ R,P (L > l) ≤ 1− α}
Conditional Value at Risk (CVaR):

CVaRα(L) = inf
{

a ∈ R, a + 1
1−αE [max (0, L− a)]

}
,

alternatively:
CVaRα(L) = βE (L|L > VaRα(L)) + (1− β)VaRα(L) with
some β ∈ [0, 1]
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Questions for today

Risk measures:

What are the “reasonable” properties that should have all
“good” risk measures?

Which of the considered measures has the properties?

Is it possible to generalize a very well-known and popular
standard deviation (variance)?

What is the dual expression of measures with these properties?

Multiobjective optimization:

How to formulate an optimization problem when multipple
objective are considered?

What are the best solutions of such problems?

How to find all these best solutions?
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Coherent risk measures

CRM: R : L2(Ω)→ (−∞,∞] that satisfies

(R1) Translation equivariance: R(L + C ) = R(L) + C for
all X and constants C ,

(R2) Positive homogeneity: R(0) = 0, and
R(λL) = λR(L) for all L and all λ > 0,

(R3) Subaditivity: R(L + M) ≤ R(L) +R(M) for all L
and M,

(R4) Monotonicity: R(L) ≥ R(M) when L ≥ M.

Strictly expectation bounded risk measures satisfy (R1), (R2),
(R3), and

(R5) R(L) > E[L] for all nonconstant L, whereas
R(L) = E[L] for constant L.

Note: (R2)&(R3) implies convexity of R: for each a ∈ [0, 1] we
have:
R(aL+(1−a)M) ≤ R(aL)+R((1−a)M) = aR(L)+(1−a)R(M)
Other classes of risk measures and functionals: Follmer and Schied
(2002), Pflug and Romisch (2007).
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Coherent properties for the popular risk mesures

variance: none of (R1)-(R5)

standard deviation: (R2)

semivariance: none of (R1)-(R5)

mean absolute deviation: (R2), (R3)

mean absolute semideviation: (R2), (R3)

Value at Risk (VaR): (R1),(R2), (R4)

Conditional Value at Risk (CVaR): (R1)-(R5)
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Dual representation of coherent risk measures

Consider a measurable space (Ω,A) and the set P of all probability
measures on the space.

Definition

A set Q ⊂ P is called a risk envelope if for each Q ∈ Q one has: Q ≥ 0
and EQ = 1.

Theorem

R is a coherent risk measure if and only if there exists a risk envelope Q
such that:

R(L) = max
Q∈Q

E (QL)

and Q can be chosen as a convex set.

Interpretation: A coherent risk measure can be understood as a

worst-case expectation with respect to some class of probability

distributions on (Ω,A), It means for some distribution P ′. If the

probability distribution of L is P then Q = dP′

dP .
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Example - Risk envelope for CVaR

To simplify the situation consider a measurable space with M
atoms (discrete distributions). Moreover let L has a discrete
uniform distribution on the space - atoms are equiprobable, i.e.
discrete distribution with M equiprobable scenarios lj ,
j = 1, 2, ...,M. Assume that M(1−α) is an integer number. Then:

CVaRα(L) = min
a,zj

a +
1

(1− α) M

M∑
j=1

zj

s. t. zj ≥ lj − a, j = 1, ..,M

zj ≥ 0, j = 1, ..,M

Miloš Kopa Theory of coherent measures and multiobjective optimization



Example - Risk envelope for CVaR

And dual problem:

CVaRα(L) = max
yj

M∑
j=1

yj lj

s. t.
M∑

j=1

yj = 1

yj ≤
1

(1− α) M

yj ≥ 0, j = 1, ..,M

Note that optimal solution: y∗j = 0 for j = 1, 2, ...,Mα

y∗j = 1
(1−α)M for j = Mα + 1, ...,M. Hence the risk envelope for

CVaR is:

Q = {Q : EQ = 1, 0 ≤ Q ≤ 1

(1− α)
}
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Coherent risk and return measures

A return measure is defined as a functional E(L) = −R(L) for a
coherent risk measure R. It is obvious that the expectation
belongs to this class.
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General deviation measures

Rockafellar, Uryasev and Zabarankin (2006A, 2006B): GDM are
introduced as an extension of standard deviation but they need not
to be symmetric with respect to upside X − EX and downside
EX − X of a random variable X .

Any functional D : L2(Ω)→ [0,∞] is called a general deviation
measure if it satisfies

(D1) D(X + C ) = D(X ) for all X and constants C ,

(D2) D(0) = 0, and D(λX ) = λD(X ) for all X and all
λ > 0,

(D3) D(X + Y ) ≤ D(X ) +D(Y ) for all X and Y ,

(D4) D(X ) ≥ 0 for all X , with D(X ) > 0 for nonconstant
X .

(D2) & (D3) ⇒ convexity
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Deviation measures

Standard deviation

D(X ) = σ(X ) =
√

E ‖X − EX‖2

Mean absolute deviation

D(X ) = E
[
|X − EX |

]
.

Mean absolute lower and upper semideviation

D−(X ) = E
[

min(0,X − EX )
]
, D+(X ) = E

[
max(0,X − EX )

]
.

Worst-case deviation

D(X ) = sup
ω∈Ω
|X (ω)− EX |.

See Rockafellar et al (2006 A, 2006 B) for another examples.
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Mean absolute deviation from (1− α)-th quantile
CVaR deviation

For any α ∈ (0, 1) a finite, continuous, lower range dominated
deviation measure

Dα(X ) = CVaRα(X − EX ). (1)

The deviation is also called weighted mean absolute deviation
from the (1− α)-th quantile, see Ogryczak, Ruszczynski (2002),
because it can be expressed as

Dα(X ) = min
ξ∈R

1

1− α
E[max{(1− α)(X − ξ), α(ξ − X )}] (2)

with the minimum attained at any (1− α)-th quantile. In relation
with CVaR minimization formula, see Pflug (2000), Rockafellar
and Uryasev (2000, 2002).
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General deviation measures

According to Proposition 4 in Rockafellar et al (2006 A):

if D = λD0 for λ > 0 and a deviation measure D0, then D is
a deviation measure.

if D1, . . . ,DK are deviation measures, then

D = max{D1, . . . ,DK} is also deviation measure.
D = λ1D1 + · · ·+ λKDK is also deviation measure, if λk > 0
and

∑K
k=1 λk = 1.

Rockafellar et al (2006 A, B): Duality representation using risk
envelopes , subdifferentiability and optimality conditions.
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General deviation measures

We say that general deviation measure D is

(LSC) lower semicontinuous (lsc) if all the subsets of
L2(Ω) having the form {X : D(X ) ≤ c} for c ∈ R
(level sets) are closed;

(D5) lower range dominated if
D(X ) ≤ EX − infω∈Ω X (ω) for all X .
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Strictly expectation bounded risk measures

Theorem 2 in Rockafellar et al (2006 A):

Theorem

Deviation measures correspond one-to-one with strictly expectation
bounded risk measures under the relations

D(X ) = R(X − EX )

R(X ) = E[−X ] +D(X )

In this correspondence, R is coherent if and only if D is lower
range dominated.
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Introduction

� Mean-risk models
� aim to find optimal portfolio of assets
� analytical solutions for continuous distributions
� solutions using generated scenarios

� predetermined, for instance by historical data
� generated with the assumption of continuous distribution
� generated according to few moment estimators

� comparison of the approaches mentioned above
� convergence and its properties
� different continuous distributions
� different risk measures

� computational part
� data processing and generating the scenarios
� optimization tasks in GAMS
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Efficient portfolios

� we consider portfolio based on N assets

� weights of the assets w,
∑N

i=1 wi = 1

� expected returns uw (always using expectation)

� different risk measures rw

� minimal required returns ue

Definition
Portfolio of given N assets with weights w is (mean-risk) efficient,
if there are no other weights w∗

1 , ..,w
∗
N such that

∑N
i=1 w∗

i = 1 and
uw∗ ≥ uw a rw∗ ≤ rw.
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Classical optimization task

Efficient portfolios can be obtained while solving following task:

min
w

rw

s. t. uw ≥ ue

N∑
i=1

wi = 1

wi ∈ R, i = 1, ..,N.

Non-negativity condition:

w1, ..,wN ≥ 0.
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Risk measures

� variance

� VaR

� cVaR

� absolute deviation

� semivariance

Definition
Let α ∈ (0, 1) be the threshold and L random variable which
represents the loss from holding the portfolio.Then we define VaRα as:

VaRα(L) = inf {l ∈ R,P (L > l) ≤ 1− α}
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Risk measures

Definition
cVaRα is defined as:

cVaRα(L) = inf

{
a ∈ R, a +

1

1− α
E [max (0, L− a)]

}
.

Absolute deviation can be calculated as:

ra(L) = E|L− EL|.

Semivariance can be calculated as::

rs(L) = E
[
max (0, L− EL)2

]
6 z 29



Elliptical distributions

� generalization of normal distribution

� include normal distribution, Student distribution, logistic elliptical
distribution and others

� symmetrical around the mean

� simple analysis of linear combinations

Theorem
Let X ∼ E (µ,Σ, ψ), A ∈ Rm×n, b ∈ Rm. Then it holds:

AX + b ∼ E
(

Aµ + b,AΣAT , ψ
)
.

7 z 29



Variance

We get classical optimization task which can be used for all elliptical
distributions:

min
w

wTVw

s. t. wTµ ≥ ue

N∑
i=1

wi = 1

wi ∈ R, i = 1, ..,N
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Normal distribution

� VaR
VaRα(L) = −wTµ + qα

√
wTVw

� cVaR

cVaRα(L) = −wTµ +
exp

{
−q2α

2

}
(1− α)

√
2π

√
wTVw

� absolute deviation

ra(L) =

√
2

π

√
wTVw

� semivariance

rs(L) =
1

2
E
[
(L− EL)2

]
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Student distribution

� VaR
VaRα(L) = VaRα(L) = −wTµ + tα,ν

√
wTΣw

� cVaR

cVaRα(L) = −wTµ +
Γ
(
ν−1
2

)√
ν
(

1 +
t2α,ν
ν

)− ν−1
2

Γ
(
ν−2
2

)
(1− α) (ν − 2)

√
π

√
wTΣw

� absolute deviation

ra(L) =
2
√
νΓ
(
ν+1
2

)
(ν − 1)

√
πΓ
(
ν
2

)√wTΣw

� semivariance

rs(L) =
1

2
E
[
(L− EL)2

]
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Variance - scenarios

� suppose we have M scenarios of possible stock prices

� we can use mean and variance-covariance estimators l̂ and V̂ to
minimize variance

� allows us to process estimators before running the optimization
task and therefore is quick

min
w

wT V̂w

s. t. wT l̂ ≥ ue

N∑
i=1

wi = 1

wi ∈ R, i = 1, ..,N.
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VaR - scenarios

�

�

�

general case could be nonconvex

we reformulate the task using integer programming

still hardly computable - M binary variables

min
ν,w,δj

ν

s. t. −wT lj ≤ ν + Kδj , j = 1, ..,M

M∑
j=1

δj = b(1− α) Mc

δj ∈ {0, 1} , j = 1, ..,M

1

M

M∑
j=1

wT lj ≥ ue ...
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cVaR - scenarios

� linear programming task, can be solved quickly

min
a,w,z j

a +
1

(1− α) M

M∑
j=1

z j

s. t. z j ≥ −wT lj − a, j = 1, ..,M

z j ≥ 0, j = 1, ..,M

1

M

M∑
j=1

wT lj ≥ ue

N∑
i=1

wi = 1

wi ∈ R, i = 1, ..,N.
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Absolute deviation - scenarios

� linear programming task

min
w,z j

1

M

M∑
j=1

z j

s. t. wT lj − 1

M

M∑
i=1

wT li ≤ z j , j = 1, ..,M

−wT lj +
1

M

M∑
i=1

wT li ≤ z j , j = 1, ..,M

1

M

M∑
j=1

wT lj ≥ ue

...
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Semivariance - scenarios

� quadratic programming task

min
w,z j

1

M

M∑
j=1

(
z j
)2

s. t. z j ≥ −wT lj +
1

M

M∑
i=1

wT li , j = 1, ..,M

z j ≥ 0, j = 1, ..,M

1

M

M∑
j=1

wT lj ≥ ue

...
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Conclusion

Thank you for your attention!

Miloš Kopa
e-mail: 

kopa@karlin.mff.cuni.cz
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