
Comput Manag Sci (2009) 6:161–185
DOI 10.1007/s10287-008-0092-1

ORIGINAL PAPER

Testing the structure of multistage stochastic programs
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Abstract A fixed topology of stages and/or a fixed branching scheme are com-
mon assumptions for applications and numerical solution of scenario based multi-
stage stochastic programs. Using contamination technique to test this structure, we
extend the results of Dupačová (Contamination for multistage stochastic programs.
In: Hušková M, Janžura M (eds) Prague stochastics. Matfyzpress, Praha, pp 91–101,
2006a) to stochastic programs with multistage polyhedral risk objectives. The ideas
are exemplified by bond portfolio management problems and complemented by illus-
trative numerical results.

Keywords Contamination · Additional stages · Out-of-sample scenarios ·
Polyhedral risk objectives · Bond portfolio management

1 Multiperiod and multistage stochastic programs

When formulating multistage stochastic programs it is common to assume that the
horizon and the sequence of times at which decisions will be made have been already
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162 J. Dupačová et al.

fixed. An important requirement is that the decisions must be nonanticipative, i.e. in
any stage of the decision process the decisions are allowed to depend only on the past
observations and decisions.

As the discrete approximations of the data process may be available at much finer
timestep than the intervals between the decision points, see e.g. Dempster et al. (2000),
Dupačová et al. (2003), Eichhorn and Römisch (2006), the crucial task is then to relate
the time instants and stages.

In the general T -stage stochastic program we think of a stochastic data process
ω = (ω1, . . . , ωT −1) and a decision process x = (x1, . . . xT ). The components
ω1, . . . , ωT −1 of ω and the decisions x2, . . . , xT are assumed to be random vectors,
not necessarily of the same dimension, defined on some probability space (Z ,F , µ),
while x1 is a nonrandom vector-valued variable and ω0 denotes a fixed initial input
value.

The decision process is nonanticipative which means that decisions taken at any
stage of the process do neither depend on future realizations of stochastic data nor
on future decisions, whereas the past information as well as the knowledge of the
probability distribution of the data process are exploited. This can be expressed as
follows: Let F0 be the trivial σ -field {∅,Ω} and Ft−1 ⊆ F be the σ -field generated
by the part ωt−1,• := (ω1, . . . , ωt−1) of the stochastic data process ω that precedes
stage t. The dependence of the t-th stage decision xt only on the past means that xt is
Ft−1-measurable. We denote xt−1,• = (x1, . . . , xt−1) the sequence of decisions at
stages 1, . . . , t −1, P the distribution function of ω, Pt denotes the marginal probabil-
ity distribution of ωt , and Pt (·|ωt−1,•), t = 2, . . . , T − 1, its conditional probability
distribution. EP is the expectation operator under P.

The first-stage decision vector x1 consists of all decisions that have to be selected
before further information is revealed whereas the second-stage decisions are allowed
to adapt to this information, etc. In each of the stages, the decisions are limited by
constraints that may depend on the previous decisions and observations. Stages do not
necessarily refer to time periods, they correspond to steps in the decision process.

An example is the nested form of the multistage stochastic linear program (MSLP)
which resembles the backward recursion of stochastic dynamic programming with an
additive overall cost function:

min
x1∈X1

[c�
1 x1+EP {ϕ1(x1, ω1)}] with X1 :={x1 | A1x1 = b1, l1 ≤ x1 ≤u1} (1)

where the cost-to-go function ϕt−1(·, ·), t = 2, . . . , T, is defined recursively as

ϕt−1(xt−1,•, ωt−1,•)=min
x t

[ct (ω
t−1,•)�xt +EPt (·|ωt−1,•){ϕt (xt−1,•, xt , ω

t−1,•, ωt )}]
(2)

subject to constraints

Bt (ω
t−1,•) xt−1 + At (ω

t−1,•) xt = bt (ω
t−1,•), l t (ω

t−1,•) ≤ xt ≤ ut (ω
t−1•) a.s.

and ϕT is explicitly given, e.g. ϕT ≡ 0.
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Matrices At are of a fixed (mt , nt ) type and the remaining vectors and matrices
are of consistent dimensions. For the first stage, known values of all elements of
b1, c1, A1, l1, u1 are assumed and the main decision variable is x1 that corresponds
to the first stage. Constraints involving random elements hold almost surely. For sim-
plicity we will assume that all infima are attained and that all expectations exist. See
recent books Kall and Mayer (2005) or Ruszczyński and Shapiro (2003) for more gen-
eral cases. Notice that the first-stage problem (1) has the form of the expectation-type
stochastic program with the set of feasible decisions independent of P.

For applications one mostly approximates the true probability distribution P of
ω by a discrete probability distribution carried by a finite number of atoms, say,
ω1, . . . , ωK . Accordingly, the supports of marginal and conditional probability distri-
butions Pt , Pt (·|ωt−1,•)∀t are finite sets. For disjoint sets of indices Kt ,

t = 2, . . . , T , let us list as ω̃kt , kt ∈ Kt all possible realizations of ωt−1,• and
denote by the same subscripts the corresponding values of the t-th stage coefficients.
The total number of scenarios K equals the number of elements of KT . Each sce-
nario ωk = {ωk

1, . . . , ω
k
T −1} thus generates a sequence of coefficients {ck2 , . . . , ckT },

{Ak2 , . . . , AkT }, {Bk2 , . . . , BkT }, {bk2 , . . . , bkT }, {lk2 , . . . , lkT }, {uk2 , . . . , ukT }. The
data are organized in the form of the scenario tree: Its nodes are determined by all con-
sidered realizations ω̃kt , kt ∈ Kt , t = 2, . . . , T, and by the root indexed as k1 = 1;
each realization ω̃kt+1 of ωt•, t = 1, . . . , T −1, has a unique ancestor ω̃kt (a realization
of ωt−1,•), we denote it by subscript a(kt+1), and a finite number of descendants—
realizations of ωt+1,•.

This allows to rewrite the T -stage stochastic linear program (1)–(2) in the following
arborescent form:

min

[
c�

1 x1 +
∑

k2∈K2

pk2 c�
k2

xk2 +
∑

k3∈K3

pk3 c�
k3

xk3 + · · · +
∑

kT ∈KT

pkT c�
kT

xkT

]
(3)

subject to

A1x1 = b1
Bk2 x1 + Ak2 xk2 = bk2 , k2 ∈ K2

Bk3 xa(k3) +Ak3 xk3 = bk3 , k3 ∈ K3
. . .

. . .
...

BkT xa(kT ) +AkT xkT = bkT , kT ∈ KT

l1 ≤ x1 ≤ u1, lkt ≤ xkt ≤ ukt , kt ∈ Kt , t = 2, . . . , T . (4)

The path probabilities pkt > 0 ∀kt ,
∑

kt ∈Kt
pkt = 1, t = 2, . . . T, of partial seque-

nces of coefficients are probabilities of realizations of ωt−1,• ∀t. They may be obtained
by stepwise multiplication of the marginal probabilities pk2 by the conditional arc
(transition) probabilities, say, πkτ−1kτ , τ = 3, . . . , t . Probabilities pk of individual
scenarios ωk, k = 1, . . . , K , are equal to the corresponding path probabilities pkT .
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Nonanticipativity constraints are included in an implicit way. Notice, that (3)–(4)
may correspond also to a T -period two-stage stochastic program based on the same
scenarios: Except for the root, there is only one descendant d(kt ) of each of t-th stage
nodes, that is, the transition probabilities πkt ,d(kt ) = 1 ∀kt ∈ Kt , t = 2, . . . , T − 1.

Scenarios are identified by sequences {k2, . . . , kT } such that kt ∈ Kt , kt+1 = d(kt )∀t
and the objective function (3) may be simplified to

c�
1 x1 +

∑
kT ∈KT

pkT

[
c�

k2
xk2 + c�

k3
xk3 + · · · + c�

kT
xkT

]
. (5)

Problem (4), (5) is called the two-stage relaxation of MSLP (3)–(4) and it corresponds
to Ft = F1 ∀t.

With explicit inclusion of nonanticipativity constraints, the scenario-based multi-
period or multistage stochastic programs with linear constraints can be again written
as a large-scale deterministic program: Given scenario ωk denote by c(ωk) the vector
composed of all corresponding coefficients, say, c1, ckt , t = 2, . . . , T, in the objective
function, by A(ωk) the matrix of all coefficients of system of constraints (4) for sce-
nario ωk , and, similarly, by b(ωk), l(ωk), u(ωk) the vectors composed of right-hand
sides in (4) and bounds of the box constraints for scenario ωk . The scenario-splitted
form of the T -stage stochastic linear program is

min
X ∩C

{
K∑

k=1

pk c(ωk)�xk | A(ωk)x(ωk) = b(ωk), l(ωk) ≤ x(ωk) ≤ u(ωk)∀k

}
. (6)

Set X is defined by deterministic constraints on xt (ω
k)∀t, k, C by the nonanticip-

ativity conditions, and x(ωk) is the corresponding decision vector composed of stage
related subvectors xt (ω

k)∀t . For two-stage stochastic programs the nonanticipativity
constraints boil down to the requirement that the first-stage decisions must be scenario
independent, i.e. x1(ω

k) = x1(ω
k′
)∀k, k′. Similar constraints guarantee that the t-th

stage decisions based on the same history are equal. Such constraints can be expressed
as x = U x where x contains carefully grouped components of all decision vectors
x(ωk) and U is a 0-1 matrix.

Besides the formulation of goals and constraints and identification of the driv-
ing random process, building a scenario-based multiperiod or multistage stochastic
program requires specification of the horizon, stages and generation of the input in
the form of a scenario fan or a scenario tree. The choice of stages, of the branching
scheme, of scenarios and their probabilities influence the optimal first-stage decision
and the overall optimal value. To use multiperiod two-stage model or to assign one
stage to each of possible discretization points are two extreme cases. Requirements
of various applications may lead to different topologies of the decision points: With
a fixed time discretization of the data process ω = (ωt , t = 1, . . . , T − 1) the stages
may be allocated to selected time points, say τ1 < · · · < τD < T . The decisions
are made at τd , d = 1, . . . , D, using the past information ωτd−1,• and the probabi-
listic specification. Similarly as the second stage decisions for multiperiod two-stage
stochastic programs, all decisions at time points t between stages τd , τd+1 are made

123



Testing the structure of multistage stochastic programs 165

at t = τd using the past information up to τd . The formulation exploits then a fixed
suitable coarser structure (filtration) {Fd , d = 1, . . . , D}, Fd ⊆ F defined by the
data available at time τd which corresponds to stage d. The whole procedure has been
developed in Dempster et al. (2000) for a specific application, see also Kall and Mayer
(2005) for the corresponding scenario tree construction.

We shall assume in the sequel that the horizon has been fixed; for numerical exper-
iments and for a discussion of various choices related with the nature of the decision
problem see e.g. Frauendorfer and Haarbrücker (2000) and Bertocchi et al. (2006b),
Dupačová et al. (2002), respectively. Also selection of stages follows sometimes from
the problem formulation (e.g. the dates of maturity of bonds, cf. Frauendorfer and Mar-
ohn (2004), yearly rebalancing of the fund Dempster et al. (2006) or expiration dates
of options) but more frequently, stages are fixed ad hoc, by application of heuristic
rules and/or experience and regarding software and computer facilities.

Hence, for an already chosen horizon, the crucial step is to relate the time instants
and stages. It is a problem specific task and we will discuss it mainly for financial
applications. There are some general recommendations: Accept unequal lengths of
time periods between subsequent stages, starting with a short first period. Together
with repeated rolling the model over time, this may replace well the full dynamics of
the decision process even for problems with a few stages. Another suggestion Grinold
(1986) is to break the problem with a long (possibly infinite) horizon into three phases:
To use the scenario tree structure for 1 ≤ t ≤ T1, to design just one descendant from
each node for T1 + 1 ≤ t ≤ T2 (i.e. the horse-tail structure) and to aggregate the rest
of the process into one additional stationary stage.

A detailed analysis of the origin and of the initial structure of the solved problem
may be exploited to aggregate the stages, may help to prune the tree or to extend it for
other out-of-sample scenarios or branches.

To generate the required input means to approximate the probability distribution
of the random factors bearing in mind the chosen type of the model and to get the
scenario-dependent coefficients according to the assigned tree structure. As a rule, the
selected procedure should take into account the chosen type of model, the level of
the existing information, software and hardware possibilities. Finally, a validation of
results is necessary: an approximate stochastic program is solved instead of the under-
lying “true” decision problem and compromises between the size of the resulting
problem and the desired precision of the results cannot be avoided.

It has been observed that various theoretical results valid for two-stage stochastic
programs do not carry over to the multistage case (e.g. Dupačová (2004), Heitsch et al.
(2006), Shapiro (2003, 2008)). At the same time, input generation (e.g. generation of a
scenario tree instead of a fan of scenarios) and the numerical solution of multistage pro-
grams is substantially more complicated. Hence, a natural question is how many stages
and what topology of stages should be used, why to use multistage stochastic programs
at all and how much we loose when simplifying them to their multiperiod two-stage
variant by relaxation of nonanticipativity constraints. As the set of feasible decisions
gets enlarged, the optimal value of the two-stage relaxation (4), (5) based on identical
data provides a lower bound of the optimal value of the original multistage problem.

Depending on the context, analysis of the impact of including additional stages on
the results may be classified as quantitiative stability, postoptimality, stress testing or
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output analysis. There exist several numerical studies comparing different topologies
of stages and branching structures mostly for various financial applications of sto-
chastic programming, e.g. Bertocchi et al. (2006b), Dempster and Thompson (2002),
Dempster et al. (2006), Nielsen and Poulsen (2004), Nielsen and Zenios (1996). A
detailed analysis of special financial problems supplemented by numerical experi-
ments may add to the heuristics, cf. Blomwall and Shapiro (2007).

We shall approach these problems via the contamination technique. Basic ideas will
be briefly explained in section 2 with emphasis on the results which may be used to
testing the topology of stages for multistage stochastic linear programs. The approach
is then applied to stress testing the structure of multistage stochastic programs with
polyhedral convex risk objectives cf. Eichhorn and Römisch (2005) and of a multistage
bond portfolio management problem Bertocchi et al. (2006a,b).

2 Quantitative analysis based on contamination

2.1 Contamination technique

Contamination approach was initiated in mathematical statistics as one of the tools for
analysis of robustness of estimators with respect to deviations from the assumed proba-
bility distribution and/or its parameters. It goes back to von Mises and the concepts are
briefly described e.g. in Serfling (1980). In stochastic programming, it was developed
in a series of papers up to results applicable to two-stage stochastic linear programs,
e.g. Dupačová (1986, 1996), and to the first ideas dealing with the multistage case
Dupačová (1995, 2006a).

Contamination technique is a quantitative stability method of modeling and quan-
tifying the impact of perturbations of the underlying probability distribution on the
results of the considered stochastic programming problem. It is suitable, e.g. for the
examination of the influence of including additional scenarios on the optimal value
function.

Let X ⊂ IRn be nonempty, closed and P ∈ P , the set of all Borel probabil-
ity distributions on Ω ⊂ IRm . We shall deal with stochastic programs which can be
formulated as

min
x∈X

F(x, P) (7)

with X independent of P and the objective function F concave in P ∈ P . The
concavity assumption is fulfilled for various common types of stochastic programs
including those with risk objectives or robust optimization problems of Mulvey et al.
(1995). Expectation type objective functions

F(x, P) = EP f (x, ω) =
∫
Ω

f (x, ω)P(dω)

which are linear in P are the most frequent special case.
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Via contamination, robustness analysis with respect to changes in P gets reduced
to a much simpler analysis with respect to a scalar parameter λ : Assume that (7) was
solved for an already constructed scenario tree corresponding to the discrete probabil-
ity distribution P . Possible changes in probability distribution P are modeled using
contaminated distributions Pλ,

Pλ := (1 − λ)P + λQ, λ ∈ [0, 1]

with Q ∈ P another fixed probability distribution. Limiting the analysis to a selected
direction only, the results are directly applicable but they are less general than quanti-
tative stability results with respect to arbitrary (but small) changes in P summarized
e.g. by Römisch in Chapter 8 of Ruszczyński and Shapiro (2003).

Let ϕ(P) and X ∗(P) be the optimal value function and the optimal set mapping
of (7) and ϕP Q(λ) and X ∗

P Q(λ) be the optimal value function and the optimal set
mapping of (7) when using contaminated distribution Pλ instead of P. For X inde-
pendent of P concavity of F(x, P) in P ensures that ϕPQ(λ) is concave as well. The
Gâteaux derivative

ϕ′(P; Q − P) := lim
t→0+

ϕ(Pt ) − ϕ(P)

t

of ϕ(P) in the direction of Q − P can be exploited to construct bounds on the optimal
value function ϕPQ(λ) using the values of ϕPQ only for λ = 0 or λ = 1, i.e. the
optimal values for probability distributions P and Q. The following inequality is a
simple consequence of concavity of ϕPQ :

ϕPQ(0) + λϕ′
PQ(0+) ≥ ϕPQ(λ) ≥ (1 − λ)ϕPQ(0) + λϕPQ(1), λ ∈ [0, 1]. (8)

It provides bounds on the relative change of the optimal value function of the consid-
ered stochastic program due to contamination:

ϕPQ(1) − ϕPQ(0) ≤ ϕPQ(λ) − ϕPQ(0)

λ
≤ ϕ′

PQ(0+), λ ∈ [0, 1].

Any use of these bounds is of course conditioned on the existence of Gâteaux derivative
and our ability to compute it. If the objective function F(x, P) is linear in P,

F(x, Pλ) :=
∫
Ω

f (x, ω)Pλ(dω) = (1 − λ)F(x, P) + λF(x, Q)

is linear in λ and its derivative with respect to λ equals dF(x,λ)
dλ

= F(x, Q)− F(x, P).

The following result follows by application of Theorem 1, Chapter 3 of Danskin
(1967):

Lemma 1 Let X be compact and F(x, P) linear in P. Let P, Q ∈ P be such that
F(•, P), F(•, Q) are finite continuous functions. Then the Gâteaux derivative of the
optimal value function ϕ at P in the direction Q − P exists and can be computed as
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ϕ′(P; Q − P) = min
x∈X ∗(P)

F(x, Q) − ϕ(P). (9)

If x∗(P) is the unique optimal solution, ϕ′(0+) = F(x∗(P), Q) − ϕ(0), i.e. the
local change of the optimal value function caused by a small change of P in direction
Q − P is the same as that of the objective function at x∗(P). If there are multiple
optimal solutions, each of them leads to an upper bound

ϕ′(P; Q − P) ≤ F(x(P), Q) − ϕ(P), x(P) ∈ X ∗(P). (10)

Contamination bounds can be then relaxed to

(1 − λ)ϕ(P) + λF(x(P), Q) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P) + λϕ(Q) (11)

valid for an arbitrary x(P) ∈ X ∗(P) and λ ∈ [0, 1]. If x(P) is an ε-optimal solution
of (7) for probability distribution Q then the difference of the upper and lower bound
in (11) is less than or equal to λε.

Similarly, one may think of Pλ as a result of contamination of Q by P and derive
(right) upper bounds based on ϕ′(Q; P − Q). In this context, (10) will be called a left
upper bound.

Concavity of the optimal value function ϕPQ(λ) is important for constructing the
above global bounds which hold true for all λ ∈ [0, 1]. It cannot be obtained, in gen-
eral, when the set X depends on the probability distribution P. In such cases and
under additional assumptions, only local stability results can be proved. On the other
hand, Lemma 1 can be generalized in various ways:

− If F is convex in x and continuous for all probability distributions belonging to
a neighborhood of P, the same result and formula (8) follow from Theorem 16
of Gol’štejn (1972). Using a similar approach, it can be proved even for local
minimization; see Teorem 8 of Dupačová (1990).

− For F concave in P and convex in x additional assumptions are needed to get
persistence and stability of the parametric program minx∈X F(x, Pλ), to prove
the existence and the form of the Gâteaux derivative, now

ϕ′(P; Q − P) = min
x∈X ∗(P)

d

dλ
F(x, Pλ)|λ=0+ (12)

cf. Dupačová (1990, 1996, 2006b).

Contamination bounds (8), (11) help to quantify the change in the optimal value
due to the considered perturbations of (7). They were applied in Dupačová (2006b),
Dupačová and Polívka (2007) and Bertocchi et al. (2006a), Dupačová et al. (1998), to
stress test of CVaR and of multiperiod two-stage bond portfolio management problems,
respectively. An application to two-stage stochastic linear programs with polyhedral
risk objectives is derived in Dupačová (2008).

It is also possible to prove the existence of Gâteaux derivative of the optimal value
function when the set of feasible decisions depends on P and is given by explicit con-
straints. For problems convex in x this follows from Theorem 17 of Gol’štejn (1972),
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otherwise one has to rely on various results on stability of parametric programs; see
e.g. Dupačová (1986, 1990), Shapiro (1990). Using classical stability results, Gâteaux
differentiability of optimal solutions of (7) can be proved if the optimal solution of
(7) is unique and if the multifunction X ∗ is in fact a function on a neighborhood of
P, e.g. Dupačová (1986, 1990), Shapiro (1990). There exist also differential stability
results for the optimal solution multifunction; again, they are based on properties of
parametric programs obtained for contaminated probability distributions and are valid
under specific assumptions concerning the probability distribution P and the structure
of the stochastic program; an example is Dentcheva and Römisch (2000).

2.2 Contamination for multistage stochastic linear programs

Also multistage stochastic programs can be formulated as (7), with X the fixed set of
feasible first-stage decisions, recall (1). Still, a note of warning is needed: In (7), the
random objective f (·, ·) is a given function whereas the random objective ϕ1(·, ·) in
(1) changes when the topology of stages, i.e. the filtration, gets changed. This indicates
that for a fixed topology of stages contamination with respect to additional scenarios
goes its usual way. Indeed, the corresponding contamination bounds were derived in
Dupačová (1995) for multistage stochastic linear programs with respect to additional
out-of-sample scenarios which increase the branching number of selected nodes of
the scenario tree but do not change the topology of stages; see also Dupačová (2006a).
The results were applied to multistage problems with a fixed topology of stages in Ber-
tocchi et al. (2006a), Dupačová and Polívka (2004). On the other hand, applications
to MSLP with a varying topology of stages are not straightforward. Let us introduce
first a motivating example.

Example 1 Let us describe briefly the stochastic dedicated bond portfolio selec-
tion problem modeled as two-stage multiperiod stochastic linear program, see e.g.
Dupačová et al. (2002), Shapiro (1988). The goal is to minimize the cost of portfolio
so that the portfolio’s cash flows cover future liabilities. The problem is solved over
T time periods for a portfolio consisting of N bonds and for probability distribution
P carried by a fan of selected scenarios of interest rates, T − 1 dimensional vectors
ωk = {ωk

t , t = 1, . . . , T − 1}, k = 1, . . . , K , with probabilities pk; ω0 is a known
initial interest rate valid for the first period.

We assume that the vector of bonds’ acquisition prices c = (c1, . . . , cN )� and
the T -vectors f n, n = 1, . . . , N , l of the cash flows and liabilities are known. The
sought composition of portfolio x = (x1, . . . , xN )� has to be scenario independent
whereas the surpluses y+k

t and short-term shortfalls y−k
t in time periods t = 1, . . . , T

may adapt to individual scenarios and are constructed at once for all subsequent
periods t = 2, . . . , T . In addition, there is a penalty

∑
k pk qk� y−k for borrowing

included into the objective function and a spread δ between the rate for borrowing and
lending.

The resulting problem is

minimize c�x + y+
0 +

∑
k

pk qk� y−k
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170 J. Dupačová et al.

Fig. 1 Contaminated scenario tree

subject to

N∑
n=1

ftn xn +(1+ωk
t−1)y+k

t−1−y+k
t −(1 + ωk

t−1+δ)y−k
t−1+y−k

t = lt , ∀k, t =1, . . . , T

with y+k
0 = y+

0 , y−k
0 = y−k

T = 0, ωk
0 = ω0 ∀k and nonnegativity of all vectors

x, y+k , y−k, k = 1, . . . , K .

The alternative probability distribution Q corresponds to a possible call option at
t = t1 > 1 for certain bond, under some of scenarios. It provides an optimal first
stage decision if the call option is exercised. The interest rate scenarios are identical
with those for P but the related cash flows of the bond with call option differ—the
full nominal value plus coupon and premium get paid at t1 and zero cash flows follow
in subsequent periods. Of course, the first stage investment decisions for Q will be
different.

Contaminated probability distribution Pλ takes into account both possibilities and
the contamination parameter λ reflects the belief that the call option will not be exer-
cised. To get a 3-stage SLP one keeps the time horizon T and the time discretization
and includes an additional decision point at t1, see Figure 1. This means, inter alia, that
the system of linear constraints written for the pooled set of scenarios corresponding
to Pλ must be extended for the nonanticipativity condition:

Decisions x and y+k
t , y−k

t at t < t1 cannot count upon the outcome of the option
at time t1.

Consider now a general scenario-based multistage stochastic program with stages
allocated at certain time points {τ1, . . . , τD} ⊂ {t1, . . . , T } which may involve an
additional stage (not additional time discretization point!) at t = t1 /∈ {τ1, . . . , τD}.
To include an additional stage means to reflect in the arborescent form of MSLP
(3)–(4) for contaminated probability distribution Pλ additional nonanticipativity con-
ditions: For t < t1, all coefficients and decision variables for P and Q are equal. The
corresponding subsystem of constraints in (4), briefly

Bkt xa(kt ) + Akt xkt = bkt , lkt ≤ xkt ≤ ukt , kt ∈ Kt , t ≤ t1 (13)

(with the first term Bk1 xa(k1) missing for k1 = 1) will be called common constraints.
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Testing the structure of multistage stochastic programs 171

At t = t1 realization of an additional random factor is observed. Assume that there
are two possible outcomes which correspond to two alternative probability distribu-
tions P, Q. The initial constraints for scenarios ωk, atoms of P,

Bkt xa(kt ) + Akt xkt = bkt , lkt ≤ xkt ≤ ukt , kt ∈ Kt , t > t1, (14)

are kept and will be called P-system. Another Q-system of constraints for scenarios
ωh, atoms of Q,

Bht xa(ht ) + Aht xht = bht , lht ≤ xht ≤ uht , ht ∈ Ht , t > t1 (15)

will be attached. The ancestors a(ht1+1) and the decision variables xa(ht1+1) in the
Q-system come from the common constraints for corresponding indices kt1 and vari-
ables xa(ht1+1) ∼ xkt1

. Thus using the pooled set of scenarios from P and Q we get a
fixed set X of solutions which fulfil the system of linear constraints (13)–(15). The
contaminated stochastic program is a linear parametric program with parameter λ

only in the objective function:

F(x, λ) := c�
1 x1 +

t1∑
t=2

∑
kt ∈Kt

pkt c�
kt

xkt + (1 − λ)

T∑
t=t1+1

∑
kt ∈Kt

pkt c�
kt

xkt

+ λ

T∑
t=t1+1

∑
ht ∈Ht

qht c�
ht

xht (16)

minimized with respect to (13)–(15). In the last term of (16), qht are the path proba-
bilities in the scenario tree for probability distribution Q.

The optimal value of (16) with respect to (13)–(15) is denoted ϕPQ(λ) and X ∗
PQ(λ)

is the set of optimal solutions of (13)–(16). The symbolsϕ(P),X ∗(P), ϕ(Q),X ∗(Q)

are kept for optimal values and sets of optimal solutions of the two MSLP obtained
for P and Q separately; notice that ϕPQ(0) = ϕ(P), ϕPQ(1) = ϕ(Q).

Proposition 1 Assume that the sets X ∗
PQ(λ) are nonempty for all λ ∈ [0, 1] and

X ∗
PQ(0) is bounded. Then the optimal value function ϕPQ(λ) is concave on [0, 1] and

contamination bounds (8) follow with

ϕ′
P Q(0+) = min

x∈X ∗
P Q(0)

F(x, 1) − ϕP Q(0).

The proof is an adaptation of results on existence and form of directional derivatives of
the optimal value function of perturbed linear programs, cf. Chapter 3.5 of Gol’štejn
and Yudin (1966), to the parametric linear program (16), (13)–(15).

To get upper bound (10) for the derivative means to evaluate F(x(0), 1) at an arbi-
trary optimal solution x(0) of the contaminated problem (16), (13)–(15) with λ = 0.

Optimal solutions consist of components xkt (P), kt ∈ Kt , t = 1, . . . , T, of an opti-
mal solution of (3)–(4) complemented by components of an arbitrary feasible solution,
say, x∗

ht
, t > t1, of the related Q-system (15), i.e. x(0) = {xkt (P)∀kt , x∗

ht
∀ht }.
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As we mentioned above, for t = t1 + 1 the ancestors a(ht1+1) and the corresponding
decision variables xa(ht1+1) in the Q-system come from the common constraints.

For x(0) and λ = 1, the sought value F(x(0), 1) of the objective function is

c�
1 x1(P) +

t1∑
t=2

∑
kt ∈Kt

pkt c�
kt

xkt (P) +
T∑

t=t1+1

∑
ht ∈Ht

qht c�
ht

x∗
ht

and the optimal value ϕ(P) = ϕP Q(0) equals

c�
1 x1(P) +

t1∑
t=2

∑
kt ∈Kt

pkt c�
kt

xkt (P) +
T∑

t=t1+1

∑
kt ∈Kt

pkt c�
kt

xkt (P).

The difference F(x(0), 1) − ϕPQ(0) is the upper bound for the derivative ϕ′
PQ(0+)

and we have, cf. (10),

ϕ′
PQ(0+) ≤

T∑
t=t1+1

⎡
⎣ ∑

ht ∈Ht

qht c�
ht

x∗
ht

−
∑

kt ∈Kt

pkt c�
kt

xkt (P)

⎤
⎦. (17)

To get a tighter upper bound, one may insert for x∗
ht

the minimizers of

T∑
t=t1+1

∑
ht ∈Ht

qht c�
ht

xht (18)

subject to constraints (15) linked with the corresponding decisions x(P) through
ancestors kt1 of ht1+1 : xa(ht1+1) = xkt1

(P). Under assumption of an identical stages
topology for P, Q the tighter bound (17)–(18) corresponds then to evaluation of the
objective function at the optimal solution x(P) but for the probability distribution Q.

Moreover, the same type of upper bounds appears also in the context of contaminated
two-stage multiperiod SLP. It is obtained for t1 = 1 in (17)–(18).

Similar theorems hold true for other instances of scenario-based MSLP and for
more complex changes of their structure. They may be obtained also by application
of the contamination technique to the nested form (1)–(2) of the stochastic program,
see section 3.2, and can be extended to certain scenario-based nonlinear problems,
e.g. to multistage stochastic programs with convex risk objectives, see section 3.1.
The suggested bounds aim at reduction of computational efforts in comparison with
solving the full parametric program (13)–(16) for λ ∈ (0, 1).

Notice that working with the scenario-splitted form (6) is convenient only under
special circumstances. In general it would mean to accept changes of the system
x = U x if the topology of stages varies which is a substantial change of the resulting
deterministic program.
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3 Applications

3.1 Multistage polyhedral risk objective

Consider now a multiperiod decision process over a discrete time horizon t = 1, . . . , T,

and assume that we are supposed to valuate and manage the related risks, say z j , at
certain prescribed time instances 1 = t0 < t1 < · · · < tJ = T . The sequence of risks
{zt j (ω), j = 1, . . . , J } is nonanticipative and z j (ω), the risk at t j , is measurable with
respect to the filtration Ft j −1 of (Ω,F , P) generated by events preceding t j .

Definition 1 (Eichhorn and Römisch (2005)) A risk measure R on ×J
j=1L p(Ω,

Ft j −1, P), p ∈ [1,+∞), is called a multiperiod polyhedral risk measure if there
exist numbers k j ∈ IN and vectors d j ∈ IRk j , j = 1, . . . , J, w jτ ∈ IRk j −τ , j =
1, . . . J, τ = 0, . . . , j − 1, a polyhedral set Y1 ⊆ IRk1 and polyhedral cones
Y j ⊆ IRk j , j = 2, . . . , J, such that

R(z, P) = inf EP

J∑
j=1

d�
j y j (ω) (19)

subject to

y j ∈ L p(Ω,Ft j −1, P), y j (ω) ∈ Y j a.s. for j = 1, . . . , J, (20)

j−1∑
τ=0

w�
jτ y j−τ (ω) = z j (ω) a.s. for j = 2, . . . , J. (21)

Thus the polyhedral risk measure equals the optimal value of a multistage stochastic
program which does no more keep the staircase structure of (1)–(2). Such multistage
stochastic programs can be transformed to those of the staircase form, see Kall and
Mayer (2005) for details. The random parameters z j (ω) occur only on the right-hand
sides of constraints (21) and they can be interpreted as accumulated losses at certain
stages of the multistage stochastic linear program, i.e.

z j (ω) := c�
1 x1 +

t j∑
t=2

ct (ω
t−1,•)�xt (ω

t−1,•).

The losses need not be monitored at every stage t , but only on a subset {t j ,

j = 1, . . . , J } ⊆ {2, . . . , T }.
A fixed filtration is assumed. Nevertheless, through the choice of d j ,Y j ,w jτ in

(19)–(21) various polyhedral risk measures can be obtained. The average CVaR,
R(z, P) = ∑

j µ j CVaRα j (z j , P) with weights µ j ≥ 0 ∀ j,
∑

j µ j = 1 is one of
them; see Eichhorn and Römisch (2005) for other examples.

For minimization of a multiperiod polyhedral risk objective R(z, P), the expecta-
tion in the initial stochastic program, such as (1)–(2), is replaced by the multiperiod
polyhedral risk measure (19)–(21) with
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z j (ω) = c�
1 x1 +

t j∑
t=2

ct (ω
t−1,•)�xt (ω

t−1,•)

or a shortcut procedure is applied. The minimal risk ϕR(P) is then equal to the optimal
value of multistage stochastic linear program

min EP

J∑
j=1

d�
j y j (ω

t j −1,•) (22)

subject to

At1(ω
t−1,•)x1 +

t∑
τ=2

Atτ (ω
t−1,•)xτ (ω

τ−1,•) = bt (ω
t−1,•), t = 2, . . . , T,

x1 ∈ X1, xt (ω
t−1,•) ∈ Xt , t = 2, . . . , T, a.s.

y1 ∈ Y1, y j (ω
t j −1,•) ∈ Y j , j = 2, . . . , J, a.s.

j−1∑
τ=0

w�
jτ y j−τ (ω

t j −1,•) = z j (ω
t j −1,•) a.s. for j = 2, . . . , J, (23)

zt (ω
t−1,•) := c�

1 x1 +
t∑

τ=2

cτ (ω
τ−1,•)�xτ (ω

τ−1,•)∀t. (24)

The optimal decision x1R(P) is the first part of the risk-minimizing first-stage decision
[x1R(P), y1R(P)] of (22)–(24).

For a fixed filtration in the scenario-based form of the multiperiod polyhedral risk
measure (19)–(21) the results of Dupačová (1995) may be used in a straightforward
way to stress testing the obtained value of the polyhedral risk measure with respect
to additional, out-of-sample scenarios or branches of the scenario tree. The same
applies also to the minimal multiperiod polyhedral risks, i.e. to the minimal values of
multistage stochastic programs with polyhedral risk objectives if neither the filtration
Ft , t = 1, . . . , T − 1, related with the original stochastic program nor the filtra-
tion Ft j , j = 2, . . . , J, appearing in definition of the multiperiod risk measure are
changed.

For illustration analyze the changes due to inclusion of one additional scenario
ω∗ = (ω∗

1, . . . , ω∗
T −1) from the root of the scenario tree, i.e. the contaminating proba-

bility distribution is degenerated, Q = δ{ω∗}; see Figure 2. Assume that there are two
stages in the T -stage stochastic linear program (3)–(4) in which the risk objectives are
applied: t2 = 2, t3 = T . It means that the objective function in (22) is

d�
1 y1 + EP [d�

2 y2(ω1) + d�
3 y3(ω)],

the coupling constraints (23) are specified as

w�
20 y2(ω1) + w�

21 y1 = z2(ω1), w�
30 y3(ω) + w�

31 y2(ω1) + w�
32 y1 = zT (ω) a.s.

and zt (ω
t−1,•) are defined as in (24).
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Fig. 2 Additional scenario

For simplicity of notation assume that only the right-hand sides bt are random and
let b∗

t consist of the right-hand sides generated by the additional scenario ω∗. The
problem is solved for the initial probability distribution P which provides the opti-
mal value ϕR(P) and optimal first-stage decisions x1R(P) and y1R(P). To solve it
for the degenerated probability distribution Q means to solve the deterministic linear
program

min d�
1 y1 + d�

2 y2 + d�
3 y3

subject to

At1x1 +
t∑

τ=2

Atτ xτ = b∗
t , t = 2, . . . , T,

x1 ∈ X1, xt ∈ Xt , t = 2, . . . , T, y1 ∈ Y1, y j ∈ Y j , j = 2, 3

w�
20 y2 + w�

21 y1 = z2, w�
30 y3 + w�

31 y2 + w�
32 y1 = zT

zt = c�
1 x1 +

t∑
τ=2

c�
τ xτ ∀t.

The resulting optimal value ϕR(Q) enters the lower bound in (8).
To get the derivative, it is necessary to evaluate the performance of the optimal

first-stage decisions x1R(P), y1R(P) along the additional scenario ω∗, i.e. to solve

d�
1 y1R(P) + min

x∗, y∗[d�
2 y∗

2 + d�
3 y∗

3]

subject to

At1x1R(P) +
t∑

τ=2

Atτ x∗
τ = b∗

t , t = 2, . . . , T,

x∗
t ∈ Xt , t = 2, . . . , T, y∗

j ∈ Y j , j = 2, 3

w�
20 y∗

2 + w�
21 y1R(P) = z∗

2, w�
30 y∗

3 + w�
31 y∗

2 + w�
32 y1R(P) = z∗

T
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and with

z∗
t = c�

1 x1R(P) +
t∑

τ=2

c�
τ x∗

τ ∀t.

When testing the possibility of an additional stage, which means to change the fil-
tration Ft , t = 1, . . . , T −1, the approach discussed in section 2.2 and Proposition 1
have to be used.

3.2 Bond portfolio management problem

The bond portfolio management problem was formulated initially as a two-stage
multiperiod stochastic program (see e.g. Bertocchi et al. (2006a), Dupačová et al.
(1998) or Chapter 6 of Dupačová et al. (2002)) and applied to bond portfolios con-
taining bonds of different maturities; none of the bonds expires within the investment
horizon. In addition, puttable bonds with European option at a specific time t = t1 with
a given exercise price were included into portfolio. The main random factor was the
time evolution of interest rates ω. Scenarios of interest rates were generated according
to the Black-Derman-Toy model Black et al. (1990) and the fair prices of bonds and
of put options were computed accordingly. The purpose was to preserve the value of
the portfolio over time, up to the given horizon T ; no liabilities were considered.

To exercise the put option or not is a managerial decision and to reflect it, additional
decision variables may be included. However, as no liabilities are involved and the
considered bond portfolio management problem focuses on the wealth maximization
at the horizon, the exercise strategy may be based solely on a data-based heuristics
related with the interest rates scenarios, without using any additional decision vari-
ables. Hence, all second-stage decisions for all time periods up to the horizon are made
at once, in dependence on the considered scenarios of interest rates.

The situation is different if the portfolio contains a bond j with a European call
option at a given time t = t1 < T . Similarly as in Example 1, there is an addi-
tional random factor—the exercise of call option or not—whose realization is not
observed before t = t1. Hence, there are two different probability distributions
P, Q based on identical interest rates scenarios, which differ by the outcome of
a 0 − 1 random variable: P corresponds to no exercise whereas Q assumes the
exercise. The two possible outcomes of option are reflected by different cash flows
for bond j for t > t1. Moreover, the number of variables and constraints of the
Q- system differs from those of P-system: After the exercise of call, changes in
holdings of bond j are no more possible. We may analyze differences of results
obtained for the two two-stage multiperiod SLP, one based on scenarios ωk,

k = 1, . . . , K , with prices and cash flows computed without option—probability
distribution P with λ = 0 and the second one for probability distribution Q car-
ried by identical scenarios of interest rates ωk, k = 1, . . . , K , but with cash flows
reflecting the certain exercise of call option at t = t1. Contamination leads then to a
two-stage multiperiod SLP depending on contamination parameter λ ∈ [0, 1] inter-
preted as the probability or just the “belief" that the option will not be exercised.
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To obtain the contamination bounds for contaminated two-stage SLP is a standard
task.

To model the problem correctly, nonanticipativity condition of the form
“decisions at t < t1 cannot rely on the outcome of the call option at t1”

should be observed. It suggests to reformulate the problem as a 3-stage stochastic
linear program. Nevertheless, without any liabilities the 3-stage reformulation might
be superfluous. We will test its effect by the contamination technique.

The optimal value, say ϕ̃(Pλ) of the two-stage contaminated problem is a natu-
ral bound for the optimal value ϕ(Pλ) of the contaminated 3-stage problem which
involves the nonanticipativity constraints; hence, for minimization, we have

ϕ(Pλ) ≥ ϕ̃(Pλ) ≥ (1 − λ)ϕ̃(P) + λϕ̃(Q).

To get this lower bound, neither construction of common constraints nor inclusion of
nonanticipativity condition are needed. What remains is to compute the upper bounds,
such as (17).

To this end, let us follow firstly the procedure explained in section 2.2. For t < t1
the prices of all bonds including those of the callable bond j (i.e., the coefficients in
(13)) are obtained from the Black-Derman-Toy model and the common constraints
consist of the corresponding balance and cash flow constraints on portfolio composi-
tion. At t = t1, the branches of the scenario tree split according to the two possible
outcomes of the option leading to the P and Q systems which must be tied with the
common constraints through the ancestors at t1 − 1. We can think of pairs of sce-
nario subtrees rooted in nodes kt1 ∈ Kt1 with “first-stage” variables xkt1

, identical
interest rate scenarios ωs

t for t ≥ t1 but with differences in the form of cash flow
constraints and with the set of variables reduced if the exercise of the option occurs
(Q-constraints). The two cost-to-go functions, say ϕP

kt1
(xkt1

) :=ϕP
t1−1(xt1−1,•, ωt1−1,•)

and ϕ
Q
kt1

(xkt1
) := ϕ

Q
t1−1(xt1−1,•, ωt1−1,•) in the nested form (2) correspond to recourse

functions in multiperiod two-stage stochastic linear programs and can be computed
separately for all continuations ωt1 , . . . , ωT −1 of the paths of interest rates of ωt1−1,•.
Under assumption that the exercise of call option is independent of the interest rates,
the cost-to-go function (2) for t = t1 − 1 is based on the contaminated probability
distribution (1 − λ)P + λQ :

ϕa(kt1 )(xa(kt1 ), λ)

= min
xkt1

[c�
kt1

xkt1
+

∑
kt1

πa(kt1 ),kt1
{(1 − λ)ϕP

kt1
(xkt1

) + λϕ
Q
kt1

(xkt1
)}].

Recall that indices kt ∈ Kt correspond to realizations of ωt−1,• and notice that the
conditional expectation is under probability distribution P only—a simplification due
to the fact that there are identical interest rates scenarios for P and Q. Minimization
is carried with respect to constraints of (13) for t = t1. Evidently, ϕa(kt1 )(xa(kt1 ), λ)

is a concave function of λ and its directional derivative follows the scheme (9), (10).
To get the directional derivative of cost-to-go functions ϕkt for t < t1 − 1 and of
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the optimal value function, formula (12) can be applied. Of course, the resulting
upper bounds follow the pattern (17) with the minimizers of the Q-problem at the
place of x∗

ht
.

Inclusion of another European call option at t1 < t2 < T for a different bond j ′ may
be modeled as a 4-stage stochastic program. It may be split into two 3-stage subtrees
rooted at t1 which differ by the outcome of the call option for bond j. Evaluation of
the two cost-to-go functions means now to solve 3-stage stochastic linear progams.
Notice that the structure of the tree is different when the call options at t = t1 and
t = t2 concern the same bond j.

3.3 Selected numerical results

The numerical experiments for the bond portfolio management (cf. Section 3.2)
and stochastic bond dedicated portfolio (cf. Example 1) were solved for one year
investment horizon and monthly discretization. Scenarios for short-term interest rates
were selected according to the so-called Part(8) pattern mentioned in Bertocchi et al.
(2006a,b). The input data were based on the bond portfolio described in detail in our
earlier papers e.g. Bertocchi et al. (2006a,b), Dupačová et al. (1998) but with two arti-
ficial callable bonds substituted for the original puttable ones. Their market prices are
given for the date of October 3rd, 1994 and are reported in the Table 1 in comparison
with prices of the original puttable bonds.

Table 2 includes the characteristics of the bonds.
Among various results of numerical experiments, we choose to comment below the

results for the bond portfolio problem of Section 3.2 and for the stochastic dedicated
bond portfolio selection, Example 1, for the case that only one of the two CBT is
included - that of the shortest maturity (CBT13212).

Table 1 Market prices for
callable bonds with respect to
puttable bonds

Bonds Market prices

CBT13212 101.6534

CBT36608 103.4933

CTO13212 103.7500

CTO36608 106.4390

Table 2 Portfolio Composition on October 3rd 1994

Bonds Qt Coupon Payment dates Exercise Redemp. Maturity

BTP36658 10 3.9375 01 Apr & 01 Oct 100.187 01 Oct 96

BTP36631 20 5.0312 01 Mar & 01 Sep 99.531 01 Mar 98

BTP12687 15 5.2500 01 Jan & 01 Jul 99.231 01 Jan 02

BTP36693 10 3.7187 01 Aug & 01 Feb 99.387 01 Aug 04

BTP36665 5 3.9375 01 May & 01 Nov 99.218 01 Nov 23

CBT13212 20 5.2500 20 Jan & 20 Jul 20 Jan 95 100.000 20 Jan 98

CBT36608 20 5.2500 19 May & 19 Nov 19 May 95 99.950 19 May 98
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3.3.1 Bond portfolio management problem

When generating the prices along scenarios it turns out that for the writer of the call-
able it may be convenient to call the bond at the exercise date t1 = 4 along scenarios
numbered 0 to 3, i.e. the full nominal value plus coupon and premium get paid to
the portfolio’s owner in t1 = 4, and zero cash flows follow in subsequent periods.
We get optimal value 9079.147 by solving the corresponding two-stage multiperiod
optimization problem. This case can be regarded as if the owner of the portfolio is
forced to give back the callable bond if certain evolution of interest rates makes the
writer to call the bond.

Recall that the original bond portfolio management problem does not involve any
liabilities. Let us examine the case with only CBT13212 included by viewing the
exercise of the option at t1 = 4 as an additional random factor. The scenarios consist
now of the initial interest rates scenarios ωk augmented by an additional component,
say α with two possible realizations.

Denote Q the distribution related to the certain occurrence of exercise. The optimal
value of the corresponding two-stage problem for distribution Q is ϕ̃(Q) = 9079.147.

Let P denote the distribution related to problem without occurrence of exercise. The
optimal value of the two-stage problem for distribution P is ϕ̃(P) = 9241.688—the
best possible outcome for the portfolio owner. Unfortunately the bond may be called
and this produces lower final wealth corresponding to Q distribution.

The contaminated distribution

Pλ = (1 − λ)P + λQ

consists of 16 scenarios, 8 corresponding to no exercise (P distribution) and 8 cor-
responding to the exercise (Q distribution), whose influence, as we already noticed,
can be opportunily weighted by the parameter λ. Solving the two-stage optimization
problem for Pλ with different values of λ we get the values shown in column 2 of
Table 3.

From the same data a three-stage problem is obtained by including nonanticipativ-
ity constraints up to the exercise date. Solving it for different values of λ we get the
values shown in column 1 of Table 3. Notice that in this example, the optimal values
of the three-stage problem are always equal to the corresponding two-stage optimal
values.

The purpose of the proposed contamination technique is to avoid solving the two
problems repeatedly for changing values of λ but to provide an evidence whether
an application of the three stage structure improves the results. Having a maximiza-
tion problem, the formulas for bounds, e.g. (8), (10) or (17) are valid with reverse
inequalities and max occurs in the formula for directional derivatives (9) at the place
of min.

The obtained bounds are quite tight, see Figure 3 for the left and lower bound given
by the approximation (dashed lines ) and the exact bounds (solid lines). Accordingly
it should be sufficient to persist in the two-stage formulation.

To analyse the differences in the results due to inclusion of liabilities we introduce
a liability of 9000 Euros at month 12. We consider two models, one excluding the
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Fig. 3 Exact and approximated bounds—no liabilities

Table 3 Three-stage optimal values – no liabilities

possibility of borrowing and another one which allows for borrowing. For no possibil-
ity of borrowing, see Table 4 for details on the results and Figure 4 for various bounds.
We can notice that the bounds given by formula (17) are quite loose.

When we allow for borrowing the optimal values for the two-stage and the three-
stage model do not differ.

In case the callable bond has the exercise time at the end of the first month, which
is reflected also in its market price changed to 104.6554, the optimal values of 2-stage
and 3-stage problems are different even for the case without liabilities. Hence, the
position of the branching point is important. The contamination results are reported in
Table 5 and Figure 5 for the 2-stage and in Table 6 and Figure 6 for the 3-stage model.

We have also run various experiments with different market prices for the callable
bonds: in case that purchasing the callable is an optimal first stage solution both with
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Fig. 4 Exact and approximated bounds – with liabilities

Table 4 Two-stage and three-stage optimal values – w. liabilities

distribution P and Q (i.e. its price is convenient with respect to other bonds under
both distributions), the upper and lower bounds are very close so that optimal values
for different λ move along those bounds.

3.3.2 Stochastic dedicated bond portfolio selection

Again, we consider the portfolio with only one (CBT13212) of the two CBTs included
and with exercise at month 4. As mentioned in Example 1, liabilities are an important
ingredient of this model. We choose one liability at month 12 equal exactly to the value
we got as final wealth in the previous model for the P distribution, i.e. 9241.688,
see Table 3. The minimal acquisition price 8582.687 of portfolio is obtained for
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Fig. 5 Bounds for two-stage optimal values, changed exercise date

Table 5 Two-stage optimal values, changed exercise date

investment of 1.1 in CBT13212 and 8470.276 in cash. If the callable bond is exercised,
no borrowing takes place due to a high cost of borrowing.

Introducing a constraint on a minimal representation of securities in the portfolio,
the minimal acquisition price of the portfolio increases to 13643.312 and is attained
by purchasing each of considered bonds on the minimal level of 10 and an investment
of 7963.918 in cash. We also forced the cash y+

0 to be zero which turned out to be a
very expensive strategy, because the liabilities could be covered only by the cashflows
that became available along the months.

If we consider again the 16 scenarios of prices as described in the previous section
and run the two-stage stochastic model using a contaminated distribution Pλ, we get
the minimal portfolio acquisition prices 8582.687 when the callable bond is called

123



Testing the structure of multistage stochastic programs 183

Fig. 6 Bounds for three-stage optimal values, changed exercise date

Table 6 Three-stage optimal values, changed exercise date

(i.e. λ = 1 in which case no borrowing occurs), respectively 8560.071 (for λ = 0 and
with borrowing of 24.9183 at time t = 11 along scenario 0) when the callable bond is
not called. For any other value of λ the minimal acquisition price is a linear function
of λ—a weighted average of these two extremal values. No difference appears when
we run the three-stage model.

If we add a constraint requiring that the sum of borrowing is less than 24.9183, we
get a different optimal value for the P distribution, 8569.155, which is smaller than
that for the Q distribution. It comes out that having the callable bond in the portfolio,
when called, allows to cover the liabilities without borrowing, which is not the case
when it is not called.
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4 Conclusions

Contamination technique helps to quantify the influence of changes in the structure
of multistage stochastic programs on the optimal value. To derive the results, a refor-
mulation of the problem to the form (7) is necessary; then the contamination bounds
follow by known properties of concave functions. For evaluating them, one solves
stochastic programs of lower dimension and of a reduced number of stages.

For scenario-based multistage stochastic linear programs, results based on paramet-
ric linear programming applied to the arborescent form of the contaminated stochastic
program cover various possibilities, including contamination bounds for problems
with polyhedral risk objectives. Parallel results may be based also on nested form
(1)–(2) of multistage stochastic programs whereas the scenario-splitted form (6) is of
a limited use.
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Bertocchi M, Dupačová J, Moriggia V (2006a) Bond portfolio management via stochastic programming.
In: Ziemba WT, Zenios SA (eds.) Handbook of Asset & Liability Management. Elsevier, pp. 306–336
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