Theory of coherent measures

Miloš Kopa

Faculty of Mathematics and Physics Charles University in Prague Czech Republic e-mail:kopa@karlin.mff.cuni.cz Measure of risk assigns a real number to any random variable L (loss).

Favorite risk mesures:

- variance: $var(L) = \mathbb{E}(L \mathbb{E}L)^2$
- standard deviation $sd(L) = (\mathbb{E}(L \mathbb{E}L)^2)^{\frac{1}{2}}$
- semivariance: $r_s(L) = \mathbb{E}\left[\max\left(0, L \mathbb{E}L\right)^2\right]$
- mean absolute deviation: $r_a(L) = \mathbb{E}|L \mathbb{E}L|$
- mean absolute semideviation: $r_{as}(L) = \mathbb{E} \left[\max \left(0, L \mathbb{E}L \right) \right]$
- Value at Risk (VaR): $VaR_{\alpha}(L) = \inf \{ l \in \mathbb{R}, P(L > l) \le 1 - \alpha \}$
- Conditional Value at Risk (CVaR): $CVaR_{\alpha}(L) = \inf \left\{ a \in \mathbb{R}, a + \frac{1}{1-\alpha}\mathbb{E}\left[\max\left(0, L-a\right)\right] \right\},$ alternatively: $CVaR_{\alpha}(L) = \beta E(L|L > VaR_{\alpha}(L)) + (1-\beta)VaR_{\alpha}(L)$ with some $\beta \in [0, 1]$

Risk measures:

- What are the "reasonable" properties that should have all "good" risk measures?
- Which of the considered measures has the properties?
- Is it possible to generalize a very well-known and popular standard deviation (variance)?
- What is the dual expression of measures with these properties?

Multiobjective optimization:

- How to formulate an optimization problem when multipple objective are considered?
- What are the best solutions of such problems?
- How to find all these best solutions?

Coherent risk measures

CRM: $\mathcal{R}:\mathcal{L}_2(\Omega)\to (-\infty,\infty]$ that satisfies

- (R1) Translation equivariance: $\mathcal{R}(L + C) = \mathcal{R}(L) + C$ for all X and constants C,
- (R2) Positive homogeneity: $\mathcal{R}(0) = 0$, and $\mathcal{R}(\lambda L) = \lambda \mathcal{R}(L)$ for all L and all $\lambda > 0$,
- (R3) Subaditivity: $\mathcal{R}(L+M) \leq \mathcal{R}(L) + \mathcal{R}(M)$ for all L and M,
- (R4) Monotonicity: $\mathcal{R}(L) \geq \mathcal{R}(M)$ when $L \geq M$.

Coherent risk measures

CRM: $\mathcal{R}:\mathcal{L}_2(\Omega)\to (-\infty,\infty]$ that satisfies

- (R1) Translation equivariance: $\mathcal{R}(L + C) = \mathcal{R}(L) + C$ for all X and constants C,
- (R2) Positive homogeneity: $\mathcal{R}(0) = 0$, and

$$\mathcal{R}(\lambda L) = \lambda \mathcal{R}(L)$$
 for all L and all $\lambda > 0$,

- (R3) Subaditivity: $\mathcal{R}(L+M) \leq \mathcal{R}(L) + \mathcal{R}(M)$ for all L and M,
- (R4) Monotonicity: $\mathcal{R}(L) \geq \mathcal{R}(M)$ when $L \geq M$.

Strictly expectation bounded risk measures satisfy (R1), (R2), (R3), and

(R5) $\mathcal{R}(L) > \mathbb{E}[L]$ for all nonconstant L, whereas $\mathcal{R}(L) = \mathbb{E}[L]$ for constant L.

・吊 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Coherent risk measures

CRM: $\mathcal{R}:\mathcal{L}_2(\Omega)\to (-\infty,\infty]$ that satisfies

- (R1) Translation equivariance: $\mathcal{R}(L + C) = \mathcal{R}(L) + C$ for all X and constants C,
- (R2) Positive homogeneity: $\mathcal{R}(0) = 0$, and

$$\mathcal{R}(\lambda L) = \lambda \mathcal{R}(L)$$
 for all L and all $\lambda > 0$,

- (R3) Subaditivity: $\mathcal{R}(L+M) \leq \mathcal{R}(L) + \mathcal{R}(M)$ for all L and M,
- (R4) Monotonicity: $\mathcal{R}(L) \geq \mathcal{R}(M)$ when $L \geq M$.

Strictly expectation bounded risk measures satisfy (R1), (R2), (R3), and

(R5) $\mathcal{R}(L) > \mathbb{E}[L]$ for all nonconstant L, whereas $\mathcal{R}(L) = \mathbb{E}[L]$ for constant L.

Note: (R2)&(R3) implies convexity of \mathcal{R} : for each $a \in [0,1]$ we have:

 $\mathcal{R}(aL+(1-a)M) \leq \mathcal{R}(aL) + \mathcal{R}((1-a)M) = a\mathcal{R}(L) + (1-a)\mathcal{R}(M)$ Other classes of risk measures and functionals: Follmer and Schied (2002), Pflug and Romisch (2007).

- variance: none of (R1)-(R5)
- standard deviation: (R2)
- semivariance: none of (R1)-(R5)
- mean absolute deviation: (R2), (R3)
- mean absolute semideviation: (R2), (R3)
- Value at Risk (VaR): (R1),(R2), (R4)
- Conditional Value at Risk (CVaR): (R1)-(R5)

Dual representation of coherent risk measures

Consider a measurable space (Ω, \mathcal{A}) and the set \mathcal{P} of all probability measures on the space.

Definition

A set $Q \subset P$ is called a risk envelope if for each $Q \in Q$ one has: $Q \ge 0$ and $\mathbb{E}Q = 1$.

Theorem

 ${\cal R}$ is a coherent risk measure if and only if there exists a risk envelope ${\cal Q}$ such that:

$$\mathcal{R}(L) = \max_{Q \in \mathcal{Q}} E(QL)$$

and Q can be chosen as a convex set.

Interpretation: A coherent risk measure can be understood as a worst-case expectation with respect to some class of probability distributions on (Ω, \mathcal{A}) , It means for some distribution P'. If the probability distribution of L is P then $Q = \frac{dP'}{dP}$.

To simplify the situation consider a measurable space with M atoms (discrete distributions). Moreover let L has a discrete uniform distribution on the space - atoms are equiprobable, i.e. discrete distribution with M equiprobable scenarios I_j , j = 1, 2, ..., M. Assume that $M(1 - \alpha)$ is an integer number. Then:

$$CVaR_{\alpha}(L) = \min_{a, z_j} a + \frac{1}{(1 - \alpha)M} \sum_{j=1}^{M} z_j$$

s. t. $z_j \ge l_j - a, j = 1, ..., M$
 $z_j \ge 0, j = 1, ..., M$

Example - Risk envelope for CVaR

And dual problem:

$$CVaR_{\alpha}(L) = \max_{y_j} \sum_{j=1}^{M} y_j l_j$$

s. t.
$$\sum_{j=1}^{M} y_j = 1$$
$$y_j \le \frac{1}{(1-\alpha)M}$$
$$y_j \ge 0, j = 1, ..., M$$

Note that optimal solution: $y_j^* = 0$ for $j = 1, 2, ..., M\alpha$ $y_j^* = \frac{1}{(1-\alpha)M}$ for $j = M\alpha + 1, ..., M$. Hence the risk envelope for CVaR is:

$$\mathcal{Q} = \{ Q : EQ = 1, 0 \leq Q \leq \frac{1}{(1-\alpha)} \}$$

A **return measure** is defined as a functional $\mathcal{E}(L) = -\mathcal{R}(L)$ for a coherent risk measure \mathcal{R} . It is obvious that the expectation belongs to this class.

Rockafellar, Uryasev and Zabarankin (2006A, 2006B): GDM are introduced as an extension of *standard deviation* but they need not to be symmetric with respect to *upside* $X - \mathbb{E}X$ and *downside* $\mathbb{E}X - X$ of a random variable X.

Rockafellar, Uryasev and Zabarankin (2006A, 2006B): GDM are introduced as an extension of *standard deviation* but they need not to be symmetric with respect to *upside* $X - \mathbb{E}X$ and *downside* $\mathbb{E}X - X$ of a random variable X.

Any functional $\mathcal{D}:\mathcal{L}_2(\Omega)\to[0,\infty]$ is called a general deviation measure if it satisfies

(D1) D(X + C) = D(X) for all X and constants C,
(D2) D(0) = 0, and D(λX) = λD(X) for all X and all λ > 0,
(D3) D(X + Y) ≤ D(X) + D(Y) for all X and Y,
(D4) D(X) ≥ 0 for all X, with D(X) > 0 for nonconstant X.

(D2) & (D3) \Rightarrow convexity

• Standard deviation

$$\mathcal{D}(X) = \sigma(X) = \sqrt{\mathbb{E} \|X - \mathbb{E}X\|_2}$$

• Mean absolute deviation

$$\mathcal{D}(X) = \mathbb{E}[|X - \mathbb{E}X|].$$

• Mean absolute lower and upper semideviation

$$\mathcal{D}_{-}(X) = \mathbb{E}ig[\min(0, X - \mathbb{E}X)ig], \ \mathcal{D}_{+}(X) = \mathbb{E}ig[\max(0, X - \mathbb{E}X)ig]$$

Worst-case deviation

$$\mathcal{D}(X) = \sup_{\omega \in \Omega} |X(\omega) - \mathbb{E}X|.$$

• See Rockafellar et al (2006 A, 2006 B) for another examples.

Mean absolute deviation from $(1 - \alpha)$ -th quantile CVaR deviation

For any $\alpha \in (0,1)$ a finite, continuous, lower range dominated deviation measure

$$\mathcal{D}_{\alpha}(X) = C VaR_{\alpha}(X - \mathbb{E}X). \tag{1}$$

The deviation is also called **weighted mean absolute deviation** from the $(1 - \alpha)$ -th quantile, see Ogryczak, Ruszczynski (2002), because it can be expressed as

$$\mathcal{D}_{\alpha}(X) = \min_{\xi \in \mathbb{R}} \frac{1}{1 - \alpha} \mathbb{E}[\max\{(1 - \alpha)(X - \xi), \alpha(\xi - X)\}]$$
(2)

with the minimum attained at any $(1 - \alpha)$ -th quantile. In relation with CVaR minimization formula, see Pflug (2000), Rockafellar and Uryasev (2000, 2002).

According to Proposition 4 in Rockafellar et al (2006 A):

- if $\mathcal{D} = \lambda \mathcal{D}_0$ for $\lambda > 0$ and a deviation measure \mathcal{D}_0 , then \mathcal{D} is a deviation measure.
- \bullet if $\mathcal{D}_1,\ldots,\mathcal{D}_{\mathcal{K}}$ are deviation measures, then
 - $\mathcal{D} = \max\{\mathcal{D}_1, \dots, \mathcal{D}_K\}$ is also deviation measure.
 - $\mathcal{D} = \lambda_1 \mathcal{D}_1 + \dots + \lambda_K \mathcal{D}_K$ is also deviation measure, if $\lambda_k > 0$ and $\sum_{k=1}^K \lambda_k = 1$.

Rockafellar et al (2006 A, B): Duality representation using *risk envelopes*, subdifferentiability and optimality conditions.

We say that general deviation measure $\ensuremath{\mathcal{D}}$ is

(LSC) **lower semicontinuous** (lsc) if all the subsets of $\mathcal{L}_2(\Omega)$ having the form $\{X : \mathcal{D}(X) \leq c\}$ for $c \in \mathbb{R}$ (level sets) are closed;

We say that general deviation measure $\ensuremath{\mathcal{D}}$ is

- (LSC) lower semicontinuous (lsc) if all the subsets of $\mathcal{L}_2(\Omega)$ having the form $\{X : \mathcal{D}(X) \leq c\}$ for $c \in \mathbb{R}$ (level sets) are closed;
 - (D5) lower range dominated if $\mathcal{D}(X) \leq EX - \inf_{\omega \in \Omega} X(\omega)$ for all X.

Theorem 2 in Rockafellar et al (2006 A):

Theorem

Deviation measures correspond one-to-one with strictly expectation bounded risk measures under the relations

•
$$\mathcal{D}(X) = \mathcal{R}(X - \mathbb{E}X)$$

•
$$\mathcal{R}(X) = \mathbb{E}[-X] + \mathcal{D}(X)$$

In this correspondence, \mathcal{R} is coherent if and only if \mathcal{D} is lower range dominated.

- Follmer, H., Schied, A.: Stochastic Finance: An Introduction In Discrete Time. Walter de Gruyter, Berlin, 2002.
- Pflug, G.Ch., Romisch, W.: Modeling, measuring and managing risk. World Scientific Publishing, Singapore, 2007.
- Rockafellar, R.T., Uryasev, S. (2002). Conditional Value-at-Risk for General Loss Distributions, *Journal of Banking and Finance* 26, 1443–1471.
- Rockafellar, R.T., Uryasev, S., Zabarankin M. (2006A).
 Generalized Deviations in Risk Analysis. Finance and Stochastics 10, 51–74.
- Rockafellar, R.T., Uryasev, S., Zabarankin M. (2006B).
 Optimality Conditions in Portfolio Analysis with General Deviation Measures. *Mathematical Programming* 108, No. 2-3, 515–540.

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Convergence of approximate solutions in mean-risk models

Václav Kozmík

Faculty of Mathematics and Physics Charles University in Prague

Supervisor: Miloš Kopa

Introduction

- Mean-risk models
 - □ aim to find optimal portfolio of assets
 - analytical solutions for continuous distributions
 - solutions using generated scenarios
 - predetermined, for instance by historical data
 - generated with the assumption of continuous distribution
 - generated according to few moment estimators
- comparison of the approaches mentioned above
 - convergence and its properties
 - different continuous distributions
 - different risk measures
- computational part
 - $\hfill\square$ data processing and generating the scenarios
 - optimization tasks in GAMS

Efficient portfolios

- we consider portfolio based on N assets
- weights of the assets **w**, $\sum_{i=1}^{N} w_i = 1$
- expected returns u_w (always using expectation)
- different risk measures r_w
- minimal required returns u_e

Definition

Portfolio of given N assets with weights **w** is (mean-risk) efficient, if there are no other weights $w_1^*, ..., w_N^*$ such that $\sum_{i=1}^N w_i^* = 1$ and $u_{\mathbf{w}^*} \ge u_{\mathbf{w}}$ a $r_{\mathbf{w}^*} \le r_{\mathbf{w}}$.

Classical optimization task

Efficient portfolios can be obtained while solving following task:

$$\begin{array}{l} \min\limits_{\mathbf{w}} r_{\mathbf{w}} \\ \text{s. t. } u_{\mathbf{w}} \geq u_{e} \\ \sum\limits_{i=1}^{N} w_{i} = 1 \\ w_{i} \in \mathbb{R}, \ i = 1, .., N \end{array}$$

Non-negativity condition:

$$w_1, ..., w_N \ge 0.$$

Risk measures

- variance
- VaR
- ∎ cVaR
- absolute deviation
- semivariance

Definition

Let $\alpha \in (0, 1)$ be the threshold and L random variable which represents the loss from holding the portfolio. Then we define VaR_{α} as:

$$VaR_{\alpha}(L) = \inf \{ l \in \mathbb{R}, \mathsf{P}(L > l) \leq 1 - \alpha \}$$

Risk measures

Definition $cVaR_{\alpha}$ is defined as:

$$cVaR_{lpha}(L) = \inf \left\{ a \in \mathbb{R}, a + rac{1}{1-lpha} \mathsf{E}\left[\max\left(0, L-a
ight)
ight]
ight\}.$$

Absolute deviation can be calculated as:

$$r_a(L) = \mathsf{E}|L - \mathsf{E}L|.$$

Semivariance can be calculated as::

$$r_s(L) = \mathsf{E}\left[\max\left(0, L - \mathsf{E}L\right)^2\right]$$

Elliptical distributions

- generalization of normal distribution
- include normal distribution, Student distribution, logistic elliptical distribution and others
- symmetrical around the mean
- simple analysis of linear combinations

Theorem

Let $\mathbf{X} \sim \mathbf{E}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \psi)$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Then it holds:

$$\mathbf{A}\mathbf{X} + \mathbf{b} \sim \mathbf{E}\left(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathcal{T}}, \psi\right).$$

Variance

We get classical optimization task which can be used for all elliptical distributions:

$$\min_{\mathbf{w}} \mathbf{w}^{T} \mathbf{V} \mathbf{w}$$
s. t. $\mathbf{w}^{T} \boldsymbol{\mu} \ge u_{e}$

$$\sum_{i=1}^{N} w_{i} = 1$$

$$w_{i} \in \mathbb{R}, \ i = 1, ..., N$$

Normal distribution

VaR

$$V\!a R_lpha(L) = - \mathbf{w}^{ op} oldsymbol{\mu} + oldsymbol{q}_lpha \sqrt{\mathbf{w}^{ op} \mathbf{V} \mathbf{w}}$$

cVaR

$$cVaR_{\alpha}(L) = -\mathbf{w}^{T}\boldsymbol{\mu} + \frac{\exp\left\{-\frac{q_{\alpha}^{2}}{2}
ight\}}{(1-\alpha)\sqrt{2\pi}}\sqrt{\mathbf{w}^{T}\mathbf{V}\mathbf{w}}$$

absolute deviation

$$r_a(L) = \sqrt{\frac{2}{\pi}} \sqrt{\mathbf{w}^T \mathbf{V} \mathbf{w}}$$

semivariance

$$r_{s}(L) = \frac{1}{2}\mathsf{E}\left[\left(L - \mathsf{E}L\right)^{2}\right]$$

Student distribution

VaR

$$\mathit{VaR}_lpha(\mathit{L}) = \mathit{VaR}_lpha(\mathit{L}) = - \mathbf{w}^{\mathsf{T}} oldsymbol{\mu} + t_{lpha,
u} \sqrt{\mathbf{w}^{\mathsf{T}} oldsymbol{\Sigma} \mathbf{w}}$$

cVaR

$$cVaR_{\alpha}(L) = -\mathbf{w}^{T}\boldsymbol{\mu} + \frac{\Gamma\left(\frac{\nu-1}{2}\right)\sqrt{\nu}\left(1 + \frac{t_{\alpha,\nu}^{2}}{\nu}\right)^{-\frac{\nu-1}{2}}}{\Gamma\left(\frac{\nu-2}{2}\right)\left(1 - \alpha\right)\left(\nu - 2\right)\sqrt{\pi}}\sqrt{\mathbf{w}^{T}\mathbf{\Sigma}\mathbf{w}}$$

absolute deviation

$$r_{a}(L) = \frac{2\sqrt{\nu}\Gamma\left(\frac{\nu+1}{2}\right)}{(\nu-1)\sqrt{\pi}\Gamma\left(\frac{\nu}{2}\right)}\sqrt{\mathbf{w}^{T}\mathbf{\Sigma}\mathbf{w}}$$

semivariance

$$r_{s}(L) = \frac{1}{2} \mathsf{E}\left[(L - \mathsf{E}L)^{2} \right]$$

10 z 29

Variance - scenarios

- suppose we have M scenarios of possible stock prices
- \blacksquare we can use mean and variance-covariance estimators \hat{I} and \hat{V} to minimize variance
- allows us to process estimators before running the optimization task and therefore is quick

$$\min_{\mathbf{w}} \mathbf{w}^T \hat{\mathbf{V}} \mathbf{w}$$
s. t. $\mathbf{w}^T \hat{\mathbf{I}} \ge u_e$

$$\sum_{i=1}^N w_i = 1$$

$$w_i \in \mathbb{R}, i = 1, .., N.$$

VaR - scenarios

- general case could be nonconvex
- we reformulate the task using integer programming
- still hardly computable M binary variables

$$\min_{\nu, \mathbf{w}, \delta^{j}} \nu$$
s. t. $-\mathbf{w}^{T}\mathbf{l}^{j} \leq \nu + K\delta^{j}, j = 1, ..., M$

$$\sum_{j=1}^{M} \delta^{j} = \lfloor (1 - \alpha) M \rfloor$$

$$\delta^{j} \in \{0, 1\}, j = 1, ..., M$$

$$\frac{1}{M} \sum_{j=1}^{M} \mathbf{w}^{T}\mathbf{l}^{j} \geq u_{e}...$$

cVaR - scenarios

linear programming task, can be solved quickly

$$\begin{split} \min_{a,\mathbf{w},z^{j}} & a + \frac{1}{(1-\alpha)M} \sum_{j=1}^{M} z^{j} \\ \text{s. t. } z^{j} \geq -\mathbf{w}^{T}\mathbf{l}^{j} - a, \, j = 1, .., M \\ & z^{j} \geq 0, \, j = 1, .., M \\ & \frac{1}{M} \sum_{j=1}^{M} \mathbf{w}^{T}\mathbf{l}^{j} \geq u_{e} \\ & \sum_{i=1}^{N} w_{i} = 1 \\ & w_{i} \in \mathbb{R}, \, i = 1, .., N. \end{split}$$

Absolute deviation - scenarios

linear programming task

 $\min_{\mathbf{w},z^j} \frac{1}{M} \sum_{i=1}^{M} z^j$ s. t. $\mathbf{w}^T \mathbf{l}^j - \frac{1}{M} \sum_{i=1}^M \mathbf{w}^T \mathbf{l}^i \le z^j, j = 1, .., M$ $-\mathbf{w}^T \mathbf{l}^j + rac{1}{M} \sum_{i=1}^M \mathbf{w}^T \mathbf{l}^i \leq z^j, j = 1, .., M$ $\frac{1}{M}\sum_{i=1}^{M} \mathbf{w}^{T} \mathbf{l}^{i} \geq u_{e}$. . .

Semivariance - scenarios

quadratic programming task

...

$$\begin{split} \min_{\mathbf{w}, z^j} & \frac{1}{M} \sum_{j=1}^M \left(z^j \right)^2 \\ \text{s. t. } z^j \ge -\mathbf{w}^T \mathbf{l}^j + \frac{1}{M} \sum_{i=1}^M \mathbf{w}^T \mathbf{l}^i, \, j = 1, ..., M \\ & z^j \ge 0, \, j = 1, ..., M \\ & \frac{1}{M} \sum_{j=1}^M \mathbf{w}^T \mathbf{l}^j \ge u_e \end{split}$$

Conclusion

Thank you for your attention!

Miloš Kopa e-mail: kopa@karlin.mff.cuni.cz

